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mixedsde: A Package to Fit Mixed
Stochastic Differential Equations
by Charlotte Dion, Simone Hermann, Adeline Samson

Abstract Stochastic differential equations (SDEs) are useful to model continuous stochastic processes.
When (independent) repeated temporal data are available, variability between the trajectories can be
modeled by introducing random effects in the drift of the SDEs. These models are useful to analyze
neuronal data, crack length data, pharmacokinetics, financial data, to cite some applications among
other. The R package focuses on the estimation of SDEs with linear random effects in the drift. The goal
is to estimate the common density of the random effects from repeated discrete observations of the
SDE. The package mixedsde proposes three estimation methods: a Bayesian parametric, a frequentist
parametric and a frequentist nonparametric method. The three procedures are described as well as the
main functions of the package. Illustrations are presented on simulated and real data.

Introduction

Continuous stochastic processes are usually observed discretely in time (with equidistant time points
or not) leading to times series, although their intrinsic nature is of continuous time. While discrete
time stochastic models such as auto-regressive models (ARMA, GARCH, ...) have been widely
developed for time series with equidistant times, more and more attention have been focused on
Stochastic Differential Equations (SDEs). Examples of applications where SDEs have been used include
dynamics of thermal systems (Bacher and Madsen, 2011), solar and wind power forecasting (Iversen
et al., 2014), neuronal dynamics (Ditlevsen and Samson, 2014), pharmacokinetic/pharmacodynamic
(PK/PD) (Hansen et al., 2014), crack growth (Hermann et al., 2016). Estimation for SDE is available in
different softwares. We can cite among others the computer software CTSM with a (extended) Kalman
filter approach (Kristensen and Madsen, 2003), the sde package which proposes several tools for the
simulation and the estimation of a variety of SDEs, and more recently the R-packages Sim.DiffProc
(Guidoum and Boukhetala, 2017) and yuima (Iacus, 2018) (the last one proposes also some tools for
quantitative finance).

Depending on the applications, independent repeated temporal measures might be available.
For examples, drug concentration of several subjects is usually observed in PK; dynamics of several
neurons is measured along time; time to crack lengths can be measured repeatedly in crack growth
study. Each trajectory represents the behavior of a unit/subject. The functional form is similar for all
the trajectories. Fitting the overall data simultaneously obviously improves the quality of estimation,
but one has to take into account these variabilities between experiments. This is the typical framework
of mixed-effects models where some parameters are considered as random variables (random effects)
and proper to each trajectory. Hence the random effects represent the particularity of each subject.
Some parameters can also be considered as common to all the trajectories (fixed effects).

In this work the model of interest is thus a mixed-effects stochastic differential equation (MSDE),
mixed-effects for both fixed and random effects. The mixedsde package has been developed to
estimate the density of the random effects from the discrete observations of M independent trajectories
of a MSDE. It is available from the Comprehensive R Archive Network (CRAN Dion et al., 2016). The
package’s development is actively continued with the latest source code available from a GitHub
repository https://github.com/charlottedion/mixedsde.

More precisely, we focus on MSDE with linear drift. We consider M diffusion processes (Xj(t), t ≥
0), j = 1, . . . , M with dynamics ruled by SDE, for t ∈ [0, T]{

dXj(t) = (αj − β jXj(t))dt + σa(Xj(t))dWj(t)
Xj(0) = xj

(1)

where (Wj)1...j...M are M independent Wiener processes, (αj, β j) are two (random) parameters, σa(Xj(·))
is the diffusion coefficient with a a known function and σ an unknown constant. The initial condition
xj is assumed fixed (and known) in the paper with possibly different values for each trajectory.

In the package, we restrict the models to the two famous SDEs with linear drift, namely the
Ornstein-Uhlenbeck model (OU) with a(x) = 1 and the Cox-Ingersoll-Ross model (CIR) with a(x) =√

x. For the CIR model, we assume that xj > 0, σ > 0, αj > σ2/2 and β j > 0 to ensure that the process
never crosses zero.

The random parameters are denoted φj and belong to Rd with either d = 1 or d = 2:
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• (d = 1) φj = αj random and for all j = 1, . . . , M, β j = β fixed,

• (d = 1) φj = β j random and for all j = 1, . . . , M, αj = α fixed,

• (d = 2) φj = (αj, β j) random.

The φj’s are assumed independent and identically distributed (i.i.d.) and independent of the Wj’s.
The mixedsde package aims at estimating the random effects φj and their distribution whose density

is denoted f , from N discrete observations of the M trajectories (Xj(t))j from Equation 1 at discrete
times t0 = 0 < t1 < . . . < tN = T (not necessarily equidistant).

Context: To the best of our knowledge, this is the first package in R language dedicated to the
estimation of MSDE. The main software considering mixed models is MONOLIX (2003) but methods
for mixed stochastic differential equations are not implemented for R. One package named PSM
(Mortensen and Klim, 2013) provides functions for estimation of linear and non-linear mixed-effects
models using stochastic differential equations. But the model includes measurement noise and
proposes only parameter estimation. Moreover, there is no mathematical property about the used
estimators. In this context, the package presented is this paper is pioneer.

Estimation procedures for MSDE have been proposed in the non-parametric and the parametric
frameworks, with a frequentist and a Bayesian point of view. The parametric approaches assume
Gaussian random effects φj. Among other references, for parametric maximum likelihood estimation,
we can cite Ditlevsen and de Gaetano (2005); Picchini et al. (2010) (Hermite expansion of the likelihood);
Delattre et al. (2013) (explicit integration of the Girsanov likelihood) or Delattre et al. (2016) (mixture of
Gaussian distributions for the random effects); for parametric Bayesian estimation, we can cite Oravecz
et al. (2009) (restricted to Ornstein-Uhlenbeck) and Hermann et al. (2016) (general methodology); for
non-parametric estimation, we can cite Comte et al. (2013); Dion (2014); Dion and Genon-Catalot (2015)
(kernel estimator and deconvolution estimators).

Three estimation procedures are implemented in the mixedsde package: a kernel nonparametric
estimator (Dion and Genon-Catalot, 2015), a parametric maximum likelihood estimator (Delattre et al.,
2013) and a parametric Bayesian estimator (Hermann et al., 2016). The parametric frequentist and
Bayesian approaches assume the random effects Gaussian. The Bayesian approach seems the most
appropriate method for a small time of observation T and a small number of trajectories M. The
nonparametric approach can be used when no prior idea on the density is available and when T
and M are both large enough. Finally, the parametric frequentist estimation can be used with a large
number of discrete observations.

This paper reviews in Section 2.2 the three estimation methods. An overview of the mixedsde
package is given in Section 2.3 through a description of the main functions and of other related
companion functions. The practical use of this package is illustrated in Section 2.4 on simulated data
and in Section 2.5 on one real dataset in neuronal modeling.

Density estimation in mixed stochastic differential models

We briefly recall the methodology of the three estimators implemented in the mixedsde package. We
start with the nonparametric approach, then the frequentist parametric Gaussian method and finally
the Bayesian parametric Gaussian method.

Nonparametric estimation of the random effects density

The first step of the nonparametric approach is to estimate the random effects. The idea is to maximize
the likelihood of the process Xϕ

j solution of the stochastic differential equation with fixed ϕ. Assuming
continuous observations of (Xj(t), 0 ≤ t ≤ T), the likelihood function is obtained with the Girsanov
formula:

`T(ϕ) = exp

(∫ T

0

α− βXϕ
j (s)

σ2a2(Xϕ
j (s))

dXj(s)−
1
2

∫ T

0

(α− βXϕ
j (s))

2

σ2a2(Xϕ
j (s))

ds

)
.

Maximizing the likelihood yields to the following estimator of φj

Aj := V−1
j Uj (2)
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where Uj and Vj are the two sufficient statistics of the model. They are explicit depending on the form
of the random effects:

• αj random and β known

Uj :=
∫ T

0

1
σ2a2(Xj(s))

dXj(s) + β
∫ T

0

Xj(s)
σ2a2(Xj(s))

ds, Vj :=
∫ T

0

1
σ2a2(Xj(s))

ds,

• β j random and α known

Uj := −
∫ T

0

Xj(s)
σ2a2(Xj(s))

dXj(s) + α
∫ T

0

Xj(s)
σ2a2(Xj(s))

ds, Vj :=
∫ T

0

Xj(s)2

σ2a2(Xj(s))
ds,

• (αj, β j) random, denote b(x) = (1,−x)t with ut the transposition of vector u. Here Uj is a
column vector with size 2× 1 and Vj = (Vj,k,`)k,`∈{1,2} a 2× 2 symmetric matrix:

Uj :=
∫ T

0

b
σ2a2 (Xj(s))dXj(s), Vj :=

∫ T

0

b bt

σ2a2 (Xj(s))ds. (3)

Truncated versions of this estimator have been introduced for theoretical reasons. In the bidimensional
case φj = (αj, β j), Dion and Genon-Catalot (2015) propose the following estimator

Âj := Aj1Bj , Bj := {Vj ≥ κ
√

TI2} = {min(λ1,j, λ2,j) ≥ κ
√

T} (4)

with I2 the 2× 2 identity matrix and λi,j, i = 1, 2 the two eigenvalues of the symmetric non negative
matrix Vj, and κ a numerical constant that has been calibrated (Dion and Genon-Catalot, 2015). In the
one-dimensional case φj = β j with α = 0, Genon-Catalot and Larédo (2016) propose

Âj := Aj1Vj≥κ
√

T (5)

with κ a numerical constant calibrated in practice. Based on these estimators of the φj’s, we can
proceed to the second step, the estimation of their density f . Several nonparametric estimators of f
have been proposed (see Comte et al., 2013, for example). In the package mixedsde, we focus on the
kernel estimator of f . Let us introduce the kernel function K : Rd → R, with d = 1, 2 depending on
the dimension of φj. We assume K to be a C2 function satisfying∫

K(u)du = 1, ‖K‖2 =
∫

K2(u)du < +∞,
∫
(∇K(u))2du < +∞

(with ∇K the gradient of K). A bandwidth h ∈ (R+)d, for d = 1, 2, is used to define the function

Kh(x) =
1
h

K
( x

h

)
, x ∈ Rd.

Note that in the bidimensional case, h = (h1, h2) and the two marginal bandwidths are different. The
nonparametric estimator of the density f of φj is

f̂h(x) =
1
M

M

∑
j=1

Kh(x− Aj). (6)

and the estimator ̂̂fh(x) =
1
M

M

∑
j=1

Kh(x− Âj) is computed when the truncated estimator Âj is different

than Aj.

In the mixedsde package, Gaussian kernel estimators are implemented with the R -functions
density (available in package stats) when d = 1 and kde2d (available in package MASS Venables and
Ripley (2016)) when d = 2 with an automatic selection of the bandwidth h. Note that when there is
only one random effect, the bandwidth is selected by unbiased cross-validation with the argument
bw="ucv", or as the default value given by the rule-of-thumb if the chosen bandwidth is too small.
Note that the estimator is unstable for small variance of the random effects.

It is important to notice that the two random effects are not assumed independent. When there is
only one random effect, the fixed parameter has to be entered by the user.

The computation of Aj = V−1
j Uj does not require the knowledge of σ2 as it appears both in

Uj and Vj. It requires however the evaluation of the two continuous integrals in Uj and Vj while
observing the trajectories (Xj) at discrete times (t0, t1, . . . , tN). For ∆k = tk+1 − tk, k = 0, . . . , N − 1,
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the non-stochastic integrals
∫ T

0 g(Xj(s))ds for the functions g = b
a2 or g = b bt

a2 are approximated by

∫ T

0
g(Xj(s))ds ≈

N−1

∑
k=0

g(Xj(tk))∆k.

For the stochastic integrals, we use the following simple discretization

∫ T

0
g(Xj(s))dXj(s) ≈

N−1

∑
k=0

g(Xj(tk))(Xj(tk+1)− (Xj(tk)))∆k.

Note that there is no integrability issue for these two types of integrals considering the two functions
g = b

a2 or g = b bt

a2 involved in the sufficient statistics.

Frequentist parametric estimation approach

In this section and the following one, we assume that the random parameters φj are Gaussian:

• when d = 1, φj ∼ N (µ, ω2) with µ ∈ R,

• when d = 2, φj ∼ N (µ, Ω) with µ ∈ R2 and a diagonal covariance matrix Ω = diag(ω2
1 , ω2

2).

For the bidimensional case d = 2 we estimate by maximum likelihood the parameters θ := (µ, Ω).
We define the likelihood function assuming first that the trajectories are continuously observed,
similarly to the nonparametric approach (Section 2.2.1). Thanks to the Girsanov formula, the likelihood
function of the jth trajectory Xj is

L(Xj, θ) =
1√

det(I2 + ΩVj)
exp

[
−1

2
(µ−V−1

j Uj)
′R−1

j (µ−V−1
j Uj)

]
exp

(
1
2

U′jV
−1
j Uj

)

with R−1
j = (I2 + VjΩ)−1Vj and I2 is the 2× 2 identity matrix.

For the case d = 1, the parameters to estimate are θ := (µ, ω, ψ) where ψ denotes the fixed effect α
or β. We adopt the subscript r for the value of random, equal to 1 or 2, and c for the position of the
common fixed effect (thus 2 or 1). The likelihood function of the jth trajectory Xj is

L(Xj, θ) =
1√

1 + ω2Vj,r,r

exp
[
−1

2
Vj,r,r(1 + ω2Vj,r,r)

−1(µ−V−1
j,r,r(Uj,r − ψVj,c,r))

2
]

× exp
(

ψUj,c −
ψ2

2
Vj,c,c

)
exp

(
1
2
(Uj,r − ψVj,r,c)

2V−1
j,r,r

)
with the notations U, V from Equation 3. Details on this formula are available in the Appendix 2.6.

The likelihood function is defined as L(θ) = ∏M
j=1 L(Xj, θ). The maximum likelihood estimator

θ̂ := (µ̂, Ω̂, ψ̂) when d = 1 and θ̂ := (µ̂, Ω̂) when d = 2 is defined by

θ̂ = arg max
θ

L(θ) = arg max
θ

M

∏
j=1

L(Xj, θ). (7)

This estimator is not explicit. In the mixedsde package, the function optim is used to maximize
numerically the likelihood. The maximum is generally not unique and depend on the initialization.
A good initialization is another estimator, for example the moment estimator of θ. Function optim is
thus initialized with the mean and the variance of the estimators Aj of the random parameters (see
Equation 2). Sufficient statistics Uj and Vj are discretized as explained in Section 2.2.1.

Note that this parametric approach requires the knowledge of σ2 to compute the sufficient statistics
Uj and Vj because Vj appears alone in Rj. We plug the following estimator of σ2

σ̂2 =
1
M

M

∑
j=1

(
1
N

N−1

∑
k=0

(Xj(tk+1)− Xj(tk))
2

∆ka2(Xj(tk))

)
. (8)

Selection of (non-nested) models can be performed with the BIC criteria, defined by −2 log L(θ̂) +
2 log(M) for model with one random effect and −2 log L(θ̂) + 4 log(M) with two random effects
and the AIC criteria defined by −2 log L(θ̂) + 2 for one random effect and −2 log L(θ̂) + 4 for two
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random effects. These asymptotic criteria indicate the trade-off between maximizing fit and mini-
mizing model complexity. Note that their theoretical properties are guaranteed only when σ2 is known.

Theoretical results are obtained on these estimators in the continuous observations context under
the asymptotic regime T → ∞, N → ∞, see (Dion and Genon-Catalot, 2015; Delattre et al., 2013). For
discrete observations, similar results are obtained in the high frequency context: T = n∆, n → ∞
(∆→ 0). Nevertheless, in practice the points may not be equidistant and the package allows a non-
regular grid. The influence of T is lighter in the parametric strategy. Moreover, asymptotic normality
is obtained under the additional assumption n/N → ∞.

Bayesian parametric approach

For the Bayesian approach we assume similarly to the frequentist parametric estimation method a
Gaussian distribution for φj, with a diagonal covariance matrix Ω = diag(ω2

1 , ω2
2). In this method, we

estimate in the same time the diffusion coefficient σ. The parameters of interest are thus θ = (µ, Ω, σ)
and we want to estimate their posterior distribution p(θ|(Xj(tk))j=1,...,M,k=1,...,N). Let denote X1:M =
(Xj(tk))j=1,...,M,k=1,...,N in the following.

We now introduce prior distributions implemented in mixedsde package for the parameters θ:

µ ∼ N (m, V), V = diag(v)

ω2
i ∼ IG(αω,i, βω,i), i = 1, 2

σ2 ∼ IG(ασ, βσ),

where IG is the Inverse Gamma distribution which is conjugate to the normal likelihood and m, V, αω,i,
βω,i, ασ, βσ are hyperparameters fixed by the user. The case of only one random effect is nested by
setting ω2

1 or ω2
2 equal to zero.

The aim is to calculate the posterior distribution p(θ|X1:M) which is not explicit for the whole
vector of parameters. Therefore, we simulate it through a Gibbs sampler (see e.g., Robert and Casella,
2004). Here, we have a true transition density of both processes that is used for the likelihood, see
Iacus (2008). For a general hierarchical diffusion approach based on the Euler approximation, see
Hermann et al. (2016).

Analogically to the frequentist approach, there is a first step: sample from the full conditional
posterior of the random effects p(φj|(Xj(tk))k=1,...,N , θ), j = 1, . . . , M. This is done by a Metropolis
Hastings (MH) algorithm.

The second step is the estimation of the hierarchical parameters µ and Ω. Full conditional posteriors
p(µ|φ1, . . . , φM, Ω) (resp. p(Ω|φ1, . . . , φM, µ)) are Gaussian (resp. inverse Gamma) and can, for
example, be found in Hermann et al. (2016).

The last step of the Gibbs sampler is sampling from the full conditional posterior of σ2. For the
CIR model, this is also conducted by a MH step. For the OU model, the inverse Gamma distribution is
conjugate to the normal likelihood. The full conditional posterior distribution is given by

σ2|X1:M, φ1, ..., φM ∼

IG

ασ +
MN

2
, βσ +

1
2

M

∑
j=1

N

∑
k=1

β j

1− e−2β j∆k

(
Xj(tk)−

αj

β j
−
(

Xj(tk−1)−
αj

β j

)
e−β j∆k

)2
 .

In the case of one random effect, there is one additional Gibbs sampler step for the fixed effect,
that is also conducted through a MH algorithm.

In the package, the starting values for the Gibbs sampler are set equal to the mean of the prior
distributions. In all the MH algorithms, one each has to choose a proposal density. In the package
mixedsde, we use a normal density for all location parameters with mean equal to the last chain
iteration and a proposal variance that has to be chosen. For the CIR model, the proposal distribution

for σ2 is chosen by
√

σ2 ∼ N (
√

σ2
prev, variance) where σ2

prev is the previous value of σ2. The remaining
question is how to choose the suitable proposal variance. This variance controls the chain dependence
and the acceptance rate. If the variance is small, the acceptance rate is large and the chains gets very
dependent. If the proposal variance is large, only few candidates are accepted with the advantage of
weakly dependent chains. This problem is solved in the package with an adaptive Metropolis-within
Gibbs algorithm (Rosenthal, 2011) using the proposal distribution N (0, e2l) with l the logarithm
of the standard deviation of the increment. This parameter is chosen so that the acceptance rate is
approximately 0.44 which is proposed to be optimal in the Metropolis-within Gibbs sampler (Rosenthal,
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2011). It is proposed to add/subtract an adoption amount δ(n) = min(0.1, n−1/2) to/from t after
every 50th iteration and adapt the proposal variance if the acceptance rate is smaller than 0.3 or larger
than 0.6.

Predictions

In many cases, one is not only interested in parameter estimation but also in the prediction for future
observations. The first step is the prediction of a future random effect φpred. The simulation of a
new random effect is direct for the frequentist parametric approach sampling from N (µ̂, Ω̂). For
the nonparametric approach, first note that f̂h is an estimator given on a discrete grid {x1, . . . , xn},
i.e. a vector of corresponding {p1, . . . , pn} after normalisation. Simulating from the estimator f̂h
can therefore be performed simulating a discrete variable from vector {x1, . . . , xn} with (normalized)
probabilities {p1, . . . , pn}. For the Bayesian approach, a new φpred is sampled from the predictive
distribution p(φpred|X1:M) =

∫
p(φpred|µ, Ω)p(µ, Ω|X1:M) d(µ, Ω) where the posterior of µ and Ω is

approximated by the results of the Gibbs sampler. This distribution is not explicit, and hence we
suggest to sample over a grid through inversion method, equal to the nonparametric case.

Given a new random effect φpred, we are able to simulate predictive trajectories. This is performed
using the transition density p(X(tk)|X(tk−1), φpred, σ2) for the frequentist approach. The starting
points of the process xj are the observed ones. For the Bayesian approach, we implement two
prediction settings. Firstly, analogously to the frequentist approach a new trajectory is simulated using
the transition density p(X(tk)|X(tk−1), φpred, σ2) where φpred is sampled from the MCMC (Markov
chain Monte Carlo) posterior distribution p(φ|X1:M). Secondly, we can calculate the predictive
distribution

p(X(ti)|X1:M) =
∫

p(X(ti)|φpred, σ2)p(φpred, σ2|X1:M) d(φpred, σ2)

in each time point. We can then calculate only the quantiles for a prediction interval or to draw directly
samples from the predictive distribution. For this predictive distribution, we take the starting point
xj = x0 to be the same for all series. If the starting points would vary, this is an additional random
effect whose density has to be estimated. This is not implemented in the estimation procedure and
will, therefore, left out for the prediction.

It is then interesting to compare the new trajectories with the real ones. If the number of new
trajectories is large enough we compute an empirical confidence interval.

Overview of the mixedsde functions

This Section presents an overview of the functions implemented in the package. Illustrations of the
code are given in Section 2.4.

Data

Data is a matrix X of size M × N for M trajectories with N time points. The time points are not
necessarily equidistant but are the same for the M trajectories. These time points are gathered in the
vector times of length N. Real datasets are available on the package, and detailed on Section 2.5.

To lead a simulation study, the function mixedsde.sim allows to generate a list with a M × N
matrix X of M trajectories on the interval [0, T] with N equidistant points (default value 100) and a
vector times with the equidistant times. This function leans on function sde.sim available via package
sde (Iacus, 2006) to simulate SDE. One has to choose: model either OU or CIR; random that fixes the
position and the number of random effects: random = 1 for αj random, random = 2 for β j random
or random = c(1,2) for αj and β j random; σ the diffusion coefficient; invariant, default value 0
means that X0 is 0 (default) or fixed by the user, value 1 means that X0 is generated from the invariant
distribution (see details in the package documentation); density.phi to choose the distribution of the
random effect (see package documentations).

Main function

Main function is mixedsde.fit producing estimation of the random effects and their common density.
Inputs of mixedsde.fit are

• X a M× N matrix containing the trajectories by rows.

• times The vector of observations times.
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Class Freq.fit Bayes.fit
Method out out
Method plot plot
Method – plot2compare
Method print print
Method summary summary
Method pred pred
Method valid valid

Table 1: Summary of the different methods for the two S4-classes Freq.fit and Bayes.fit resulting
of the package mixedsde.

• model The chosen model either OU or CIR.

• random It fixes the position and the number of random effects: random = 1 for αj random, random
= 2 for β j random or random = c(1,2) for αj and β j random.

• estim.method The estimation method: nonparam (see Section 2.2.1), paramML (see Section 2.2.2)
or paramBayes (see Section 2.2.3).

• fixed The value of the fixed effect β (resp. α) when random = 1 (resp. random = 2), default 0.
(Only for the frequentist approaches).

• estim.fix 1 if the fixed effect is estimated, default 0. (Only for the frequentist parametric
approach when random=1 or 2).

• gridf The x-axis grid on which the random effect distribution is computed: we recommend a
fine grid with at least 200 points, default value is a sequence of length 500 starting in 0.8×minj φ̂j

and ending in 1.2×maxj φ̂j. (Only for the frequentist approaches).

• prior The list of prior parameters m,v,alpha.omega,beta.omega,alpha.sigma,
beta.sigma for paramBayes method: Default values are calculated based on the estimations
(Aj)j for the first min(3, dM · 0.1e) series and main estimation is only made with the remaining
bM · 0.9c. (Only for the Bayesian approach).

• nMCMC The length of the Markov chain for paramBayes method. (Only for the Bayesian approach).

Note that for the frequentist approach if there is only one random effect, then the user has the choice:
fix it to a value of the user choice (using: fixed= the value and estim.fix=0) or estimate it through
the package (choosing estim.fix=1. In the following we describe the related methods, proposed in
the package, they are summarized in Table 1.

Outputs

Output of mixedsde.fit is a S4 class called Freq.fit for the frequentist approaches and Bayes.fit
for the Bayesian approach. Results of the estimation procedure are available as a list applying function
out to the Freq.fit (resp. Bayes.fit) object.

Elements of Freq.fit are:

• sigma2 Estimator σ̂2 given in Equation 8 of the diffusion coefficient.

• estimphi Estimator (Aj)j given in Equation 2 of the random effects.

• estimphi.trunc The truncated estimator (Âj)j given in Equation 4 or 5 of the random effects.

• estim.fixed The estimator of the fixed effect if random = 1 or 2, estim.method = paramML;
estim.fix = 1, default 0.

• gridf The x-axis grid on which the random effect distribution is computed.

• estimf The estimator of the density of the random effects (for both paramML method with
Equation 7 and nonparam method with Equation 6).

• cutoff Binary M-vector of binary values indicating the truncated trajectories, default FALSE
when no truncation.

• estimf.trunc The truncated estimation of the density of the random effects.

• mu Estimation of Gaussian mean of the random effects (only for paramML method from Equation
7).

• omega Estimation of Gaussian variance matrix of the random effects (only for paramML method
method from Equation 7).
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• aic and bic AIC and BIC criteria (only for paramML method).

• index Indices of trajectories used for the estimation, excluded are trajectories with Vj = 0 or
Vj = +∞ (one random effect) or det V = +∞ (two random effects), trajectories containing
negative values for CIR model.

Elements of Bayes.fit are:

• sigma2 Trace of the Markov chain simulated from the posterior of σ2.

• mu Trace of the Markov chain simulated from the posterior of µ .

• omega Trace of the Markov chain simulated from the posterior of ω2.

• alpha Trace of the Markov chain simulated from the posterior of αj, nMCMC×M matrix if α is
random effect, nMCMC×1 otherwise.

• beta Trace of the Markov chain simulated from the posterior of β j, nMCMC×M matrix if β is
random effect, nMCMC×1 otherwise.

• burnIn A proposal for the burn-in phase.

• thinning A proposal for the thin rate.

• ind.4.prior The indices used for the prior parameter calculation, M + 1 if prior parameters
were specified.

Outputs burnIn and thinning are only proposals for a burn-in phase and a thin rate. The proposed
burnIn is calculated by dividing the Markov chains into 10 blocks and calculate the 95% credibility
intervals and the respective mean. Starting in the first one, the block is taken as burn-in as long as the
mean of the current block is not in the credibility interval of the following block or vice versa. The
thinning rate is proposed by the first lag which leads to a chain autocorrelation of less than 80%. It is
not easy to automate these choices, so it is highly recommended by the authors to plot the chains and
look at the mixing property (the chain should not be piecewise constant).

Command plot() applied to a Freq.fit object produces a frequencies histogram of (Aj(T))j (one
or two according to the number of random effects) with the estimated density (red curve) and the
truncated estimator if available (dotted grey red curve) and a quantile-quantile graph with the quantiles
of the Aj’s versus the quantiles of a normal sample of the same length, with the same empirical mean
and standard deviation. This illustrates the normality of the sample. Applying this function to the
nonparametric results indicates if the Gaussian assumption of the parametric approach is appropriate.
When plot() is applied to a Bayes.fit object, one can choose four different options, named style.
The default value is chains, it plots the Markov chains for the different parameter values. acf leads to
the corresponding autocorrelation functions, density to the approximated densities for each parameter
and cred.int leads to the credibility intervals of the random parameters with the input parameter
level with default 0.05. For all options, with the input parameter reduced = TRUE, the burn-in period
is excluded and a thinning rate is taken, default is FALSE. There is also a possibility to include the prior
means in the plots by lines with plot.priorMean = TRUE, default is FALSE.

In the Bayesian estimation the influence of prior parameters is interesting, thus for the Bayes.fit
object, there is a second plot method, named plot2compare where three estimation objects can be
compared. For reasons of clarity, only the densities are compared, with the default reduced = TRUE.
Here, there is also a possibility to include true.values, a list of the true parameters for the comparison
in a simulation example.

Command summary() applied to a Freq.fit object computes the kurtosis and the skewness of the
distribution, σ̂2, the empirical mean and standard deviation computed from the estimators (Aj)j, µ̂,
Ω̂ (and the fixed effect α̂ or β̂), AIC, BIC criteria for the frequentist MLE method. When applied to a
Bayes.fit object, it computes means and credibility interval (default level 95%) for each parameter
(µ, Ω, σ, α, β). Here, there is also a possibility to choose the burn-in and the thinning rate manually by
the input parameters burnIn and thinning.

Command print() applied to a Freq.fit object returns the use or not of the cutoff and the vector
of excluded trajectories. When applied to a Bayes.fit object, it returns the acceptance rates of the
MCMC procedure.

Validation methods

Validation of a mixed model, obtained with function valid, is an individual validation. Indeed,
the validation of estimation of trajectory number j is obtained comparing it to M new trajectories
simulated with parameters (α, β) fixed to the estimator Aj (or Âj) in the frequentist approaches and to
the posterior means in the Bayesian approach. Inputs of the function are
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• Freq.fit or Bayes.fit object.

• plot.valid 1 to generate a figure (default value is 1).

• numj A specific individual trajectory to validate (default: randomly chosen between 1 and M).

• Mrep The number of simulated trajectories (default value 100).

Each observation Xnumj(tk) is compared with the Mrep simulated values (X1
numj(tk), . . . , XMrep

numj(tk)),
for k = 1, . . . , N.

Outputs are the list of the (X1
numj(tk), . . . , XMrep

numj(tk)). If plot.valid=1, two plots are produced.
Left: plot of the Mrep new trajectories (black) and the true trajectory number numj (in grey/red).
Right: quantile-quantile plot of the quantiles of a uniform distribution and the N quantiles obtained

comparing Xnumj(tk) with the Mrep simulated values (X1
numj(tk), . . . , XMrep

numj(tk)), for k = 1, . . . , N.

This is an empirical method. The recent work Kuelbs and Zinn (2015) on depth and quantile
regions for stochastic processes (see for example Zuo and Serfling (2000) for depth functions definitions)
should provide the theoretical context for a more extensive study. This could be done in further works.

Prediction methods

Prediction (see Section 2.2.4) is implemented in function pred. Main inputs of the function are

• Freq.fit or Bayes.fit object.

• invariant TRUE if the new trajectories are simulated according to the invariant distribution.

• level The level of the empiric prediction intervals (default 0.05).

• plot.pred TRUE to generate a figure (default TRUE).

(and optional plot parameters). Function pred applied to a Freq.fit object returns a list with predicted
random effects phipred, predicted trajectories Xpred and indexes of the corresponding true trajectories
indexpred (see Section 2.2.4 for details of simulation). If plot.pred = TRUE (default) three plots are
produced. Left predicted random effects versus estimated random effects. Middle: true trajectories.
Right predicted trajectories and their empirical 95% prediction intervals (default value level=0.05).

The prediction can also be done from the truncated estimator ̂̂fh based on the Âj given by Equation 5,
if the argument pred.trunc = 1.

Function pred applied to a Bayes.fit object returns a S4 class object Bayes.pred. The first element
of this class is Xpred, which depends on the input parameters. Including the input trajectories
= TRUE, matrix Xpred contains the M drawn trajectories by rows (see first method described for the
Bayesian approach in Section 2.2.4). Default is trajectories = FALSE which leads to the calculation of
the predictive distribution explained in Section 2.2.4. With the input only.interval = TRUE (default),
only the quantiles for the 1- level prediction interval are calculated, stored in qu.l and qu.u. Input
only.interval = FALSE provides additionally Xpred containing sample.length (default 500) samples
from the predictive distribution in each time point of the observations (except the first). In both cases,
with plot.pred = TRUE, two figures are produced. On the left side, the data trajectories are compared
with the prediction intervals and on the right side, the coverage rate is depicted which is stored in
entry coverage.rate, namely the amount of series covered by the prediction intervals for each time
point. The last class entry estim stores the results from the Bayes.fit object in a list. Other input
parameters are burnIn and thinning which allow for the choice of other burn-in phase and thinning
rate than proposed in the Bayes.fit object.

For the Bayes.pred class object, two plot methods are available. plot() repeats the figures that are
created with the plot.pred = TRUE command in the pred method. plot2compare() compares up to
three Bayes.pred objects, where in a first figure the prediction intervals are presented in colors black,
red and green and the observed data series in grey and in a second figure the corresponding coverage
rates are compared. With the input parameter names a vector of characters to be written in a legend
can be indicated.

Note that to avoid over-fitting, we recommend to use only 2/3 of the data for the estimation of the
density f and the last third for the prediction.

Package mixedsde through simulated examples

In this part two simulated examples are given to illustrate the strengths of each proposed method.
Two datasets are simulated according to:
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1. CIR model with one non-Gaussian random effect β j ∼ Γ(1.8, 0.8), αj = 1, T = 50, M = 200,
N = 1000:

R> model1 <- "CIR"; random1 <- 2; fixed1 <- 1; sigma1 <- 0.1 ; M1 <- 200;
R> T1 <- 50; N1 <- 1000; X01 <- 1; density.phi1 <- "gamma";
+ param1 <- c(1.8,0.8);

R> simu1 <- mixedsde.sim(M = M1, T = T1, N = N1, model = model1,
+ random =random1, fixed = fixed1, density.phi = density.phi1,
+ param = param1, sigma = sigma1, X0 = X01)
R> X1<- simu1$X; phi1 <- simu1$phi; times1 <-simu1$times

2. OU model with one Gaussian random effect αj ∼ N (3, 0.52), β j = 5, T = 1, M = 50, N = 500:

R> model2 <- "OU"; random2 <- 1; sigma2 <- 0.1; fixed2 <- 5; M2 <- 50;
+ T2 <- 1;N2 <- 500; X02 <- 0; density.phi2 <- "normal";
+ param2 <- c(3, 0.5);
R> simu2 <- mixedsde.sim(M = M2, T = T2, N = N2, model = model2,
+ random = random2, fixed = fixed2, density.phi = density.phi2,
+ param = param2, sigma = sigma2, X0 = X02)
R> X2 <- simu2$X; phi2 <- simu2$phi; times2 <- simu2$times

Example 1 has non Gaussian random effect, the nonparametric method is the most appropriate
approach. Example 2 has T small and Gaussian random effect, nonparametric method is therefore not
the most appropriate approach. Parametric methods should performed better than the non-parametric
one as the number of trajectories M2 = 50 is not large (and only 2/3 are used for the estimation of
f ). A small number of trajectories is especially a good framework to apply the Bayesian estimation
method.

Frequentist nonparametric estimation

We illustrate nonparametric estimation on Example 1. Code for the nonparametric estimation is

R> estim.method <- 'nonparam'
R> estim_nonparam <- mixedsde.fit(times = times1, X = X1, model = model1,
+ random = random1, fixed = fixed1, estim.method = estim.method)
R> outputsNP <- out(estim_nonparam) # stores the results in a list

Summary function provides:

R> summary(estim_nonparam)
[,1] [,2]

[1,] "sigma" "0.099868"

Random effect:
[,1]

empiric mean 1.355403
empiric sd 0.939410
kurtosis 3.695013
skewness 1.083577

As expected kurtosis is larger than 3 and skewness is positive which means that the distribution is
right-tail. Figure 1 is provided by

R> plot(estim_nonparam)

Nonparametric estimation fits well the histogram of (Aj) (left plot) and we see that the random
effects are non-Gaussian (right plot). Because we are working on simulated data, we can compare the
estimations with the true random effects and the true f :

# Comparison of the true f and its estimation
R> gridf1 <- outputsNP$gridf
# True density function
R> f1 <- dgamma(gridf1, shape = param1[1], scale = param1[2])
# Nonparametric estimated density function
R> fhat <- outputsNP$estimf
R> plot(gridf1, f1, type='l', lwd=2, xlab='', ylab='')
R> lines(gridf1, fhat, col='red')

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 11

Density of the random effect
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Figure 1: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation. Left:
histogram of estimated random effects (Aj) and nonparametric estimation of f . Right: qqplot of (Aj)
versus a Normal sample (true distribution is Gamma).
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Figure 2: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation,
comparison to the truth. Left: estimation f̂ (dotted line) and true density f (plain line). Right:
Estimated random effects Aj versus true random effects φj.

# Comparison of the true random effects and their estimations
# Estimated random effects
R> phihat1 <- outputsNP$estimphi
R> plot(phi1, phihat1, type = "p", pch = 18, xlab='', ylab='')
R> abline(0, 1)

This results in Figure 2. On the left plot, the estimated density (dotted curve) is very close to the true
density f (plain line). The right plot shows that Aj is a good estimation of φj. This confirms that
the nonparametric approach performs well for this settings. Validation of the MSDE is produced by
function valid. The two graphs on the right of Figure 5 are obtained by

R> validationCIR <- valid(estim_nonparam)

Prediction are obtained with pred and similar Figure 6 (not shown) can be obtained with

R> predNPCIR <- pred(estim_nonparam)

Frequentist parametric estimation

We present the parametric estimation on Example 2. The code is

# Parametric estimation
R> estim.method<-'paramML';
R> estim_param <- mixedsde.fit(times2, X = X2, model = model2,
+ random = random2, estim.fix = 1, estim.method = 'paramML' )
# Store the results in a list:
R> outputsP <- out(estim_param)

Summary function provides:

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 12

Density of the random effect
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Figure 3: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric estima-
tion. Left: histogram of the (Aj) and Gaussian parametric estimation of f . Right parametric qqplot of
(Aj) versus a Normal sample.

R> summary(estim_param)
[,1] [,2]

[1,] "sigma" "0.109144"

Random and fixed effects:
[,1]

estim.fixed 4.914685
empiric mean 2.955582
MLE mean 2.955512
empiric sd 0.536956
MLE sd 0.519955
kurtosis 2.472399
skewness 0.427223

[,1] [,2]
[1,] "BIC" "-3780.383134"
[2,] "AIC" "-3795.335809"

Kurtosis is, as expected, close to 3 and skewness close to 0. The diffusion parameter σ is well estimated
(true value 0.1). The fixed effect is also well estimated (true value 5). Empirical mean and standard
deviations are very close to MLE (estimator of the mean is the same in that case) and close to the real
ones (3, 0.5). Then, Figure 3 (left and right) is provided by

R> plot(estim_param)

The small number of observations makes the estimation harder, nevertheless here, the histogram
seems pretty well fitted by the parametrically estimated density. Because we are working on simulated
data, we can compare the estimations with the true random effects and the true f :

# Comparison of the true f and its estimation
R> gridf2 <- outputsP$gridf
# True density
R> f2 <- dnorm(gridf2, param2[1], param2[2])
# Parametric estimated density
R> fhat_param <- outputsP$estimf
R> plot(gridf2, f2, type = 'l', lwd = 2, xlab = '', ylab = '')
R> lines(gridf2, fhat_param, col='red', lty = 2, lwd = 2)
# Comparison of the true random effects and their estimations
# Estimated random effects
R> phihat2 <- outputsP$estimphi
R> plot(phi2, phihat2, type="p", pch=18, xlab='', ylab='')
R> abline(0, 1)

This results in Figure 4. It shows that estimation of the density is satisfactory (left) and estimation of
the random effects is very good (right). Validation of the MSDE is produced by function valid. For
example the individual validation of the first trajectory is plotted Figure 5, the first two graphs on the
left, using

R> validationOU <- valid(estim_param)
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Figure 4: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric estima-
tion, comparison to the truth. Left: parametric estimation N (µ̂, ω̂2) (dotted line) and true f (plain
line). Right: true φj versus estimated random effects Aj.

Figure 5: Simulated examples frequentist approaches, outputs of valid method. Two top plots:
frequentist nonparametric estimation on example 1 (CIR process). Two bottom plots: frequentist
parametric estimation on example 2 (OU process).

This illustrates the good estimation of the random effects: a beam of trajectories with the true one in
the middle and the lining up of the quantiles.

Finally, we can predict some trajectories using pred. Predictions are shown on Figure 6, as a result
of

R> predPOU <- pred(estim_param)

Beam of 32 predicted trajectories (right) is close to the true ones (middle). The lining up of
the predicted random effects versus the estimated random effects (left) shows the goodness of the
prediction from the estimated density, thus of the estimation of the density.

Bayesian estimation

Bayesian method is applied to Example 2. Priors are constructed from the true values, but default
values can be used.

R> prior2 <- list( m = c(param2[1], fixed2), v = c(param2[1], fixed2),
+ alpha.omega = 11, beta.omega = param2[2] ^ 2 * 10, alpha.sigma = 10,
+ beta.sigma = sigma2 ^ 2 * 9)
R> estim.method <- 'paramBayes'
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Figure 6: Simulated example 2 (OU with one Gaussian random effect), frequentist parametric estima-
tion. Left: predicted random effects versus estimated random effects. Middle: true trajectories. Right:
predicted trajectories in black and 95% prediction interval in grey (green).

Figure 7: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation. Markov
chains of µ1, β, ω2

1 and σ2.

R> estim_bayes <- mixedsde.fit(times = times2, X = X2, model = 'OU',
+ random = random2, estim.method = estim.method, prior = prior2, nMCMC = 10000)
R> outputsBayes <- out(estim_bayes)

Figure 7 is produced by

R> plot(estim_bayes)

Traces of the Markov chains of µ1, β, ω2
1 and σ are plotted, showing that all chains converge and have

the correct location. Command print() yields acceptance rates of the MH algorithm:

R> print(estim_bayes)

acceptance rates for random effect:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5569 0.5646 0.5676 0.5682 0.5718 0.5805

acceptance rate for fixed effect: 0.4248

The fixed effect β has a small acceptance rate, explaining the dependent chain (Figure 7 top right). This
is due to a very sharp likelihood because of the large amount of observations (N ·M) in comparison to
the random effect (N).
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Figure 8: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation. Left:
predicted trajectories in black and 95% prediction interval in grey (green). Right: coverage rates:
amount of observed values covered by the prediction intervals.

Predictions in the Bayesian framework and the corresponding Figure 8 is obtained by

R> pred.result <- pred(estim_bayes)

Figure 8 shows the beam of simulated data trajectories together with the 95% prediction interval.
Coverage rates are shown on the right plot and we see that the intervals hold the level.

Package mixedsde through a real data example

A real dataset is available (neuronal.data.rda) through lists of a matrix X and a vector times. We detail
below the analysis of this dataset, following the next steps: run the two random effects model with
both the parametric and nonparametric procedure; choose the number of random effects depending
on the variability of the estimators (Aj,1, Aj,2), on the shape of f̂h and the variance Ω̂.

These data are available thanks to Rune Berg and Jufang He. Details on data acquisition can be
found in Lansky et al. (2006).

Neuronal data

Neurons are the basement of nervous system and each neuron is connected with around 1000 other
neurons. They are communicating through emission of electrical signal. We focus on the dynamic
of the neuron membrane potential between two spikes emission measured in volts as the difference
of ions concentration between the exterior and the interior of the cell. Data are obtained from one
single neuron of a pig. Data are composed of M = 240 membrane potential trajectories with N = 2000
equidistant observation times. Time step is δ = 0.00015 [s] and observation time is T = 0.3 [s]. Data
are uploaded using data("neuronal.data"). They are presented on Figure 9.

These data have been previously analysed with a Ornstein-Uhlenbeck model with one additive
random effect (αj): Picchini et al. (2008) and Picchini et al. (2010) use parametric methods assuming the
normality of the random effect, and Dion (2014) with a nonparametric method. Here αj represents the
local average input that the neuron receives after the jth spike. The initial voltage (the value following
a spike) is assumed to be equal to the resting potential and set to zero: xj = 0. Parameter β j (non
negative) is the time constant of the neuron. It was fixed in Picchini et al. (2008) and Picchini et al.
(2010).

In this new analysis, we assume that both αj and β j may change from one trajectory to another
because of other neurons or environment influence, for example. Indeed, the form of each trajectory
lead us to think that this is the good model: each one has its mean-reverting value and its own speed
to reach this value. There is no reason to assume that the speed is always the same, but looking at the
trajectories the stationary state seems to be reached nearly at the same time, thus the second random
effect should have a small variance.

Fitting with MSDEs

Our goal is also to compare the two models OU and CIR, both with two random effects, and two
approaches: the nonparametric density estimation and the parametric density estimation. Let us
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Figure 9: Neuronal data.

remark that for the CIR model the algorithm removes two trajectories: 168 and 224, because they
contain negatives values. For two random effects the command is

R> estim <- mixedsde.fit(times, X = X, model = model, random = c(1,2),
+ estim.method = estim.method)

and they can be found in the help data file (command ?neuronal.data). We first apply the two fre-

quentist approaches on models with two random effects. Kurtosis and skewness of the distribution of
the estimation Aj of the random effects given in Table 2 are not closed to a symmetric distribution. The
bidimensional density of (αj, β j) is estimated for both models with the parametric and nonparametric
methods running function mixedsde.fit. Figure 10 gives the 4 estimated marginals. The blue (black) is
for the OU model and the green (grey) for the CIR model. The dotted lines are the estimations from the
parametric method, the plain lines for the nonparametric estimation. Parametric and nonparametric
estimators are close, except for the second random effect with the OU model. Indeed, parametric
estimation produces a small variance for the second random effect, suggesting it could be fixed. Would
this assumption be valid, it explains the difference with the nonparametric estimator which is not
stable if the variance is to small. Estimation of σ is σ̂ = 0.0136 for the OU model and σ̂ = 0.163 for the
CIR model.

To compare with previous literature results, we focus on the OU model. To select the number and
the position of the random effects, we run the code with one random effect, additive or multiplicative:
random = 1 or random = 2, for both models estimating the common fixed parameter with the
parametric frequentist strategy. Estimators of the means µ1, µ2 and standard deviations ω1, ω2 are
given in Table 3. Criteria AIC and BIC are also given in Table 3. From this table, we can see that models
random = 1 and random = c(1,2) are the best according to the BIC and AIC criteria.

Finally, in Table 4 we compare the BIC and AIC criteria for random = 1 when the value of the fixed
effect is plugged in: the one we obtained in Table 3 and to values obtained in Picchini et al. (2008) and
Picchini et al. (2010). The preferred model is the one minimizing both criteria. Thus, the OU model
with one additive random effect φj = αj and β̂ = 37.22 seems to be the best model to describe these
data. The summary method gives for the kurtosis: 4.55 and for the skewness -0.95. Also σ̂ = 0.0136.
Estimated densities obtained for this model with β̂ = 37.22 are given in Figure 11. The dotted line is
the result of the parametric estimation and the plain line of the nonparametric estimation, plotted on
the histogram of the Aj(T)’s. The nonparametric estimation detects a left tail that is not detected by
the parametric one. Otherwise both estimators are very close.

The OU model with random = 1 is then validated with valid function. Figure 12 illustrates the
result for a random trajectory (number 141): 100 simulated trajectories (black) and true trajectory
(X141, red) (left plot) and quantiles of the true measurement among the 100 simulated points at each
time points versus uniform quantiles. The qq-plot is satisfactory (compared to the graph obtained on
simulated data Figure 5).

Finally some prediction plots are performed (not shown) with the pred method and they confirm
that model OU with random = c(1,2) with the parameters obtain from the parametric estimation,
and the OU model with random = 1 and β̂ = 37.22 produce very close trajectories and could be both
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OU CIR
Aj1 Kurtosis 6.17 11.70

Skewness 0.96 2.32
Aj2 Kurtosis 6.68 7.07

Skewness 0.96 2.32

Table 2: Neuronal data. Kurtosis and skewness estimations for samples (Aj,1)’s and (Aj,2)’s, for OU
and CIR models.

µ1 ω1 µ2 ω2 BIC AIC
random=c(1,2) 0.38 0.06 37.30 1.10 -3229.67 -3247.59
random=2 0.37 - - 37.70 7.47 -3082.36 -3103.40
random=1 0.38 0.06 37.22 - - -3227.47 -3248.51

Table 3: Neuronal data. MLE given by Equation 7, BIC and AIC criteria, for OU model, depending on
the number of random effects (with estim.fix=1 for random = 1 or random = 2).

µ1 ω1 β BIC AIC
β from Picchini 2008 0.27 0.04 25.64 -2971.59 -2980.55
β from Picchini 2010 0.47 0.08 47.00 -3043.89 -3052.86
Previous estimator MLE of β Table 3 0.38 0.06 37.22 -3240.55 -3249.51

Table 4: Neuronal data. Results obtained with random=1 for the OU model, where the value of the
fixed effect β is plugged in.

validated.

We then apply the Bayesian procedure. As already mentioned, for the Bayesian procedure, large
data sets are a problem because of the very long running time. Therefore, we thin the data set by 10.
That means, every 10th data point of the series is used for the estimation and also for the prediction.
Even with this thinning, one estimation with 20000 samples takes half an hour.

Based on the best model selected by the frequentist approach, the OU model with one random
effect φj = αj is fitted. No prior knowledge is available, we therefore leave this information out and let
the algorithm take the first 10%, i.e. 24, series for the calculation of the prior parameter, as described
in Section 2.3.2. Figure 13 plots the Markov chains estimated from the remaining M − 24 = 216
trajectories and show good convergence of the chains. Bayesian point estimations, i.e. posterior means,

are µ̂1 = 0.34, ω̂1 =
√

ω̂2
1 = 0.06, β̂ = 33 and σ̂ =

√
σ̂2 = 0.01. Compared to frequentist estimation

(Table 4), we notice that these results are a compromise between Picchini et al. (2010) and frequentist
estimation.

In Figure 14, we can see a comparison of the prediction results for all three cases, α, β or both
being random effects. The black and the green lines are very similar, which means, that the prediction
intervals are nearly the same for α and both parameters being random effects. This confirms the
frequentist conclusion of Table 3. Therefore, it could be enough to treat α as random and β as fixed
effect.

Discussion

In this paper we illustrate the functionality of the package mixedsde for inference of stochastic
differential equations with random and/or fixed effects. This package, and mainly the function
misedsde.fit, can be used to choose the best model to fit some data. It allows to compare two
models: OU or CIR with one or two random effects. The three estimation methods can be used to
help the decision maker. Nevertheless each method can be more appropriate to a specific situation,
as explained before: the Bayesian method is recommended for a small number of observations, the
frequentist nonparametric is a good tool with two random effects and no prior available. In particular
the frequentist parametric proposes for a large sample, an estimation of the fixed effect and of the
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Figure 10: Neuronal data. Frequentist estimated marginals of the bidimensionnal density of the
random effects obtained from 4 estimators. Left: αj’s density, right: β j’s density. CIR model in green
(grey), OU in blue (black). Nonparametric in plain line, parametric in dotted line.
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Figure 11: Neuronal data, OU model, α random, β fixed to the estimator obtained by the maximum
likelihood estimator. Histogram of the Aj’s estimators of the φj = αj. Estimator of the density f :
N (µ, ω2) parametric estimation in blue (black) dotted line, non-parametric estimation blue (black)
plain line.

Figure 12: Neuronal data, OU model, α random, β fixed, validation of the frequentist approaches.
Individual validation of trajectory 232. Left: 100 simulated trajectories in black and true trajectory (Xj)
in grey (red). Right: quantiles of the true measurement among the 100 simulated points at each time
points versus uniform quantiles.

parameters of the Gaussian distribution for the fixed effect when there is only one. A neuronal dataset
is studied with the three methods. Furthermore, other real data should be investigated with the
present package.

Recently, the parameter estimation method developed in Delattre et al. (2016) for random effects
distributed according to a Gaussian mixture distribution has been implemented in the R package
MseParEst (Delattre and Dion, 2016).
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Figure 13: Neuronal data, OU model, α random, β fixed, Bayesian estimation. Reduced Markov chains
(less the burn-in phase and the thinning rate).
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Figure 14: Neuronal data. Bayesian prediction results using the OU model, left: pointwise 95%
prediction intervals and data series, right: coverage rates, which means the amount of observed values
covered by the prediction intervals.
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Appendix

When there is one random effect, what is the likelihood function and the MLE of the fixed effect?

Assume that we are in the case of random = 1, thus the process is

dXj(t) = (α− φjXj(t))dt + σa(Xj(t))dWj(t).

Let us compute the log-likelihood function when φj = ϕ fixed. We omit the subscript j in the following.
We use the same notation as for random=c(1,2), where V = (Vk,`)k,`∈{1,2} is a symmetric matrix size
2× 2. We have :

log L(X, α, ϕ) =
∫ T

0

b(X(s), ϕ)

σ2(X(s))
dX(s)− 1

2

∫ T

0

b2(X(s), ϕ)

σ2(X(s))
ds

= αU1 −
α2

2
V1,1 + ϕ[U2 − αV1,2]−

ϕ2

2
V2,2.

We assume that the random effect is Gaussian with density fξ , and denote ξ = (µ, ω) and θ := (µ, ω, α).
Thus,

L(X, θ) =
∫

exp
(

αU1 −
α2

2
V1,1 + ϕ[U2 − αV1,2]−

ϕ2

2
V2,2

)
fξ(ϕ)dϕ =

∫
exp(E(ϕ))dϕ.

We find:

E(ϕ) = αU1 −
α2

2
V1,1 −

1
2

[
ϕ2(V2,2 + ω−2)− 2ϕ(U2 − αV1,2 + µω−2)

]
= αU1 −

α2

2
V1,1 −

1
2Σ2 (ϕ−m)2 +

m2

2Σ2 −
1
2

µ2ω−2

with

m =
µ + ω2U2 −ω2V1,2α

1 + ω2V2,2
, Σ2 =

ω2

1 + ω2V2,2
.

Finally after simplification we get:

m2

2Σ2 −
1
2

µ2ω−2 = −1
2
(1 + ω2V2,2)

−1V2,2[µ−V−1
2,2 (U2 − αV1,2)]

2 +
1

2V2,2
(U2 − αV1,2)

2.

Thus for random=1 we get

L(X, θ) =
1√

1 + ω2V2,2

exp

[
αU1 −

α2

2
V1,1 −

V2,2

2(1 + ω2V2,2)
[µ−V−1

2,2 (U2 − αV1,2)]
2 +

(U2 − αV1,2)
2

2V2,2

]
.

Then, when random = 2 the roles of α and ϕ are exchanged. To implement a general formula, we note:
r for random: 1 or 2, and c for the number of the common effect. We denote ψ the fixed effect and we
the get the general formula:

L(X, θ) =
1√

1 + ω2Vr,r
exp

[
ψUc −

ψ2

2
Vc,c −

Vr,r

2(1 + ω2Vr,r)
[µ−V−1

r,r (Ur − ψVc,r)]
2 +

(Ur − ψVr,c)2

2Vr,r

]
.
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