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SimCorrMix: Simulation of Correlated
Data with Multiple Variable Types
Including Continuous and Count Mixture
Distributions

by Allison Fialkowski and Hemant Tiwari

Abstract The SimCorrMix package generates correlated continuous (normal, non-normal, and mix-
ture), binary, ordinal, and count (regular and zero-inflated, Poisson and Negative Binomial) variables
that mimic real-world data sets. Continuous variables are simulated using either Fleishman’s third-
order or Headrick’s fifth-order power method transformation. Simulation occurs at the component
level for continuous mixture distributions, and the target correlation matrix is specified in terms of
correlations with components. However, the package contains functions to approximate expected
correlations with continuous mixture variables. There are two simulation pathways which calculate
intermediate correlations involving count variables differently, increasing accuracy under a wide range
of parameters. The package also provides functions to calculate cumulants of continuous mixture
distributions, check parameter inputs, calculate feasible correlation boundaries, and summarize and
plot simulated variables. SimCorrMix is an important addition to existing R simulation packages
because it is the first to include continuous mixture and zero-inflated count variables in correlated
data sets.

Introduction

Finite mixture distributions have a wide range of applications in clinical and genetic studies. They
provide a useful way to describe heterogeneity in a population, e.g., when the population consists of
several subpopulations or when an outcome is a composite response from multiple sources. In survival
analysis, survival times in competing risk models have been described by mixtures of exponential,
Weibull, or Gompertz densities (Larson and Dinse, 1985; Lau et al., 2009, 2011). In medical research,
finite mixture models may be used to detect clusters of subjects (cluster analysis) that share certain
characteristics, e.g., concomitant diseases, intellectual ability, or history of physical or emotional
abuse (McLachlan, 1992; Newcomer et al., 2011; Pamulaparty et al., 2016). In schizophrenia research,
Gaussian mixture distributions have frequently described the earlier age of onset in men than in
women and the vast phenotypic heterogeneity in the disorder spectrum (Everitt, 1996; Lewine, 1981;
Sham et al., 1994; Welham et al., 2000).

Count mixture distributions, particularly zero-inflated Poisson and Negative Binomial, are required
to model count data with an excess number of zeros and/or overdispersion. These distributions play
an important role in a wide array of studies, modeling health insurance claim count data (Ismail and
Zamani, 2013), the number of manufacturing defects (Lambert, 1992), the efficacy of pesticides (Hall,
2000), and prognostic factors of Hepatitis C (Baghban et al., 2013). Human microbiome studies, which
seek to develop new diagnostic tests and therapeutic agents, use RNA-sequencing (RNA-seq) data to
assess differential composition of bacterial communities. The operational taxonomic unit (OTU) count
data may exhibit overdispersion and an excess number of zeros, necessitating zero-inflated Negative
Binomial models (Zhang et al., 2016). Differential gene expression analysis utilizes RNA-seq data to
search for genes that exhibit differences in expression level across conditions (e.g., drug treatments)
(Soneson and Delorenzi, 2013; Solomon, 2014). Zero-inflated count models have also been used
to characterize the molecular basis of phenotypic variation in diseases, including next-generation
sequencing of breast cancer data (Zhou et al., 2017).

The main challenge in applying mixture distributions is estimating the parameters for the com-
ponent densities. This is usually done with the EM algorithm, and the best model is chosen by the
lowest Akaike or Bayesian information criterion (AIC or BIC). Current packages that provide Gaussian
mixture models include: AdaptGauss, which uses Pareto density estimation (Thrun et al., 2017); DPP,
which uses a Dirichlet process prior (Avila et al., 2017); bgmm, which employs two partially super-
vised mixture modeling methods (Biecek and Szczurek, 2017); and ClusterR, mclust, and mixture,
which conduct cluster analysis (Mouselimis, 2017; Fraley et al., 2017; Browne et al., 2015). Although
Gaussian distributions are the most common, the mixture may contain any combination of component
distributions. Packages that provide alternatives include: AdMit, which fits an adaptive mixture of
Student-t distributions (Ardia, 2017); bimixt, which uses case-control data (Winerip et al., 2015); bmix-
ture, which conducts Bayesian estimation for finite mixtures of Gamma, Normal and ¢-distributions
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(Mohammadi, 2017); CAMAN, which provides tools for the analysis of finite semiparametric mixtures
in univariate and bivariate data (Schlattmann et al., 2016); flexmix, which implements mixtures of
standard linear models, generalized linear models and model-based clustering (Gruen and Leisch,
2017); mixdist, which applies to grouped or conditional data (MacDonald and with contributions
from Juan Du, 2012); mixtools and nspmix, which analyze a variety of parametric and semiparamet-
ric models (Young et al., 2017; Wang, 2017); Mixturelnf, which conducts model inference (Li et al.,
2016); and Rmixmod, which provides an interface to the MIXMOD software and permits Gaussian or
multinomial mixtures (Langrognet et al., 2016). With regards to count mixtures, the BhnGLM, hurdlr,
and zic packages model zero-inflated distributions with Bayesian methods (Yi, 2017; Balderama and
Trippe, 2017; Jochmann, 2017).

Given component parameters, there are existing R packages which simulate mixture distributions.
The mixpack package generates univariate random Gaussian mixtures (Comas-Cufi et al., 2017).
The distr package produces univariate mixtures with components specified by name from stats
distributions (Kohl, 2017; R Core Team, 2017). The rebmix package simulates univariate or multivariate
random datasets for mixtures of conditionally independent Normal, Lognormal, Weibull, Gamma,
Binomial, Poisson, Dirac, Uniform, or von Mises component densities. It also simulates multivariate
random datasets for Gaussian mixtures with unrestricted variance-covariance matrices (Nagode, 2017).

Existing simulation packages are limited by: 1) the variety of available component distributions and
2) the inability to produce correlated data sets with multiple variable types. Clinical and genetic studies
which involve variables with mixture distributions frequently incorporate influential covariates, such
as gender, race, drug treatment, and age. These covariates are correlated with the mixture variables
and maintaining this correlation structure is necessary when simulating data based on real data sets
(plasmodes, as in Vaughan et al., 2009). The simulated data sets can then be used to accurately perform
hypothesis testing and power calculations with the desired type-I or type-II error.

SimCorrMix is an important addition to existing R simulation packages because it is the first to
include continuous mixture and zero-inflated count variables in correlated data sets. Therefore, the
package can be used to simulate data sets that mimic real-world clinical or genetic data. SimCorrMix
generates continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count (regu-
lar or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix via the
functions corrvar and corrvar2. The user may also generate one continuous mixture variable with the
contmixvar1 function. The methods extend those found in the SimMultiCorrData package (version
> 0.2.1, Fialkowski, 2017; Fialkowski and Tiwari, 2017). Standard normal variables with an imposed
intermediate correlation matrix are transformed to generate the desired distributions. Continuous
variables are simulated using either Fleishman (1978)’s third-order or Headrick (2002)’s fifth-order
polynomial transformation method (the power method transformation, PMT). The fifth-order PMT
accurately reproduces non-normal data up to the sixth moment, produces more random variables
with valid PDF’s, and generates data with a wider range of standardized kurtoses. Simulation occurs
at the component-level for continuous mixture distributions. These components are transformed into
the desired mixture variables using random multinomial variables based on the mixing probabilities.
The target correlation matrix is specified in terms of correlations with components of continuous
mixture variables. However, SimCorrMix provides functions to approximate expected correlations
with continuous mixture variables given target correlations with the components. Binary and ordinal
variables are simulated using a modification of GenOrd’s ordsample function (Barbiero and Ferrari,
2015b). Count variables are simulated using the inverse cumulative density function (CDF) method
with distribution functions imported from VGAM (Yee, 2017).

Two simulation pathways (correlation method 1 and correlation method 2) within SimCorrMix
provide two different techniques for calculating intermediate correlations involving count variables.
Each pathway is associated with functions to calculate feasible correlation boundaries and/or validate
a target correlation matrix rho, calculate intermediate correlations (during simulation), and generate
correlated variables. Correlation method 1 uses validcorr, intercorr, and corrvar. Correlation
method 2 uses validcorr2, intercorr2, and corrvar2. The order of the variables in rho must be 1
ordinal (» > 2 categories), 2" continuous non-mixture, 3" components of continuous mixture, 4th
regular Poisson, 5t zero-inflated Poisson, 6" regular Negative Binomial (NB), and 7th zero-inflated
NB. This ordering is integral for the simulation process. Each simulation pathway shows greater
accuracy under different parameter ranges and Calculation of intermediate correlations for count
variables details the differences in the methods. The optional error loop can improve the accuracy of
the final correlation matrix in most situations.

The simulation functions do not contain parameter checks or variable summaries in order to de-
crease simulation time. All parameters should be checked first with validpar in order to prevent errors.
The function summary_var generates summaries by variable type and calculates the final correlation
matrix and maximum correlation error. The package also provides the functions calc_mixmoments
to calculate the standardized cumulants of continuous mixture distributions, plot_simpdf_theory to
plot simulated PDF’s, and plot_simtheory to plot simulated data values. The plotting functions work
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for continuous or count variables and overlay target distributions, which are specified by name (39
distributions currently available) or PDF function fx. The fx input is useful when plotting continuous
mixture variables since there are no distribution functions available in R. There are five vignettes
in the package documentation to help the user understand the simulation and analysis methods.
The stable version of the package is available via the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=SimCorrMix, and the development version may be found
on GitHub at https://github.com/AFialkowski/SimCorrMix. The results given in this paper are
reproducible (for R version > 3.4.1, SimCorrMix version > 0.1.0).

Overview of mixture distributions

Mixture distributions describe continuous or discrete random variables that are drawn from more
than one component distribution. For a random variable Y from a finite mixture distribution with k
components, the probability density function (PDF) or probability mass function (PMF) is:

k

k
hy (v) =Y mify (y), Y m=1 1)
i=1

i=1

The 71; are mixing parameters which determine the weight of each component distribution fy, (y) in
the overall probability distribution. As long as each component has a valid probability distribution,
the overall distribution hy (y) has a valid probability distribution. The main assumption is statistical
independence between the process of randomly selecting the component distribution and the distribu-
tions themselves. Assume there is a random selection process that first generates the numbers 1, ..., k
with probabilities 71y, ..., 7. After selecting number i, where 1 < i < k, a random variable y; is drawn
from component distribution fy, () (Davenport et al., 1988; Everitt, 1996).

Continuous mixture distributions

Continuous mixture distributions are used in genetic research to model the effect of underlying genetic
factors (e.g., genotypes, alleles, or mutations at chromosomal loci) on continuous traits (??). Consider
a single locus with two alleles A and 4, producing three genotypes AA, Aa, and aa with population
frequencies pa A, P g, and paq. Figure 1a shows a codominant mixture in which each genotype exhibits
a different phenotype; Figure 1b shows a dominant mixture in which individuals with at least one A
allele possess the same phenotype (Schork et al., 1996).
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(a) Codominant mixture. (b) Dominant mixture.

Figure 1: Examples of commingled distributions in genetics.

For a continuous phenotype y, the normal mixture density function describing a commingled
distribution is given by:

f (ylpAA, HAA, 0445 PAar WAar Tags Paas Haas UZE) = )

pand (vlias 7a) +pact (Ve 05a) + past (ylitaa, %),

where ¢ (y|p, 0?) is the normal density function with mean y and variance 02. Commingling analysis
may also study traits that are polygenic (result from the additive effects of several genes) or multifacto-
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rial (polygenic traits with environmental factors, see Elston et al., 2002). For example, mixture models
explain the heterogeneity observed in gene-mapping studies of complex human diseases, including
cancer, chronic fatigue syndrome, bipolar disorder, coronary artery disease, and diabetes (Fridley et al.,
2010; Bahcall, 2015; Bhattacharjee et al., 2015; ?). Segregation analysis extends commingling analysis to
individuals within a pedigree. Mixed models evaluate whether a genetic locus is affecting a particular
quantitative trait and incorporate additional influential factors. Finally, linkage analysis discovers
the location of genetic loci using recombination rates, and the regression likelihood equation may be
written as a mixture distribution (Schork et al., 1996).

Generation of continuous distributions in SimCorrMix

Continuous variables, including components of mixture variables, are created using either Fleishman
(1978)’s third-order (method = "Fleishman") or Headrick (2002)’s fifth-order (method = "Polynomial")
PMT applied to standard normal variables. The transformation is expressed as follows:

Y =p(Z) =co+c1Z+ 7% + c37° + ¢4 Z* + ¢52°, Z ~ N (0,1), 3)

where ¢4 = ¢5 = 0 for Fleishman’s method. The real constants are calculated by SimMultiCorrData’s
find_constants, which solves the system of non-linear equations given in poly or fleish. The sim-
ulation functions corrvar and corrvar2 contain checks to see if any distributions are repeated for
non-mixture or components of mixture variables. If so, these are noted so the constants are only calcu-
lated once, decreasing simulation time. Mixture variables are generated from their components based
on random multinomial variables described by their mixing probabilities (using stat’s rmultinom).

The fifth-order PMT allows additional control over the fifth and sixth moments of the generated
distribution. In addition, the range of feasible standardized kurtosis (,) values, given skew (1)
and standardized fifth (3) and sixth (4) cumulants, is larger than with the third-order PMT. For
example, Fleishman’s method can not be used to generate a non-normal distribution with a ratio of

'y% /72 > 9/14. This eliminates the X family of distributions, which has a constant ratio of 'y% /v =
2/3 (Headrick and Kowalchuk, 2007). The fifth-order method also generates more distributions with
valid PDFs. However, if the fifth and sixth cumulants do not exist, the Fleishman approximation
should be used. This would be the case for t-distributions with degrees of freedom below 7.

For some sets of cumulants, it is either not possible to find power method constants (indicated
by a stop error) or the calculated constants do not generate valid PDF’s (indicated in the simulation
function results). For the fifth-order PMT, adding a value to the sixth cumulant may provide solutions.
This can be done for non-mixture variables in Six or components of mixture variables in mix_Six, and
find_constants will use the smallest correction that yields a valid PDF. Another possible reason for
function failure is that the standardized kurtosis for a distribution is below the lower boundary of
values which can be generated using the third or fifth-order PMT. This boundary can be found with
SimMultiCorrData’s calc_lower_skurt using skew (for method = "Fleishman”) and standardized
fifth and sixth cumulants (for method = "Polynomial”).

Expected cumulants of continuous mixture variables

The PMT simulates continuous variables by matching standardized cumulants derived from central
moments. Using standardized cumulants decreases the complexity involved in calculations when a
distribution has large central moments. In view of this, let Y be a real-valued random variable with
cumulative distribution function F. Define the central moments, i,, of Y as:

+o00
pe=pr (Y) =Ely—pl" = [ " ly—pul'dE (). @

The standardized cumulants are found by dividing the first six cumulants x1 - k¢ by /5" = (0?) /2 -

0", where 02 is the variance of Y and r is the order of the cumulant (Kendall and Stuart, 1977):

K1 1251 Kq H4
e CEE ®
K K
2 2
_ s _m _ X6 _ P _ 10742 —
M= P @) ra= PR 1572 — 1071 — 15. (10)
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The values 71, 72, 73, and 4 correspond to skew, standardized kurtosis (so that the normal dis-

tribution has a value of 0, subsequently referred to as skurtosis), and standardized fifth and sixth

cumulants. The corresponding sample values for the above can be obtained by replacing i, by
r

my= Y, <xj - m1> /n (Headrick, 2002).

The standardized cumulants for a continuous mixture variable can be derived in terms of the
standardized cumulants of its component distributions. Suppose the goal is to simulate a continuous
mixture variable Y with PDF hy () that contains two component distributions Y; and Y}, with mixing
parameters 77, and 77y

hy () = mafy, (¥) + T8y, W), y € Y, ma € (0, 1), 1y € (0, 1), ma+m = 1. (11)
Here,
Yo =0aZp+pa, Yo~ fr, ), vy € Yo and Y, =0, Zp + 1y, Yy~ 8y, (), ¥ € Y (12)

so that Y, and Y, have expected values y, and y;, and variances o2 and (Tl%. Assume the variables
Z; and Z; are generated with zero mean and unit variance using Headrick’s fifth-order PMT given

the specified values for skew ('yin, 'yih), skurtosis (7’2ﬂ, 7/21,>' and standardized fifth (’ygﬂ, 7’31)) and

sixth ('yflu, 'yflb) cumulants:

Zl = co, +c1,Za + €2, 72 + 3,73 + ¢4, Z2 + 05,73, Za ~ N (0, 1) 3)
Z}, = co, + ¢1,Zp + 2,22 + ¢3,Z5 + ca, Z + 5,25, Zy ~ N (0, 1).

The constants cg,, ..., ¢5, and cg,, ..., c5, are the solutions to the system of equations given in SimMul-
tiCorrData’s poly function and calculated by find_constants. Similar results hold for Fleishman'’s
third-order PMT, where the constants cg,, ..., c3, and cg,, ..., c3, are the solutions to the system of
equations given in fleish (C4ﬂ =5, =C4, =C5, = 0).

The r'" expected value of Y can be expressed as:

E[Y']= / y'hy (y)dy = m, / ¥ fy, (y) dy + mp / y'gy, (v)dy
=mE[Y;|+mEY]].

(14)

Equation 14 can be used to derive expressions for the mean, variance, skew, skurtosis, and standardized
fifth and sixth cumulants of Y in terms of the r" expected values of Y; and Y;. See Derivation of
expected cumulants of continuous mixture variables in the Appendix for the expressions and proofs.

Extension to more than two component distributions

If the desired mixture distribution Y contains more than two component distributions, the expected
values of Y are again expressed as sums of the expected values of the component distributions, with
weights equal to the associated mixing parameters. For example, assume Y contains k component
distributions Y7, ..., Y with mixing parameters given by 7y, ..., 71y, where Zf-‘zl 7t; = 1. The component
distributions are described by the following parameters: means y1, ..., }ig, variances (712, .y (7,3, skews
7’11, e 'yik, skurtoses 'y’zl, e vék, fifth cumulants 'yél, e 'yék, and sixth cumulants 'yfh, . ’yé’ik. Then

the 7' expected value of Y can be expressed as:

k k )
B = [ )y = Yo [ f ) dy = Yoy 0] (15)

Therefore, a method similar to that above can be used to derive the system of equations defining
the mean, variance, skew, skurtosis, and standardized fifth and sixth cumulants of Y. These equa-
tions are used within the function calc_mixmoments to determine the values for a mixture variable.
The summary_var function executes calc_mixmoments to provide target distributions for simulated
continuous mixture variables.

Example with Normal and Beta mixture variables
Let Y7 be a mixture of Normal(-5, 2), Normal(1, 3), and Normal(7, 4) distributions with mixing pa-

rameters 0.36,0.48, and 0.16. This variable could represent a continuous trait with a codominant
mixture distribution, as in Figure 1a, where p4 = 0.6 and p, = 0.4. Let Y, be a mixture of Beta(13, 11)
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and Beta(13, 4) distributions with mixing parameters 0.3 and 0.7. Beta-mixture models are widely
used in bioinformatics to represent correlation coefficients. These could arise from pathway analysis
of a relevant gene to study if gene-expression levels are correlated with those of other genes. The
correlations could also describe the expression levels of the same gene measured in different studies,
as in meta-analyses of multiple gene-expression experiments. Since expression varies greatly across
genes, the correlations may come from different probability distributions within one mixture distribu-
tion. Each component distribution represents groups of genes with similar behavior. Ji et al. (2005)
proposed a Beta-mixture model for correlation coefficients. Laurila et al. (2011) extended this model to
methylation microarray data in order to reduce dimensionality and detect fluctuations in methylation
status between various samples and tissues. Other extensions include cluster analysis (Dai et al.,
2009), single nucleotide polymorphism (SNP) analysis (Fu et al., 2011), pattern recognition and image
processing (Bouguila et al., 2006; Ma and Leijon, 2011), and quantile normalization to correct probe
design bias (Teschendorff et al., 2013). Since these methods assume independence among components,
Dai and Charnigo (2015) developed a compound hierarchical correlated Beta-mixture model to permit
correlations among components, applying it to cluster mouse transcription factor DNA binding data.

The standardized cumulants for the Normal and Beta mixtures using the fifth-order PMT are
found as follows:

library("”"SimCorrMix")

B1 <- calc_theory("Beta”, c(13, 11))

B2 <- calc_theory("Beta”, c(13, 4))

mix_pis <- list(c(@.36, 0.48, 0.16), c(0.3, 0.7))

mix_mus <- list(c(-5, 1, 7), c(B1[1], B2[1]))

mix_sigmas <- list(c(sqrt(2), sqrt(3), sqrt(4)), c(B1[2]1, B2[2]))

mix_skews <- list(c(@, @, @), c(B1[3], B2[3]))

mix_skurts <- list(c(@, 0, @), c(B1[4]1, B2[4]))

mix_fifths <- list(c(@, @, @), c(B1[5], B2[51))

mix_sixths <- list(c(@, 0, @), c(B1[6]1, B2[6]))

Nstcum <- calc_mixmoments(mix_pis[[1]1], mix_mus[[1]1], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]])

Nstcum

#it mean sd skew kurtosis fifth sixth

## -0.2000000 4.4810713 0.3264729 -0.6238472 -1.0244454 1.4939902

Bstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]1],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]]1, mix_sixths[[2]]1)

Bstcum

## mean sd skew  kurtosis fifth sixth

## 0.6977941 0.1429099 -0.4563146 -0.5409080 1.7219898 0.5584577

SimMultiCorrData’s calc_theory was used first to obtain the standardized cumulants for each of the
Beta distributions.

Calculation of intermediate correlations for continuous variables

The target correlation matrix rho in the simulation functions corrvar and corrvar?2 is specified in
terms of the correlations with components of continuous mixture variables. This allows the user to
set the correlation between components of the same mixture variable to any desired value. If this
correlation is small (i.e., 0-0.2), the intermediate correlation matrix Sigma may need to be converted to
the nearest positive-definite (PD) matrix. This is done within the simulation functions by specifying
use.nearPD = TRUE, and Higham (2002)’s algorithm is executed with the Matrix package’s nearPD
function (Bates and Maechler, 2017). Otherwise, negative eigenvalues are replaced with 0.

The function intercorr_cont calculates the intermediate correlations for the standard normal
variables used in Equation 3. This is necessary because the transformation decreases the absolute
value of the final correlations. The function uses Equation 7b derived by Headrick and Sawilowsky
(1999, p. 28) for the third-order PMT and Equation 26 derived by Headrick (2002, p. 694) for the
fifth-order PMT.

Approximate correlations for continuous mixture variables:

Even though the correlations for the continuous mixture variables are set at the component level,
we can approximate the resulting correlations for the mixture variables. Assume Y; and Y, are two
continuous mixture variables. Let Y7 have k; components with mixing probabilities a1, ..., a;, and
standard deviations ¢y, ..., 07, . Let Y2 have k; components with mixing probabilities By, ..., Bx, and

standard deviations oy, ..., 0, -
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Correlation between continuous mixture variables Y| and Y;

The correlation between the mixture variables Y7 and Y; is given by:

_EMYs] —EMW]E[Y]
ony, = o107 ’ (16)

where 0'12 is the variance of Y7 and (722 is the variance of Y,. Equation 16 requires the expected value
of the product of Y; and Y;. Since Y7 and Y, may contain any number of components and these
components may have any continuous distribution, there is no general way to determine this expected
value. Therefore, it is approximated by expressing Y7 and Y, as sums of their component variables:

E[(£ian,) (D A0 )| - B2 am | E[£F, 57
oYY, = 105 . 17)

where

k1 ko
E <Z lX,'YL.) Z ﬁjYZj = [Délyllﬁlel + lX1Y11,B2Y22 + g Ylkl lBszZkz] 8
i=1 j=1 18

=a1f1 E[Y1, Yo, ] + a1 E[Y1, Yo, ] + ... + oy, B, E [Ylkl szz} :
Using the general correlation equation, for1 <i <kjand1 <j <kj:
E 0¥y | = onon0v,v, +E]E [V ], (19)
so that we can rewrite Py,y, as:

a1 81 (Ullgzlpyllyzl +E [Yh] E [Y21]>

vy, =

0107
L b G 2}: E v, |Ev,]) .
a1 E Yy, ] E [Yo,] + ... + ay, fr, E [Ylkl] E {szz}

0102
Lty w01, iy Bjo
i=1 %191 j=1 ]2ij1i,Y2j

0102

Extending the example from Extension to more than two component distributions, assume there are
now three variables: Y| (the Normal mixture), Y> (the Beta mixture), and Y3 (a zero-inflated Poisson
variable with mean 5 and probability of a structural zero set at 0.1). Let the target correlations among
the components of Y, the components of Y,, and Y3 be 0.4. The components of Y; have a weak
correlation of 0.1 and the components of Y, are independent. The resulting correlation between Y; and
Y, is approximated as:

rho <- matrix(0.4, 6, 6)

rho[1:3, 1:3] <- matrix(0.1, 3, 3)

rho[4:5, 4:5] <- matrix(Q, 2, 2)

diag(rho) <- 1

rho_M1M2(mix_pis, mix_mus, mix_sigmas, rho[1:3, 4:5])
## [1] 0.103596

Note that rho has 6 columns because k1 = 3,k, =2,and k; +k, +1=6.

Correlation between continuous mixture variable Y; and other random variable Y3

Here Y3 can be an ordinal, a continuous non-mixture, or a regular or zero-inflated Poisson or Negative
Binomial variable. The correlation between the mixture variable Y; and Y3 is given by:

_ EMYs] - EM]E Y]

21
108 (1)

OY,Y3
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where (732 is the variance of Y3. Equation 21 requires the expected value of the product of Y; and Y3,
which is again approximated by expressing Y7 as a sum of its component variables:

E [(z§;1 aiYL) Y3} —E [zﬁ.‘;l aiyl,] E [Y3]

vy = o107 ’ (22)

where

E (kzl (xiYh) Y;| = E [tlehYg, + ¥y, Vs o g Y, yg,}
= (23)
= a E[Yy, V3] + 0o E[Yy, V3] + ...+, [Ylkl Yg] .

Using the general correlation equation, for 1 <i < k:

E [Y1,Y3] = 01,030y, v, + E [Y1,] E[Y3], (24)
so that we can rewrite Py,y, as:
&y ((711‘73PY11Y3 +EY,]E [Ys}) + ot (Ulkl 30y, v, TE [Ylkl] E [Ys])
P = 0103

@ E [V, B[] + .+ a, B Yy, | E (3] 25)

0103

kl .
- Zi:l alUY1ipY1iY3

(%1

Continuing with the example, the correlations between Y7 and Y3 and between Y; and Y3 are approxi-
mated as:

rho_M1Y(mix_pis[[11], mix_mus[[1]], mix_sigmas[[1]], rho[1:3, 61)
## [1] 0.1482236
rho_M1Y(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]], rho[4:5, 6])
## [1] 0.2795669

The accuracy of these approximations can be determined through simulation:

means <- c(Nstcum[1], Bstcum[1])

vars <- c(Nstcum[2]*2, Bstcum[2]"2)

seed <- 184

Sim1 <- corrvar(n = 100000, k_mix = 2, k_pois = 1, method = "Polynomial”,
means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, lam = 5, p_zip = 0.1,
rho = rho, seed = seed, use.nearPD = FALSE)

## Total Simulation time: ©0.065 minutes

names(Sim1)

## [1] "constants” "Y_cont” "Y_comp” "sixth_correction”
## [5] "valid.pdf” "Y_mix" "Y_pois” "Sigma"
## [9]1 "Error_Time" "Time" "niter”

Suml <- summary_var(Y_comp = Sim1$Y_comp, Y_mix = Sim1$Y_mix,
Y_pois = Sim1$Y_pois, means = means, vars = vars, mix_pis = mix_pis,
mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
lam = 5, p_zip = 0.1, rho = rho)

names (Sum1)

## [1] "cont_sum” "target_sum” "mix_sum” "target_mix" "rho_mix" "pois_sum”
## [7] "rho_calc” "maxerr"

Sum1$rho_mix

## [,11] [,2] [,3]

## [1,] 1.0000000 0.1012219 0.1475749
## [2,] 0.1012219 1.0000000 0.2776299
## [3,] 0.1475749 0.2776299 1.0000000

The results show that Equation 20 and Equation 25 provided good approximations to the simulated
correlations. Examples comparing the two simulation pathways also compares approximated expected
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correlations for continuous mixture variables with simulated correlations.

Figure 2 displays the PDF of the Normal mixture variable and the simulated values of the zero-
inflated Poisson (ZIP) variable obtained using SimCorrMix’s graphing functions. These functions
are written with ggplot2 functions and the results are ggplot objects that can be saved or further
modified (Wickham and Chang, 2016). As demonstrated below, the target distribution, specified by
distribution name and parameters (39 distributions currently available by name) or PDF function fx,
can be overlayed on the plot for continuous or count variables.

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 1], title = "", sim_size = 2,
target_size = 2, fx = function(x) mix_pis[[1]I[1] *
dnorm(x, mix_mus[[1J1[1], mix_sigmas[[111[1]) + mix_pis[[1]][2] *
dnorm(x, mix_mus[[111[2], mix_sigmas[[111[2]) + mix_pis[[111[3] *
dnorm(x, mix_mus[[1]11[3], mix_sigmas[[1]1[3]), lower = -1@, upper = 10,

legend.position = "none”, axis.text.size = 30, axis.title.size = 30)
plot_simtheory(sim_y = Sim1$Y_pois[, 11, title = "", cont_var = FALSE,

binwidth = 0.5, Dist = "Poisson"”, params = c(5, 0.1),

legend.position = "none"”, axis.text.size = 30, axis.title.size = 30)

15001
0.09
z 1000
$50.06 I
8 3
9 o
o
0.03- 500] I
10 5 0 5 10 0 5 10 15
y y
(a) PDF of Normal mixture variable. (b) Simulated values of ZIP variable.

Figure 2: Graphs of variables (simulated = blue, target = green).

The Continuous Mixture Distributions vignette explains how to compare simulated to theoretical
distributions of continuous mixture variables, as demonstrated here for the Beta mixture variable Y,
(adapted from Headrick and Kowalchuk, 2007):

1. Obtain the standardized cumulants for the target mixture variable Y3 and its components: these
were found above using calc_mixmoments and calc_theory.

2. Obtain the PMT constants for the components of Y;': these are returned in the simulation result
Siml$constants.

3. Determine whether these constants produce valid PDF’s for the components of Y; (and therefore
for Y3): this is indicated for all continuous variables in the simulation result Sim1$valid.pdf.

## [1] "TRUE” "TRUE" "TRUE" "TRUE" "TRUE"

4. Select a critical value from the distribution of Y3, i.e. y; such that Pr [Yz* > yﬂ = a, for the
desired significance level a: Let « = 0.05. Since there are no quantile functions for mixture
distributions, determine where the cumulative probability equals 1 — « = 0.95.

beta_fx <- function(x) mix_pis[[2]]1[1] * dbeta(x, 13, 11) +
mix_pis[[2]1[2] * dbeta(x, 13, 4)

beta_cfx <- function(x, alpha, fx = beta_fx) {
integrate(function(x, FUN = fx) FUN(x), -Inf, x, subdivisions = 1000,

stop.on.error = FALSE)$value - (1 - alpha)

}

y2_star <- uniroot(beta_cfx, c(@, 1), tol = 0.001, alpha = 0.05)$root

y2_star

## [1] 0.8985136

5. Calculate the cumulative probability for the simulated mixture variable Y, up to y5 and compare
to 1 — a: The function sim_cdf_prob from SimMultiCorrData calculates cumulative probabili-

ties.
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sim_cdf_prob(sim_y = Sim1$Y_mix[, 2], delta = y2_star)$cumulative_prob
## [1] 0.9534

This is approximately equal to the 1 — « value of 0.95, indicating that the simulation provides a
good approximation to the theoretical distribution.

6. Plot a graph of Y3 and Y;: Figure 3 shows the PDF and empirical CDF obtained as follows
(plot_sim_cdf is in SimMultiCorrData):

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 2], title = "", sim_size = 2,
target_size = 2, fx = beta_fx, lower = @, upper 1,
legend.position = c(@0.4, 0.85), legend.text.size = 30,
axis.text.size = 30, axis.title.size = 30)
plot_sim_cdf(sim_y = Sim1$Y_mix[, 2], title = "", calc_cprob = TRUE,
delta = y2_star, text.size = 30, axis.text.size = 30, axis.title.size = 30)

1.00 Cumulative probability =0.9534, y = 0.8985 o
E_Sl_imul?ted Variable
argel 2075
2 3
2
2 o
8 S 0.50
8 2
o K|
1 :
00.25
0.00
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
y y
(a) PDE (b) CDE.

Figure 3: Graphs of the Beta mixture variable.

Count mixture distributions

SimCorrMix extends the methods in SimMultiCorrData for regular Poisson and Negative Binomial
(NB) variables to zero-inflated Poisson and NB variables. All count variables are generated using
the inverse CDF method with distribution functions imported from VGAM. The CDF of a standard

normal variable has a uniform distribution. The appropriate quantile function F, Lis applied to this
uniform variable with the designated parameters to generate the count variable: Y = F,~ L@ (2)).
The order within all parameters for count variables should be 1° regular and 2"¢ zero-inflated.

A zero-inflated random variable Y7 is a mixture of a degenerate distribution having the point
mass at 0 and another distribution Y that contributes both zero and non-zero values. If the mixing
probability is ¢, then:

PrYz;=0l=¢+(1—¢)Pr[Y=0], 0< ¢ <1. (26)

Therefore, ¢ is the probability of a structural zero, and setting ¢ = 0 reduces Y] to the variable Y. In
SimCorrMix, Y can have either a Poisson (Yp) or a Negative Binomial (Yyp) distribution.

Zero-inflated Poisson (ZIP) distribution
The model for Yzip ~ ZIP (A, ¢), A >0, 0 < ¢ < 1is:

Pr{Yzip =0l =¢+ (1 —¢)exp(—A)
AV (27)
Pr(Yzip =y] = (1 —¢)exp (=) Y= L2,..

The mean of Yzjp is (1 — ¢) A, and the variance is A + A2¢/ (1 — ¢) (Lambert, 1992). The parameters
A (mean of the regular Poisson component) and ¢ are specified in SimCorrMix through the inputs
lamand p_zip. Setting p_zip = 0 (the default setting) generates a regular Poisson variable.

The zero-deflated Poisson distribution is obtained by setting ¢ € (—1/ (exp (A) —1), 0), so that
the probability of a zero count is less than the nominal Poisson value. In this case, ¢ no longer
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represents a probability. When ¢ = —1/ (exp (A) — 1), the random variable has a positive-Poisson
distribution. The probability of a zero response is 0, and the other probabilities are scaled to sum to 1.

Zero-inflated Negative Binomial (ZINB) distribution

A major limitation of the Poisson distribution is that the mean and variance are equal. In practice,
population heterogeneity creates extra variability (overdispersion), e.g., if Y represents the number
of events which occur in a given time interval and the length of the observation period varies across
subjects. If the length of these periods are available for each subject, an offset term may be used.
Otherwise, the length can be considered a latent variable and the mean of the Poisson distribution
for each subject is a random variable. If these means are described by a Gamma distribution, then
Y has a NB distribution, which has an extra parameter to account for overdispersion. However, an
excessive number of zeros requires using a zero-inflated distribution. These extra (structural) zeros
may arise from a subpopulation of subjects who are not at risk for the event during the study period.
These subjects are still important to the analysis because they may possess different characteristics
from the at-risk subjects (He et al., 2014).

The model for Yzing ~ ZINB (1, p, ¢), 71 >0,0<p <1, 0< ¢ <1lis:

Pr(Yzing = 0] = ¢+ (1—¢) p"

RN N (5 ) R

PriYzivg =yl = (0= ¢) Tayr?" =P y =12
In this formulation, the Negative Binomial component Yyp represents the number of failures that
occur in a sequence of independent Bernoulli trials before a target number of successes (#) is reached.
The probability of success in each trial is p. Yy may also be parameterized by the mean y (of the
regular NB component) and dispersion parameter # so thatp =/ (5 +pu) or y =5 (1 —p) /p. The
mean of Yy np is (1 — ¢) u, and the variance is (1 — ¢) (1 + p (¢ +1/7)) (Ismail and Zamani, 2013;
Zhang et al., 2016). The parameters 77, p, i, and ¢ are specified through the inputs size, prob, mu, and
p_zinb. Either prob or mu should be given for all NB and ZINB variables. Setting p_zinb = 0 (the
default setting) generates a regular NB variable.

The zero-deflated NB distribution may be obtained by setting ¢ € (—p"/ (1 — p"), 0), so that the
probability of a zero count is less than the nominal NB value. In this case, ¢ no longer represents a
probability. The positive-NB distribution results when ¢ = —p'/ (1 — p7). The probability of a zero
response is 0, and the other probabilities are scaled to sum to 1.

(28)

Calculation of intermediate correlations for count variables

The two simulation pathways differ by the technique used for count variables. The intermediate
correlations used in correlation method 1 are simulation based and accuracy increases with sample
size and number of repetitions. The intermediate correlations used in correlation method 2 involve
correction loops which make iterative adjustments until a maximum error has been reached (if
possible). Correlation method 1 is described below:

1. Count variable pairs: Based on Yahav and Shmueli (2012)’s method, the intermediate cor-
relation between the standard normal variables Z; and Z, is calculated using a logarithmic
transformation of the target correlation. First, the upper and lower Fréchet-Hoeffding bounds
(mincor, maxcor) on py,y, are simulated (see Calculation of correlation boundaries; Fréchet,
1957; Hoeffding, 1994). Then the intermediate correlation pz, 7, is found as follows:

1 Y, Y, — C
priza =y log (P25, 29)
where
maxcor * mincor maxcor + a
1=———F), b:log(7>, c=—a
maxcor + mincor

The functions intercorr_pois, intercorr_nb, and intercorr_pois_nb calculate these correla-
tions.

2. Ordinal-count variable pairs: Extending Amatya and Demirtas (2015)’s method, the intermediate
correlations are the ratio of the target correlations to correction factors. The correction factor is
the product of the upper Fréchet-Hoeffding bound on the correlation between the count variable
and the normal variable used to generate it and a simulated upper bound on the correlation
between an ordinal variable and the normal variable used to generate it. This upper bound is
Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) upper bound (see Calculation

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

12

of correlation boundaries). The functions intercorr_cat_pois and intercorr_cat_nb calculate
these correlations.

3. Continuous-count variable pairs: Extending Amatya and Demirtas (2015)’s and Demirtas and
Hedeker (2011)’s methods, the correlation correction factor is the product of the upper Fréchet-
Hoeffding bound on the correlation between the count variable and the normal variable used
to generate it and the power method correlation between the continuous variable and the
normal variable used to generate it. This power method correlation is given by p,7)z =
c1 + 3¢z + 15¢5, where c3 = 0 for Fleishman’s method (Headrick and Kowalchuk, 2007). The
functions intercorr_cont_pois and intercorr_cont_nb calculate these correlations.

Fialkowski and Tiwari (2017) showed that this method is less accurate for positive correlations with
small count variable means (i.e., less than 1) or high negative correlations with large count variable
means.

In correlation method 2, count variables are treated as "ordinal" variables, based on the methods
of Barbiero and Ferrari (Ferrari and Barbiero, 2012; Barbiero and Ferrari, 2015a). The Poisson or NB
support is made finite by removing a small user-specified value (specified by pois_eps and nb_eps)
from the total cumulative probability. This truncation factor may differ for each count variable, but
the default value is 0.0001 (suggested by Barbiero and Ferrari, 2015a). For example, pois_eps =
0.0001 means that the support values removed have a total probability of 0.0001 of occurring in the
distribution of that variable. The effect is to remove improbable values, which may be of concern if the
user wishes to replicate a distribution with outliers. The function maxcount_support creates these new
supports and associated marginal distributions.

1. Count variable or ordinal-count variable pairs: The intermediate correlations are calculated
using the correction loop of ord_norm (see Simulation of ordinal variables).

2. Continuous-count variable pairs: Extending Demirtas et al. (2012)’s method, the intermediate
correlations are the ratio of the target correlations to correction factors. The correction factor
is the product of the power method correlation between the continuous variable and the
normal variable used to generate it and the point-polyserial correlation between the ordinalized
count variable and the normal variable used to generate it (Olsson et al., 1982). The functions
intercorr_cont_pois2 and intercorr_cont_nb2 calculate these correlations.

This method performs best under the same circumstances as ordinal variables, i.e., when there are few
categories and the probability of any given category is not very small. This occurs when the count
variable has a small mean. Therefore, method 2 performs well in situations when method 1 has poor
accuracy. In contrast, large means for the count variables would result in longer computational times.
Examples comparing the two simulation pathways compares the accuracy of correlation methods 1
and 2 under different scenarios.

Simulation of ordinal variables

Ordinal variables (r > 2 categories) are generated by discretizing standard normal variables at the
quantiles determined from the cumulative probabilities specified in marginal. Each element of this
list is a vector of length » — 1 (the i value is 1). If the support is not provided, the default is to
use {1, 2, ..., r} (Ferrari and Barbiero, 2012). The tetrachoric correlation is used for the intermediate
correlation of binary pairs (Emrich and Piedmonte, 1991; Demirtas et al., 2012). The assumptions are
that the binary variables arise from latent normal variables and the actual trait is continuous and not
discrete. For Y7 and Y5, with success probabilities p; and p», the intermediate correlation pz, 7, is the
solution to the following equation:

Dz (p1), z(p2), P2,2,) = PYlYZ\/Pl (1=p1) p2 (1= p2) + p1p2, (30)

where z (p) indicates the p! quantile of the standard normal distribution.

If at least one ordinal variable has more than 2 categories, ord_norm is called. Based on SimMul-
tiCorrData’s ordnorm and GenOrd’s ordcont and contord, the algorithm to simulate k_cat ordinal
random variables with target correlation matrix rho@ is as follows:

1. Create the default support if necessary.

2. Use norm_ord to calculate the initial correlation of the ordinal variables (rhoordold) generated
by discretizing k_cat random normal variates with correlation matrix set equal to rho@, using
marginal and the corresponding normal quantiles. These correlations are calculated using
means and variances found from multivariate normal probabilities determined by mvtnorm’s
pmvnorm (Genz et al., 2017; Genz and Bretz, 2009).
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3. Let rho be the intermediate normal correlation updated in each iteration, rhoord be the ordinal
correlation calculated in each iteration, rhoold be the intermediate correlation from the previous
iteration (initialized at rhoordold), it be the iteration number, and maxit and epsilon be the
user-specified maximum number of iterations and pairwise correlation error. For each variable
pair, execute the following:

(a) If rhoo@ = @, setrho = 0.

(b) While the absolute error between rhoord and rho@ is greater than epsilon and it is less
than maxit:

i. If rho@ * (rho@/rhoord) <= -1:
rho = rhoold * (1 + @.1 * (1 -rhoold) * -sign(rho@ -rhoord)).
ii. If rho@ * (rho@/rhoord) >= 1:
rho = rhoold * (1 + 0.1 x (1 -rhoold) * sign(rho@ -rhoord)).
iii. Else, rho = rhoold * (rho@/rhoord).
iv. If rho >1,setrho = 1.If rho <-1,setrho = -1.
v. Calculate rhoord using norm_ord and the 2 x 2 correlation matrix formed by rho.
vi. Set rhoold = rho and increase it by 1.

(c) Store the number of iterations in the matrix niter.

4. Return the final intermediate correlation matrix SigmaC = rho for the random normal variables.
Discretize these to produce ordinal variables with the desired correlation matrix.

Calculation of correlation boundaries

For binary variable pairs, the correlation bounds are calculated as by Demirtas et al. (2012). The
joint distribution is determined using the moments of a multivariate normal distribution (Emrich and
Piedmonte, 1991). For Y7 and Y, with success probabilities p; and py, the boundaries are approximated

by:

{max (_ [Pip2 /M),mm( iy /w)} (31)

4192 p1p2 q1p2 P192

where g1 = 1 — p; and g2 = 1 — py. If one of an ordinal variable pair has more than 2 categories,
randomly generated variables with the given marginal distributions and support values are used in
Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) algorithm. A large number (default
100, 000) of independent random samples from the desired distributions are generated. The lower
bound is the sample correlation of the two variables sorted in opposite directions (i.e., one increasing

and one decreasing). The upper bound is the sample correlation of the two variables sorted in the
same direction.

The GSC algorithm is also used for continuous, continuous-ordinal, ordinal-count, and continuous-
count variable pairs. Since count variables are treated as "ordinal” in correlation method 2, the
correlation bounds for count variable pairs is found with the GSC algorithm after creating finite
supports with associated marginal distributions (with maxcount_support). The correlation bounds
for count variable pairs in correlation method 1 are the Fréchet-Hoeffding bounds (Fréchet, 1957;
Hoeffding, 1994). For two random variables Y; and Y, with CDF’s F; and F,, the correlation bounds
are approximated by:

{Cor <F1_1 (uy, ;1 - u>> , Cor <Fl‘1 (u), 5! (u)) } (32)

where U is a Uniform(0, 1) random variable of default length 100, 000.

Example with multiple variable types

Consider the Normal and Beta mixture variables from Continuous mixture distributions. Additional
variables are an ordinal variable with three equally-weighted categories (e.g., drug treatment), two
zero-inflated Poisson variables with means 0.5 and 1 (for the regular Poisson components) and
structural zero probabilities 0.1 and 0.2, and two zero-inflated NB variables with means 0.5 and 1
(for the regular NB components), success probabilities 0.8 and 0.6, and structural zero probabilities
0.1 and 0.2. The target pairwise correlation is set at —0.5. The components of the Normal mixture
variable again have weak correlation of 0.1 and those for the Beta mixture variable are uncorrelated.
The parameter inputs are first checked with validpar.

marginal <- list(c(1/3, 2/3))
support <- list(c(o, 1, 2))

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 14

lam <- c(0.5, 1)

p_zip <- c(0.1, 0.2)

mu <- c(0.5, 1)

prob <- c(0.8, 0.6)

size <- prob * mu/(1 - prob)

p_zinb <- ¢c(0.1, 0.2)

rho <- matrix(-0.5, 10, 10)

rho[2:4, 2:4] <- matrix(0.1, 3, 3)

rho[5:6, 5:6] <- matrix(@Q, 2, 2)

diag(rho) <- 1

validpar(k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2, method = "Polynomial”,
means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, marginal = marginal,
support = support, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho)

## Default of pois_eps = 0.0001 will be used for Poisson variables

#i if using correlation method 2.

## Default of nb_eps = 0.0001 will be used for NB variables

## if using correlation method 2.

Target correlation matrix is not positive definite.

## [1] TRUE

validl <- validcorr(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,
method = "Polynomial”, means = means, vars = vars, mix_pis = mix_pis,

mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

## Range error! Corr[ 7 , 9 ] must be between -0.388605 and 0.944974

## Range error! Corr[ 7 , 10 ] must be between -0.432762 and 0.925402

## Range error! Corr[ 8 , 9 ] must be between -0.481863 and 0.877668

## Range error! Corr[ 9 , 10 ] must be between -0.386399 and ©.937699

names(valid1)

# [1]1 "rho” "L_rho" "U_rho" "constants”

## [5] "sixth_correction” "valid.pdf” "valid.rho"

valid2 <- validcorr2(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,
method = "Polynomial”, means = means, vars = vars, mix_pis = mix_pis,

mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

## Range error! Corr[ 7 , 9 ] must be between -0.385727 and 0.947462

## Range error! Corr[ 7 , 10 ] must be between -0.428145 and 0.921001

## Range error! Corr[ 8 , 9 ] must be between -0.477963 and 0.879439

## Range error! Corr[ 9 , 10 ] must be between -@.384557 and 0.939524

The validpar function indicates that all parameter inputs have the correct format and the default
cumulative probability truncation value of 0.0001 will be used in correlation method 2 for pois_eps
and nb_eps. Since rho is not PD, the intermediate correlation matrix Sigma will probably also be
non-PD. The user has three choices: 1) convert rho to the nearest PD matrix before simulation, 2) set
use.nearPD = TRUE (default) in the simulation functions to convert Sigma to the nearest PD matrix
during simulation, or 3) set use.nearPD = FALSE in the simulation functions to replace negative
eigenvalues with 0. Using use.nearPD = TRUE in validcorr or validcorr2 converts rho to the nearest
PD matrix before checking if all pairwise correlations fall within the feasible boundaries, whereas
use.nearPD = FALSE checks the initial matrix rho. Setting quiet = TRUE keeps the non-PD message
from being reprinted.

Range violations occur with the count variables. The lower and upper correlation bounds are given
in the list components L_rho and U_rho. Note that these are pairwise correlation bounds. Although
valid.rho will return TRUE if all elements of rho are within these bounds, this does not guarantee that
the overall target correlation matrix rho can be obtained in simulation.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

15

Overall workflow for generation of correlated data

The vignette Overall Workflow for Generation of Correlated Data provides a detailed step-by-step
guideline for correlated data simulation with examples for corrvar and corrvar2. These steps are
briefly reviewed here.

1. Obtain the distributional parameters for the desired variables.

(a) Continuous variables: For non-mixture and components of mixture variables, these are
skew, skurtosis, plus standardized fifth and sixth cumulants (for method = "Polynomial")
and sixth cumulant corrections (if desired). The inputs are skews, skurts, fifths, sixths,
and Six for non-mixture variables; mix_skews, mix_skurts, mix_fifths, mix_sixths, and
mix_Six for components of mixture variables. If the goal is to simulate a theoretical distri-
bution, SimMultiCorrData’s calc_theory will return these values given a distribution’s
name and parameters (39 distributions currently available by name) or PDF function fx. If
the goal is to mimic a real data set, SimMultiCorrData’s calc_moments uses the method
of moments or calc_fisherk uses Fisher (1929)’s k-statistics given a vector of data. For
mixture variables, the mixing parameters (mix_pis), component means (mix_mus), and
component standard deviations (mix_sigmas) are also required. The means and variances
of non-mixture and mixture variables are specified in means and vars and these can be
found using calc_mixmoments for mixture variables.

(b) Ordinal variables: The cumulative marginal probabilities in marginal and support values
in support as described in Simulation of ordinal variables.

(c) Poisson variables: The mean values in 1am and probabilities of structural zeros in p_zip
(default of 0 to yield regular Poisson distributions). The mean refers to the mean of
the Poisson component of the distribution. For correlation method 2, also cumulative
probability truncation values in pois_eps.

(d) NB variables: The target number of successes in size, probabilities of structural zeros
in p_zinb (default of 0 to yield regular NB distributions), plus means in mu or success
probabilities in prob. The mean refers to the mean of the NB component of the distribution.
For correlation method 2, also cumulative probability truncation values in nb_eps.

2. Check that all parameter inputs have the correct format using validpar. Incorrect parameter
specification is the most likely cause of function failure.

3. If continuous variables are desired, verify that the skurtoses are greater than the lower skur-
toses bounds using SimMultiCorrData’s calc_lower_skurt. The function permits a skurtosis
correction vector to aid in discovering a lower bound associated with PMT constants that yield
a valid PDF. Since this step can take considerable time, the user may wish to do this at the
end if any of the variables have invalid PDF’s. The sixth cumulant value should be the actual
sixth cumulant used in simulation, i.e., the distribution’s sixth cumulant plus any necessary
correction (if method = "Polynomial”).

4. Check if the target correlation matrix rho falls within the feasible correlation boundaries. The
variables in rho must be ordered correctly (see Introduction).

5. Generate the variables using either corrvar or corrvar?, with or without the error loop.

6. Summarize the results numerically with summary_var or graphically with plot_simpdf_theory,
plot_simtheory, or any of the plotting functions in SimMultiCorrData.

Examples comparing the two simulation pathways

Correlation methods 1 and 2 were compared to demonstrate situations when each has greater sim-
ulation accuracy. In scenario A, the ordinal (O1), Normal mixture (Nmix with components N1, N2,
and N3), Beta mixture (Bmix with components B1 and B2), two zero-inflated Poisson (P1 and P2),
and two zero-inflated NB (NB1 and NB2) variables from the Calculation of correlation boundaries
example were simulated. All count variables in this case had small means (less than 1). In scenario
B, the two Poisson variables were replaced with two zero-inflated NB (NB3 and NB4) variables with
means 50 and 100 (for the regular NB components), success probabilities 0.4 and 0.2, and structural
zero probabilities 0.1 and 0.2. This yielded two count variables with small means and two with large
means. The simulations were done with n = 10,000 sample size and r = 1, 000 repetitions using three
different positive correlations as given in Table 1 (chosen based on the upper correlation bounds). The
correlation among N1, N2, N3 was set at 0.1; the correlation between B1 and B2 was set at 0. The
default total cumulative probability truncation value of 0.0001 was used for each count variable in
corrvara2.
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In scenarios A and B, the simulated correlations among the count variables were compared to the
target values using boxplots generated with ggplot2’s geom_boxplot. In scenario A, the simulated
correlations with the continuous mixture variables were compared to the expected correlations approx-
imated by rho_M1M2 and rho_M1Y, with O1 as the non-mixture variable. Simulation times included
simulation of the variables only with corrvar or corrvar2. Medians and interquartile ranges (IQR)
were computed for the summary tables. Variable summaries are given for Nmix, Bmix, and NB1-NB4
in scenario B. This example was run on R version 3.4.1 with SimCorrMix version 0.1.0 using CentOS.
The complete code is in the supplementary file for this article.

Results

Table 1 gives the three different correlations and total simulation times (1,000 repetitions) for correlation
method 1 using corrvar (Time M;) and correlation method 2 using corrvar2 (Time M;). The strong
correlation was different between NB variables with small means (NB1, NB2) and NB variables with
large means (NB3, NB4) because the upper bounds were lower for these variable pairs.

Scenario A: Poisson and NB B: NB
Correlation Type p p* TimeM; TimeM; TimeM; TimeM,
Strong 0.7 0.6 2.55 2.03 2.00 9.30
Moderate 05 05 1.65 0.92 1.98 8.01
Weak 03 03 1.39 0.90 1.95 5.78

Table 1: Six comparisons and total simulation times for method 1 (M;) and method 2 (M) in hours.
Correlation p* applied to the NB1-NB3, NB1-NB4, NB2-NB3, and NB2-NB4 variable pairs.

The strong correlations required the most time for each correlation method. Although method
2 was faster when all count variables had small means (scenario A), it was notably slower when
two of the count variables had large means (scenario B). The reason is that method 2 treats all count
variables as "ordinal," which requires creating finite supports and associated marginal distributions, as
described in Calculation of intermediate correlations for count variables. When a count variable has a
large mean, there are several support values with very small probabilities, making simulation more
difficult.

Scenario A: Ordinal, Normal and Beta mixtures, Poisson, and NB variables

Figure 4 contains boxplots of the simulated correlations for the continuous mixture variables. Method
1is in red; method 2 is in green. The middle line is the median (50" percentile); the lower and upper
hinges correspond to the first and third quartiles (the 25 and 75! percentiles). The upper whisker
extends from the hinge to the largest value up to 1.5 * IQR from the hinge. The lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data beyond the end of the
whiskers are considered "outliers." The black horizontal lines show the approximate expected values
obtained with the functions rho_M1M2 and rho_M1Y (also given in Table 2).

Correlation Type 0 ONmixBmix ONmix01 PBmix,01

Strong 0.7 0.1813 0.2594 0.4892
Moderate 0.5 0.1295 0.1853 0.3495
Weak 0.3 0.0777 0.1112 0.2097

Table 2: Approximate expected correlations with the continuous mixture variables.

Notice in Table 2 that the expected correlations are much smaller than the pairwise correlations,
demonstrating an important consideration when setting the correlations for mixture components.
Even though the strong correlation between the components of Nmix and the components of Bmix was
set at 0.7, the expected correlation between Nmix and Bmix was only 0.1813. Combining continuous
components into one continuous mixture variable always decreases the absolute correlation between
the mixture variable and other variables.

Figure 4 shows that, as expected, the results with correlation methods 1 and 2 were similar, since
the methods differ according to count variable correlations. The simulated correlations were farthest
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from the approximate expected values with the strong correlation and closest for the weak correlation.
In the simulations with strong or moderate correlations, the intermediate correlation matrix Sigma was
not PD due to the weak correlation (0.1) between N1, N2, and N3 and independence (zero correlation)
of Bl and B2. During simulation, after Sigma is calculated with intercorr or intercorr2, eigenvalue
decomposition is done on Sigma. The square roots of the eigenvalues form a diagonal matrix. The
product of the eigenvectors, diagonal matrix, and transposed standard normal variables produces
normal variables with the desired intermediate correlations. If Sigma is not PD and use.nearPD is
set to FALSE in the simulation functions, negative eigenvalues are replaced with 0 before forming the
diagonal matrix of eigenvalue square roots. If use.nearPD is set to TRUE (default), Sigma is replaced
with the nearest PD matrix using (Higham, 2002)’s algorithm and Matrix’s nearPD function. Either
method increases correlation errors because the resulting intermediate correlations are different from
those found in Sigma. As the maximum absolute correlation in the target matrix rho increases, these
differences increase. In this example, the Sigma matrix had two negative eigenvalues in the strong
correlation simulations and one negative eigenvalue in the moderate correlation simulations. This is
why the correlation errors were largest for the strong correlation setting.

Figure 5 shows boxplots of the simulated correlations for the count variables. The horizontal lines
show the target values. These correlations were also affected by the adjusted eigenvalues and the
errors for the strong correlations were again the largest. Correlation method 2 performed better in
each case except when generating pop; N1 in the strong correlation case. Barbiero and Ferrari (2015a)’s
method of treating count variables as "ordinal" is expected to exhibit better accuracy than Yahav and
Shmueli (2012)’s equation when the count variables have small means (less than 1). Tables 6-8 in the
Appendix provide median (IQR) correlation errors for all variables and each correlation type.

Scenario B: Ordinal, Normal and Beta mixtures, and NB variables

Tables 3 and 4 describe the target and simulated distributions for Nmix, Bmix, and NB1-NB4 in the
weak correlation case. In all instances, the simulated distributions are close to the target distributions.

Nmix Bmix
Mean -0.20 -0.20(-0.20,-0.20) 0.70  0.70(0.70, 0.70)
SD 448 4.48(4.48,4.48) 0.14 0.14(0.14,0.14)
Skew 0.33 0.33(0.32,0.33) -0.46 -0.46 (-0.47,-0.45)
Skurtosis -0.62 -0.62 (-0.64,-0.61) -0.54 -0.54 (-0.56, -0.52)
Fifth -1.02 -1.03(-1.07,-0.98) 1.72 1.73(1.68,1.77)
Sixth 1.49 1.50(1.36,1.62) 0.56 0.54(0.37,0.72)

Table 3: Target and median (IQR) simulated distributions of continuous mixture variables.

P[Y = 0] E(IP[Y = 0]) Mean IE[Mean]

NB1 0.68 (0.67, 0.68) 0.68 0.45 (0.45, 0.45) 0.45
NB2 0.57 (0.57, 0.57) 0.57 0.80 (0.80, 0.80) 0.80
NB3 0.10 (0.10, 0.10) 0.10 45.00 (44.96, 45.03) 45.00
NB4 0.20 (0.20, 0.20) 0.20 80.00 (79.90, 80.10) 80.00

Var IE[Var] Median Max
NB1 0.58 (0.58, 0.59) 0.58 0(0,0) 7(6,7)
NB2 1.49 (1.48, 1.51) 1.49 00, 0) 11 (10, 12)
NB3 337.76 (335.43, 339.67) 337.50 48 (48, 48) 101 (98, 105)
NB4 2000.09 (1990.21, 2010.18) 2000.00 92 (91, 92) 204 (199, 212)

Table 4: Target and median (IQR) simulated distributions of zero-inflated NB variables.

Figure 6 shows boxplots of the simulated correlations for the count variables. The horizontal lines
show the target values. Method 1 performed better for all strong correlation cases except between the
two NB variables with small means (NB1 and NB2). Although method 2 had smaller errors overall, it
did require considerably longer simulation times. Therefore, the user should consider using correlation
method 1 when the data set contains count variables with large means. Tables 9-11 in the Appendix
provide median (IQR) correlation errors for all variables and each correlation type.
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Figure 4: Boxplots of simulated correlations for continuous mixture variables (scenario A). Method 1
is in red; method 2 is in green. The horizontal lines show the approximate expected values.
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Figure 6: Boxplots of simulated correlations for NB1, NB2, NB3, and NB4 (scenario B). Method 1 is in
red; method 2 is in green. The horizontal lines show the target values.
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Summary

The package SimCorrMix generates correlated continuous (normal, non-normal, and mixture), ordinal
(r > 2 categories), and count (regular or zero-inflated, Poisson or Negative Binomial) variables. It is a
significant contribution to existing R simulation packages because it is the first to include continuous
and count mixture variables in correlated data sets. Since SimCorrMix simulates variables which
mimic real-world data sets and provides great flexibility, the package has a wide range of applications
in clinical trial and genetic studies. The simulated data sets could be used to compare statistical
methods, conduct hypothesis tests, perform bootstrapping, or calculate power. The two simulation
pathways, excecuted by the functions corrvar and corrvar2, permit the user to accurately reproduce
desired correlation matrices for different parameter ranges. Correlation method 1 should be used when
the target distributions include count variables with large means, and correlation method 2 is preferable
in opposite situations. The package also provides helper functions to calculate standardized cumulants
of continuous mixture variables, approximate expected correlations with continuous mixture variables,
validate parameter inputs, determine feasible correlation boundaries, and summarize simulation
results numerically and graphically. Future extensions of the package include adding more variable
types (e.g., zero-inflated Binomial, Gaussian, and Gamma).

Supplementary Material

The article’s supplementary file contains replication code for the examples in the paper and Examples
comparing the two simulation pathways.
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Appendix

Derivation of expected cumulants of continuous mixture variables

Suppose the goal is to simulate a continuous mixture variable Y with PDF hy (y) that contains two
component distributions Y, and Y}, with mixing parameters 7, and 7t:

hy (v) = mafy, (¥) + T8y, W), y € Y, ma € (0, 1), 1y € (0, 1), ma+m = 1. (33)
Here,
Yo =0aZi+pa, Yo~ fr, ), vy € Yo and Y, =0, Z; + 1y, Yy~ 8y, (), v € Y (34)

so that Y, and Y}, have expected values i, and y;, and variances 07 and ¢7. Assume the variables
Z; and Z; are generated with zero mean and unit variance using Headrick’s fifth-order PMT given

the specified values for skew (’yiﬂ, 'yih), skurtosis ('y§a, ’leh)' and standardized fifth <'yéﬂ, 7’3h> and

sixth (’Yia/ ’Yib) cumulants. The " expected value of Y can be expressed as:

E[Y']= / Yhy (y)dy = 1, / Y fy, (y) dy + / Y8y, (v)dy
=m E[Y;] + m E[Y].

(35)

Equation 35 can be used to derive expressions for the mean, variance, skew, skurtosis, and standardized
fifth and sixth cumulants of Y in terms of the " expected values of Y; and Y5,

1. Mean: Using r = 1 in Equation 35 yields yu:

E[Y] =, E[Ys] + B [Yy] = 710 [00Zy + pa] + 70 I [0 2y, + pp]

(36)
=Ty (Ua]E [Z,/J + ,ua) + Ty (O’b]E [Z{,] + Vb) .
Since E [Z]] = E [Z]] = 0, this becomes:
E Y] = mtapta + ppp. (37)

2. Variance: The variance of Y can be expressed by the relation Var [Y] = E [Y?| — (E[Y] ). Using
r = 2 in Equation 35 yields p5:

E|V] = mE V] +mE V| = B (002 4 w)’] + B | (007 + )]

=mE [UZZ[,z + 2Ua0a Z} + }43] + 7, B [UZ%Z,’]Z + 2upopZy, + ylz,]

(38)
= 70 (R E (2] + 2000 B [Z4] +122)
+ 1y (BB (23] + 20, E 4] + 43)
Applying the variance relation to Z; and Z; gives:
E|[2;?] = Var (7] + (E [2;])?
(39)

E|2;?] = Var [7;] + (E [7;])*.

Since E[Z]] = E[Z;] = 0and Var[Z}] = Var [Z]] = 1, E [Zl’,z} and [E [Z,’f] both equal 1.

Therefore, Equation 38 simplifies to:
E V2] = (2 +42) +m, (2 +12), (40)
and the variance of Y is given by:

Var [Y] = 7, (Uf + y%) + 71 <¢7b2 + y%) — [apta + nbyb]z. (41)
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3. Skew: Using r = 3 in Equation 35 yields ji3:
E [y3] — 2, F [y,?] + o E [yg} =, E [(agz,; + ya)3] +mE [(abzg + mﬂ
= B (032, + 3022, + 30api3Zy + 113
+ 1 E (374 + 3027y + 30374 + i (42)
= 0 (03 B (2] +302ua B [Z7] + 30ui2 B [7]] + 123
+ 71 (Ug’ E [Zﬂ +305 [Ziz] +30p0, E [Z3] + V“Z’) -

Then E [Z,’z?’] = p5 and E [Zés} = j3, are given by:

E [fo] = (var [Z)])*29f, =,
E Z/3 — (Var [Z! 3/2 1 g (43)
27| = (var [Z4])*%44, = o4,

Combining these with [E [Z] = E [Z]] = 0and E [Z,’zz} =E {Z}’JZ] = 1, Equation 42 simplifies
to:
E[¥3] = 0 (0391, + 30%ma+13) + m, (03, +30Fm, +13) (44)

From Equation 7, the skew of Y is given by:
7o (0394, +302ua +13) + 7 (0371, + 302, + 113

T = N 3/2 " (45)
(”u (07 + p7) + 7 (0 + 1) — [7apta + 1) )

4. Skurtosis: Using r = 4 in Equation 35 yields p4:
E [Y4] — 1 E [yf] + B [Y{}] — 1 E [(auz; n ya)ﬂ +mE [(sz{, + yb)4]
=mE [03224 + 40212} + 602122, + d0aji3Z) + ﬂ;‘]
+mE 032y + 40 u 2y + 60332y + Aoy Zy + (46)
= 7o (A B [22"] +402ma B [ Z07] + 60212 B [ 27| + doupd B (7)) + 4

+ (A B 2] +aim B [ 2] + 6023 B [27] + doud B (23] + 4}

Then IE [Z,’lﬂ =py and E [Zl’f] = pj, are given by:

E ("] = (Var [2{])* (1, +3) = %, +3
14 N2 (A / (47)
E [Zb ] = (Var [7;]) <’Yz,, +3) =7, +3
Since E [Z] = E [Z;] = 0and E [Z{lz] =E [Zéz] =1, Equation 46 simplifies to:
E[Y*] = 70 [0 (15, +3) +403mat, + 602142 + w3
4 / / 2 4 (48)
+ [Ub (’Yz,, + 3) +407;’ﬂb'hb + 6071} + #b} .
From Equation 8, the skurtosis of Y is given by:
7o |08 (73, +3) +403uavi, + 60212 + ]
T2 = 5
24 2 24 2) 2
(”ﬂ (07 + pd) + 7 (0 + 1) — [7Tapta + 7opte] > @)

mm, [Ug ('y’zh + 3) + 40y}, + 607 g + ﬂg]

+ 5-
(”u (07 + pa) + mp (of + p) — [7apta + ﬂbﬂb]z>
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5. Standardized fifth cumulant: Using r = 5 in Equation 35 yields ps:
E[Y°] = mE V| + B [¥p] = B [ (0uZh + ua)®] + 0 B [ (002 + o)’
=mE [UEZ{ZS + 502,20 + 100312 20% + 100213 207 + 5ot Z) + }12}
+ (0324 + 5o 74" + 10031273 + 100218747 + 5eyud 7} + ]
= (B[ 2] +5otnaE [ 2] + 10002 E |7, (50)
+100215 E | 27| +Souit (2] + 1)
+ (o) B (2] + 50pm B[] + 10003 (7]
+10021 E |27] + Seup B (4] + 1)

Then E [Z,’Js} = p5 and E [Z;S] = js, are given by:

3]
N
s\
R
I

(Var [27])™"2 (24, +1091,) = 5, + 1094, o
(2] = (Var [73])°% (14, + 1091, ) = %, + 1094,

Since E[Z}] = E [Z,] = 0and E [Z,’lz} =E [Zl'jz] = 1, Equation 50 simplifies to:

E Y] = 7 [07 (14, +109,) + 50 pa (13, +3) + 1002304, + 100743 + 43 -
+ TTp Ub ’)/31; + r)/ll,, + Uh ;’lb ')/Zb + + Ub }lb’)’lb + Uh ]lb + ]lb .

From Equation 9, the standardized fifth cumulant of Y is given by:

7o [0F (74, + 109 ) + 50 pa (75, +3) + 100331, + 1003343 + 1

7= 2 2 2 2 2)5/2
(”ﬂ (07 + pa) + 1y (0p + 1) — [Tapta + ppp) > 53

. T [UE <’y§b + 107’1b) + 507 <’y’2b + 3) + 100757}, + 10053 + yg] 1o,
(e (03 4+ 1) + 7 (0 + 1) = [rapa + rgnl?)
6. Standardized sixth cumulant: Using r = 6 in Equation 35 yields :
E [YG] — 1 F [Yﬂ + o, E [Yf] — 1, F [(aazg, + yu)é] +mE [(obzl’, + yb)é]
=, E [agz;6 +6001,7.° + 15041270 + 200313 7.7
+1502 87, + 60u1i3 74 + i
b [B24° + 63 Zi} + 150324 + 200332

+ 1502 b 247 + 60,24 + 1

= (oS B 2] + 605ma B [ 7,°] + 150812 E [7*] + 2003453 E [ 2,7
+1502 s B |27 + 60upil (2] + i) 5
+ iy (F B (2] + 603 E [2°) + 1503 E [ 7*] + 20034 B [ 73]
+1502 E [2;%] + 60up B [Z7] + 15 )
Then [z;é] =i, and E [zﬂ = jij, are given by:

E|[2,°] = (Var [23])° (4, + 1575, +109, 2 +15) = 7}, +159%, + 1071 * +15
(55)
E|2°] = (Var (7)) (4, + 1575, +109,2 +15) =, +159%, + 1077, % +15.
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Since E [Z}] = E [Z}] = 0 and E [Z;f] 5 [zﬂ = 1, Equation 54 simplifies to:

E[Y®] = ma[0f (74, + 1575, +107, 2 +15) + 603 ua (73, +107])

+ 15032 (75, +3) + 2003031, + 1502 ik + | 5y

+ 713 |0 (73, +157%, +107,2 +15) + 607y (73, +1074,) o0
+ 1507 2 (’yéb + 3) + 20071374, + 1505 p + yg] :

From Equation 10, the standardized sixth cumulant of Y is given by:

7o |08 (7, + 1573, +109, 2 +15) +603ua (74, +1071,)

Y4 = 3
(70 (02 +13) + 71y (0 + 1) = [apta + o))

+1502u2 (yén + 3> + 2003 p3y + 15077 + ;42]

3
<7Tu (07 +pa) + my (0f + 1) — [apta + ﬂbﬂb]z)

2
L |8 (74, + 1573, +107, 2 +15) + 607y (73, +1074, ) (57)

3
(na (02 +u2) + 1y (0F + p2) — [Tapta + nbyb]z)

+150 12 (’yéb + 3> + 20071374, + 1505y + yg]

3
<7Ta (07 + i)+ (0f + 1) — [apta + ﬂb#b]z)
— 1579, — 10,2 — 15.

Results from examples comparing correlation methods 1 and 2

Scenario
Correlation Type A:Poissonand NB  B: NB
Strong 6 9
Moderate 7 10
Weak 8 11

Table 5: Table numbers for matrices of correlation errors.
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