CONTRIBUTED RESEARCH ARTICLE

What's for dynr: A Package for Linear and

Nonlinear Dynamic Modeling in R
by Lu Ou™, Michael D. Hunter™, and Sy-Miin Chow

Abstract Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in na-
ture, and may involve multiple units undergoing regime switches by showing discontinuities in-
terspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear
differential / difference equation models with regime switches, there has been a scarcity of software
packages that are fast and freely accessible. We have created an R package called dynr that can handle
a broad class of linear and nonlinear discrete- and continuous-time models, with regime-switching
properties and linear Gaussian measurement functions, in C, while maintaining simple and easy-to-
learn model specification functions in R. We present the mathematical and computational bases used
by the dynr R package, and present two illustrative examples to demonstrate the unique features of
dynr.

Introduction

The past several decades have seen a significant rise in the prevalence of intensive longitudinal data
(ILD), particularly in the social and behavioral sciences (Bolger and Laurenceau, 2013; Byrom and
Tiplady, 2010; Stone et al., 2008). Differential equation and difference equation models in the form
of state-space models have been one of the most dominant tools for representing the dynamics of
ILD in disciplines such as the physical sciences, econometrics, engineering, and ecology. In parallel,
some computational advances have been proposed in estimating regime-switching models — namely,
models positing how otherwise continuous dynamic processes may undergo discontinuous changes
through categorical but unobserved phases known as “regimes” (Kim and Nelson, 1999; Hamilton,
1989; Muthén and Asparouhov, 2011; Chow et al., 2013, 2015; Dolan, 2009). Throughout, we use
the terms regimes and classes interchangeably to denote unobserved unit- and time-specific indicator
variables that serve to group portions of repeated measures into phases with homogeneous dynamics
or measurement properties.

Examples of regime-switching phenomena from psychology includes Piaget’s (1969) theory of
human cognitive development and related extensions (Dolan et al., 2004; van der Maas and Molenaar,
1992; Hosenfeld, 1997); Kohlberg’s (Kohlberg and Kramer, 1969) conceptualization of stagewise
development in moral reasoning; Van Dijk and Van Geert’s (2007) findings on discrete shifts in early
language development; as well as Fukuda and Ishihara’s (1997) work on the discontinuous changes
in infant sleep and wakefulness rhythm during the first six months of life. Related to, but distinct
from, hidden Markov models (Elliott et al., 1995; Visser, 2007), regime-switching differential and
difference equation models allow researchers to specify targeted differential or difference functions to
describe the continuous changes that occur within regimes. Ample work exists on fitting these models
(Hamilton, 1989; Dolan, 2009; Yang and Chow, 2010; Chow et al., 2013; Chow and Zhang, 2013; Chow
et al., 2015; Muthén and Asparouhov, 2011; Tong and Lim, 1980; Tiao and Tsay, 1994), but readily
accessible software suited for handling such models with ILD are lacking.

Several programs and packages exist for fitting differential equation, difference equation, and
hidden Markov models. However, each program has certain limitations that dynr (Ou et al., 2018)
aims to overcome. Speaking broadly, the largest differences between dynr and other packages are
threefold: (1) dynr readily allows for multi-unit models, (2) dynr allows for nonlinear discrete-time
and continuous-time dynamics, and (3) dynr allows for regime switching throughout every part of the
model. Many R packages exist for univariate and multivariate time series. CRAN lists hundreds of
packages in its task view for TimeSeries (Hyndman, 2016), a complete review of which is well-beyond
the scope of this work. However, generally these packages lack facilities for fitting time series from
multiple units. Likewise there are very few software utilities designed for nonlinear dynamics or
regime switching (see Table 1 for an overview). Petris and Petrone (2011) reviewed three packages for
linear state-space models: dlm (Petris, 2010, 2014), KFAS (Helske, 2017a,b), and dse (Gilbert, 2006 or
later, 2015). These are among the state of the art for state-space modeling in R. Although KFAS can
accommodate in its measurement model all densities within the exponential family, the corresponding
dynamic model is required to be linear. In addition to these R packages, the OpenMx 2.0 release (Neale
etal., 2016; Boker et al., 2017) has maximum likelihood time-varying linear discrete- and continuous-
time state-space modeling (Hunter, 2017). Likewise, the MKFM®6 program (Dolan, 2005) implements
methods of Harvey (1989) for time-invariant linear state-space models. SsfPack (Koopman et al.,

*These two authors contributed equally to the work.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dynr
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=KFAS
https://CRAN.R-project.org/package=dse
https://CRAN.R-project.org/package=OpenMx

CONTRIBUTED RESEARCH ARTICLE

1999) implements the methods of Durbin and Koopman (2001) for linear state-space modeling and
Markov chain Monte Carlo methods for nonlinear modeling, but it is primarily restricted to single-unit
time series without regime switching. The ctsem package (Driver et al., 2017b,a) has utilities for
linear state-space modeling of multiple units in continuous time, but lacks functionality for nonlinear
models or regime switching. MATLAB (The MathWorks, Inc., 2016) has numerous extensions for time
series and state-space modeling (Grewal and Andrews, 2008), but lacks the ability to include regime
switching and multiple units. Some R packages that handle regime switching are only designed for
hidden Markov models, for example, depmixS4 (Visser and Speekenbrink, 2016, 2010) and RHmm
(Taramasco and Bauer, 2012), while the others are only for specific Markov-switching discrete-time
time-series models, including MSwM (Sanchez-Espigares and Lopez-Moreno, 2014) for univariate
autoregressive models, MSBVAR (Brandt, 2016) for vector autoregressive models, and MSGARCH
(Ardia et al., 2017) for generalized autoregressive conditional heteroskedasticity models. The pomp
package (King et al., 2016, 2018) lists among its features hidden Markov models and state-space models,
both of which can be discrete- or continuous-time, non-Gaussian, and nonlinear. However, pomp does
not currently support regime-switching functionality beyond the regime switching found in hidden
Markov modeling. Helske (2017a) included a review of numerous other packages for non-Gaussian
time series models which generally do not involve latent variables.

Overall, developments in fitting differential/ difference equation models that evidence discontinu-
ities in dynamics are still nascent. Despite some of the above-mentioned advances in computational
algorithms, there is currently no readily available software package that allows researchers to fit
differential / difference equations with regime-switching properties. As stated previously, currently
available computational programs for dynamic modeling are limited in one of several ways: (1)
they are restricted to handling only linear models within regimes such as the package OpenMXx, (2)
they can only handle very specific forms of nonlinear relations among latent variables, (3) they are
computationally slow, (4) they do not allow for stochastic qualitative shifts in the dynamics over time,
or (5) they require that the user write complex compiled code to enhance computational speed at
the cost of high user burden. Efficient and user-friendly computer software needs to be developed
to overcome these restrictions so the estimation of dynamic models can become more applicable by
researchers.

We present an R package, dynr, that allows users to fit both linear and nonlinear differential
and difference equation models with regime-switching properties. All computations are performed
quickly and efficiently in C, but are tied to a user interface in the familiar R language. Specifically, for a
very broad class of linear and nonlinear differential / difference equation models with linear Gaussian
measurement functions, dynr provides R helper functions that write appropriate C code based on
user input in R into a local (potentially temporary) C file, which is then compiled on user’s end with a
call to an R function in dynr. The C function pointers are passed to the back-end for computation of
a negative log-likelihood function, which is numerically optimized also in C using the optimization
routine SLSQP (Kraft, 1988, 1994) for parameter estimation. During the process, the user never has to
write or even see the C code that underlies dynr and yet, the computations are performed entirely
in C, with no interchanges between R and C to reduce memory copying and optimize speed. This
removes some of the barriers to dynamic modeling, opening it as a possibility to a broader class of
users, while retaining the flexibility of specifying targeted model-specific functions in C for users
wishing to pursue models that are not yet supported in the R interface.

In the remaining sections, we will first present the mathematical and computational bases of the
dynr R package, and then demonstrate the interface of dynr for modeling multivariate observations
with Gaussian measurement errors using two ILD modeling examples from the social and behavioral
sciences. Key features of the dynr package we seek to highlight include: (1) dynr fits discrete- and
continuous-time dynamic models to multivariate longitudinal / time-series data; (2) dynr deals with
dynamic models with regime-switching properties; (3) for improved speed, dynr computes and
optimizes negative log-likelihood function values in C; (4) dynr handles linear and nonlinear dynamic
models with an easy-to-use interface that includes a matrix form (for linear dynamic models only)
and formula form (for linear as well as nonlinear models); (5) dynr removes the burden on the user
to perform analytic differentiation in fitting nonlinear differential/difference equation models by
providing the user with R’s symbolic differentiation; and (6) dynr provides ready-to-present results
through I&TEX equations and plots.

General modeling framework

At a basic level, our general modeling framework comprises a dynamic model and a measurement
model. The former describes the ways in which the latent variables change over time, whereas the
latter portrays the relationships between the observed variables and latent variables at a specific time.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ctsem
https://CRAN.R-project.org/package=depmixS4
https://CRAN.R-project.org/package=RHmm
https://CRAN.R-project.org/package=MSwM
https://CRAN.R-project.org/package=MSBVAR
https://CRAN.R-project.org/package=MSGARCH
https://CRAN.R-project.org/package=pomp

CONTRIBUTED RESEARCH ARTICLE

The dynamic model for a particular regime in continuous-time assumes the following form:
dni(t) = fs,) (0i(t), 1, xi(t)) dt + dw;(t), 1)

where i indexes the smallest independent unit of analysis, t indexes time, #;(#) is the r x 1 vector of
latent variables at time #, x;(t) is the vector of covariates at time t, and fg, ;) () is the vector of (possibly
nonlinear) dynamic functions which depend on the latent regime indicator, S;(t). The left-hand side of
Equation 1, d#;(t), gives the differential of the vector of continuous latent variables, #;(t), and fs,)(.)
is called the drift function. Added to these deterministic changes induced by the drift function is w; (),
an r-dimensional Wiener process. The differentials of the Wiener processes have zero means and
covariance matrix, Qg (1), called the diffusion matrix. When the dynamic model consists only of linear
functions, Equation 1 reduces to:

i () = (s, (o) + F, (o 1:(8) + Bs,(yxi(1)) dt + duoy (1), @)

where the general function f;, ;) () is replaced with a linear function consisting of (1) an intercept term
&g, (1), (2) linear dynamics in a matrix Fg,(;), and (3) linear covariate regression effects B, ().

For discrete-time processes, we adopt a dynamic model in state-space form (Durbin and Koopman,
2001) as

1itijr1) = fo,(t,)) (ﬂi(ti,j)/ti,j/xi(ti,jJrl)) +wi(tijy1), @)

now postulated to unfold at discrete time points indexed by sequential positive integers, t;, j =
1,2,---. In this case, w;(t; j) denotes a vector of Gaussian distributed process noise with covariance
matrix, Qg ¢,). We have intentionally kept notation similar between discrete- and continuous-time
models to facilitate their linkage. dynr allows for an easy transition between these two frameworks
with a binary flag. In a similar vein, we refer to fs,(;(.) in both Equations 1 and 3 broadly as the
dynamic functions. The same structure as Equation 2 is possible in discrete time as the linear analog of
Equation 3,

1itijr1) = s,y + Fs 1, Mi(tij) + B,) Xi (£ 1) + wiltijy1).)

In both the discrete- and continuous-time cases, the initial conditions for the dynamic functions
are defined explicitly to be the latent variables at a unit-specific first observed time point, t; ;, denoted
as #7;(t; 1), and are specified to be normally distributed with means p;, and covariance matrix, Zy,;:

”i(ti,l) ~ N (I’lﬂl'zﬂl) .)

Likewise for both discrete- and continuous-time models, we assume that observations only occur
at selected, discrete time points. Thus, we have a discrete-time measurement model in which #;(t; ;) at
discrete time point #; ; is indicated by a p x 1 vector of manifest observations, y;(#; ;). Continuous-time
processes allow unequal time intervals for these observations. Missing data may be present under
either specification. The vector of manifest observations is linked to the latent variables as

Yiltij) = Ts,(1,) + Aoy, Miltij) + As i, xiltij) +€iltif), €i(tij) ~N (01 RS;(t,,]-)> , (6)
where TS (k) isa p x 1 vector of intercepts, ASi(ti,j) is a matrix of regression weights for the covariates,
As,(1,,) is a p X r factor loadings matrix that links the observed variables to the latent variables, and
€i(t;j) is a p x 1 vector of measurement errors assumed to be serially uncorrelated over time and
normally distributed with zero means and covariance matrix, Rg,(;,). Of course, all parts of the
measurement model may be regime-dependent.

The subscript S;(t) in Equations 1-6 indicates that these functions and matrices may depend on
Si(t), the operating regime. To make inferences on S;(f; ;), we initialize the categorical latent variable
Si(t; ;) on the first occasion and then provide a model for how S;(#; ;) changes over time. The initial
regime probabilities for S;(t; 1) are represented using a multinomial regression model as

exp(am +bhxi(t1))
Y M exp(ag +blxi(ti1))
where M denotes the total number of regimes, 4, is the logit intercept for the mth regime and b, is a

ny x 1 vector of regression slopes linked to a vector of covariates that explain between-unit differences
in initial log-odds (LO). For identification, a,, and all entries in b, are set to zero for some regime, m.

Pr (Si(ti1) = m|x;(t;1)) = Ton,il =)

We use a first-order Markov process to define how the classes change over time in a transition
probability matrix, which contains all possible transitions from one regime to another. In the matrix,
the rows index the previous regime at time #;; ; and the columns index the current regime at time

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

t; j. The rows of this matrix sum to 1 because the probability of transitioning from a particular state to
any other state must be 1. This transition matrix may also depend on covariates. Thus, a multinomial
logistic regression equation is assumed to govern the probabilities of transitions between regimes as:

A exp(cpy + df,xi(t;)

Pr(S;(t;;) =m|S;(t;iq) =1L x;(t;;)) = Mypit = ’ (8)
(1(1,]) ‘ 1(i,j 1) z(1,])) Im,it lec\/i1 exp(clk‘f'dl]};xi(ti,j))

where 711, ; denotes unit i’s probability of transitioning from class / at time f; ;_; to class m at time ¢; ;,
ci, denotes the logit intercept for the transition probability, and d;,, is a n; x 1 vector of logit slopes
summarizing the effects of the covariates in x;(; ;) on that transition probability. One regime, again,
has to be specified as the reference regime by fixing all LO parameters, including c;,,, and all elements
in d,Tm for some regime m, to zero for identification purposes.

To summarize, the model depicted in Equations 1 — 8 may take on the form of various linear or
nonlinear dynamic models in continuous or discrete time. Moreover, these dynamic models may
have regime-switching properties. Systematic between-unit differences stem primarily from changes
in the unit- and time-specific regime, S;(f;;), and the corresponding changes in the dynamic and
measurement models over units and occasions.

Estimation procedures

In this section, we outline the procedures implemented in dynr for estimating the model shown
in Equations 1 — 8. An overview of the estimation procedures involved, the different special cases
handled by dynr, and the software packages that can handle these special cases are summarized in
Table 1.

Discrete-time models

Broadly speaking, the estimation procedures implemented in dynr are based on the Kalman filter (KF;
Kalman, 1960), its various continuous-time and nonlinear extensions, and the Kim filter (Anderson and
Moore, 1979; Bar-Shalom et al., 2001; Kim and Nelson, 1999; Yang and Chow, 2010; Chow and Zhang,
2013; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014; Chow et al., 2018). The Kim filter,
designed to extend the Kalman filter to handle regime-switching state-space models, was proposed
by Kim and Nelson (1999) and extended by Chow and Zhang (2013) to allow for nonlinear dynamic
functions. In dynr, models are allowed to (1) be in discrete or continuous time, (2) be single regime
or regime switching, (3) have linear or nonlinear dynamics, (4) involve stochastic or deterministic
dynamics, and (5) have one or more units. All combinations of these variations are possible in dynr,
creating 32 different kinds of models.

In the case of linear discrete-time dynamics without regime-switching, the model reduces to
a linear state-space model, and we apply the Kalman filter to estimate the latent variable values
and obtain other by-products for parameter optimization. At each time point, the KF consists of
two steps. In the first step, the dynamics are used to make a prediction for the latent state at the
next time point conditional on the observed measurements up to time ¢;;_;, creating a predicted
mean 7;(t; it ;1) = E(n;i(t;;)|Yi(t;j—1)) and covariance matrix for the latent state P;(t; ;|t;; 1) =
Coovly;(t;,j)[Yi(t;j—1)], where Y;(t; ;1) includes manifest observations from time ;1 up to time ¢; ; 1.
In the second step, the prediction is updated based on the measurement model (Equation 6) and
the new measurements, yielding #;(t;j|t;;) = E(#;(t;;)|Y;(t;;)) and associated covariance matrix,
Pi(t;jlt;;) = Cov[n;|Y;(t;;)]. Assuming that the measurement and process noise components are
normally distributed and that the measurement equation is linear, as in Equation 6, the prediction
errors, Y;(t;;) — E(Y;(t;;)|Yi(t;)), are multivariate normally distributed. Thus, these by-products of
the KF can be used to construct a log-likelihood function known as the prediction error decomposition
function (De Jong, 1988; Harvey, 1989; Hamilton, 1994; Chow et al., 2010). This log-likelihood function
is optimized to yield maximum-likelihood (ML) estimates of all the time-invariant parameters, as
well as to construct information criterion (IC) measures (Chow and Zhang, 2013; Harvey, 1989) such
as the Akaike Information Criterion (AIC; Akaike, 1973) and Bayesian Information Criterion (BIC;
Schwarz, 1978). Standard errors of the parameter estimates are obtained by taking the square root of
the diagonal elements of the inverse of the negative numerical Hessian matrix of the prediction error
decomposition function at the point of convergence.

At convergence, other products from the linear KF include updated latent states, ;(; j|#;), and
the updated latent covariance matrices, P;(t;;[t; ;). In the social and behavioral sciences, the entire
time series of observations has often been collected prior to model fitting. In such cases, we use
the fixed interval smoother (Anderson and Moore, 1979; Ansley and Kohn, 1985) to refine the latent
variable estimates, yielding the smoothed latent variable estimates, f;(t; ;|T;) = E(#;(t;;)|Y;(T;)), and

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

associated covariance matrices, P;(t; ;|T;).

When the dynamic model takes on the form of a nonlinear state-space model with differentiable
dynamic functions, the linear KF is replaced with the extended Kalman filter (EKF; Anderson and
Moore, 1979; Bar-Shalom et al., 2001) so that the nonlinear dynamic functions are “linearized” or
approximated by the first-order Taylor series. Then, a log-likelihood function can be constructed in
similar form to the linear state-space prediction error decomposition. However, the corresponding
parameter estimates are only “approximate” ML estimates due to the truncation errors in the EKF. The
feasibility of this approach has been demonstrated by Chow et al. (2007).

When a linear state-space model is used as the dynamic model but it is characterized by regime-
switching properties, dynr uses an extension of the KF, known as the Kim filter, and the related Kim
smoother (Kim and Nelson, 1999; Yang and Chow, 2010). The Kim filter combines the KF, the Hamilton
filter (Hamilton, 1989) that yields filtered state probabilities, and a collapsing procedure to avoid the

need to store M2 new values of #;(t; ; ti,]-)l'm 2 Efn;(t;;)|Si(tij—1) = 1,Si(tij) = m,Yi(t;;)], as well

as P;(t; j[t;)l M= Cov[ql(ij)Si(tij—1) =1,5i(t; ;) = m,Y;(t;;)] with each additional time point. The
collapsing procedure averages the estimates over the previous regime / so only the marginal estimates,
i (tijIti)™ = Elni(t;)|Si(t;,;) = m, Y;(t;;)]), and the associated covariance matrix, P;(t; ;|t; /)", need
to be stored at each time step. To handle cases in which nonlinearities are present in Equation 3, a
method proposed by Chow and Zhang (2013), called the extended Kim filter, is used for estimation
instead. The extended Kim filter replaces the KF portion of the Kim filter with the EKF.

Continuous-time models

Finally, when the dynamics are in continuous time—whether composed of linear or nonlinear dynamic
functions—the resultant estimation procedures are the continuous-discrete extended Kalman filter
(CDEKEF; Bar-Shalom et al., 2001; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014). The
CDEKEF handles a single-regime special case of the general model shown in Equations 1-6.

For continuous processes in the form of Equation 1, let 7;(t) = E(y;()[Y;(t; ;1)) and P;(t) =
Coo[y;(t)[Y;(t;j—1)] denote the mean and covariance matrix of the latent variables, respectively, at
time t in the interval [ti/]-,l, ti/j]. In the CDEKF framework, the prediction step of the KF is replaced
by solving a set of ordinary differential equations (ODEs) at time ¢; j, given the initial conditions at
time £;;_1: ﬁi(ti,jfl) = ﬁi(ti,/‘fl |i’,',]‘,1) and P,'(fl',jfl) = Pi(i’,‘,]‘,1 |i’,',]',1). This set of ODE:s is obtained by
only retaining the first term, f, ;) (fi(t),t,x;(t)), in the Taylor series expansion of fg) (17:(t), t, xi(t))
around the expectation #;(t), and is shown below:

dﬁ;gt) = fs,(r) (@i(t), 1, xi(1)), ©)
dP(t) Ofs((A1), t,x:(1)) s,y (i), (1) \ |
L = 0 P<t>+P<t>< A) + Qs (10)

Ifs, (7 (1) £xi(#))
99:(t)
Kulikov and Kulikova (2014, Kulikova and Kulikov 2()1-1) suggested solving for equations 9 and 10
using adaptive ODE solvers. We adopt an approximate numerical solution — the fourth-order Runge-
Kutta (Press et al., 2002) method — to solve Equations 9 and 10. In cases where the hypothesized
continuous-time dynamics are linear, explicit analytic solutions exist and there is no need to use
numerical solvers. However, in our simulation work, estimating known special cases of linear
stochastic differential equation models using numerical solvers yielded both comparable estimates and
computational time to estimating the same models using their known solutions. Thus, for generality,

we utilize numerical solvers in solving both linear and nonlinear differential equations in dynr.

where is the Jacobian matrix of fs) (:(f),t,x;(t)) with respect to 7;() at time ¢.

As in the case involving nonlinear discrete-time dynamic models, parameter estimates obtained
from optimizing the log-likelihood function constructed from by-products of the CDEKF are also
approximate ML estimates; however, the approximations now stem both from the truncation errors
from the first-order Taylor series in the CDEKEF, as well as the numerical solution of Equations 9 and
10.

In cases involving regime-switching ordinary or stochastic differential equations, the algorithms
for estimating regime-switching continuous-time models are essentially estimation procedures that
combine the CDEKF and part of the Kim filter designed to handle estimation of the regime-switching
portion of the model. The resultant procedure, referred to herein as continuous-discrete extended Kim
filter, is summarized in Chow et al. (2018).

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Discrete-time Continuous-time

Linear Linear state-space model Linear SDE/ODE

£ KF CDEKF

'go dynr, OpenMx, pomp, KFAS, dlm, dse, dynr, pomp, OpenMXx, ctsem,

) MKEMS6, SsfPack, MATLAB MATLAB
b

-UE) Nonlinear Nonlinear state-space model Nonlinear SDE/ODE

EKF CDEKF

dynr, pomp, SsfPack, MATLAB dynr, pomp, MATLAB

© Linear RS state-space model RS SDE/ODE

é Kim filter CD Kim filter

E.JD dynr, dynr only

9 GAUSS code, MATLAB

&

2 Nonlinear RS nonlinear state-space model RS nonlinear SDE/ODE

= Extended Kim filter CD extended Kim filter

dynr only dynr only

Table 1: Models, algorithms, and software for the framework of regime-switching (non)linear state
space models in discrete- and continuous-time. SDE = Stochastic Differential Equation, ODE =
Ordinary Differential Equation, CD = Continuous-Discrete, RS = Regime-Switching, KF = Kalman
filter (Kalman, 1960), EKF = Extended Kalman filter (Anderson and Moore, 1979; Bar-Shalom et al.,
2001), Kim filter = KF + Hamilton filter + Collapsing procedure (Kim and Nelson, 1999). Extended
Kim filter was proposed by Chow and Zhang (2013); the CD extended Kim filter is proposed by Chow
et al. (2018).

Steps for preparing and “cooking” a model

The theme around the naming convention exploits the pronunciation of the package name: dynr is
pronounced the same as “dinner”. Therefore, the names of functions and methods are specifically
designed to relate to things done surrounding dinner, such as gathering ingredients such as the data,
preparing recipes, cooking, which involves combining ingredients according to a “modeling” recipe
and applies heat, and serving the finished product.

The general procedure for using the dynr package can be summarized in five steps. First, data are
gathered and identified with the dynr.data() function. Second, recipes are prepared. To each part of
a model there is a corresponding prep.*() recipe function. Each of these functions creates an object
of class "dynrRecipe”. Each prep.=*() function creates an object of class "dynrx” which is in turn a
subclass of "dynrRecipe”. These recipe functions include:

1. The prep.measurement() function defines the measurement part of the model, that is, how
latent variables and exogenous covariates map onto the observed variables.

2. The prep.matrixDynamics() and prep.formulaDynamics() functions define the dynamics of
the model with either a strictly linear, matrix interface or with a possibly nonlinear formula
interface, respectively.

3. The prep.initial() function defines the initial conditions of the model. The initial conditions
are used by the recursive algorithms as the starting point for latent variable estimates. As such,
the prep.initial() function describes the initial mean vector and covariance matrix of the
latent variables, assumed to be multivariate normally distributed.

4. The prep.noise() function defines the covariance structure for both the measurement (or
observation) noise and the dynamic (or latent) noise.

5. The prep.regimes() function provides the regime switching structure of the model. Single-
regime models do not require a "dynrRegimes” object.

Once the data and recipes are prepared, the third step mixes the data and recipes together into a
model object of class "dynrModel” with the dynr.model() function. Fourth, the model is cooked with
dynr.cook() to estimate the free parameters and standard errors. Fifth and finally, results are served
in summary tables using summary (), IATEX equations using printex(), and plots of trajectories and
equations using plot(), dynr.ggplot(), autoplot(), and plotFormula().

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

We will demonstrate the interface of dynr using two examples: (1) a linear state-space example
with regime-switching based on Yang and Chow (2010) and (2) a regime-switching extension of the
predator-prey model (Lotka, 1925; Volterra, 1926).

Example 1: Regime-switching linear state-space model

Facial electromyography (EMG) has been used in the behavioral sciences as one possible indica-
tor of human emotions (Schwartz, 1975; Cacioppo and Petty, 1981; Cacioppo et al., 1986; Dimberg
et al,, 2000). A time series of EMG data contains bursts of electrical activity that are typically
magnified when an individual is under emotion induction. Yang and Chow (2010) proposed us-
ing a regime-switching linear state-space model in which the individual may transition between
regimes with and without facial EMG activation. As such, heterogeneities in the dynamic pat-
terns and variance of EMG data are also accounted for through the incorporation of these latent
regimes. Model fitting was previously performed at the individual level. Data from the participant
shown in Figure 1(A) are made available as part of the demonstrative examples in dynr. A com-
plete modeling script for this example is available as a demo in dynr and can be found by calling
file.edit(system.file("demo”,"RSLinearDiscreteYang.R",package = "dynr")), and a full expla-
nation is included as a package vignette called ‘LinearDiscreteTimeModels’.

Here we present selected segments of code to showcase how a linear state-space model with
regime-switching can be specified in dynr. The model of interest is the final model selected for this
participant by Yang and Chow (2010):

Yilti) = Hys,(s,;) + Bs (1, Self-report(t; ;) + 7i(ti,j), (11)
1i(tij1) = @s,1,)1i (ki) + Cilki 1), (12)
in which we allowed the intercept, Hysi(t;,): the regression slope, ﬁSi(ti;) ; and the autoregression coeffi-
cient, ¢, 1,), to be regime-dependent. By allowing bs,(t,) to be regime-specific, we indirectly allowed
the total variance of the latent component, 7;(#; ;+1), to be heterogeneous across the deactivation and

activation stages, in spite of requiring the dynamic noise variance, E({;(t)?), to be constant across
regimes.

(B) Results from RS-AR model
1

w

~

o

)Self—ﬁeportm

Smoothed State Values
|
s .

Integrated EMG (pV)

. ! o H [50 100
""" - s time

variable —eta
regime | Activated Deactivated

* Time (seconds) o

Figure 1: (A) A plot of integrated electromyography (i(EMG) and self-report affect ratings for one
participant with a time interval of 0.2 seconds between two adjacent observations. Self-report =
self-report affect ratings; iEMG = integrated EMG signals. (B) An automatic plot of the smoothed state
estimates for the regime-switching linear state-space model.

The first step in dynr modeling is to structure the data. This is done with the dynr.data() function.

require("dynr")

data("EMG")
EMGdata <- dynr.data(EMG, id = 'id', time = 'time',
observed = 'iEMG', covariates = 'SelfReport')

The first argument of this function is either a "ts" class object of single-unit time series or a
"data.frame” object structured in a long relational format with different measurement occasions from
the same unit appearing as different rows in the data frame. When a "ts" class object is passed to
dynr.data(), no other inputs are needed. Otherwise, the id argument needs the name of the variable
that distinguishes units, allowing multiple replicated time series to be analyzed together. The time
argument needs the name of the variable that indicates unit-specific measurement occasions. If a
discrete-time model is desired, the time variable should contain sequential positive integers. If the
measurement occasions for a unit are sequential but not consecutive, NAs will be inserted automatically

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

to create equally spaced data. If a continuous-time model is being specified, the time variable can
contain unit-specific increasing sequences of irregularly spaced real numbers. In this particular
example, a discrete-time model is used. The observed and covariates arguments are vectors of the
names of the observed variables and covariates in the data.

The next step in dynr modeling is to build the recipes for the various parts of a model. The recipes
are created with prep.*() functions.

The dynamic functions in Equations 1 and 3, can be specified using either prep. formulaDynamics()
or prep.matrixDynamics(). In this example, the dynamics as in Equation 12 are linear and discrete-
time, so we can describe the dynamics in terms of Equation 4 as

Ni(tije1) = 0 + ¢ milti) + 0 xi(tij) +Ciltije1) - (13)
o:,.z (,]l B\,J
i(ti,j) FS,(!,',») Si(ti) w;(tij41)

The prep.matrixDynamics() function allows the user to specify the structures of the intercept vec-
tor g, 4,), through values.int and params.int; the covariate regression matrix Bs,(t,), through
values.exo and params.exo; and the one-step-ahead transition matrix FSi<tz,j)’ through values.dyn
and params.dyn. We illustrate this function below. The values.dyn argument gives a list of matrices
for the starting values of Fsi(ti,/’)' The params.dyn argument names the free parameters. These are the
¢s, in Equation 12. The isContinuousTime argument switches between continuous-time modeling and
discrete-time modeling. The arguments corresponding to the intercepts (values. int and params.int)
and the covariate effects (values.exo and params.exo) are omitted to leave these matrices as zeros.

recDyn <- prep.matrixDynamics(values.dyn = list(matrix(@.1, 1, 1), matrix(@.5, 1, 1)),
params.dyn = list(matrix('phi_1', 1, 1), matrix('phi_2', 1, 1)),
isContinuousTime = FALSE)

The noise recipe is created with prep.noise(). The noise recipe is stored in the recNoise object,
an abbreviation for “recipe noise”. The latent noise covariance matrix is a 1 X 1 matrix with a free
parameter called dynNoise, short for “dynamic noise”. The observed noise covariance matrix is also a
1 x 1 matrix, but has the measurement noise variance fixed to zero using the special keyword fixed.

recNoise <- prep.noise(values.latent = matrix(1, 1, 1),
params.latent = matrix('dynNoise', 1, 1),
values.observed = matrix(@, 1, 1), params.observed = matrix('fixed', 1, 1))

The prep.regimes() function specifies the structure of the regime time evolution shown in Equa-
tion 8. In this example, we do not have any covariates in the regime-switching (RS) functions. The
problem then reduces to the specification of a 2 x 2 transition log-odds (LO) matrix. We provide
starting values that imply persisting in the same regime is more likely than transitioning to another
regime, and set the second regime LO to zero for identification, making it the reference regime. The
first column of the transition LO matrix, is populated with the starting values of: (1) c11 = 0.7, corre-
sponding to exp(0.7) = 2.01 times greater LO of staying within the Deactivated regime as transitioning
to the Activated regime; and (2) c21 = —1, corresponding to exp(—1) = 0.37 times lower LO of
transitioning to the Deactivated regime.

recReg <- prep.regimes(values = matrix(c(@.7, -1, @, @), 2, 2),
params = matrix(c('cl11', 'c21', 'fixed', 'fixed'), 2, 2))

In essence, the above code creates the following transition probability matrix:

Deactivatedy,;,, Activatedy,;,,

Dy, Ati,j+1

Deactivatedy, . exp(en) exp(0) D 0.668 0382
ti exp(c)+exp(0) exp(ci1)+exp(0) _ Py < . .) (14)

Activatedy,, explea) exp(0) Ay \ 0269 0731

exp(ca)+exp(0) exp(ca1)+exp(0)

=7 cp=-1

In many situations it is useful to specify the structure of the transition LO matrix in deviation
form — that is, to express the LO intercepts in all but the reference regime as deviations from the
LO intercept in the reference regime. The package vignette illustrates this by invoking the deviation
argument of prep.regimes().

After the recipes for all parts of the model are defined, the dynr.model () function creates the model
and stores it in the "dynrModel” object. Each recipe object created by prep.*() and the data prepared
by dynr.data() are given to this function. The dynr.model() function always requires dynamics,
measurement, noise, initial, and data. When there are multiple regimes, the regimes argument
should also be provided. When parameters are subject to transformation functions, a transform

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

argument can be added, which will be discussed in the second example. The dynr.model() function
combines information from the recipes and data to write the text for a C function. This text is written to
a file optionally named by the outfile argument, so that the user can inspect or modify the generated
C code. The default outfile is a temporary file returned by tempfile().

rsmod <- dynr.model(dynamics = recDyn, measurement = recMeas,
noise = recNoise, initial = recIni, regimes = recReg,
data = EMGdata, outfile = "RSLinearDiscreteYang.c")

yum <- dynr.cook(rsmod)

In the last line above, the model is “cooked” with the dynr.cook() function to estimate the free
parameters and their standard errors. When cooking, the C code in the outfile is compiled and
dynamically linked to the rest of the compiled dynr code. If the C functions have previously been
compiled then the user can prevent re-compilation by setting compileLib = FALSE in the "dynrModel”
object given to dynr.cook(). After compilation the C code is executed to optimize the free parameters
while calling the dynamically linked C functions that were created from the user-specified recipes. In
this way, dynr provides an R interface for dynamical systems modeling while maintaining much of
the speed associated with C.

The final step associated with dynr modeling is serving results (a "dynrCook"” object) after the
model has been cooked. To this end, several standard, popular S3 methods are defined for the
"dynrCook” class, including coef (), confint(), deviance(), logLik(), AIC(), BIC(), names(), nobs(),
summary (), and vcov(). These methods perform the same tasks as their counterparts for regres-
sion models in R. Additionally, dynr provides a few other model-serving functions illustrated here:
summary (), plot(), dynr.ggplot() (or autoplot()), plotFormula(), and printex(). The summary()
method provides a table of free parameter names, estimates, standard errors, t-values, and Wald-type
confidence intervals.

summary (yum)

Coefficients:
Estimate Std. Error t value ci.lower ci.upper Pr(>|t])

phi_1 0.26608 0.04953 5.372 0.16900 0.36315 5.33e-08 #**x*
phi_2 0.47395 0.04425 10.711 ©.38722 0.56068 < 2e-16 #xx%
beta_2 0.46449 0.04394 10.571 ©.37837 0.55061 < 2e-16 #x*
mu_1 4.55354 0.02782 163.658 4.49901 4.60807 < 2e-16 #**xx*
mu_2 4.74770 0.14250 33.318 4.46842 5.02699 < 2e-16 #xx%
dynNoise ©.20896 0.01129 18.504 0.18683 0.23110 < 2e-16 #**x*
cl 5.50199 0.70939 7.756 4.11160 6.89237 < 2e-16 #**x*
c21 -5.16170 1.00424 -5.140 -7.12998 -3.19342 1.79e-07 ***
Signif. codes: @ '#x*' 0.001 'x*' 0.01 'x' .05 '.' 0.1 " ' 1

-2 log-likelihood value at convergence = 1002.52
AIC = 1018.52
BIC = 1054.87

These parameter estimates, standard errors, and likelihood values closely mirror those reported in Yang
and Chow (2010, p. 755-756). In the Deactivated regime, the autoregressive parameter (phi_1) and the
intercept (mu_1) are lower than those in the Activated regime. So, neighboring EMG measurements
are more closely related in the Activated regime and the overall level is slightly higher. This matches
very well with the idea that the Activated regime consists of bursts of facial muscular activities and
an elevated emotional state. Similarly, the effect of the self-reported emotional level is positive in the
Activated regime and fixed to zero in the Deactivated regime, as the freely estimated value was close
to zero with a nonsignificant t-value. So, in the Deactivated regime the self-reported emotional level
and the facial muscular activity decouple. The dynamic noise parameter gives a sense of the size of
the intrinsic unmeasured disturbances that act on the system. These forces perturb the system with a
typical magnitude of a little less than half a point on the EMG scale seen in Figure 1(A). Lastly, the
log-odds parameters (c11 and c21) can be turned into the transition probability matrix yielding

Deactivatedy,;,, Activatedy,;.,

Deactivatedy,; (0.9959 0.0041)

Activated;, 0.0057 0.9943 (15)

which implies that both the Deactivated and the Activated regimes are strongly persistent with high
self-transistion probabilities. Next we consider some of the visualization options for serving a model.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

The default plot () method is used to visualize the time series in a collection of plots: (1) a plot of
time series created by dynr.ggplot() (or autoplot()), (2) a histogram of predicted regimes, and (3) a
plot of equations created by plotFormula().

plot(yum, dynrModel = rsmod, style = 1, textsize = 5)

The dynr.ggplot() (or autoplot()) method creates a plot of the smoothed state estimates with the
predicted regimes. It needs the result object and model object as inputs, and allows for plotting (1)
user-selected smoothed state variables by default or (2) user-selected observed-versus-predicted values
by setting style = 2. Anillustrative plot is created from the code below and shown in Figure 1(B).

dynr.ggplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated”, "Activated"),
title = "(B) Results from RS-AR model”, numSubjDemo = 1,
shape.values = 1, text = element_text(size = 24), is.bw = TRUE)

This shows that for the first 99 seconds the participant is in the Deactivated regime, with their latent
state 7;(t; ;1) varying according to the lower autocorrelation model and having no relation to the
variation in the self-reported emotional data in Figure 1(A). Then the participant switches to the
Activated regime and their latent state becomes more strongly autocorrelated and coupled to the
self-report data. There follows a brief period in the Deactivated regime around time=130 seconds with
a subsequent return to the Activated regime for the remainder of the observation. Of course, note that
Figure 1(A) shows the observed EMG data whereas Figure 1(B) shows the latent state which is related
to the observed data by Equation 11.

The plotFormula() method can be used to display model equations on R plots. Equations can be
viewed in several ways with different inputs to the ParameterAs argument: (1) with free parameter
names, for example, returned by names (rsmod), as illustrated in Figure 2(A); (2) with parameter starting
values; or (3) after estimation with fitted parameter values, for example, returned by coef (yum), as in
Figure 2(B). The plotFormula() method does not require the user to install IXTEX facilities and compile
IATEX code in a separate step, and hence are convenient to use. To maximize the readability of the
equations, it is only shown here using equations for the dynamic and measurement models, which
can be obtained by respectively setting the printDyn and printMeas arguments to true.

plotFormula(dynrModel = rsmod, ParameterAs = names(rsmod),
printDyn = TRUE, printMeas = TRUE) + ggtitle("(A)") +
theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size

16))

plotFormula(dynrModel = rsmod, ParameterAs = coef(yum),
printDyn = TRUE, printMeas = TRUE) + ggtitle("(B)") +
theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

We can see that the equations in Figure 2(A) are precisely those from Equations 11 and 12 which we
used to define the model except that we have fixed f to zero. If these equations did not match, it may
indicate that we made a mistake in our model specification.

A (B)
Dynamic Model Dynamic Model
Regime 1: Regime 1:
N(t+1) = @ x N(t) +wy(t) n(t+1) = 0.27 xn(t) +wa(t)
Regime 2: Regime 2:
n(t+1) = @ xN(t) +wa(t) n(t+1) = 0.47 xn(t) +wa(t)
Measurement Model Measurement Model
Regime 1: Regime 1:
iIEMG =0 % SelfReport +; +n iIEMG =0 x SelfReport +4.55 +n
Regime 2: Regime 2:
iIEMG = 3, x SelfReport+p, +n iIEMG = 0.46 x SelfReport+4.75+n

Figure 2: Automatic plots of model equations with (A) parameter names and (B) estimated parameters
for the regime-switching linear state-space model.

Finally, for IATEX users, the printex () method helps generate equations for the model in IATEX form.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

11

printex(rsmod, ParameterAs = names(rsmod), printInit = TRUE, printRS = TRUE,
outFile = "RSLinearDiscreteYang.tex")

The ParameterAs argument functions the same as that in the plotFormula() method. Here we have
specified to use the names of the free parameters. In this case, the initial conditions and regime-
switching functions are included in the equations, as indicated by the printInit and printRS argu-
ments being set to TRUE. The IATEX code for the equations is written to ‘RSLinearDiscreteYang.tex’, which
the user can then work with and modify as they wish. Of course, this function is designed more as a
convenience feature for users who already use IATEX and requires all the I&TEX-related facilities on the
user’s computer.

This example has used real EMG data from a previous study (Yang and Chow, 2010) to illustrate
many parts of the user-interface for dynr. Of particular note are the various “serving” functions which
allow users to both verify their model and examine their results in presentation-ready formats. In the
next example, we will use simulated data to further illustrate features of dynr, especially the nonlinear
formula interface for dynamics.

Example 2: Nonlinear continuous-time models

In the study of human dynamics many processes are characterized by changes that are dependent
on interactions with other processes producing dynamics with nonlinearities. Nonlinear ordinary
differential equations have been used to model, among other phenomena, ovulatory regulation (Boker
et al,, 2014), circadian rhythms (Brown and Luithardt, 1999), cerebral development (Thatcher, 1998),
substance use (Boker and Graham, 1998), cognitive aging (Chow and Nesselroade, 2004), parent-child
interactions (Thomas and Martin, 1976), couple dynamics (Chow et al., 2007; Gottman, 2002), and
sudden transitions in attitudes (van der Maas et al., 2003).

Single-regime nonlinear continuous-time model

In addition to the linear/matrix dynamics interface, dynr also provides users with a formula interface
to accommodate nonlinear as well as linear dynamic functions. To illustrate the use of the formula
interface in dynr, we use a benchmark nonlinear ordinary differential equation model, the predator-
prey model (Lotka, 1925; Volterra, 1926; Hofbauer and Sigmund, 1988). One can find the complete demo
scripts in dynr, using file.edit(system.file("demo"”,"NonlinearODE.R",package = "dynr")) and
file.edit(system.file("demo”,"RSNonlinearODE.R",package = "dynr")), and related explanation
in the package vignette ‘NonlinearContinuousTimeModels’.

The predator-prey model is a classic model for representing the nonlinear dynamics of interacting
populations. The most often cited behavior of the predator-prey system while in a particular parameter
range is ongoing nonlinear oscillations in the predator and prey populations with a phase lag between
them. The utility of the predator-prey model extends far beyond the area of population dynamics.
Direct applications or extensions of this predator-prey system include the epidemic models of the
onset of social activities (EMOSA) used to study the spread of smoking, drinking, delinquency, and
sexual behaviors among adolescents (Rodgers and Rowe, 1993; Rodgers et al., 1998); the cognitive
aging model (Chow and Nesselroade, 2004); and the model of couples’ affect dynamics (Chow et al.,
2007).

Written as a differential equation, the predator-prey model is expressed as:

d(prey(t)) = (a prey(t) — b prey(t) predator(t))dt, (16)
d(predator(t)) = (—c predator(t) +d prey(t) predator(t)) dt, 17)

where the parameters 4, b, ¢, d are all nonnegative. These equations make up the continuous-time
dynamics, Equation 1, for this system. Examining the prey equation (Equation 16), the prey population
would increase exponentially without bound if there were zero predators. Similarly, examining the
predator equation (Equation 17), if the prey population was zero, then the predator population would
decrease exponentially to zero. For demonstration purposes, we have included with the dynr package
a set of simulated data generated with true parameter values: a =2,b=1,c =4,d =1,e = 25,f =5.

Using the formula interface in dynr, which supports all native mathematical functions available in
R, the predator-prey model can be specified as:

preyFormula <- prey ~ a * prey - b * prey * predator
predFormula <- predator ~ - ¢ * predator + d * prey * predator
ppFormula <- list(preyFormula, predFormula)
ppDynamics <- prep.formulaDynamics(formula = ppFormula,
startval = c(a =2.1, c =0.8, b=1.9, d =1.1), isContinuousTime = TRUE)

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

12

The first argument of the prep. formulaDynamics() function is formula. More specifically, this is a
list of formulas. Each element in the list is a single, univariate, formula that defines a differential (if
isContinuousTime = TRUE) or difference (if isContinuousTime = FALSE) equation. There should
be one formula for every latent variable, in the order in which the latent variables are specified by
using the state.names argument in prep.measurement (). The left-hand side of each formula is either
the one-step-ahead projection or the differential of the latent variable: namely, the left-hand side of
Equations 1 and 3, respectively. In both cases, users only need to specify the names of the latent
variables that match the specification in prep.measurement () on the left-hand side of the formulas.
The right-hand side of each formula gives a linear or nonlinear function that may involve free or fixed
parameters, numerical constants, exogenous covariates, and other arithmetic/mathematical functions
that define the dynamics of the latent variables. The startval argument is a named vector giving the
names of the free parameters and their starting values. Just as in the prep.matrixDynamics() function,
the isContinuousTime argument is a binary flag that switches between continuous- and discrete-time
modeling. The rest of dynr code for fitting the predator-prey model can be specified in similar ways
to the code shown in Example 1 and is omitted here for space constraints. A fully functional demo
script can be found in dynr, using file.edit(system.file("demo"”,"NonlinearODE.R",package =
"dynr")), and further comments are included as a package vignette.

With the formula interface, dynr uses the D() function to symbolically differentiate the formulas
provided. Hence, dynr uses the analytic Jacobian of the dynamics in its extended Kalman filter,
greatly increasing its speed and accuracy. The D() function can handle the differentiation of func-
tions involving parentheses, arithmetic operators, for instance, +, —, *, /, and ", and numerous
mathematical functions such as exp(), log(), sin(), cos(), tan(), sinh(), cosh(), sqrt(), pnorm(),
dnorm(), asin(), acos(), atan(), and gamma(). Thus, for a very large class of nonlinear functions, the
user is spared from supplying the analytic Jacobian of the dynamic functions. However, symbolic
differentiation will not work for all formulas. For instance, formulas involving the absolute value
function cannot be symbolically differentiated. For formulas that cannot be differentiated symbolically,
the user must provide the analytic first derivatives through the jacobian argument. One can use
file.edit(system.file("demo”,"RSNonlinearDiscrete.R",package = "dynr")) to find an example.
An explanation is also included as a package vignette.

Regime-switching extension

Just as with the prep.matrixDynamics(), the formula interface also allows for regime-switching
functionality. Consider an extension of the classical predator-prey model that lets the prey and predator
interaction follow seasonal patterns. In the Summer regime, we have the predator-prey model as
previously described, but in the Winter regime we now have a predator-prey model characterized
by within-species competition and limiting growth/decay. In this competitive predator-prey model,
the two populations do not grow/decline exponentially without bound in absence of the other, but
rather, they grow logistically up to some finite carrying capacity. This logistic growth adds to the
between-species interactions with the other population. This model can be specified as:

cPreyF <- prey ~ a * prey - e * prey * 2 - b * prey * predator
cPredF <- predator ~ f * predator - ¢ * predator * 2 + d * prey * predator
cpFormula <- list(cPreyF, cPredF)

where the predator and prey equations are combined and supplied as a list.

To specify the regime-switching predator-prey model, we combine the classical predator-prey
model and the predator-prey model with within-species competition into a list of lists. Then we
provide this list to the usual prep. formulaDynamics() function as the formula argument.

rsFormula <- list(ppFormula, cpFormula)

dynm <- prep.formulaDynamics(formula = rsFormula,
startval = c(a=2.1, c=3,b=1.2,d=1.2, e=1, f =2),
isContinuousTime = TRUE)

Many dynamic models only lead to permissible values in particular parameter ranges. As such, we
often need to add box constraints to model parameters. This is accomplished by setting bounds on the
parameters as shown in the next section. An alternative in dynr is to apply unconstrained optimization
to a transformed set of parameters. This latter strategy uses prep.tfun(). For example, the a — f
parameters should take on positive values. Thus, we may choose to optimize their log-transformed
values and exponentiate the unconstrained parameter values during likelihood evaluations to ensure
that their values are always positive. To achieve this, we supply a list of transformation formulas to
the formula. trans argument in the prep.tfun() function as follows:

tformList <- list(a ~ exp(a), b ~ exp(b), c ~ exp(c),
d ~ exp(d), e ~ exp(e), f ~ exp(f))

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

13

tformInvList <- list(a ~ log(a), b ~ log(b), c ~ log(c),
d ~ log(d), e ~ log(e), f ~ log(f))
trans <- prep.tfun(formula.trans = tformList, formula.inv = tformInvList)

In cases involving transformation functions, the delta method is used to yield standard error estimates
for the parameters on the constrained scales. If the starting values of certain parameters are indicated
on a constrained scale, the formula.inv argument should then give a list of inverse transformation
formulas.

In our hypothetical example, we have discussed how the weather condition may govern the
regime switching processes. Specifically, we assume a covariate cond (with a value of 0 indicating the
warmer weather and 1 indicating the colder weather) has an effect on the regime-switching transition
probabilities. Then, we can specify the logistic regression model by

regimes <- prep.regimes(
values = matrix(c(e, o, -1, 1.5, @, @, -1, 1.5), nrow = 2, ncol = 4, byrow = TRUE),
params = matrix(c("fixed"”, "fixed", "int_1", "slp_1",
"fixed", "fixed", "int_2", "slp_2"), nrow = 2, ncol = 4, byrow = TRUE),
covariates = "cond")

In essence, the above code creates a matrix in the following form:

(f:ll =0 dll =0 C1p = int1 =-1 d12 = Slpl = 15) , (18)

Cr1 = 0 d21 =0 Cyp = intz =-1 d22 = Slpz =15

which in turn creates the following transition probability matrix:

Summerti,/. - Wintertw. "
Summer exp(04+0xcond) exp(inty+slpy x cond)
tij exp(0+0xcond)+exp(inty+slpy xcond) exp(0+0xcond)-+exp(inty+slpy x cond) (19)
Winter exp(0+0x cond) exp(inty+slpy xcond) !
ti exp(0+0x cond)+exp(int+slp, xcond) exp(0)+exp(intr+slpr x cond)

Here we consider the Summer regime as the reference regime, so the first two columns of the transition
LO matrix (Equation 18) are fixed at zero. The third and fourth columns of the transition LO matrix
respectively correspond to the regression intercepts and slopes associated with the covariate, whose
starting values are respectively set at —1 and 1.5. With this set of starting values, the transition
probability from any regime to the Summer regime is 0.73 when cond = 0, and 0.38 when cond = 1.
The negative intercept implies that in warmer days (cond = 0), there is a greater chance of the process
transitioning into the Summer regime, and the regression slope greater than the absolute value of the
intercept suggests that in colder days (cond = 1), the transition into the Winter regime is more likely.

We fitted the specified model to the simulated data. Figure 3 is created from the dynr.ggplot()
(or autoplot()) method with style = 2, and shows that the predicted trajectories match with the
observed values and alternate between different regimes.

Values
S

time

regime Summer Winter variable = x.observed - x.predicted y.observed - y.predicted

Figure 3: Built-in plotting feature for the predicted trajectories with observed values for the regime-
switching nonlinear ODE model.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

14

Other miscellaneous control options

In parameter estimation, dynr utilizes a sequential quadratic programming algorithm (Kraft, 1988,
1994) available from an open-source library for nonlinear optimization — NLOPT (Johnson, 2008). By
default, we do not set boundaries on the free parameters. However, one can set the upper and lower
bounds by respectively modifying the ub and 1b slots of the model object. An example is given below
to constrain the int_1 and int_2 parameters to be between —10 and 0, while limiting s1p_1 and s1p_2
to be between 0 to 10:

model2.2$ub[c("int_1", "int_2", "slp_1", "slp_2") 1 <- c(o, 0, 10, 10)
model2.2%$1b[c("int_1", "int_2", "slp_1", "slp_2") 1 <- c(-10, -10, 0, 0)

Similarly, the stopping criteria of the optimization can be modified through the options slot of the
"dynrModel” object, which is a list consisting of the relative tolerance on optimization parameters
xtol_rel; the stopping threshold of the objective value stopval; the absolute and relative tolerance on
function value, ftol_abs and ftol_rel; the maximum number of function evaluations maxeval; and
the maximum optimization time maxtime.

If there is no need to re-compile the C functions in a call to dynr. cook(), the user can change
the compileLib slot of the "dynrModel” object from default true to false. The output of the estima-
tion function, dynr.cook(), is an object of class "dynrCook”. It not only includes estimation results
displayed with summary(), but also contains information on posterior regime probabilities in the
pr_t_given_T slot, smoothed state estimates #;(t;;|T;) = E(;(t; ;)| Yi(T;)) of the latent variables in
the eta_smooth_final slot, and smoothed error covariance matrices P,-(ti,j |T;) of the latent variables
in the error_cov_smooth_final slot, at all available time points. They can be retrieved by using the $
operator.

Discussion and conclusions

This paper has introduced the dynr package that attempts to carefully balance intuitive usability with
flexibility in the specification to satisfy the need of the broad social and behavioral science community.
dynr offers linear and nonlinear time series methods for latent variables in both the traditional
discrete-time models and in the hybrid continuous-time models that have discrete measurements with
continuous underlying processes. Moreover, regime-switching can be layered on top of any aspect of
these models.

Even though dynr can specify some models that other programs cannot, all of the features of other
programs that exist for time series modeling are not subsets of dynr. For example, KFAS allows for
nonlinear measurement (Helske, 2017a) which is not currently possible in dynr. Moreover, SsfPack
has nonlinear measurement capabilities along with many MCMC methods that dynr lacks (Koopman
etal., 1999). The pomp package has also implemented several algorithms absent in dynr, including
MCMC methods, Bayesian methods, particle filtering, as well as ensemble filtering and forecasting.
However, to our knowledge, no other software allows for regime-switching nonlinear dynamics with
latent variables.

The dynr package highlighted the use of recipe objects to prepare components of the model.
The recipes divide the full model into meaningful conceptual chunks for ease of specification and
interactive inspection. The recipes seamlessly handle various bookkeeping tasks like the creation and
management of the free parameter vector and how free parameters map onto model components. This
is in contrast to several other packages offload this management on the user, often writing their own
functions in the process. In addition to sparing the user sundry bothersome tasks, the recipes allow
for interactive error checking and model verification using standard commands that should already
be familiar to users of R. The contents of each recipe can be printed in the R console, letting the user
verify that the recipe they intended to specify was actually created. Along this vein, plotFormula()
allows the user to see nicely formatted equations for their models directly in R, and printex() outputs
IATEX equations for their models which can be typeset immediately or modified for inclusion in
manuscripts, presentations, and reports.

The dynr package critically depends on several data structures and methods from the GNU
Scientific Library (GSL; GSL Project Contributors, 2010) for fast and accurate scientific computing, and
consequently requires the user to install GSL on their system. We wanted to allow users the flexibility
of specifying their own models, while not sacrificing computational speed that would be influenced by
frequent interchanges between R and C functions. Thus, dynr requires that users generate and compile
the C code “on the fly”, and pass the C function pointers to the back-end directly. Hence, dynr has a
nontrivial set-up cost as compared to other R packages. However, to alleviate this burden we have
written an installation and configuration guide as a vignette labeled ‘InstallationGuideForUsers’. We
generally find set-up of dynr to be similar to that of other packages that allow “on the fly” compilation

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

15

and ready C interfaces like Repp (Eddelbuettel and Francois, 2011; Eddelbuettel et al., 2018) and
RcppGSL (Eddelbuettel and Francois, 2018).

Alternative computational strategies tended to worsen performance, increase user burden for
model specification, or simply trade one difficult configuration task for another. In dynr the user
only needs to specify a possibly nonlinear model of interest using standard R syntax. By contrast
with Repp/ReppGSL the user would have to write C functions and hand differentiate their nonlinear
dynamics functions: an error-prone process with a much steeper learning curve that acts as a deterrent
to adoption, particularly to many researchers in the social and behavioral sciences. Additionally,
we have found that automatic generation of a model specification file coded in C provides more
sophisticated users with the opportunity to define modeling variations directly in C that are not
already supported by the R interface functions.

Currently dynr only allows nonlinearity in the dynamics but not the measurement model to
capitalize on the availability of a Gaussian approximate log-likelihood function for fast parameter
estimation. Future extensions will incorporate Markov chain Monte Carlo (MCMC) techniques
(Chow et al., 2011; Durbin and Koopman, 2001; Kim and Nelson, 1999; Lu et al., 2015) and pertinent
frequentist-based estimation techniques (Fahrmeir and Tutz, 1994) to accommodate a broader class
of measurement models consisting of nonlinear functions and non-Gaussian densities. In addition,
several other extensions are being pursued and implemented in the dynr package. For example, dynr
currently handles missingness in the dependent variables via full-information maximum likelihood
but does not allow for missingness in the covariates. Future plans include interfacing dynr with R
packages such as mice (van Buuren and Groothuis-Oudshoorn, 2011, 2017) to handle missingness in the
covariates and /or dependent variables via multiple imputation. Further, models with nonlinearities at
the dynamic level currently are not supported by well-established fit indices. Although dynr provides
AIC (Akaike, 1973) and BIC (Schwarz, 1978) for model comparison purposes, the tenability of using
these criteria when nonlinearities at the dynamic level are present and the optimized log-likelihood
function involves approximations and truncation errors is yet to be investigated. Finally, even though
difference and differential equations have served as and remain one of the most popular modeling
tools across myriad scientific disciplines, their use is still nascent in many social and behavioral
sciences. Tools to aid model developments and explorations are important extensions to enable and
promote modeling efforts utilizing difference/differential equations (Chow et al., 2016; Ramsay et al.,
2009). Fortunately, several existing packages in R offer many of the functionalities to support these
modeling endeavors and may be used in conjunction or interfaced in the future with dynr for these
purposes.

Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N.
Petrov and F. Csaki, editors, Second International Symposium on Information Theory, pages 267-281.
Akademiai Kiado, Budapest, 1973. [p4, 15]

B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979. [p4, 5,
6]

C.F Ansley and R. Kohn. Estimation, filtering and smoothing in state space models with incompletely
specified initial conditions. The Annals of Statistics, 13:1286-1316, 1985. [p4]

D. Ardia, K. Bluteau, K. Boudt, L. Catania, B. Peterson, and D.-A. Trottier. Markov-Switching GARCH
Models in R: The MSGARCH, 2017. R package version 1.3. [p2]

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking and Navigation:
Theory Algorithms and Software. John Wiley & Sons, New York, NY, 2001. [p4, 5, 6]

S. M. Boker and J. Graham. A dynamical systems analysis of adolescent substance abuse. Multivari-
ate Behavioral Research, 33(4):479-507, 1998. URL https://doi.org/10.1207/s15327906mbr3304_3.

[p11]

S. M. Boker, M. C. Neale, and K. L. Klump. A differenial equations model for the ovarian hormone
cycle. In P. C. M. Molenaar, R. M. Lerner, and K. M. Newell, editors, Handbook of Developmental
Systems Theory and Methodology, pages 369-391. Guilford Press, New York, NY, 2014. [p11]

S. M. Boker, M. C. Neale, H. H. Maes, M. Spiegel, T. R. Brick, R. Estabrook, T. C. Bates, R. J. Gore,
M. D. Hunter, J. N. Pritikin, M. Zahery, and R. M. Kirkpatrick. OpenMx: Extended Structural Equation
Modelling, 2017. URL https://CRAN.R-project.org/package=0penMx. R package version 2.8.3. [p1]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppGSL
https://CRAN.R-project.org/package=mice
https://doi.org/10.1207/s15327906mbr3304_3
https://CRAN.R-project.org/package=OpenMx

CONTRIBUTED RESEARCH ARTICLE

16

N. Bolger and J.-P. Laurenceau. Intensive Longitudinal Methods: An Introduction to Diary and Experience
Sampling Research. Guilford Press, New York, NY, 2013. [p1]

P. Brandt. MSBVAR: Markov-Switching, Bayesian, Vector Autoregression Models, 2016. URL https:
//CRAN.R-project.org/package=MSBVAR. R package version 0.9-3. [p2]

E. N. Brown and H. Luithardt. Statistical model building and model criticism for human cir-
cadian data. Journal of Biological Rhythms, 14:609-616, 1999. URL https://doi.org/10.1177/
074873099129000975. [pﬂ]

B. Byrom and B. Tiplady. ePRO: Electronic Solutions for Patient-Reported Data. Gower, Farnham, England,
2010. [p1]

J. T. Cacioppo and R. E. Petty. Electromyograms as measures of extent and affectivity of information
processing. American Psychologist, 36:441-456, 1981. [p7]

J. T. Cacioppo, R. E. Petty, M. E. Losch, and H. S. Kim. Electromyographic activity over facial muscle
regions can differentiate the valence and intensity of affective reactions. Journal of Personality and
Social Psychology, 50(2):260-268, 1986. [p7]

S.-M. Chow and J. R. Nesselroade. General slowing or decreased inhibition? Mathematical models of
age differences in cognitive functioning. Journals of Gerontology B, 59(3):101-109, 2004. [p11]

S.-M. Chow and G. Zhang. Nonlinear regime-switching state-space (RSSS) models. Psychometrika, 78
(4):740-768,2013. URL https://doi.org/10.1007/511336-013-9330-8. [pl, 4,5, 6]

S.-M. Chow, E. Ferrer, and J. R. Nesselroade. An unscented Kalman filter approach to the estimation of
nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2):283-321, 2007. URL
https://doi.org/10.1080/00273170701360423. [p5, 11]

S.-M. Chow, M.-H. R. Ho, E. J. Hamaker, and C. V. Dolan. Equivalences and differences between
structural equation and state-space modeling frameworks. Structural Equation Modeling, 17:303-332,
2010. URL https://doi.org/10.1080/10705511003661553. [p4]

S.-M. Chow, N. Tang, Y. Yuan, X. Song, and H. Zhu. Bayesian estimation of semiparametric nonlinear
dynamic factor analysis models using the Dirichlet process prior. British Journal of Mathematical and
Statistical Psychology, 64(1):69-106, 2011. URL https://doi.org/10.1348/000711010x497262. [p15]

S.-M. Chow, K. J. Grimm, F. Guillaume, C. V. Dolan, and J.]. McArdle. Regime-switching bivariate
dual change score model. Multivariate Behavioral Research, 48(4):463-502,2013. URL https://doi.
org/10.1080/00273171.2013.787870. [p]]

S.-M. Chow, K. Witkiewitz, R. P. P. P. Grasman, and S. A. Maisto. The cusp catastrophe model as
cross-sectional and longitudinal mixture structural equation models. Psychological Methods, 20:
142-164, 2015. URL https://doi.org/10.1037/20038962. [pl]

S.-M. Chow, J. J. Bendez, P. M. Cole, and N. Ram. A comparison of two-stage approaches for fitting
nonlinear ordinary differential equation (ode) models with mixed effects. Multivariate Behavioral
Research, 51(2-3):154-184, 2016. URL https://doi.org/10.1080/00273171.2015.1123138. [p15]

S.-M. Chow, L. Ou, A. Ciptadi, E. Prince, D. You, M. D. Hunter, J. M. Rehg, A. Rozga, and D. S.
Messinger. Representing sudden shifts in intensive dyadic interaction data using differential
equation models with regime switching. Psychometrika, 83(2):476-510, 2018. URL https://doi.org/
10.1007/s11336-018-9605-1. [p4, 5, 6]

P. De Jong. The likelihood for a state space model. Biometrika, 75(1):165-169, 1988. URL https:
//doi.org/10.2307/2336450. [p4]

U. Dimberg, M. Thunberg, and K. Elmehed. Unconscious facial reactions to emotional facial expres-
sions. Psychological Science, 11(1):86-89, 2000. URL https://doi.org/10.1111/1467-9280.00221.

[p7]

C. V. Dolan. MKFM6: Multi-Group, Multi-Subject Stationary Time Series Modeling Based on the Kalman
Filter, 2005. URL http://users/fmg.uva.nl/cdolan/. [p1]

C. V. Dolan. Structural equation mixture modeling. In R. E. Millsap and A. Maydeu-Olivares, editors,
The SAGE Handbook of Quantitative Methods in Psychology, pages 568-592. Sage, Thousand Oaks, CA,
2009. [p1]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=MSBVAR
https://CRAN.R-project.org/package=MSBVAR
https://doi.org/10.1177/074873099129000975
https://doi.org/10.1177/074873099129000975
https://doi.org/10.1007/s11336-013-9330-8
https://doi.org/10.1080/00273170701360423
https://doi.org/10.1080/10705511003661553
https://doi.org/10.1348/000711010x497262
https://doi.org/10.1080/00273171.2013.787870
https://doi.org/10.1080/00273171.2013.787870
https://doi.org/10.1037/a0038962
https://doi.org/10.1080/00273171.2015.1123138
https://doi.org/10.1007/s11336-018-9605-1
https://doi.org/10.1007/s11336-018-9605-1
https://doi.org/10.2307/2336450
https://doi.org/10.2307/2336450
https://doi.org/10.1111/1467-9280.00221
http://users/fmg.uva.nl/cdolan/

CONTRIBUTED RESEARCH ARTICLE

17

C. V. Dolan, B. R. Jansen, and H. L. J. Van der Maas. Constrained and unconstrained multivariate
normal finite mixture modeling of piagetian data. Multivariate Behavioral Research, 39(1):69-98, 2004.
URL https://doi.org/10.1207/s15327906mbr3901_3. [p1]

C. Driver, M. Voelkle, and H. Oud. Ctsem: Continuous Time Structural Equation Modelling, 2017a. URL
https://CRAN.R-project.org/package=ctsem. R package version 2.5.0. [p2]

C. C. Driver,]. H. L. Oud, and M. C. Voelkle. Continuous time structural equation modelling with R
package ctsem. Journal of Statistical Software, 2017b. URL https://doi.org/10.18637/jss.v077.105.
[p2]

J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford University Press,
Oxford, United Kingdom, 2001. [p2, 3, 15]

D. Eddelbuettel and R. Francois. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1-18,2011. URL https://doi.org/10.18637/jss.v040.108. [p15]

D. Eddelbuettel and R. Francois. ReppGSL: ‘Repp’” Integration for ‘GNU GSL’ Vectors and Matrices, 2018.
URL https://CRAN.R-project.org/package=RcppGSL. R package version 0.3.6. [p15]

D. Eddelbuettel, R. Francois,]. Allaire, K. Ushey, Q. Kou, N. Russell, D. Bates, and J. Chambers. Repp:
Seamless R and C++ Integration, 2018. URL https://CRAN.R-project.org/package=Rcpp. R package
version 1.0.0. [p15]

R.]. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov Models: Estimation and Control. Springer-Verlag,
New York, 1995. [p1]

L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling Based on Generalized Linear Models. Springer-
Verlag, New York, NY, 1994. [p15]

K. Fukuda and K. Ishihara. Development of human sleep and wakefulness rhythm during the first
six months of life: Discontinuous changes at the 7th and 12th week after birth. Biological Rhythm
Research, 28:94-103,1997. URL https://doi.org/10.1076/brhm.28.3.5.94.13132. [p1]

P. Gilbert. Dse: Dynamic Systems Estimation (Time Series Package), 2015. URL https://CRAN.R-project.
org/package=dse. R package version 2015.12-1. [p1]

P. D. Gilbert. Brief User’s Guide: Dynamic Systems Estimation, 2006 or later. URL http://cran.r-
project.org/web/packages/dse/vignettes/Guide.pdf. [p1]

J. M. Gottman. The Mathematics of Marriage: Dynamic Nonlinear Models. The MIT Press, Cambridge,
MA, 2002. [p11]

M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. John Wiley &
Sons, Hoboken, NJ, 3rd edition, 2008. [p2]

GSL Project Contributors. GSL - GNU Scientific Library - GNU Project - Free Software Foundation (FSF),
2010. URL http://www.gnu.org/software/gsl/. [p14]

J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the business
cycle. Econometrica, 57:357-384, 1989. URL https://doi.org/10.2307/1912559. [p1, 5]

J. D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, NJ, 1994. [p4]

A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University
Press, Cambridge, United Kingdom, 1989. [p1, 4]

J. Helske. KFAS: Exponential family state space models in R. Journal of Statistical Software, 2017a. URL
https://doi.org/10.18637/jss.v078.1i10. [pl, 2, 14]

J. Helske. KFAS: Kalman Filter and Smoother for Exponential Family State Space Models, 2017b. URL
https://CRAN.R-project.org/package=KFAS. R package version 1.2.9. [p1]

J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems: Mathematical Aspects
of Selection (London Mathematical Society Student Texts). Cambridge University Press, 1988. ISBN
0521358388. URL http://www.worldcat.org/isbn/0521358388. [p11]

B. Hosenfeld. Indicators of discontinuous change in the development of analogical reasoning. Journal
of Experimental Child Psychology, 64:367-395, 1997. URL https://doi.org/10.1006/jecp.1996.2351.
[p1]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://doi.org/10.1207/s15327906mbr3901_3
https://CRAN.R-project.org/package=ctsem
https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.18637/jss.v040.i08
https://CRAN.R-project.org/package=RcppGSL
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.1076/brhm.28.3.5.94.13132
https://CRAN.R-project.org/package=dse
https://CRAN.R-project.org/package=dse
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
http://www.gnu.org/software/gsl/
https://doi.org/10.2307/1912559
https://doi.org/10.18637/jss.v078.i10
https://CRAN.R-project.org/package=KFAS
http://www.worldcat.org/isbn/0521358388
https://doi.org/10.1006/jecp.1996.2351

CONTRIBUTED RESEARCH ARTICLE

18

M. D. Hunter. State space modeling in an open source, modular, structural equation modeling
environment. Structural Equation Modeling: A Multidisciplinary Journal, pages 1-18, 2017. URL
https://doi.org/10.1080/10705511.2017.1369354. [p]]

R.J. Hyndman. CRAN task view: Time series analysis. Online, 2016. URL https://CRAN.R-project.
org/view=TimeSeries. Accessed on October 09, 2016. [p1]

S. G. Johnson. The NLopt Nonlinear-Optimization Package, 2008. URL http://ab-initio.mit.edu/nlopt.
[p14]

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,
82(1):35-45, 1960. URL https://doi.org/10.1115/1.3662552. [p4, 6]

C.-J. Kim and C. R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-Sampling
Approaches with Applications. MIT Press, Cambridge, MA, 1999. [p1, 4, 5, 6, 15]

A. A.King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov processes
via the R package pomp. Journal of Statistical Software, 69(12):1-43, 2016. URL https://doi.org/10.
18637/3ss.v069.112. [p2]

A. A.King, E. L. Ionides, and C. Breto. Pomp: Statistical Inference for Partially Observed Markov Processes,
2018. URL https://CRAN.R-project.org/package=pomp. R package version 1.18. [p2]

L. Kohlberg and R. Kramer. Continuities and discontinuities in childhood and adult moral develop-
ment. Human development, 12(2):93-120, 1969. URL https://doi.org/10.1159/000270857. [p1]

S. J. Koopman, N. Shephard, and J. A. Doornik. Statistical algorithms for models in state space
using SsfPack 2.2. Econometrics Journal, 2(1):113-166, 1999. URL https://doi.org/10.1111/1368~-
423x.00023. [p1, 14]

D. Kraft. A software package for sequential quadratic programming. Technical Report 88-28, DFVLR-
FB, Oberpfaffenhofen, Germany, 1988. [p2, 14]

D. Kraft. Algorithm 733: TOMP — Fortran Modules for Optimal Control Calculations. ACM Transac-
tions on Mathematical Software, 20(3):262-281, 1994. URL https://doi.org/10.1145/192115.192124.
[p2, 14]

G. Y. Kulikov and M. V. Kulikova. Accurate numerical implementation of the continuous-discrete
extended kalman filter. IEEE Transactions on Automatic Control, 59(1), 2014. URL https://doi.org/
10.1109/tac.2013.2272136. [p4, 5]

M. V. Kulikova and G. Y. Kulikov. Adaptive ODE Solvers in Extended Kalman Filtering Algorithms.
Journal of Computational and Applied Mathematics, 262:205-216, 2014. URL https://doi.org/10.
1016/3j.cam.2013.09.064. [p4, 5]

A.]. Lotka. Elements of Physical Biology. Williams & Wilkins, Baltimore, MD, 1925. [p7, 11]

Z.-H. Lu, S.-M. Chow, A. Sherwood, and H. Zhu. Bayesian analysis of ambulatory cardiovascular
dynamics with application to irregularly spaced sparse data. Annals of Applied Statistics, 9:1601-1620,
2015. URL https://doi.org/10.1214/15-acas846. [p15]

B. O. Muthén and T. Asparouhov. LTA in Mplus: Transition probabilities influenced by covariates.
Mplus Web Notes: No. 13.,2011. URL http://www.statmodel.com/examples/{LTA}webnote.pdf.

[p1]
M. C. Neale, M. D. Hunter, J. N. Pritikin, M. Zahery, T. R. Brick, R. M. Kirkpatrick, R. Estabrook, T. C.

Bates, H. H. Maes, and S. M. Boker. OpenMx 2.0: Extended structural equation and statistical
modeling. Psychometrika, 80(2):535-549, 2016. URL https://doi.org/10.1007/s11336-014-9435-8.

[p1]

L. Ou, M. D. Hunter, and S.-M. Chow. Dynr: Dynamic Modeling in R, 2018. R package version 0.1.13-4.
[p1]

G. Petris. An R package for dynamic linear models. Journal of Statistical Software, 36(12):1-16, 2010.
URL https://doi.org/10.18637/jss.v036.112. [p1]

G. Petris. DIm: Bayesian and Likelihood Analysis of Dynamic Linear Models, 2014. URL https://CRAN.R-
project.org/package=dlm. R package version 1.1-4. [p1]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://doi.org/10.1080/10705511.2017.1369354
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/view=TimeSeries
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1115/1.3662552
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.18637/jss.v069.i12
https://CRAN.R-project.org/package=pomp
https://doi.org/10.1159/000270857
https://doi.org/10.1111/1368-423x.00023
https://doi.org/10.1111/1368-423x.00023
https://doi.org/10.1145/192115.192124
https://doi.org/10.1109/tac.2013.2272136
https://doi.org/10.1109/tac.2013.2272136
https://doi.org/10.1016/j.cam.2013.09.064
https://doi.org/10.1016/j.cam.2013.09.064
https://doi.org/10.1214/15-aoas846
http://www.statmodel.com/examples/{LTA}webnote.pdf
https://doi.org/10.1007/s11336-014-9435-8
https://doi.org/10.18637/jss.v036.i12
https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=dlm

CONTRIBUTED RESEARCH ARTICLE

19

G. Petris and S. Petrone. State space models in R. Journal of Statistical Software, 41(4):1-25, 2011. URL
https://doi.org/10.18637/jss.v041.104. [pl]

J. Piaget and B. Inhelder. The Psychology of the Child. Basic Books, New York, NY, 1969. [p1]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, Cambridge, 2002. [p5]

J. O. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB. Springer-Verlag,
New York, NY, 2009. [p15]

J. L. Rodgers and D. C. Rowe. Social contagion and adolescent sexual behavior: A developmental
EMOSA model. Psychological Review, 100(3):479-510, 1993. URL https://doi.org/10.1037/0033-
295x.100.3.479. [p11]

J. L. Rodgers, D. C. Rowe, and M. Buster. Social contagion, adolescent sexual behavior, and pregnancy:
a nonlinear dynamic EMOSA model. Developmental Psychology, 34(5):1096-1113, 1998. URL https:
//doi.org/10.1037/0012-1649.34.5.1096. [p11]

J. A. Sanchez-Espigares and A. Lopez-Moreno. MSwM: Fitting Markov Switching Models, 2014. URL
https://CRAN.R-project.org/package=MSwM. R package version 1.2. [p2]

G. E. Schwartz. Biofeedback, self-regulation, and the patterning of physiological processes. American
Scientist, 63:314-324, 1975. [p7]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978. [p4, 15]

A. Stone, S. Shiffman, A. Atienza, and L. Nebeling. The Science of Real-Time Data Capture: Self-Reports in
Health Research. Oxford University Press, NY, 2008. [p1]

O. Taramasco and S. Bauer. Hidden Markov Models Simulations and Estimations, 2012. R package version
2.0.2. [p2]

R. W. Thatcher. A predator-prey model of human cerebral development. In K. M. Newell and P. C. M.
Molenaar, editors, Applications of Nonlinear Dynamics to Developmental Process Modeling, pages 87-128.
Lawrence Erlbaum, Mahwah, NJ, 1998. [p11]

The MathWorks, Inc. MATLAB Version 9.1 (R2016b). The MathWorks, Inc., Natick, MA, 2016. [p2]

E. A. Thomas and J. A. Martin. Analyses of parent-infant interaction. Psychological Review, 83(2):
141-156, 1976. URL https://doi.org/10.1037/0033-295x.83.2.141. [p11]

G. C.Tiao and R. S. Tsay. Some advances in non-linear and adaptive modelling in time series. Journal
of Forecasting, 13:109-131, 1994. URL https://doi.org/10.1002/for.3980130206. [p1]

H. Tong and K. S. Lim. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal
Statistical Society B, 42:245-292,1980. URL https://doi.org/10.1142/9789812836281_0002. [p1]

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in
R. Journal of Statistical Software, 45(3):1-67,2011. URL https://doi.org/10.18637/jss.v045.103.
[p15]

S. van Buuren and K. Groothuis-Oudshoorn. Mice: Multivariate Imputation by Chained Equations, 2017.
URL https://CRAN.R-project.org/package=mice. R package version 2.46.0. [p15]

H. L.J. van der Maas and P. C. M. Molenaar. Stagewise cognitive development: An application of
catastrophe theory. Psychological Review, 99(3):395-417, 1992. [p1]

H. L.]. van der Maas, R. Kolstein, and J. van der Pligt. Sudden transitions in attitudes. Sociological
Methods & Research, 32(125-152), 2003. URL https://doi.org/10.1177/0049124103253773. [p11]

M. van Dijk and P. van Geert. Wobbles, humps and sudden jumps: A case study of continuity,
discontinuity and variability in early language development. Infant and Child Development, 16(1):
7-33,2007. URL https://doi.org/10.1002/icd.506. [pl]

L. Visser. Depmix: An R-package for fitting mixture models on mixed multivariate data with Markov
dependencies. Technical report, University of Amsterdam, 2007. URL http://cran.r-project.org.

[p1]

I. Visser and M. Speekenbrink. depmixS4: An R package for hidden Markov models. Journal of
Statistical Software, 36(7):1-21, 2010. URL https://doi.org/10.18637/jss.v036.107. [p2]

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://doi.org/10.18637/jss.v041.i04
https://doi.org/10.1037/0033-295x.100.3.479
https://doi.org/10.1037/0033-295x.100.3.479
https://doi.org/10.1037/0012-1649.34.5.1096
https://doi.org/10.1037/0012-1649.34.5.1096
https://CRAN.R-project.org/package=MSwM
https://doi.org/10.1037/0033-295x.83.2.141
https://doi.org/10.1002/for.3980130206
https://doi.org/10.1142/9789812836281_0002
https://doi.org/10.18637/jss.v045.i03
https://CRAN.R-project.org/package=mice
https://doi.org/10.1177/0049124103253773
https://doi.org/10.1002/icd.506
http://cran.r-project.org
https://doi.org/10.18637/jss.v036.i07

CONTRIBUTED RESEARCH ARTICLE

20

I. Visser and M. Speekenbrink. depmixS4: Dependent Mixture Models - Hidden Markov Models of GLMs and
Other Distributions in S4,2016. URL https://CRAN.R-project.org/package=depmixS4. R package
version 1.3-3. [p2]

V. Volterra. Fluctuations in the abundance of a species considered mathematically. Nature, 118:558-560,
1926. URL https://doi.org/10.1038/118558a0. [p7, 11]

M. Yang and S.-M. Chow. Using state-space model with regime switching to represent the dynamics
of facial electromyography (EMG) data. Psychometrika: Application and Case Studies, 74(4):744-771,
2010. URL https://doi.org/10.1007/s11336-010-9176-2. [p1,4,5,7,9, 11]

Funding for this study was provided by NSF grant SES-1357666, NIH grants ROIMH61388, R0OIHD07699,
RO1GM105004, Pennsylvania State Quantitative Social Sciences Initiative, and UL TR000127 from the Na-
tional Center for Advancing Translational Sciences.

Lu Ou

ACTNext

ACT, Inc.

500 Act Drive

Towa City, IA 52244
E-mail: 1u.ou@act.org

Michael D. Hunter

Georgia Institute of Technology
J.S. Coon Bldg, Room 225

648 Cherry St NW

Atlanta, GA 30313

E-mail: mhunter43@gatech.edu

Sy-Miin Chow

Department of Human Development and Family Studies
The Pennsylvania State University

420 Biobehavioral Health Building

University Park, PA 16802

E-mail: emailqucl6@psu.edu

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=depmixS4
https://doi.org/10.1038/118558a0
https://doi.org/10.1007/s11336-010-9176-2
mailto:lu.ou@act.org
mailto:mhunter43@gatech.edu

	What's for dynr: A Package for Linear and Nonlinear Dynamic Modeling in R
	Introduction
	General modeling framework
	Estimation procedures
	Discrete-time models
	Continuous-time models

	Steps for preparing and ``cooking'' a model
	Example 1: Regime-switching linear state-space model
	Example 2: Nonlinear continuous-time models
	Single-regime nonlinear continuous-time model
	Regime-switching extension

	Other miscellaneous control options
	Discussion and conclusions

