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Nowcasting: An R Package for Predicting
Economic Variables Using Dynamic
Factor Models
by Serge de Valk, Daiane de Mattos and Pedro Ferreira

Abstract The nowcasting package provides the tools to make forecasts of monthly or quarterly
economic variables using dynamic factor models. The objective is to help the user at each step of
the forecasting process, starting with the construction of a database, all the way to the interpretation
of the forecasts. The dynamic factor model adopted in this package is based on the articles from
Giannone et al. (2008) and Banbura et al. (2011). Although there exist several other dynamic factor
model packages available for R, ours provides an environment to easily forecast economic variables
and interpret results.

Introduction

Important economic decisions are made based on current and future conditions. Oftentimes, the
variables used to measure such conditions are not available even for the recent past. This is, for
instance, the case with US GDP that is published 45 days after the end of the quarter. Similarly,
Brazilian GDP is published with a 60-day lag. There is therefore a need for forecasting the current
value of given variables. To this end, Giannone et al. (2008) proposed a statistical model that allows
quarterly variables, such as US GDP, to be forecast using a large set of monthly variables released
with different lags. GDP forecasts for the current quarter are, furthermore, updated whenever new
information is available. Different central banks have shown interest in this methodology, among them
the European Central Bank (Angelini et al., 2008; Bańbura and Rünstler, 2011; Van Nieuwenhuyze
et al., 2008), and the central banks of Ireland (D’Agostino et al., 2008), New Zealand (Matheson, 2010)
and Norway (Aastveit and Trovik, 2012).

Factor models are designed to summarize the variation contained in a large dataset into only a
few variables (Stock and Watson, 2006). In Giannone et al. (2008), the authors show how to reduce the
information contained in dozens of monthly time series into only two dynamic factors. These two
estimated factors, which are initially monthly, are then transformed into quarterly factors and used in
a regression against GDP. Various other authors, such as Chauvet (2001); Marcellino et al. (2003); Forni
et al. (2004); Boivin and Ng (2006); D’Agostino et al. (2006); Banbura et al. (2011); Dahlhaus et al. (2015);
Stock and Watson (2016), have explored Dynamic Factor Models (DFMs) in time series forecasting and
found promising results.

Given the publication lag of many variables, such as GDP, we can either forecast past, current or
future values. In order to differentiate between those types of forecasts we adopt the terminology used
in Giannone et al. (2008) and Banbura et al. (2011). Backcasting refers to forecasting the value of a yet
unpublished variable for a past period, while nowcasting will be with respect to the current period.
By way of illustration, suppose we want to forecast the GDP for the 2nd quarter of 2018. If the exercise
is made during the 2nd quarter of 2018, then the forecast is classified as nowcasting. However, if the
current date is before the 2nd quarter of 2018, then the term used is forecasting. Finally, if the date is
after the 2nd quarter of 2018 and the GDP has not yet been released, then the forecast is classified as
backcasting.

The aim of the package nowcasting is to offer the tools for the R user to implement dynamic factor
models. The different steps in the forecasting process and the associated functions within the package
are based on the literature. We have chosen to divide the process into 4 main steps: 1) constructing
a dataset; 2) defining the model’s initiation parameters; 3) forecasting; 4) presenting results. This
particular division will be maintained in most sections.

This brings us to the article’s sections that are organized as follows: 1) the theoretical framework is
introduced; 2) the functions of our package are presented; 3) working examples of how to nowcast
Brazilian GDP and of the New York FED nowcasting are given; 4) and finally the last section concludes
with some considerations.
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Methodology

Dynamic Factor Model

Let xt = (x1,t, x2,t, ..., xN,t)
′

be the vector representing N monthly time series transformed to satisfy
the weak stationarity assumption. The general specification of the dynamic factor model is given by:

xt = µ + Λ ft + εt (1)

ft =
p

∑
i=1

Ai ft−i + But, ut ∼ i.i.d.N(0, Iq) (2)

In equation (1), the variables xt are expressed as a function of an intercept µ and r unobserved
common factors ft. Since all variables x will later be demeaned, one may drop the unconditional
means µ. The variables xt will be loaded into the unobserved factors ft through Λ. Equation (2)
imposes the structure of a VAR(p) process on the factors ft. Both εt and ut are normal, allowing the
use of the Kalman Filter. Furthermore, the vector of idiosyncratic component εt is unrelated to ut at all
lags, i.e., E[εtu′t−k] = 0 for any k. An interesting feature of equation (2) is that the number of shocks q
to the factors need not be equal to the number of factors r. Structural breaks or lead/lag relationships
of the r factors with q common shocks may motivate such a modeling choice (see Stock and Watson
(2016) for more information).

In the so-called exact dynamic factor model, the error components from equation (1) are assumed
to be mutually uncorrelated at all lags, i.e., E[εi,tε j,s] = 0 for i 6= j. However, following Banbura et al.
(2011), the error term could be modeled as an AR(p’) process:

εi,t =
p′

∑
j=1

αi,jεi,t−j + ei,t, ei,t ∼ i.i.d.N(0, σ2
i ) (3)

where E[ei,tej,s] = 0 for i 6= j.
Following is an example, in matrix form, of equation (2) of the model for orders r = 2, p = 2 and

q = 2.


f1,t
f2,t

f1,t−1
f2,t−1

 =


a1

1,1 a1
1,2 a2

1,1 a2
1,2

a1
2,1 a1

2,2 a2
2,1 a2

2,2
1 0 0 0
0 1 0 0




f1,t−1
f2,t−1
f1,t−2
f2,t−2

+


b1,1 b1,2
b2,1 b2,2
0 0
0 0

 [u1,t
u2,t

]
(4)

Ft =

[
A1 A2
I2 0

]
Ft−1 + But (5)

Quarterly and monthly variables

In order to predict a quarterly variable using monthly data, we construct a partially observed monthly
counterpart of the quarterly variable as proposed in Mariano and Murasawa (2003). This allows, for
instance, quarterly GDP to be explained by monthly variables. Continuing with this example, let
YM

t be the level of the unobservable monthly GDP level and YQ
t the quarterly value of GDP for the

partially observable monthly series. As is usual in the literature, we let quarterly GDP be observable
in the third month of the quarter.

YQ
t =

{
YM

t + YM
t−1 + YM

t−2, t = 3, 6, 9, . . .
unobserved otherwise

(6)

The above accounting rule states that the quarterly GDP flow is equal to the sum of the monthly
flows. Looking at the quarterly change, yQ

t = YQ
t −YQ

t−3
1, it is easy to show that it can be expressed

1The aggregation scheme, and ensuing weights used for aggregating the monthly series, may differ according
to the order of the difference taken. In the paper of Mariano and Murasawa (2003), the example is of a first
difference of quarterly log GDP, which corresponds to a quarterly growth rate. In the case of an annual growth rate,
∆12log(YQ

t ) = log(YQ
t )− log(YQ

t−12), the aggregation weights would be different. Such cases are not considered
here.
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as a function of the differences of the monthly variable, yt = YM
t −YM

t−1, by using equation (6):

yQ
t = YQ

t −YQ
t−3

= YQ
t + YQ

t−1 −YQ
t−1 + YQ

t−2 −YQ
t−2 −YQ

t−3

= yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4, t = 6, 9, . . .

(7)

Suppose that the variable of interest is a quarterly rate of change, xQ
t , defined as:

xQ
t ≡ log(YQ

t )− log(YQ
t−3) (8)

Stating the approximation between the arithmetic and geometric means we have:

1
3
[YM

t + YM
t−1 + YM

t−2] ≈ 3
√

YM
t YM

t−1YM
t−2 (9)

Combining equations (8) and (9) we obtain the approximation from Mariano and Murasawa (2003)
that expresses the quarterly growth rate of GDP as a function of the unobservable monthly growth
rates xM

t :

xQ
t ≈

1
3

[
xM

t + 2xM
t−1 + 3xM

t−2 + 2xM
t−3 + xM

t−4

]
(10)

Suppose that the unobserved monthly growth rate xM
t also admits the same factor representation

as in equation (1) with loadings ΛQ, then the quarterly GDP growth rate, xQ
t , can be expressed as a

function of monthly factors.

xQ
t = ΛQ

[
f ′t . . . f ′t−4

]′
+

[
1 2 3 2 1

][
εM

t . . . εM
t−4

]′
(11)

where ΛQ = [ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ] is a restricted matrix of loadings on the factors and their lags.
Note that the errors are normal in the exact dynamic factor model or have an AR(1) structure as in
Banbura et al. (2011).

Determining the number of factors and shocks to the factors

We follow the papers by Bai and Ng (2002) and Bai and Ng (2007) to respectively define 1) the number
r of factors in equation (1) and 2) the number of shocks q to the factors in equation (2).

Let V(r, F̂r) be the sum of squared residuals when r factors are estimated using principal compo-
nents. The the information criteria can then be written as follows:

ICr1(r) = ln(V(r, F̂r)) + r
(

N + T
NT

)
ln
(

NT
N + T

)
(12)

ICr2(r) = ln(V(r, F̂r)) + r
(

N + T
NT

)
ln
(

min{N, T}
)

(13)

ICr3(r) = ln(V(r, F̂r)) + r
(

ln(min{N, T})
min{N, T}

)
(14)

The chosen number of factors r∗ will then correspond to arg minr ICri(r), for i ∈ {1, 2, 3}. Equa-
tions (12), (13), and (14) are asymptotically equivalent, but may nevertheless give significantly different
results for finite samples. To this effect, observe that the penalty in equation (13) is highest when
considering finite samples.

The number of shocks q can be lower than the number of factors r. Once the number of factors is
determined, we use an information criterion from Bai and Ng (2007) to estimate the number of shocks q
in equation (2). Let F̂t be the r factors estimated using principal components and let ût be the residuals
from the VAR A(l)F̂t = ût. The idea is to check whether the eigenvalues of the variance-covariance
matrix ∑̂u are different from 0. Numerically, we will therefore want to test whether a given eigenvalue
is below a predefined tolerance level.To this end, define the eigenvalues c1 > c2 ≥ ... ≥ cr ≥ 0 of ∑̂u
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and define the kth normalization of the k+1th eigenvalue

D̂k =

( c2
(k+1)

∑r
j=1 c2

j

)1/2

(15)

Then for some 0 < m < ∞ and 0 < δ < 1/2 that set the tolerance level, define the vector K

K = {k : D̂k < m/ min[N1/2−δ, T1/2−δ]} (16)

where the estimated number of shocks to the factors will be q̂ = min{k ∈ K}. This estimator will
converge in probability towards the real number of shocks given that r is the real number of factors.

Estimation

We will describe two methodologies for estimating dynamic factors: Two-Stage and Expectation-
Maximization.

1. Two-Stage: This approach is described in Giannone et al. (2008) and refers to the exact DFM. In
the first stage, the parameters of the matrices Λ and ft are estimated by Principal Components
Analysis (PCA) using a standardized, balanced panel (Xt), in which there are no missing values
and outliers. Standardization is important as PCA is not scale invariant. The estimators Λ̂ and
f̂t can be obtained by solving the following optimization problem:

min
f1,..., fT ,Λ

1
NT

T

∑
t=1

(Xt −Λ ft)
′(Xt −Λ ft) s.t. N−1Λ′Λ = Ir (17)

The estimator for the variance and covariance matrix for εt is then given by

Ψ̂ = diag

(
1
T

T

∑
t=1

(Xt − Λ̂ f̂t)(Xt − Λ̂ f̂t)
′
)

(18)

According to Stock and Watson (2011), the solution to (17) is to set Λ̂ equal to the eigenvectors
of the variance and covariance matrix of Xt associated with the r largest eigenvalues, from
which it follows that the vector f̂t is the r first principal components of Xt. The coefficients of the
matrix Ai, i = 1, 2, ..., p, from equation (2), are estimated by OLS regression of ft on ft−1, ..., ft−p.
Finally, BB′ is estimated as the covariance matrix of the residuals of this regression.

In the second stage, Kalman smoothing (Durbin and Koopman, 2012) is used to re-estimate
the factors for the unbalanced panel xt considering the parameters obtained in the previous step.
There are some R packages that implemented the Kalman smoothing (Tusell, 2011). However,
for convenience, in the nowcasting package, we used the routine provided by Giannone et al.
(2008). Furthermore, two options are provided when estimating the factors:

• No aggregation: No bridge equation, to obtain (19), is needed if both the dependent and the
explanatory variables are monthly indicators. Hence, the aggregation procedure as set out
in Mariano and Murasawa (2003) is not required. Similarly, if the explanatory variables
have been transformed to represent quarterly quantities, the same aggregation procedure
does not need to be implemented again on the factors.

• With aggregation: This option is relevant when having a dependent variable y of lower
frequency than the explanatory variables. Factors are estimated using the monthly ex-
planatory variables x, after which the transformation from Mariano and Murasawa (2003)
is applied in order to obtain factors representing quarterly quantities. Those will be used
to forecast the dependent variable in the bridge equation (19).

yt = β0 + β′ f̂t + et (19)

The parameters of equation (19) are estimated by OLS, and the forecast for yt+h is given by

ŷt+h = β̂0 + β̂′ f̂t+h (20)

2. Expectation-Maximization: This estimation method is able to deal with arbitrary patterns
of missing values as shown in Bańbura and Modugno (2014). It is therefore less restrictive
than the Two-Stage method with regards to the frequencies of the variables and allows for a
mixed frequency database. Following Banbura et al. (2011), factors can be defined for different
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subgroups of variables and no longer all need to be global as in the Two-Stage estimation method.
Below, we illustrate a case where three factors are partitioned into three groups (global, real and
nominal) as in Banbura et al. (2011). Rewriting equation (1) accordingly gives equation (21). As
opposed to the Two-Stage estimation method that builds on an exact dynamic factor model, the
error term is defined as an AR(1) process. A more restrictive assumption than the Two-Stage
method is that the number of shocks to the factors q is set equal to the number of factors r.

xt = µ +

(
ΛN,G ΛN,N 0
ΛR,G 0 ΛR,R

) f G
t

z f N
t

f R
t

+ εt (21)

where (
ΛN,G ΛN,N 0
ΛR,G 0 ΛR,R

)
= Λ (22)

 f G
t

f N
t

f R
t

 = ft (23)

The global factor is estimated considering all the explanatory variables, while the estimates
of the nominal and real factors only consider variable classified, respectively, as nominal and
real. The parameter µ is a vector of constants of dimension N. As previously mentioned, the
alternative proposed by Banbura et al. (2011) to the exact DFM, allows for serial autocorrelation
among the error of equation (1) along an AR(1) process:

εi,t = αiεi,t−1 + ei,t, ei,t ∼ i.i.d.N(0, σ2
i ) (24)

where E[ei,tej,s] = 0 for i 6= j.
In this model, the parameters, the unobserved common factors and the missing values are

estimated through the Expectation-Maximization algorithm, which uses the following recursive
structure:

• E-step: The conditional expectation of the likelihood function is calculated using the
estimates of the static parameters (θ) from the previous iteration, θj;

• M-step: The new parameters, θj+1 are estimated by maximizing the likelihood function
from the previous step with respect to θ.

Convergence is achieved when the absolute change in the value of the log-likelihood function
is less than 10−4, the tolerance level used for this algorithm. The recursive process starts with
the PCA estimates given in Giannone et al. (2008) (first stage of the Two-Stage method).

The R package

Working on the dataset

The first step in the nowcasting process is to prepare the data in a way that is compatible with the
proposed models and estimation methods. One of the motivations of the presented models is the
forecasting improvements that can be achieved by using higher frequency variables. More specifically,
the gains that can be obtained in using monthly variables to forecast quarterly series. Hence, all
functions require monthly mts objects. In practice, the quarterly variables are usually represented as
monthly variables for which the last month of the quarter is observed. As illustrated in the working
examples, such straightforward transformations from one frequency representation to another can be
achieved by using the functions qtr2month() or month2qtr().

With regards to the estimation methods, different inputs may have to be provided. As a matter of
fact, the Two-Stage method is more restrictive on the format of the variables as it depends on principal
components in the first stage. This requires a strategy to deal with missing values, which are not part
of the jagged edge, beforehand. Giannone et al. (2008) propose to replace such missing values with
the median of the series that are then smoothed with a moving average. Since such a strategy assigns
a value that is independent of the information contained in other contemporaneous variables, it is
advisable to exclude series with many missing values. The EM algorithm, however, is able to deal with
missing values in a way that uses the information contained in other variables and might therefore not
require discarding such variables. Finally, independently of the estimation method, stationary series
are required. The usual transformations for making time series stationary and the different strategies
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to deal with missing values have been included in the function Bpanel() that prepares the database
for the nowcasting function. Since these choices require careful attention, the function Bpanel() is
explained in further detail.

Bpanel(base, trans, NA.replace = TRUE, aggregate = FALSE, k.ma = 3, na.prop = 1/3, h = 12)

trans is a vector indicating the transformations to be applied to the variables. For most cases, the avail-
able transformations are sufficient to make economic variables stationary. The transformation
must be specified by using one of the following values for the argument trans:

trans = 0: the observed series is preserved;

trans = 1: monthly rate of change:
xi,t − xi,t−1

xi,t−1
;

trans = 2: monthly difference: xi,t − xi,t−1;
trans = 3: monthly difference in year-over-year rate of change:

xi,t − xi,t−12

xi,t−12
−

xi,t−1 − xi,t−13

xi,t−13
;

trans = 4: monthly difference in year-over-year difference:

(xi,t − xi,t−12)− (xi,t−1 − xi,t−13).

trans = 5: year difference:
(xi,t − xi,t−12)

trans = 6: year-over-year rate of change:

xi,t − xi,t−12

xi,t−12

trans = 7: quarterly rate of change
xi,t − xi,t−3

xi,t−3

NA.replace is a boolean to determine whether missing values should be replaced (NA.replace =
TRUE) or not (NA.replace = FALSE).

aggregate is a boolean to indicate whether to aggregate the monthly variables to represent quarterly
quantities. If TRUE the aggregation is made following the approximation of Mariano and
Murasawa (2003).

k.ma is a numeric representing the degree of the moving average correction if NA.replace = TRUE.

na.prop is a number between 0 and 1 indicating the ratio of missing observations to the total number
of observations beyond which series will be discarded. The default is 1/3, meaning that if more
than 1/3 of the observations are missing the series will be discarded from the database.

h indicates how many periods should be added to the database. Default is 12. Those missing values
will be predicted with the function nowcast().

Determining the number of factors and shocks to the factors

As explained in the section on parameter estimation, the package offers different functions to estimate
the number of factors r and of idiosyncratic shocks q of equations (1) and (2) respectively.

1. Function ICfactors() estimates the number of factors r∗ according to an information criterion.
The argument x is a balanced panel and rmax is an integer representing the maximum number
of factors for which the information criterion should be calculated. The default value is 20. type
indicates which of the information criterion from Bai and Ng (2002) to use. type ∈ {1, 2, 3} with
the default being 2 as explained in the methodological section. If x is not a balanced panel, the
function will delete rows with missing values in order to use principal components.

ICfactors(x, rmax = 20, type = 2)

2. Function ICshocks() estimates the number of idiosyncratic shocks given a number r of factors
according to the information criterion introduced in the previous section. The argument x is a
balanced panel. delta and m are parameters of the information criterion, where 0 < m < ∞ and
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0 < δ < 1/2. The default values are those from Bai and Ng (2007): m = 1 and δ = 0.1. If the
number of factors r is not specified it will be defined according to ICfactors(x,rmax = 20,type
= 2). p is the number of lags in the VAR of equation (2). If not specified, the default is the lowest
most occurring value from the information criteria used within the function VARselect() from
the package vars.

ICshocks(x, r = NULL, p = NULL, delta = 0.1, m = 1)

Forecasts

An important feature of factor models is the dimensionality reduction of (many) original variables
into a few common factors. Hence, the target variable y will be expressed as a function of a few factors
extracted from the explanatory variables. This motivated the choice of the inputs for the nowcast()
function. The formula format, which is well known to R users, captures this idea as formula = y∼.
can be understood as the projection of y on the information contained in the dataset. The model’s
parameters are estimated according to the selected method (2s, 2s_agg and EM, which correspond,
respectively, to “two-stage”, “two-stage with factor aggregation” and “Expectation-Maximization
algorithm”) described in the section on estimation. The number r of dynamic factors, the number q of
shocks to the factors, and the lag order p of the factors are determined beforehand as shown in the
previous subsection. The argument blocks can be used with the EM method to estimate factors for
different subgroups of variables. Finally, the argument frequency is necessary for all methods in order
to identify the frequency of the variables.

nowcast(formula, data, q = NULL, r = NULL, p = NULL, method = 'EM', blocks = NULL,
frequency = NULL)

In the first two methods (2s and 2s_agg), the factors are calculated based on the monthly variables,
on which the dependent variable y will be regressed. The difference between 2s and 2s_agg is that for
the latter the monthly factors are transformed into quarterly quantities while in the former no such
aggregation is used. A linear regression (bridge equation if y is quarterly) of y on the factors allows the
former to be forecast.

In the third method (EM) no bridge equation is needed, as opposed to the Two-Stage method. In
practice, the algorithm will estimate all the missing values respecting the restrictions imposed by
equation (11). The forecasts of quarterly time series are defined as the estimated values of the third
month of the out of sample quarters. As opposed to the Two-Stage method, the number of common
shocks q can not be specified and is assumed to be equal to r, the number of factors in each block.

Analyzing the results

The function nowcast.plot() allows to plot several outputs from the function nowcast().

nowcast.plot(out, type = "fcst")

The argument out is the output from the function nowcast(). The argument type can be chosen
from the list {"fcst","factors","eigenvalues","eigenvectors"}:

• "fcst": shows the y variable and its forecasts in sample and out of sample.
• "factors": shows all the estimated factors.
• "eigenvalues": indicates how much of the variability in the dataset is explained by each factor.
• "eigenvectors": shows the importance of each variable in the first factor.

A working example of the Two-Stage method:
nowcasting Brazilian GDP

Constructing the dataset

In this example we showcase how to nowcast Brazilian GDP using the Two-Stage estimation method.
Most of the variables of interest can be downloaded from the Brazilian central bank using the function
BETSget() from the package BETS. The variables and the associated codes can be found on the
Brazilian central bank’s website 2. For the sake of simplicity we have included the database, and all
relevant information within the package3.

2see http://www4.bcb.gov.br/pec/series/port/aviso.asp
3The database is a random sample of 100 variables from our own database
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> library(nowcasting)
> data(BRGDP)

For this example we will construct a pseudo real-time dataset, using the function PRTDB(). Some
variables, such as GDP, suffer revisions over time. Since we do not take revisions into account, we
refer to such datasets as pseudo real-time (as opposed to vintages). The (approximate) delays in days
are included in the BRGDP object and will be used to define if observations were available at a specific
moment in time. The dataset is then treated for outliers and missing values that are not part of the
jagged edges of the data, i.e., that are not due to the different publication lags of the variables. This is
achieved through the function Bpanel(). Unless otherwise specified by the user, the function will also
discard series with over 1/3 missing values.

> vintage <- PRTDB(mts = BRGDP$base, delay = BRGDP$delay, vintage = "2015-06-01")
> base <- window(vintage, start = c(2005,06), frequency = 12)
> x <- Bpanel(base = base, trans = BRGDP$trans)

The function month2qtr() transforms monthly time series into quarterly ones. In this case we
want to use the value of the third month as the quarterly value.

> GDP <- base[,which(colnames(base) == "PIB")]
> window(GDP, start = c(2015,1))

Jan Feb Mar Apr May Jun
2015 NA NA 170.68 NA NA NA

> GDP_qtr <- month2qtr(x = GDP, reference_month = 3)
> window(GDP_qtr, start = c(2015,1))

Qtr1 Qtr2
2015 170.68 NA

The quarterly GDP indicator, in this example, is an index representing the seasonal quarterly
product. ∆4Yt deals with seasonality, while ∆∆4Yt is necessary to obtain a stationary time series. To
test the latter, one could look at tests for unit roots or serial auto correlation that are included in many
R packages.

> y <- diff(diff(GDP_qtr,4))
> y <- qtr2month(y)

Determining the number of factors and shocks

The dataset x, which now only posses jagged edges, is well suited for the information criteria that make
use of principal components. The estimated number of factors is given by the function ICfactors().
As explained in the previous section, the information criteria might give different results for finite
samples.

> ICR1 <- ICfactors(x = x, type = 1)
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> ICR2 <- ICfactors(x = x, type = 2)

Finally, given the chosen number of factors for our model, we can use an information criterion for
determining the number of shocks to the factors.

> ICQ1 <- ICshocks(x = x, r = 2, p = 2)
> ICQ1$q_star
[1] 2

Forecasts

Let the object data be a monthly mts object where the first column is a partially observable stationary
GDP series (y) and the remaining columns a balanced panel of stationary time series (x). The frequency
vector will be determined by the quarterly GDP series and the remaining monthly series. In this
example the factors will be aggregated to obtain quarterly quantities by setting method = "2s_agg".

> data <- cbind(y,x)
> frequency <- c(4,rep(12,ncol(x)))
> now <- nowcast(formula = y~., data = data, r = 2, q = 2 , p = 2, method = "2s_agg",

frequency = frequency)
> summary(now$reg)

Call:
stats::lm(formula = Y ~ ., data = Balanced_panel)

Residuals:
Min 1Q Median 3Q Max

-3.0248 -0.5679 0.1094 0.5835 1.8912

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.19526 0.16940 -1.153 0.258
Factor1 0.22610 0.01456 15.528 < 2e-16 ***
Factor2 0.06135 0.01174 5.228 1.02e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.002 on 32 degrees of freedom
Multiple R-squared: 0.8995,Adjusted R-squared: 0.8932
F-statistic: 143.1 on 2 and 32 DF, p-value: < 2.2e-16
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Results

The function nowcast.plot() enables the user to visualize some of the results. Say, for instance, that
we want to look at fitted values and out-of-sample forecasts. This can be achieved by setting the type
to "fcst". We might also want to look at the eigenvalues of the normalized variance-covariance matrix
of our balanced panel or at how variables enter the first factor.

> nowcast.plot(now, type = "fcst")

> nowcast.plot(now, type = "eigenvalues")

> nowcast.plot(now, type = "eigenvectors")
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Up until now, we have been forecasting GDP after transforming it into a stationary variable. We
might want to transform the former back into a level variable in order to forecast the actual growth
rate. Remember that we transformed GDP according to

di f f (di f f (GDPt, 4)) = (GDPt − GDPt−4)− (GDPt−1 − GDPt−5)

= GDPt + GDPt−5 − GDPt−1 − GDPt−4
(25)

that can be rewritten as

GDPt = di f f (di f f (GDPt, 4))− GDPt−5 + GDPt−1 + GDPt−4 (26)

Equation (26) gives us the forecast of the new quarter GDP level. The variable BRGDP$GDP is the
non-stationary GDP.

> level_forecast <- na.omit(now$yfcst[,3])[1] - tail(na.omit(GDP_qtr),5)[1] +
+ + tail(na.omit(GDP_qtr),5)[5] + tail(na.omit(GDP_qtr),5)[2]
> level_forecast
[1] 170.4783

> position_q2_2015 <- which(time(BRGDP$GDP) == 2015.25)
> BRGDP$GDP[position_q2_2015]
[1] 169.24

A working example of the EM method:
The NY FED nowcast

Constructing the dataset

In this example we work with the data the Federal Reserve of New York made available to reproduce
its weekly nowcasting report4. The explanatory variables are mixed frequencies including both
monthly and quarterly series.

> library(nowcasting)
> data(NYFED)
> NYFED$legend$SeriesName
[1] "Payroll Employment" "Job Openings"
[3] "Consumer Price Index" "Durable Goods Orders"
[5] "Retail Sales" "Unemployment Rate"
[7] "Housing Starts" "Industrial Production"

4https://www.newyorkfed.org/research/policy/nowcast
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[9] "Personal Income" "Exports"
[11] "Imports" "Construction Spending"
[13] "Import Price Index" "Core Consumer Price Index"
[15] "Core PCE Price Index" "PCE Price Index"
[17] "Building Permits" "Capacity Utilization Rate"
[19] "Business Inventories" "Unit Labor Cost"
[21] "Export Price Index" "Empire State Mfg Index"
[23] "Philadelphia Fed Mfg Index" "Real Consumption Spending"
[25] "Real Gross Domestic Product"

Similarly to the previous working example, the object NYFED contains all the necessary information
to run the nowcast() function. The time series, the block structure, the transformations to make the
variables stationary and the variables’ frequencies can be loaded as illustrated below.

> base <- NYFED$base
> blocks <- NYFED$blocks$blocks
> trans <- NYFED$legend$Transformation
> frequency <- NYFED$legend$Frequency
> delay <- NYFED$legend$delay

The dataset data can be prepared by using the function Bpanel(). Using the EM algorithm, there
is no need to replace missing values that are not part of the jagged edges, as was the case with the
Two-Stage method. This can be achieved by setting NA.replace to FALSE. In this case we do not want
to discard series based on a particular ratio of missing values to total observations as was the case in
the Two-Stage method. This is done by setting na.prop = 1, where 1 indicates that only series with
more than 100% missing values will be discarded.

> data <- Bpanel(base = base, trans = trans, NA.replace = FALSE, na.prop = 1)

Forecasts

The model´s specifications are the same as those used by the NY FED. We therefore limit the number
of factors, r, per block to one and define the factor process as a VAR(1), i.e., p = 1. The convergence of
the log-likelihood function is displayed every 5 iterations.

> nowEM <- nowcast(formula = GDPC1~., data = data, r = 1, p = 1, method = "EM",
blocks = blocks, frequency = frequency)

5th iteration:
The loglikelihood went from -2418.5983 to -2406.1482
...
65th iteration:
The loglikelihood went from -2354.084 to -2353.8435

Results

Combining the functions nowcast() and PRTB() within a loop, we illustrate how a pseudo out-of-
sample end-of-quarter nowcast can be made. The vector fcst_dates defines the last month of the
quarters for which quarterly GDP growth will be nowcast. The vector delay contains approximate
delays, in days, with which variables are published. This enables us to construct a pseudo real-time
dataset for a given day.

> fcst_dates <- seq.Date(from = as.Date("2013-03-01"),to = as.Date("2017-12-01"),
by = "quarter")

> fcst_results <- NULL
> for(date in fcst_dates){
+
+ vintage <- PRTDB(data, delay = delay, vintage = date)
+ nowEM <- nowcast(formula = GDPC1~., data = vintage, r = 1, p = 1, method = "EM",

blocks = blocks, frequency = frequency)
+ fcst_results <- c(fcst_results,tail(nowEM$yfcst[,3],1))
+
+ }
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The results of this out-of-sample nowcast example, as well as the results of an out-of-sample
ARIMA, are displayed below.

The root mean square prediction error can easily be calculated for the 2013-2016 period. For this
given example, when compared to one-period-ahead projections given by an ARIMA model, a Theil’s
U statistic of 0.70 is obtained, signaling a 30% improvement over the benchmark.

Summary

The package nowcasting was developed in order to facilitate the use of dynamic factor models for
large datasets as set out in Giannone et al. (2008) and Banbura et al. (2011). The package offers functions
at each step of the forecasting process to help the user treat data, choose and estimate the value of
parameters, as well as interpret results. We provided a working example for nowcasting Brazilian
GDP, illustrating each step and showing how to implement the various functions available. We also
used the New York FED nowcasting exercise to illustrate the EM algorithm. We will, in the future,
work on adding new tools for the user to better leverage the EM method by identifying the source of
forecast revisions. As shown by the New York FED nowcasting report, this is an interesting policy
instrument that helps contextualizing forecast updates.
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