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Integration of networks and pathways
with StarBioTrek package
by Claudia Cava and Isabella Castiglioni

Abstract High-throughput genomic technologies bring to light a comprehensive hallmark of molecular
changes of a disease. It is increasingly evident that genes are not isolated from each other and the
identification of a gene signature can only partially elucidate the de-regulated biological functions in a
disease. The comprehension of how groups of genes (pathways) are related to each other (pathway-
cross talk) could explain biological mechanisms causing diseases. Biological pathways are important
tools to identify gene interactions and decrease the large number of genes to be studied by partitioning
them into smaller groups. Furthermore, recent scientific studies have demonstrated that an integration
of pathways and networks, instead of a single component of the pathway or a single network, could
lead to a deeper understanding of the pathology.

StarBioTrek is an R package for the integration of biological pathways and networks which
provides a series of functions to support the user in their analyses. In particular, it implements
algorithms to identify pathways cross-talk networks and gene network drivers in pathways. It is
available as open source and open development software in the Bioconductor platform.

Introduction

In recent years new genomic technologies have made possible to define new marker gene signatures
(Desmedt et al., 2009; Parker et al., 2009; Cava et al., 2014b). However, gene expression-based signatures
present some constraints because they do not consider metabolic role of the genes and are affected by
genetic heterogeneity across patient cohorts (Cava et al., 2015; Donato et al., 2013).

Pathway analysis can help the researchers in the identification of the biological roles of candidate
genes exceeding these limitions (Folger et al., 2011). Indeed, considering the activity of entire biological
pathways rather than the expression levels of individual genes can charactherize the whole tissue. In
particular, there are several methods in computations and data used to perform the pathway analyses.
They can be characterized in two different levels: gene-sets and pathway topology (García-Campos
et al., 2015). Indeed, the existing tools integrating pathway data can be grouped into these groups
based on the pathway definition.

In the first group we can include the tools that are based on gene sets definition as simple lists of
biological molecules, in which the listed components share a common biological role. In this group, for
example, we can include CoRegNet and Gene Set Enrichment Analysis (GSEA). CoRegNet reconstructs
a co-regulatory network from gene expression profiles integrating, also, regulatory interactions, such as
transcription factor binding site and ChIP data, presenting some analyses to identify master regulators
of a given set of genes (Nicolle et al., 2015). One of the first and most popular methods is GSEA
(Subramanian et al., 2005) that uses a list of ranked genes based on their differential gene expression
between two labels. It then evaluates their distribution on a priori defined set of genes, thus generating
an enrichment score (ES) for each set of genes.

In contrast, tools based on pathway topology do not only contain the components of a pathway
but also describe the interactions between them. However, these methods still analyze the pathways as
independent from each other and not considering the influence that a pathway can exert over another.
In this second group we can include analysis methods that take into account the topological structure
of a pathway, such as NetPathMiner, ToPASeq, and XGR. NetPathMiner (Mohamed et al., 2014)
implements methods for the construction of various types of genome scale networks for network path
mining. It generates a network representation from a pathway file supporting metabolic networks.
Since the network is generated, the network edges can be weighted using gene expression data (e.g.,
Pearson correlation). Using machine learning methods and Markov mixture models, the pathways
can be classified or clustered based on their association with a response label. The ToPASeq package
implements seven different methods covering broad aspects for topology-based pathway analysis of
RNA-seq data (Ihnatova and Budinska, 2015). With respect to other tools, XGR (Fang et al., 2016) is
designed for enhanced interpretation of genomic data generating also SNP-modulated gene networks
and pathways. However, compared to our tool, the others are not focused on the pathway cross-talk
analyses.

In line with this scenario given the few methods focused on the pathway cross-talk network, the
development of new methodologies to measure pathway activity and cross-talk among pathways
integrating also the information of networks and gene expression data (e.g., TCGA data) could lead to
a deeper knowledge of the pathology.
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Furthermore, functional pathway representation attributes the same functional significance to each
gene without considering the impact of gene interactions in performing that function. What kinds of
interactions are there among genes in functional pathways? Specifically, biological system interactions
are composed of multiple layers of dynamic interaction networks (Cantini et al., 2015). These dynamic
networks can be decomposed, for example, into: co-expression, physical, co-localization, genetic,
pathway, and shared protein domains.

We developed a series of algorithms (see (Cava et al., 2018; Colaprico et al., 2015; Cava et al., 2016)),
implemented in StarBioTrek package able to work on all levels of the pathway analysis.

Starting from the gene expression data of two groups of samples (e.g., normal vs. disease), such
algorithms aim at building a pathway cross-talk model by attributing a score for each pairwise pathway.
Several scores are implemented in the tool using the gene expression levels inside the pathways. The
interacting pathways are filtered considering pathways that are able to classify better the two groups
of samples. In addition, the genes inside the pathways can be weighted defining key network drivers
in the pathways as those gene drivers that are highly connected in biological networks.

In summary, StarBioTrek package proposes an approach that integrates knowledge on the func-
tional pathways and multiple gene-gene (protein-protein) interactions into gene selection algorithms.
The challenge is to identify more stable biomarker signatures, which are also more easily interpretable
from a biological perspective. The integration of biological networks and pathways can also give
further hypotheses of the mechanisms of driver genes.

Package organization

StarBioTrek makes accessible data of biological pathways and networks in order to perform analyses
without having to navigate and access different web-based databases, without the need to download
data, and by integrating and locally processing the full data sets in a short time. Specifically, it allows
the users to: i) query and download biological pathways and networks from several repositories
such as KEGG, Reactome and GeneMANIA(Zuberi et al., 2013; Cava et al., 2017; Franz et al., 2018)
importing several functions from graphite (Sales et al., 2012), and harmonize annotations for genes
and proteins (query/ download/ annotation harmonization); (ii) integrate pathways and biological
networks with a series of implemented algorithms.

Get data

Pathway and network data

The functions of StarBioTrek import a large amount of data (e.g., biological pathways and networks).

Specifically, the function pathwayDatabases can easily query some features of interest of the user
such as species or specific pathway database from graphite (Sales et al., 2012). Then, the function
GetData imports the selected data.

> library(graphite)
> pathwayDatabases()
species database

1 athaliana kegg
2 athaliana pathbank
3 athaliana reactome
4 btaurus kegg
5 btaurus reactome
6 celegans kegg
7 celegans reactome
8 cfamiliaris kegg
9 cfamiliaris reactome
10 dmelanogaster kegg
11 dmelanogaster reactome
12 drerio kegg
13 drerio reactome
14 ecoli kegg
15 ecoli pathbank
16 ggallus kegg
17 ggallus reactome
18 hsapiens biocarta
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19 hsapiens humancyc
20 hsapiens kegg
21 hsapiens nci
22 hsapiens panther
23 hsapiens pathbank
24 hsapiens pharmgkb
25 hsapiens reactome
26 hsapiens smpdb
27 mmusculus kegg
28 mmusculus pathbank
29 mmusculus reactome
30 rnorvegicus kegg
31 rnorvegicus pathbank
32 rnorvegicus reactome
33 scerevisiae kegg
34 scerevisiae pathbank
35 scerevisiae reactome
36 sscrofa kegg
37 sscrofa reactome
38 xlaevis kegg
> path <- GetData(species="hsapiens", pathwaydb="kegg")

Since the user selected the data of interest, the function GetPathData allows us to obtain a list of
genes grouped by functional role:

> pathwayALLGENE <- GetPathData(path_ALL=path[1:3])
[1] "Downloading............. Glycolysis / Gluconeogenesis 1 of 3 pathways"
[1] "Downloading............. Citrate cycle (TCA cycle) 2 of 3 pathways"
[1] "Downloading............. Pentose phosphate pathway 3 of 3 pathways"

The function ConvertedIDgenes will converter the gene nomenclature (e.g., ENTREZ ID) to Gene
Symbol.

> pathway <- ConvertedIDgenes(path_ALL=path[1:10])

The function getNETdata of StarBioTrek imports biological networks from GeneMANIA. The
biological networks can be selected among physical interactions, co-localization, genetic interactions,
pathways, and shared protein domain networks. Furthermore, it supports 9 species ( Arabidopsis
thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Escherichia coli, Homo
sapiens, Mus musculus, Rattus norvegicus, and Saccharomyces cerevisiae); for default it considers
Homo sapiens. Specifically, the function call

> netw <- getNETdata(network="SHpd")
[1]"genemania.org/data/current/Homo_sapiens/Shared_protein_domains.INTERPRO.txt n.1 of 2"
[1]"genemania.org/data/current/Homo_sapiens/Shared_protein_domains.PFAM.txt n.2 of 2"
[1]"Preprocessing of the network n. 1 of 2"
[1]"Preprocessing of the network n. 2 of 2"

imports biological networks (i.e., shared protein domains interactions from INTERPRO and
PFAM databases) for Homo sapiens. Otherwise, the user can select one of the 9 species or using the
following parameters the user can select different network types: PHint for Physical interactions, COloc
for Co-localization, GENint for Genetic interactions, PATH for Pathway, and SHpd for Shared protein
domains. Finally, StarBioTrek provides the functions for the harmonization of gene nomenclature
in the pathways and biological networks. Biological data are processed for downstream analyses
mapping Ensembl Gene ID to gene symbols. Figure 1 shows an overview of network types supported
by StarBioTrek with the function getNETdata.

Analysing pathways

Starting from a gene expression matrix (DataMatrix), StarBioTrek groups the gene expression levels
according to their biological roles in pathways for each sample.

> listpathgene <- GE_matrix(DataMatrix=tumo[,1:2], genes.by.pathway=pathway[1:10])
> str(listpathgene)
List of 2
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Figure 1: Network overview. Number of sources for network data. Barplot is divided by species:
AT: Arabidopsis thaliana, CE: Caenorhabditis elegans, DR: Danio rerio, DM: Drosophila melanogaster, EC:
Escherichia coli, HS: Homo sapiens, MM: Mus musculus, RN: Rattus norvegicus, SC: Saccharomyces cerevisiae,
and by network type: COexp: Co-expression, PHint: Physical interactions, COloc: Co-localization,
GENint: Genetic interactions, PATH: Pathway, SHpd: Shared protein domains

$ Cell_cycle :'data.frame': 114 obs. of 2 variables:
..$ TCGA-E9-A1RC-01A: num [1:114] 4218 695 4231 7029 1211 ...
..$ TCGA-BH-A0B1-01A: num [1:114] 3273 692 6733 6468 1290 ...

$ p53_signaling pathway:'data.frame': 64 obs. of 2 variables:
..$ TCGA-E9-A1RC-01A: num [1:64] 989 1614 1592 3456 900 ...
..$ TCGA-BH-A0B1-01A: num [1:64] 816 1274 1770 3190 405 ...

This function allows the user to have in a short time the gene expression levels grouped by
pathways.

Pathway summary indexes

As described in Cava et al. (2014a) there are different measures to summarize the expression levels of
each pathway, such as the mean:

> score_mean <- average(pathwayexpsubset=listpathgene)

or standard deviation:

> score_stdev <- stdv(gslist=listpathgene)

Dissimilarity distances: Pathway cross-talk indexes

Dissimilarity distances have been proved useful in many application fields. Recent studies (Cava
et al., 2013, 2014c) used with success dissimilarity representation among patients, considering the
expression levels of individual genes. To our knowledge, dissimilarity representation is not used
in pathway-based expression profiles. Our goal is to give a dissimilarity representation, which can
express, through a function D(x,y), the dissimilarity between two pathways x and y, such as Euclidean
distance between pairs of pathways:

> scoreeucdistat <- eucdistcrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])

or discriminating score (Colaprico et al., 2015):

> crosstalkstdv <- dsscorecrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])
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Integration data

Integration between pathways and networks from GeneMANIA

Biological pathways can involve a large number of genes that are not equivocally relevant for a
functional role in the cell. Therefore, the integration of network and pathway-based methods can
boost the power to identify the key genes in the pathways.

The function takes as arguments: a list of pathways as obtained by the function ConvertedIDgenes
and the networks as obtained by the function getNETdata.

> listanetwork <- pathnet(genes.by.pathway=pathway[1:10], data=netw)

It creates a network of interacting genes for each pathway. The output of the function is a selection
of interacting genes according to the network N in a pathway P, namely a list with two columns where
on the same row there are the two interacting genes.

The function listpathnet takes as inputs the output obtained by the function pathnet and the
pathways as obtained by the function ConvertedIDgenes:

> listpath <- listpathnet(lista_net=listanetwork, pathway=pathway[1:10])

creating a list of vectors for each pathway containing only genes that have at least one interaction
with other genes belonging to the pathway.

Integration between pathways and networks from protein-protein interaction

The function GetPathNet allows us to obtain a list of interacting genes (protein-protein interactions
from graphite package) for each pathway:

> pathwaynet <- GetPathNet(path_ALL=path[1:3])

using as its argument the output obtained by GetData.

Analyzing networks and pathways: implemented algorithms

Pathway cross-talk network

The first algorithm implemented in StarBioTrek explores a pathway cross-talk network from gene
expression data to better understand the underlying pathological mechanism. The algorithm generates
a network of pathways that shows a different behavior between two groups of samples (i.e., normal
vs. disease).

Specifically,

# get pathways from KEGG database
path <- GetData(species="hsapiens", pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

# create a measure of pathway cross-talk (i.e., Euclidean distance) between pairwise
# of pathways starting from gene expression data (i.e.TCGA) with in the columns the
# samples and in the rows the genes
scoreeucdistat <- eucdistcrtlk(dataFilt=Data_CANCER_normUQ_fil, pathway=pathway)

# split samples' TCGA ID into normal and tumor groups
tumo <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="tumour")
norm <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="normal")

# divide the dataset in 60/100 for training and 40/100 for testing
nf <- 60

# a support vector machine is applied
res_class <- svm_classification(TCGA_matrix=scoreeucdistat[1:10,], nfs=nf,

normal=colnames(norm), tumour=colnames(tumo))
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Since the AUC values are obtained for each pair of pathways, they can be ranked in order to obtain
the pathway cross-talk interactions able to classify the two classes (i.e. normal vs. tumor samples)
with the best performance. Such selection can be done considering AUC values:

cutoff=0.80
er <- res_class[res_class[,1]>cutoff, ]

The outputs are the only pathway interactions that are obtained with AUC values > 0.80. The
implemented algorithm was used in (Colaprico et al., 2015) and (Cava et al., 2016) to screen pathway
cross-talk associated to breast cancer.

The pseudocode of the implemented algorithm is summarized below.

Data: 1) a matrix of gene expression data (TCGA data). The samples are in the columns and the
genes in the rows; 2) a matrix where the pathways are in the columns and the genes inside
the pathways are in the rows

Result: pathway interactions that are able to classify two groups of samples with the best
performances

Being a and b two pathways in a set of pathways P;
for all nodes(a,b) in P do

a score distance between the nodes a and b;
if AUC > cut-off then

keep (a,b) as edge;
else

remove (a,b) as edge;
end

end
Algorithm 1: Algorithm implemented in (Colaprico et al., 2015) and (Cava et al., 2016)

Driver genes for each pathway

Here, we propose an algorithm for the integrative analysis of networks and pathways. Our method is
inspired on a well-validated method (the GANPA/LEGO) (Fang et al., 2012; Dong et al., 2016), based
on the hypothesis that if one gene is functionally connected in the pathway with more genes than
those expected (according to the functional networks), has a key role in that pathway. The algorithm,
an extension of the GANPA/LEGO method, defines driver genes in a pathway if they are highly
connected in a biological network.

The function

IPPI(patha=pathway_matrix[,1:10], netwa=netw_IPPI)

is used to identify driver genes for each pathway. The inputs of the function are pathways and
network data. It calculates the degree centrality values of genes inside the network and the degree
centrality of genes inside pathways.
The pseudocode of the implemented algorithm is summarized below.

Data: 1) a matrix where the pathways are in the columns and the genes inside the pathways are
in the rows; 2) a data frame where the nodes are presented in the columns and the rows
represent the edges

Result: a list of genes with high degree centrality for each pathway
Being (i ∈ N) & (i ∈ P) where P is a vector containing the genes inside a pathway of size k and

N is an indirect graph of size m;
for all nodes i in N do

calculate the degree centrality diN ;
end
for all nodes i in P do

calculate the degree centrality diP, being the neighbors of i, ing ∈ P;
end
Calculate degree centrality expected diE in P
if diE < diP/ kp then

i←−potential gene drivers of P;
else

i←− i + 1;
end

Algorithm 2: Algorithm implemented in (Cava et al., 2018)
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In the first step, given the gene i within the network N with m genes, the function computes the
degree centrality diN as the number of neighbor genes belonging to N to which the gene i is directly
connected.

In the second step, given gene i within the pathway P with k genes, the function then computes the
degree centrality diP considering only the relations among gene i and the other genes in the networks
belonging to pathway P. Overall, by combining the information of the network N within the pathway
P, is obtained a selection of interacting genes according to the network N.

Then, the function computes the degree centrality expected diE by supposing equal probability for
the existence of edges between nodes (diN/m = diE/k). Thus, diE = diN xk/m.

The function characterizes a gene as a ’network driver’ in the pathway P, when diP of involving
gene, normalized to the size of the pathway (k), is higher than diE, diP/k > diE.

The speculation is that if one gene is functionally linked (according to the functional network)
with more genes in the pathway than expected, its function is central in that pathway.

The function IPPI was used in (Cava et al., 2018) to find driver genes in the pathways that are also
de-regulated in a pan-cancer analysis.

Visualization

StarBioTrek presents several functions for the preparation to the visualization of gene-gene inter-
actions and pathway cross-talk using the qgraph package (Epskamp et al., 2012). The function
plotcrosstalk prepares the data:

> formatplot <- plotcrosstalk(pathway_plot=pathway[1:6],gs_expre=tumo)

It computes a Pearson correlation between the genes (according to a gene expression matrix, such
as tumor) in which each gene is grouped in a gene set given by the user (e.g., pathway). Each gene is
presented in a gene set if it is involved univocally in that gene set.

The functions of qgraph

> library(qgraph)
> qgraph(formatplot[[1]], minimum = 0.25, cut = 0.6, vsize = 5, groups = formatplot[[2]],

legend = TRUE, borders = FALSE, layoutScale=c(0.8,0.8))

and

> qgraph(formatplot[[1]], groups=formatplot[[2]], layout="spring", diag = FALSE,
cut = 0.6, legend.cex = 0.5, vsize = 6, layoutScale=c(0.8,0.8))

show the network with different layouts. The graphical output of the functions are presented in
the Figure 2 and Figure 3. The color of interactions indicates the type of correlation: green edges are
positive correlations and red edges are negative correlations. The thickness of the edge is proportional
to the strength of correlation.

The outputs of the functions that compute the pairwise distance metrics can be easily used with
heatmap plotting libraries such as heatmap or pheatmap as reported in the Figure 4.

Furthermore, the function circleplot of StarBioTrek implemented using the functions of GOplot
(Walter et al., 2015) provides a visualization of driver genes (with a score indicating the role of genes
in that pathway), as reported in Figure 5.

> formatplot <- plotcrosstalk(pathway_plot=pathway[1:6], gs_expre=tumo)
> score <- runif(length(formatplot[[2]]), min=-10, max=+10)
> circleplot(preplot=formatplot, scoregene=score)

Case studies

In this section we will present two case studies for the usage of the StarBioTrek package. In particular,
the first case study uses the first implemented algorithm reported above to identify pathway cross-talk
network. The second case study uses the second implemented algorithm to identify gene drivers for
each pathway.
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Figure 2: Graphical output of the function plotcrosstalk and qgraph with layout 1

Figure 3: Graphical output of the function plotcrosstalk and qgraph with layout 2
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Figure 4: Heatmap of pathway cross-talk. Each row represent a distance metric between two pathways
(the pathways are seperated by an underscore). The columns represent the samples.

Figure 5: Circleplot of pathway cross-talk.The figure shows the relation between gene drivers and
pathways. The pathways are represented with different colours. The intensity of colour of each block
of genes is based on the score.
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Figure 6: The computational approach. The matrix of gene expression data (samples in the columns
and genes in the rows) is the input of our algorithm. The samples are grouped in two classes (e.g.,
normal vs. tumor). In the first step a matrix score is generated using all pairwise combinations of
pathways. In the second step the score matrix is used as input for SVM classification. The pathway
interactions with the best AUC performances are selected.

Pathway cross-talk network in breast cancer

Starting from gene expression data of breast cancer samples and normal samples we grouped 15243
genes in pathways according to their functional role in the cell. Pathway data were derived from the
function call:

path <- GetData(species="hsapiens", pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

For each pair of pathways we calculated a discriminating score as a measure of cross-talk. This
measure can be used considering e.g. the pathways enriched with differentially expressed genes.

crosstalkscore <- dsscorecrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])

Discriminating score is given by |M1-M2|/S1+S2 where M1 and M2 are means and S1 and S2
standard deviations of expression levels of genes in a pathway 1 and in a pathway 2. In order to
identify the best pathways for breast cancer classification (breast cancer vs. normal) we implemented
a Support Vector Machine. We divided the original dataset in training data set (60/100) and the
rest of original data in the testing set (40/100). In order to validate the classifier, we used a k-fold
cross-validation (k = 10) obtaining Area Under the Curve (AUC).

tumo <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="tumour")
norm <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="normal")
nf <- 60
res_class <- svm_classification(TCGA_matrix=crosstalkscore, nfs=nf,

normal=colnames(norm), tumour=colnames(tumo))

Ranking AUC values obtained we selected the pathway cross-talk network with the best AUC.
The approach of the algorithm is shown in Figure 6.

Gene network drivers in pathways

In the second case study, we downloaded KEGG pathways

path <- GetData(species="hsapiens",pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

and network data for different network types from GeneMANIA

# for Physical interactions
netw <- getNETdata(network="PHint")
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Figure 7: The computational approach. The first step involves a network N (e.g. physical interaction)
of size m and for each gene, i in N the algorithm calculates its degree centrality, DC (diN). The second
step involves a set of functional pathways (e.g. pathway P) and for each gene i, the DC (diP) is
calculated using the information on interacting genes from N. For the speculation of equal probability
for existing edges between nodes, the algorithm computes the expected DC of gene i in the pathway P.
If the DC observed for the gene i (diP) is higher than expected (diP expected), i could be a potential
driver in the pathway P

# for Co-localization
netw <- getNETdata(network="COloc")

# for Genetic interactions
netw <- getNETdata(network="GENint")

# for Pathway interactions
netw <- getNETdata(network="PATH")

# for Shared_protein_domains
netw <- <getNETdata(network="SHpd")

We processed the data obtained by the function getNETdata in order to obtain a data format
supported by the function IPPI. The function IPPI was applied for each of the 5 network types.

We obtained that genes with genetic interaction found the lowest number of potential gene network
drivers. On the other hand, the network that includes proteins with shared protein domains found
the highest number of potential driver genes. Finally, we defined a gene as a “network driver” in the
pathway, when in at least two networks one gene is functionally connected in the pathway with more
genes than those expected (according to the two networks).

The approach is shown in Figure 7.

Conclusions

We have described StarBioTrek, an R package for the integrative analysis of biological networks and
pathways. The package supports the user during the import and data analysis of data. StarBioTrek
implements two algorithms: i) the identification of gene network drivers in the pathways; ii) the
building of pathway cross talk network.
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