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ciuupi: An R package for Computing
Confidence Intervals that Utilize
Uncertain Prior Information
by Rheanna Mainzer and Paul Kabaila

Abstract We have created the R package ciuupi to compute confidence intervals that utilize uncertain
prior information in linear regression. Unlike post-model-selection confidence intervals, the confidence
interval that utilizes uncertain prior information (CIUUPI) implemented in this package has, to an
excellent approximation, coverage probability throughout the parameter space that is very close to
the desired minimum coverage probability. Furthermore, when the uncertain prior information is
correct, the CIUUPI is, on average, shorter than the standard confidence interval constructed using
the full linear regression model. In this paper we provide motivating examples of scenarios where
the CIUUPI may be used. We then give a detailed description of this interval and the numerical
constrained optimization method implemented in R to obtain it. Lastly, using a real data set as an
illustrative example, we show how to use the functions in ciuupi.

Introduction

Suppose that y = Xβ + ε is a random n-vector of responses, X is a known n× p matrix with linearly
independent columns, β is an unknown parameter p-vector and ε ∼ N(0, σ2 In), where σ2 is unknown.
Let a be a specified nonzero p-vector and suppose that the parameter of interest is θ = a>β. We refer
to the model y = Xβ + ε as the “full” model and the confidence interval for θ based on this model
as the “standard” confidence interval. It is often the case that applied statisticians want to utilize
uncertain prior information in their analysis. This uncertain prior information may arise from previous
experience, scientific background or expert opinion. For example, a common assumption in a factorial
experiment is that higher order interaction terms are equal to zero. We consider the uncertain prior
information that τ = c>β− t = 0, where c is a specified nonzero p-vector that is linearly independent
of a and t is a specified number. Our interest lies in computing (within a reasonable amount of time) a
confidence interval for θ, with minimum coverage probability 1− α, that utilizes the uncertain prior
information that τ = 0.

One could incorporate uncertain prior information in statistical inference using a Bayesian ap-
proach. In other words, a 1− α credible interval for θ could be constructed using an informative prior
distribution for τ. However, the ciuupi package uses a frequentist approach to utilize the uncertain
prior information that τ = 0. Utilizing uncertain prior information in frequentist inference has a
distinguished history, which includes Hodges and Lehmann (1952), Pratt (1961), Stein (1962), Cohen
(1972), Bickel (1984), Kempthorne (1983, 1987, 1988), Casella and Hwang (1983, 1987), Goutis and
Casella (1991), Tseng and Brown (1997), and Efron (2006).

The standard confidence interval has the desired coverage probability throughout the parameter
space. However, it does not utilize the uncertain prior information that τ = 0. One may attempt
to utilize this uncertain prior information by carrying out a preliminary hypothesis test of the null
hypothesis τ = 0 against the alternative hypothesis τ 6= 0. This attempt is based on the following two
hopes. Firstly, if the prior information is correct then this test will lead to a confidence interval that
is narrower than the standard confidence interval. Secondly, if this prior information happens to be
incorrect then this test will effectively lead to the standard confidence interval. Unfortunately, this
attempt fails miserably because, for certain values of a, c and X, this post-model-selection confidence
interval has minimum coverage probability far below 1− α (see e.g. Kabaila and Giri, 2009b), making
it unacceptable.

Kabaila and Giri (2009a) proposed a family of confidence intervals, with minimum coverage
probability 1− α, that utilize the uncertain prior information that τ = 0 as follows. This family of
confidence intervals have expected length that is less than the expected length of the standard interval
when the prior information is correct and maximum (over the parameter space) expected length that
is not too much larger than the expected length of the standard confidence interval. In addition, these
confidence intervals have the same expected length as the standard confidence interval when the data
strongly contradict the prior information. The admissibility result of Kabaila et al. (2010) implies that
a confidence interval with the desired minimum coverage probability and expected length that is
less than that of the standard confidence interval when the prior information is correct, must have an
expected length that exceeds that of the standard interval for some parameter values.

Unfortunately, computing these confidence intervals is quite time consuming. Furthermore, there
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is no existing R package to compute these confidence intervals. Thus, if one wants to compute the
confidence interval proposed by Kabaila and Giri (2009a) and originally computed using MATLAB
programs, they may have to write their own programs to do so. The time and skill required to write
such programs present large barriers to the use of this confidence interval in applied statistics.

? (?, Appendix A) described the family of confidence intervals proposed by Kabaila and Giri
(2009a) when σ2 is known. Each confidence interval in this family is specified by a different tradeoff
between its performance when the prior information is correct and its performance when this prior
information happens to be incorrect. ? (?) then specified an attractive tradeoff that leads to a unique
confidence interval. This interval and its coverage probability and expected length properties can now
be easily and quickly computed using the R package ciuupi.

This confidence interval has the following three practical applications. Firstly, if σ2 has been
accurately estimated from previous data, as in the factorial experiment example described later, then it
may be treated as being effectively known. Secondly, for n− p sufficiently large (n− p ≥ 30, say), if we
replace the assumed known value of σ2 by its usual estimator in the formula for the confidence interval
then the resulting interval has, to a very good approximation, the same coverage probability and
expected length properties as when σ2 is known. Thirdly, some more complicated models (including
those considered by ?, ?) can be approximated by the linear regression model with σ2 known when
certain unknown parameters are replaced by estimates.

The only information needed to assess the coverage probability and expected length of the
confidence interval that utilizes uncertain prior information (CIUUPI) are the values of a, c, X
and 1− α. We stress that this assessment does not use the observed response y. Indeed, if we want
to choose between the CIUUPI and some other confidence interval, such as the standard confidence
interval, then this choice must be made prior to any examination of the observed response y.

In this paper we provide motivating examples of scenarios where this confidence interval may be
used. We then describe, in detail, the CIUUPI computed by the ciuupi package and the numerical
constrained optimization method implemented to obtain it. We contrast and compare the CIUUPI
with a 1− α credible interval for θ constructed using an informative prior distribution for τ. Lastly,
instructions on how to use the functions in ciuupi are given, using a real data set, from a factorial
experiment, as an illustrative example. We hope that, by making ciuupi freely available, statisticians
who have uncertain prior information of the type that we specify and wish to utilize it will be
encouraged to use the CIUUPI instead of the potentially misleading post-model-selection confidence
interval.

Motivating examples

The following motivating examples are provided by Kabaila and Giri (2013). These are examples of
scenarios where the ciuupi package may be used to find a confidence interval for the parameter of
interest θ that utilizes the uncertain prior information that τ = 0.

• Pooling of normal means. Suppose that yi = β1 + εi for i = 1, . . . , n1 and yi = β1 + β2 + εi
for i = n1 + 1, . . . , n1 + n2, where the εi’s are independent and identically distributed (i.i.d.)
N(0, σ2). The parameter of interest is θ = β1 and we have uncertain prior information that
τ = β2 = 0.

• One-way analysis of variance for two treatments. Suppose that yij = βi + εij for i = 1, 2 and
j = 1, . . . , ni, where the εi’s are i.i.d. N(0, σ2). The parameter of interest is θ = β1 and we have
uncertain prior information that τ = β1 − β2 = 0.

• A 2k factorial experiment with two or more replicates. The parameter of interest θ is a specified
contrast. For factorial experiments it is commonly believed that higher order interactions are
negligible. Suppose that the uncertain prior information is that the highest order interaction is
zero.

• One-way analysis of covariance with two treatments and normal errors. The parameter of
interest θ is the difference in expected responses for the two treatments, for a specified value of
the covariate. The uncertain prior information is that the hypothesis of ‘parallellism’ is satisfied.

• Polynomial regression. Suppose that yi = β1 + β2 xi + · · ·+ βp xp−1
i + εi for i = 1, . . . , n, where

the εi’s are i.i.d. N(0, σ2). The parameter of interest θ is the expected response for a specified
value of the explanatory variable x. The uncertain prior information is that τ = βp = 0.

• Linear regression with at least one interaction term. The parameter of interest θ is a given linear
combination of the regression parameters. The uncertain prior information is that a specified
interaction term is 0.
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In addition to the above examples, ? have used the ciuupi package to aid in the computation
of a confidence interval that utilizes uncertain prior information in the following more complicated
scenario that arises in the analysis of both clustered and longitudinal data. Suppose that yij =

β0 + β1 xij + β2 xi + ηi + εit for i = 1, . . . , N and j = 1, . . . , J, where xi = J−1 ∑J
j=1 xij, the ηi’s are i.i.d.

N(0, σ2
η ), and the εij’s are i.i.d. N(0, σ2

ε ). The parameter of interest is θ = β1 and we have uncertain
prior information that τ = β2 = 0.

The confidence interval that utilizes uncertain prior information computed
by ciuupi

Let β̂ = (X>X)−1 X> y, the least squares estimator of β. Then θ̂ = a> β̂ and τ̂ = c> β̂− t are the
least squares estimators of θ and τ, respectively. Now let vθ = Var(θ̂)/σ2 = a>(X>X)−1a and vτ =

Var(τ̂)/σ2 = c>(X>X)−1c. The known correlation between θ̂ and τ̂ is ρ = a>(X>X)−1c/(vθ vτ)1/2.
Let γ = τ/(σ v1/2

τ ), a scaled version of τ, and γ̂ = τ̂/(σ v1/2
τ ), an estimator of γ. Assume that σ2 is

known.

The confidence interval that utilizes uncertain prior information about τ has the form

CI(b, s) =
[
θ̂ − v1/2

θ σ b (γ̂)− v1/2
θ σ s (γ̂) , θ̂ − v1/2

θ σ b (γ̂) + v1/2
θ σ s (γ̂)

]
, (1)

where b : R → R is an odd continuous function and s : R → R is an even continuous fuc-
tion. In addition, b(x) = 0 and s(x) = z1−α/2 for all |x| ≥ 6, where the quantile za is defined
by P(Z ≤ za) = a for Z ∼ N(0, 1). The functions b and s are fully specified by the vector
(b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)) as follows. By assumption, b(0) = 0, (b(−1), b(−2), . . . , b(−5))
= (−b(1),−b(2), . . . ,−b(5)) and (s(−1), . . . , s(−5)) = (s(1), . . . , s(5)). The values of b(x) and s(x)
for any x ∈ [−6, 6] are found by cubic spline interpolation for the given values of b(i) and s(i) for
i = −6,−5, . . . , 0, 1, . . . , 5, 6. The functions b and s are computed such that CI(b, s) has minimum
coverage probability 1− α and the desired expected length properties. This numerical computation
method is described in detail in the next section. Note that the functions b and s are computed
assuming that σ2 is known.

As stated in the introduction, for n − p sufficiently large (n − p ≥ 30, say), if we replace the
assumed known value of σ2 by σ̂2 = (y− X β̂)>(y− X β̂)/(n− p) in the formula for CI(b, s) then the
resulting interval has, to a very good approximation, the same coverage probability and expected
length properties as when σ2 is known. In ciuupi, if no value of σ2 is supplied then the user is given
the option of replacing σ2 by σ̂2, with a warning that n− p needs to be sufficiently large (n− p ≥ 30,
say).

Numerical constrained optimization method used to compute the vector
(b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5))

Let

k(x) = Ψ
(

b(x)− s(x), b(x) + s(x); ρ (x− γ) , 1− ρ2
)

and

k†(x) = Ψ
(
−z1−α/2, z1−α/2; ρ (x− γ) , 1− ρ2

)
,

where Ψ(`, u ; µ, σ2) = P (` ≤ Z ≤ u) for Z ∼ N(µ, σ2). A computationally convenient expression
for the coverage probability of CI(b, s) is

CP(γ; b, s, ρ) = 1− α +
∫ 6

0

(
k(x)− k†(x)

)
φ(x− γ) +

(
k(−x)− k†(−x)

)
φ(x + γ) dx, (2)

where φ denotes the N(0, 1) pdf. This coverage probability depends on the unknown parameter γ, the
functions b and s, the known correlation ρ and the desired minimum coverage probability 1− α. Giri
(2008) has shown that CP(γ; b, s, ρ) is an even function of γ.

Define the scaled expected length of CI(b, s) to be the expected length of CI(b, s) divided by the
expected length of the standard 1− α confidence interval, given by[

θ̂ − z1−α/2 v1/2
θ σ, θ̂ + z1−α/2 v1/2

θ σ
]

. (3)
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This scaled expected length of CI(b, s) is given by

SEL(γ; s, ρ) = 1 +
1

z1−α/2

∫ 6

−6
(s(x)− z1−α/2) φ (x− γ) dx.

This scaled expected length depends on the unknown parameter γ, the function s, the known correla-
tion ρ and the desired minimum coverage probability 1− α. Giri (2008) has shown that SEL(γ; s, ρ) is
an even function of γ.

We compute the functions b and s such that CI(b, s) has minimum coverage probability 1− α and
the desired expected length properties as follows. For given λ ∈ [0, ∞), we minimize the objective
function

(SEL (γ = 0; s, ρ)− 1) + λ
∫ ∞

−∞
(SEL(γ; s, ρ)− 1) dγ, (4)

with respect to the vector
(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
, subject to the coverage constraint

CP(γ) ≥ 1− α for all γ. Equivalently, minimize the objective function

ξ (SEL(γ = 0; s, ρ)− 1) + (1− ξ)
∫ ∞

−∞
(SEL(γ; s, ρ)− 1) dγ (5)

subject to this constraint, where ξ = 1/(1+λ). A computationally convenient formula for the objective
function (4) is

2
z1−α/2

∫ 6

0
(s(h)− z1−α/2) (λ + φ(h)) dh. (6)

Since we are minimizing this objective function, we can leave out the constant at the front of the
integral.

When λ is large, this numerical computation recovers the standard confidence interval (3) for
θ. As λ decreases towards 0, this computation puts increasing weight on achieving a small value
of SEL(γ = 0; s, ρ), i.e. an improved confidence interval performance when the uncertain prior
information that τ = 0 is correct. However, as λ decreases, maxγ SEL(γ; s, ρ) increases, i.e. the
performance of the confidence interval when the prior information happens to be incorrect is degraded.
Following ?, we choose λ such that the “gain” when the prior information is correct, as measured by

1− (SEL (γ = 0; s, ρ))2 , (7)

is equal to the maximum possible “loss” when the prior information happens to be incorrect, as
measured by (

max
γ

SEL (γ; s, ρ)

)2
− 1. (8)

We denote this value of λ by λ∗. Our computational implementation of the constraint CP(γ) ≥ 1− α
for all γ is to require that CP(γ) ≥ 1− α for all γ ∈ {0, 0.05, 0.1, . . . , 8}. By specifying constraints on
the coverage probability CP(γ) for such a fine grid of nonnegative values of γ, we ensure that, to an
exceedingly good approximation, CP(γ; b, s, ρ) ≥ 1− α for all values of γ.

In summary, we compute the vector
(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
by minimizing (6),

where λ is chosen such that (7) = (8), subject to the constraints CP(γ; b, s, ρ) ≥ 1 − α for all γ ∈
{0, 0.05, 0.1, . . . , 8}. Once (b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)) has been computed in this way, we
can easily compute the confidence interval that utilizes the uncertain prior information (CIUUPI) for
observed response y.

This constrained optimization procedure is carried out using the slsqp function in the nloptr
package (see Johnson, 2014). Perhaps surprisingly, the large number of constraints on the coverage
probability CP(γ; b, s, ρ) is handled well by the slsqp function. The integrals in (2) and (6) are
computed as follows. For greater accuracy, each integral is split into a sum of six integrals, with lower
and upper endpoints consisting of successive knots. Each of these integrals is then computed using
Gauss Legendre quadrature with five nodes. Gauss Legendre quadrature was found to be both faster
and more accurate than the R function integrate. This quadrature is carried out using the gauss.quad
function in the statmod package (see Smyth, 2005).

A comparison of the CIUUPI with a Bayesian interval estimator

Kabaila and Dharmarathne (2015) compare Bayesian and frequentist interval estimators for θ in the
linear regression context considered in this paper when σ2 is unknown. They find that the Bayesian
and frequentist interval estimators differ substantially. In this section we compare a 1− α credible
interval for θ with the CIUUPI, assuming that σ2 is known.
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For ease of comparison of the CIUUPI with a credible interval, we re-express the regression
sampling model as follows. Let the n× p matrix X̃ be obtained from X using the transformation
described in Appendix B of Kabaila and Dharmarathne (2015). The attractive property of X̃ is that

(X̃
>

X̃)−1 =

(
V 0
0 Ip−2

)
, where V =

(
1 ρ
ρ 1

)
.

We re-express the regression sampling model as ỹ = X̃
[
ϑ, γ, χ>

]>
+ ε̃, where ỹ = y/σ, ε̃ = ε/σ and

ϑ = θ/(σ v1/2
θ ). Obviously, ε̃ ∼ N(0, In). Let (ϑ̂, γ̂, χ̂) denote the least squares estimator of (ϑ, γ, χ).

Note that ϑ̂ = θ̂/(σ v1/2
θ ). Clearly, (ϑ̂, γ̂) has a bivariate normal distribution with mean (ϑ, γ) and

covariance matrix V and, independently, χ̂ ∼ N(χ, Ip−2). Dividing the endpoints of the CIUUPI by
σ v1/2

θ , we obtain the following confidence interval for ϑ:[
ϑ̂− b(γ̂)− s(γ̂), ϑ̂− b(γ̂) + s(γ̂)

]
, (9)

where the functions b and s have been obtained using the constrained optimization described in the
previous section.

The uncertain prior information that τ = 0 implies the uncertain prior information that γ = 0. The
properties of a Bayesian 1− α credible interval depend greatly on the prior distribution chosen for
(ϑ, γ, χ). We have chosen a prior distribution that leads to a credible interval with some similarities
to the CIUUPI. Assume that the prior probability density function of (ϑ, γ, χ) is proportional to
ξ∗ δ(τ) + (1− ξ∗), where ξ∗ = 1/(1 + λ∗) and δ denotes the Dirac delta function. In other words, we
assume an improper prior density for τ that consists of a mixture of an infinite rectangular unit-height
‘slab’ and a Dirac delta function ‘spike’, combined with noninformative prior densities for the other
parameters. This prior density is a Bayesian analogue of the weight function used in the weighted
average over γ, (5). It may be shown that the marginal posterior density of ϑ is

w(γ̂) φ
(

ϑ; ϑ̂− ργ̂, 1− ρ2
)
+ (1− w (γ̂)) φ

(
ϑ; ϑ̂, 1

)
, (10)

where w(γ̂) = 1
/(

1 + λ∗
√

2π exp(γ̂2/2)
)

and φ( · ; µ, ν) denotes the N(µ, ν) pdf. We note that this
posterior density is a mixture of two normal probability density functions, such that the weight given
to the posterior density centred at ϑ̂ increases with increasing γ̂2, when λ∗ > 0. It is evident from (10)
that the highest posterior density Bayesian 1− α credible interval may consist of the union of two
disjoint intervals. For this reason, we consider the shortest 1− α credible interval.

Note that the graph of the function (10) of ϑ consists of the graph of the function

w(γ̂) φ
(

ϑ;−ργ̂, 1− ρ2
)
+ (1− w(γ̂)) φ (ϑ; 0, 1) ,

shifted to the right by ϑ̂. We can therefore express the shortest 1− α credible interval for ϑ in the form
[ϑ̂+ l(γ̂), ϑ̂+ u(γ̂)], for the appropriate functions l and u. We compare this interval with the frequentist
1− α confidence interval (9) as follows. Let bB(γ̂) = −(l(γ̂) + u(γ̂))/2 and sB(γ̂) = (u(γ̂)− l(γ̂))/2.
Then [ϑ̂ + l(γ̂), ϑ̂ + u(γ̂)] is equal to[

ϑ̂− bB(γ̂)− sB(γ̂), ϑ̂− bB(γ̂) + sB(γ̂)
]

, (11)

which has a similar form to (9), but with b and s replaced by bB and sB respectively. Therefore, we may
compare the interval (9) with (11) by comparing the functions b and s with the functions bB and sB,
respectively. We will also compare the interval (9) with (11) by comparing the frequentist coverage
probability function of (11).

Using the ciuupi package

In this section we use a real data set to illustrate how each of the six functions in ciuupi works. Table 1
below gives the name of each of the functions and a short description of what it does. In the following
subsections we show how the functions in Table 1 are used in R.

Factorial experiment example

Consider the 2× 2 factorial experiment described by Kabaila and Giri (Discussion 5.8, 2009a), which
has been extracted from a real 23 factorial data set provided by Box et al. (1963). The two factors are the
time of addition of HNO3 and the presence of a ‘heel’. These factors are labelled A and B, respectively.
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Function Description

bsciuupi Compute the optimized vector
(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
bsspline Evaluate b(x) and s(x) at x
cpci Evaluate CP(γ; b, s, ρ) at γ
selci Evaluate SEL(γ; b, s, ρ) at γ
ciuupi Compute the CIUUPI, i.e. compute CI(b, s)
cistandard Compute the standard confidence interval

Table 1: Functions in the ciuupi package

Define x1 = −1 and x1 = 1 for “Time of addition of HNO3” equal to 2 hours and 7 hours, respectively.
Also define x2 = −1 and x2 = 1 for “heel absent” and “heel present”, respectively. Assume a model of
the form

y = β0 + β1x1 + β2x2 + β12x1x2 + ε,

where ε ∼ N(0, σ2). This model can be written in matrix form as

y = Xβ + ε

where β =
(

β0, β1, β2, β12
)
,

X =


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1


and ε ∼ N(0, σ2 In). According to Box et al. (1963), a very accurate estimate of σ, obtained from
previous related experiments, is 0.8.

Suppose that the parameter of interest θ is
(
expected response when factor A is high and factor B is

low
)
−
(
expected response when factor A is low and factor B is low

)
. In other words, θ = 2(β1 − β12),

so that θ = a>β, where a = (0, 2, 0,−2). Our aim is to find a confidence interval, with minimum
coverage 0.95, for θ. We suppose that there is uncertain prior information that the two-factor interaction
is zero. In other words, we suppose that there is uncertain prior information that β12 = 0. The uncertain
prior information is, then, that τ = c>β− t = 0, where c = (0, 0, 0, 1) and t = 0. Now that we have
specified a, c and X, we can compute ρ = a>(X>X)−1c/(vθ vτ)1/2 = −1/

√
2 = −0.707.

Evaluating the confidence interval (no examination of the observed response)

First suppose that we have not yet examined the observed response y and that we are interested in
knowing how the confidence interval that utilizes uncertain prior information (CIUUPI) performs for
given values of 1− α, a, c and X. We begin by storing the values of α, a, c and X in R as follows.

# Specify alpha, a, c and x.
alpha <- 0.05
a <- c(0, 2, 0, -2)
c <- c(0, 0, 0, 1)
x <- cbind(rep(1, 4), c(-1, 1, -1, 1), c(-1, -1, 1, 1), c(1, -1, -1, 1))

Next we use the numerical constrained optimization to compute the values at the knots of the
functions b and s that define the CIUUPI. We must specify whether natural cubic spline interpolation
(natural = 1) or clamped cubic spline interpolation (natural = 0) is used in the description of these
functions. In the case of clamped cubic spline interpolation the first derivatives of b and s are set to
zero at −6 and 6. Natural cubic spline interpolation is the default, and is carried out using splinefun
in the stats package. Clamped cubic spline interpolation is carried out using cubicspline in the
pracma package. The nonlinear constrained optimization using natural cubic spline interpolation
for the description of the functions b and s is much faster and results in a coverage probability that
is slightly closer to 1− α throughout the parameter space. For this example we are able to obtain
the vector (b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)) in 6.56 minutes when using natural cubic spline
interpolation and in 21.27 minutes when using clamped cubic spline interpolation. This computation
was carried out on a PC with an Intel i7-7500 CPU (3.4GHz) and 32GB of RAM. The following code is
used to obtain the vector

(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
that specifies the CIUUPI, which is

obtained from the numerical constrained optimization that uses natural cubic spline interpolation for
the description of the functions b and s.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 7

# Compute (b(1), b(2), ..., b(5), s(0), s(1), ..., s(5)) that specifies the CIUUPI
bsvec <- bsciuupi(alpha, a = a, c = c, x = x)
bsvec

Alternatively, since we know that ρ = −0.707, we could obtain the vector
(
b(1), b(2), . . . , b(5), s(0),

s(1), . . . , s(5)
)

that specifies the CIUUPI using the code

# Compute (b(1), b(2), ..., b(5), s(0), s(1), ..., s(5)) that specifies the CIUUPI,
# given rho
bsvec2 <- bsciuupi(alpha, rho = -0.707)

Now that we have the vector
(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
that specifies the CIUUPI,

we can graph the functions b and s using the following code:

# Compute the functions b and s that specify the CIUUPI on a grid of values
splineval <- bsspline(seq(0, 8, by = 0.1), bsvec, alpha)

# The first 5 values of bsvect are b(1),b(2),...,b(5).
# The last 6 values are s(0),s(1),...,s(5).
xseq <- seq(0, 6, by = 1)
bvec <- c(0, bsvec[1:5], 0)
svec <- c(bsvec[6:11], qnorm(1 - alpha/2))

# Plot the functions b and s
plot(seq(0, 8, by = 0.1), splineval[, 2], type = "l", main = "b function",

ylab = " ", las = 1, lwd = 2, xaxs = "i", col = "blue", xlab = "x")
points(xseq, bvec, pch = 19, col = "blue")
plot(seq(0, 8, by = 0.1), splineval[, 3], type = "l", main = "s function",

ylab = " ", las = 1, lwd = 2, xaxs = "i", col = "blue", xlab = "x")
points(xseq, svec, pch = 19, col = "blue")

Figure 1 shows the graphs of the functions b and s that specify the CIUUPI, when these functions
are described using natural cubic spline interpolation, for this example. For comparison, Figure 2
shows the graphs of the functions b and s that specify the CIUUPI, when these functions are described
using clamped cubic spline interpolation. These figures are quite similar; there is a small difference in
both the b and s functions near x = 6.

We can also use the vector
(
b(1), b(2), . . . , b(5), s(0), s(1), . . . , s(5)

)
that specifies the CIUUPI to

evaluate and then plot the coverage probability CP(γ; b, s, ρ) and scaled expected length SEL(γ; s, ρ)
as functions of γ. This is done using the following code.

# Compute the coverage probability and scaled expected for a grid of values of gamma
gam <- seq(0, 10, by = 0.1)
cp <- cpciuupi(gam, bsvec, alpha, a = a, c = c, x = x)
sel <- selciuupi(gam, bsvec, alpha, a = a, c = c, x = x)

# Plot the coverage probability and squared scaled expected length
plot(gam, cp, type = "l", lwd = 2, ylab = "", las = 1, xaxs = "i",
main = "Coverage Probability", col = "blue",
xlab = expression(paste("|", gamma, "|")), ylim = c(0.9495, 0.9505))
abline(h = 1-alpha, lty = 2)
plot(gam, sel^2, type = "l", lwd = 2, ylab = "", las = 1, xaxs = "i",
main = "Squared SEL", col = "blue",
xlab = expression(paste("|", gamma, "|")), ylim = c(0.83, 1.17))
abline(h = 1, lty = 2)

Figure 3 shows the graphs of CP(γ; b, s, ρ) and the square of SEL(γ; b, s, ρ) for the CIUUPI (where
the functions b and s have been specified by natural cubic spline interpolation) produced by this code.

We can see from Figure 3 that, regardless of the value of γ, the coverage probability of the CIUUPI
is extremely close to 1 − α. We can also see that the expected length of the CIUUPI is less than
the expected length of the standard confidence interval when γ is small, with the minimum scaled
expected length achieved when γ = 0. For moderate values of |γ|, the expected length of the standard
interval is less than the expected length of the CIUUPI. However, for large |γ|, the expected length of
the CIUUPI is essentially the same as the expected length of the standard interval.

For comparison, Figure 4 shows the graphs of CP(γ; b, s, ρ) and the square of SEL(γ; b, s, ρ) for the
CIUUPI when the functions b and s are described by clamped cubic spline interpolation.
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Figure 1: Graphs of the functions b and s for the factorial experiment example for the CIUUPI, with
minimum coverage probability 0.95, when they are described using natural cubic spline interpolation,
for the factorial experiment example.
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Figure 2: Graphs of the functions b and s for the factorial experiment example for the CIUUPI, with
minimum coverage probability 0.95, when they are described using clamped cubic spline interpolation,
for the factorial experiment example.
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Figure 3: Graphs of the CP(γ; b, s, ρ) and the square of SEL(γ; b, s, ρ) functions for the CIUUPI, with
minimum coverage probability 0.95, where the functions b and s are described by natural cubic spline
interpolation, for the factorial experiment example.
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Figure 4: Graphs of the CP(γ; b, s, ρ) and the square of SEL(γ; b, s, ρ) functions for the CIUUPI, with
minimum coverage probability 0.95, where the functions b and s are described by clamped cubic spline
interpolation, for the factorial experiment example.
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Figures (5) and (6) show the differences between the Bayesian 95% credible interval and the
95% CIUUPI. Figure (5) shows the graphs of the b and bB functions (left panel), and the s and sB
functions (right panel), for the factorial experiment example. Note that, similarly to b and s, bB is an
odd continuous function and sB is an even continuous function. Figure (6) shows the graph of the
frequentist coverage probability of the Bayesian 95% credible interval, for the factorial experiment
example. This coverage probability is also an even function of γ. Unlike the coverage probability of
the CIUUPI, the minimum over γ of the frequentist coverage probability of the Bayesian 95% credible
interval is substantially less than 0.95.

Computing the confidence interval (using the observed response)

The observed response for the factorial experiment example data is y = (87.2, 88.4, 86.7, 89.2) and σ is
assumed to take the value 0.8. We use the function ciuupi to return the confidence interval (1) for θ
that utilizes the uncertain prior information that τ = 0. Continuing from the previous example, this is
done in R as follows:

# Using the vector (b(1),b(2),...,b(5),s(0),s(1),...,s(5)), compute the CIUUPI
# for this particular data
t <- 0
y <- c(87.2, 88.4, 86.7, 89.2)

ci <- ciuupi(alpha, a, c, x, bsvec, t, y, natural = 1, sig = 0.8); ci

We obtain the output

lower upper
ciuupi -0.7710755 3.218500

For comparison purposes, the function standard_CI will return the standard confidence interval (3)
for θ. The code

# Compute the standard confidence interval
cistandard(a = a, x = x, y = y, alpha = alpha, sig = 0.8)

will return

lower upper
standard -1.017446 3.417446

The 95% confidence interval that utilizes uncertain prior information [−0.77, 3.22] is much shorter than
the standard confidence interval [−1.02, 3.42]. These are observed values of confidence intervals that
have, to an excellent approximation, the same coverage probability. For comparison, a 95% Bayesian
credible interval for θ is [−0.25, 3.51]. Although this interval is shorter than the CIUUPI, it can be seen
from Figure (6) that the minimum over γ of the frequentist coverage of the Bayesian credible interval
is substantially less than 0.95.

Discussion

It is very common in applied statistics to carry out preliminary data-based model selection using, for
example, hypothesis tests or minimizing a criterion such as the AIC. As pointed out by Leamer (1978,
chapter 5), such model selection may be motivated by the desire to utilize uncertain prior information
in subsequent statistical inference. He goes even further when he states, on p.123, that “The mining
of data that is common among non-experimental scientists constitutes prima facie evidence of the
existence of prior information”. One may attempt to utilize such prior information by constructing
confidence intervals, using the same data, based on the assumption that the selected model had been
given to us a priori, as the true model. This assumption is false and it can lead to confidence intervals
that have minimum coverage probability far below the desired minimum coverage 1− α (see e.g.
Kabaila, 2009, Leeb and Pötscher, 2005), making them invalid.

A numerical constrained optimization approach to the construction of valid confidence intervals
and sets that utilize uncertain prior information has been applied by Farchione and Kabaila (2008),
Kabaila and Giri (2009a), Kabaila and Giri (2013), Kabaila and Giri (2014), Kabaila and Tissera (2014)
and Abeysekera and Kabaila (2017). In each case, numerical constrained optimization was performed
using programs written in MATLAB, restricting the accessibility of these confidence intervals and sets.
The R package ciuupi is a first step in making these types of confidence intervals and sets more widely
accessible.
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Figure 5: Graphs of the b and bB functions (left panel), and the s and sB functions (right panel), for the
factorial experiment example.
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Figure 6: The frequentist coverage probability of the Bayesian 95% confidence interval, for the factorial
experiment example.
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