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rollmatch: An R Package for Rolling
Entry Matching
by Kasey Jones, Rob Chew, Allison Witman, Yiyan Liu

Abstract The gold standard of experimental research is the randomized control trial. However,
interventions are often implemented without a randomized control group for practical or ethical
reasons. Propensity score matching (PSM) is a popular method for minimizing the effects of a
randomized experiment from observational data by matching members of a treatment group to similar
candidates that did not receive the intervention. Traditional PSM is not designed for studies that enroll
participants on a rolling basis and does not provide a solution for interventions in which the baseline
and intervention period are undefined in the comparison group. Rolling Entry Matching (REM) is a
new matching method that addresses both issues. REM selects comparison members who are similar
to intervention members with respect to both static (e.g., race) and dynamic (e.g., health conditions)
characteristics. This paper will discuss the key components of REM and introduce the rollmatch R
package.

Introduction

In experimental studies, scientists design research protocols to empirically test their hypotheses of
causal relationships between one or more independent variables and an outcome variable. To isolate
the effects of a treatment while mitigating confounding introduced by allocation or selection bias,
researchers randomly assign treatments whenever possible. In certain scenarios, it is not always
feasible to randomize who receives an intervention, due to cost, coordination, or ethical considerations
(Resnik, 2008). This situation is particularly common in disciplines that study human behavior and
health, including public policy, international development, medicine, and several social sciences
disciplines.

To help address this methodological barrier, researchers have developed quasi-experimental
designs to estimate the causal impact of an intervention where subjects are not randomly assigned
a treatment (Campbell and Stanley (1996); Meyer (1995); Shadish et al. (2001)). Propensity score
matching (Rosenbaum and Rubin (1983); Dehejia and Wahba (2002)) is a popular quasi-experimental
method that attempts to mimic randomization by matching units that received the treatment with
units having similar or identical observable covariates who did not receive treatment. This matching
procedure helps create more meaningful comparisons because variables that might contribute to
individuals receiving the treatment are controlled for. A propensity score, “the conditional probability
of assignment to a particular treatment given a vector of observed covariates" (Rosenbaum and
Rubin, 1983), is used to assess similarities between an individual receiving the treatment and potential
matches. Though historically researchers have used logistic or probit regression to model propensity
scores, machine learning classification methods are becoming attractive alternatives, due to their
ability to deal implicitly with interactions and nonlinearities and empirical evidence supporting their
ability to accurately predict outcomes (Lee et al. (2010); Westreich et al. (2010)).

PSM falls under the larger umbrella of causal inference methods and is used within the Neyman-
Rubin causal modeling framework (Rubin, 1978). Under this framework, obtaining unbiased causal
estimates requires two standard assumptions. First, assignment to treatment must be independent of
potential outcomes. And second, we assume that all treated individuals receive the same treatment
and treatment of one person does not affect the outcome of another.

Rolling Entry Matching

Traditional propensity score matching designs are cross-sectional in nature, matching on covariates
before the intervention and measuring outcomes after the intervention to analyze the effect of a
treatment at a specific point in time. While effective in many situations, this approach inherently
assumes that covariates do not change in a time window relevant for the analysis, or if they do,
that these changes will not also affect the outcome variable. In many areas such as health care and
epidemiology, relevant time-varying covariates are not uncommon and cause difficulties for traditional
matching approaches. Longitudinal settings can also add complexity when exposures or treatments
can vary with time or when the treatment entry date is undefined for the control group (Stuart, 2010).

Rolling entry matching (Witman et al., 2018) is a propensity score matching method designed for
longitudinal or panel studies where participants to be treated are enrolled on a rolling basis, a common

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rollmatch


CONTRIBUTED RESEARCH ARTICLE 244

practice in health care interventions where delaying treatment may impact patient health. We can
use rolling entry matching to retrospectively select comparison group members who are similar to
intervention members with respect to both static characteristics (e.g., race) and dynamic characteristics
that change over time (e.g., health conditions). Incorporating time-varying characteristics into the
matching procedure is important for health care interventions because a participant’s health and
medicinal utilization often predict entry into an intervention.

REM is also effective when there is no intervention start date for the comparison group. For certain
studies, the comparison group never actually receives an intervention. While this is not a problem
for PSM methods in a pre and post setting, matching individuals based on when they could have
started an intervention is complicated in longitudinal settings with non-uniform intervention start
dates. REM address both the rolling entry and missing intervention start date issues.

Typical propensity score methods are not designed to handle rolling entry because the baseline
period for potential comparison individuals needs to be different for each treatment participant. To
illustrate, consider two hypothetical people: (1) Sue, who started taking a prescription (the treatment),
and (2) Jan, who is similar to Sue in static characteristics but does not take this medicine. If Sue started
her pills in March, we might compare Sue and Jan’s data from February. If Sue started her pills in
June, we might compare Sue and Jan’s data from May. This is done because Jan could have started
taking pills in any month. REM helps in making these comparisons by turning a single comparison
individual into multiple psuedo-comparison individuals, one for each unique intervention period
occurring in the dataset.

Rolling entry matching requires a quasi-panel dataset and is performed in three phases. The
quasi-panel dataset should consist of all available data for both treatment and control subjects and
should be longitudinal.

1. Reduce Data: The quasi-panel dataset is reduced based on two specifications. First, all treatment
observations are filtered to observations whose current time period equals the treatments entry
period minus some value. For example, if Sue was treated in May and we want to look back
1 time period, we would filter to Sue’s data from April. This value is called lookback. And
second, after filtering treatment observations, we filter the control observations to those who
share a time period with any treatment individual. Continuing our example, we would keep all
control data with a time value equal to April.
The lookback value has a default value of 1, as researchers usually consider only the time period
directly before entering the study (i.e. lookback = 1). In certain studies, researchers would want
the lookback to be greater than one. For example, researchers could find participants that will
begin a new diet in 4 weeks. Their health conditions may change between the announcement
and the official beginning of the treatment; lookback would be set to four.

2. Calculate Propensity Scores: Propensity scores are calculated for all data left after the reduction
step.

3. Find Matches: Individuals are matched based on their propensity scores and entry period
through a matching algorithm developed specifically for REM (see Matching algorithm). When
a match is created, the control observation is assigned the intervention start date of the treatment
observation.

Rolling entry matching is one of several matching methods used to select a comparison group for
treatments that occur on a rolling basis, including balance risk set matching (Li et al., 2011), stepwise
matching (Yi, 2014), and sequential cohort matching (Seeger et al. (2005); Schneeweiss et al. (2011);
Mack et al. (2013)). In addition, inverse probability propensity score weighting methods, such as
marginal structural models (Robins et al., 2000), have also been suggested to deal with time-varying
covariates. However, despite its importance across a number of different settings, there are few
implementations of longitudinal propensity score methods for R. At the time of writing, the only
packages that natively support longitudinal propensity score methods are (1) the CBPS package, which
implements covariate balancing propensity score for longitudinal settings to be used in conjunction
with marginal structural models (Imai and Ratkovic, 2015); (2) the ipw package, which allows users to
estimate marginal structural models; and (3) the rollmatch package, which implements rolling entry
matching. Of these three, only rollmatch provides an integrated matching approach, as both CBPS
and ipw rely on propensity score weighting.

We now introduce rollmatch, an R package for performing rolling entry matching. In particular,
we will provide an overview of the main functions in rollmatch, a walk-through of the rolling entry
matching algorithm, and commentary on relevant parameter choices such as caliper selection.
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The rollmatch package

The rollmatch package is comprised of three functions.

• reduce_data(): Step 1 of REM - Reduces the input panel dataset

• score_data(): Step 2 of REM - Calculates propensity scores for the reduced data. This function
is not required if users want to develop their own propensity score models

• rollmatch(): Step 3 of REM - Performs the matching algorithm and produces output

rollmatch example:

library(rollmatch)
data(package = "rollmatch", "rem_synthdata_small")
reduced_data <- reduce_data(data = rem_synthdata_small, treat = "treat",

tm = "quarter", entry = "entry_q",
id = "indiv_id", lookback = 1)

fm <- as.formula(treat ~ qtr_pmt + yr_pmt + age)
vars <- all.vars(fm)
scored_data <- score_data(reduced_data = reduced_data,

model_type = "logistic", match_on = "logit",
fm = fm, treat = "treat",
tm = "quarter", entry = "entry_q", id = "indiv_id")

output <- rollmatch(scored_data, data=rem_synthdata_small, treat = "treat",
tm = "quarter", entry = "entry_q", id = "indiv_id",
vars = vars, lookback = 1, alpha = .2,
standard_deviation = "average", num_matches = 3,
replacement = TRUE)

Rolling entry matching: a walkthrough

This section describes the operations performed in rollmatch through an illustrative example. Though
some of these operations are hidden from the user, understanding the matching algorithm will help
troubleshoot potential errors and better inform the selection of parameter values. In addition to
discussing steps taken to trim potential matches and calculate propensity scores, special attention is
paid to the specifics of the matching algorithm.

Step 1: Trim the treatment data

We begin with a panel dataset that includes individuals who received an intervention at different time
periods, as well as other individuals that are being considered for selection into the comparison group.
For each individual, we have background variables (e.g., demographics, health conditions, spending
habits, etc.) at each time step, an indicator variable for if the individual was treated, a variable
specifying the time period of the observation, and a time period variable for when the participant
entered the intervention. We let Treat = 1 indicate an individual who had an intervention and Treat
= 0 indicate someone who did not. Finally, we will let lookback = 1.

ID Treat Time Entry Background Variables

X 1 1 2 . . . . . . . . . . . .

X 1 2 2 . . . . . . . . . . . .

X 1 3 2 . . . . . . . . . . . .

Y 1 1 2 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 1: Example dataset of treated observations

In this example, individual X has 3 quarters of data and is part of the treatment group. Since
participant X entered the treatment in time period 2 and lookback = 1, her data from time period
1 will be used for matching with control observations. As REM allows for matching on dynamic

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 246

variables that can change over time, matching individual X on observations prior to the intervention
provides a clean comparison in which we do not need to worry about the influence of the intervention
on the dynamic covariates.

Recall that lookback can be written as entry-time. Rows that do not match entry-time = 1 are
then dropped.

ID Treat Time Entry Background Variables

X 1 1 2 . . . . . . . . . . . .

Y 1 1 2 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Dropping treated observations based on lookback = 1

Step 2: Trim Control data

Let Table 3 represent the control data.

ID Treat Time Background Variables

A 0 1 . . . . . . . . . . . .

A 0 2 . . . . . . . . . . . .

A 0 3 . . . . . . . . . . . .

B 0 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

Table 3: Original control observations

Since rolling entry matching requires that the entry period of any potential comparison observa-
tions be equal to the entry period of a treatment observation, we drop all comparison observations
that do not share a time period with at least one treatment record. Our example treatment observation
data only has individuals that enter the intervention at time periods 2 and 3. Therefore, we only look
at control observations whose time is equal to 1 or 2.

ID Treat Time Background Variables

A 0 1 . . . . . . . . . . . .

A 0 2 . . . . . . . . . . . .

B 0 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4: Control data after dropping observations

Step 3: Calculate propensity scores and absolute differences for all possible matches

Users are allowed to calculate their own propensity scores to use with the rollmatch matching
algorithm, or they can use the scoring function provided in the package. If using score_data(), users
can specify either “logistic” or “probit” regression and the formula for the model (i.e., selecting the
covariates to be used). Once a propensity score has been generated for all observations, we look at
the absolute difference in scores for all possible matches between control and treatment observations.
Recall that in order to be a match, the time period of a control observation must match the time period
of a treatment observation. We have provided Table 5 in full so that we can go into detail about the
matching algorithm.
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Time Treat ID Treat Score Control ID Control Score Difference

1 X 0.95 A 0.16 0.79

1 X 0.95 B 0.42 0.53

1 X 0.95 C 0.61 0.34

1 X 0.95 D 0.32 0.63

1 X 0.95 E 0.15 0.80

1 Y 0.03 A 0.16 0.13

1 Y 0.03 B 0.42 0.39

1 Y 0.03 C 0.61 0.58

1 Y 0.03 D 0.32 0.29

1 Y 0.03 E 0.15 0.12

2 Z 0.65 A 0.63 0.02

2 Z 0.65 B 0.26 0.39

2 Z 0.65 C 0.05 0.60

2 Z 0.65 D 0.57 0.08

2 Z 0.65 E 0.43 0.22

2 Q 0.11 A 0.63 0.52

2 Q 0.11 B 0.26 0.15

2 Q 0.11 C 0.05 0.06

2 Q 0.11 D 0.57 0.46

2 Q 0.11 E 0.43 0.32

Table 5: Calculated absolute differences for all matches from Table 2 and Table 4.

Step 4: Trim the Comparison Pool

Caliper

For the data in Table 5, treatment id X has been compared to control ids A, B, C, D, and E. The lowest
difference value for these five comparisons is .34, which while being the best match available, may
still be too different to provide a high quality match and may bias estimates of the outcome if included
(Lunt, 2013). To limit the potential matches, an alpha value between 0 and 1 can be specified. The
alpha value is a scaling factor that effects which propensity scores are considered. A value closer to
1 allows for a wider range of propensity scores to be considered, while a value close to 0 provides
stricter requirements for matching. The alpha value is multiplied by the pooled standard deviation of
the propensity scores; this final value is called the caliper and is used as a cutoff.

Consequently, if an alpha is specified, there is no guarantee that each treatment ID will receive a
match. As caliper selection can play a large role in selecting potential matches, we have provided Ap-
pendix A: Theorem and Appendix B: Selecting the appropriate pooled standard deviation discussing
caliper selection.

Number of Matches

When running rollmatch(), the user can specify the maximum number of control matches that should
be assigned, when possible, to each treatment observation. If the user sets this to one, and no additional
steps are taken, every single treatment observation will be assigned one control observation, regardless
of the quality of their best-match (assuming there are enough control observations). However, if the
user specifies an alpha value and a caliper is used, there may be some treatment observations that do
not receive a match. As the value of alpha decreases, the likelihood that some treatment observations
do not have a match will rise. If any treatment observations are not matched, their ids are listed in the
output as ids_not_matched.
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Currently, the user can only guarantee that each treatment observation be assigned at least one
match (i.e. by not specifying an alpha). In a future version of rollmatch, the user will be able to specify
the number of matches to attempt to create (num_matches), as well as a minimum number of matches
to create. This would ensure that each treatment observation is matched with some number of control
individuals, regardless of the alpha selected. It would also allow for other treatment observations to
be matched to more observations if enough control individuals are within the caliper.

For simplicity, we will not trim the comparison pool from Table 5 for our example.

Step 5: Assign matches

After the comparison pool has been created and trimmed, treatment and control observations are
matched. Rosenbaum and Rubin (1985) used the following matching rules:

1. Randomly order treatment observations

2. For the first treatment subject, based on the comparison pool find all comparison matches for the
treated observation whose difference is less than the caliper. If no match exists, match treated
observation to control observation with smallest difference

3. From this group, select a match based on the Mahalanobis distance for the background variables

4. Remove the treated and matched observation and repeat steps 2-4 for the next treated observa-
tion

There have already been several R packages released that make use of this original algorithm
while making modifications to the algorithm to fit the specific goal of the package. Packages such as
MatchIt, Matching, and optmatch all offer various matching algorithms for propensity scores.

Rolling entry matching takes a different approach by matching non-participants based on the entry
period for which their data is most similar to their matched participant. Whereas other methods like
sequential cohort matching (Seeger et al., 2005) start from specific cohorts to begin matching (allowing
early cohorts to get the matches that work the best for them without consideration of later cohorts),
rolling entry matching considers all periods when matching non-participants to participants. The
algorithm for rollmatch must be different because control participants are treated as if they could
enter the study at any time. This creates a lot more potential matches per observation. Furthermore,
a control observation could best match multiple treatment observations across multiple quarters of
entry and there must be logic to handle this scenario.

Matching algorithm

Each treated observation is initially assigned to its best-matching control observation based on the
smallest absolute difference between their propensity scores. Recall that the comparison pool only
consists of treatment/control pairs that have already been matched on their entry period. As long
as the control is not the best-match for another treated observation of a different entry quarter, then
the two are matched and the algorithm continues. Recall that any given control individual could
have several data entries (one for each quarter they have data available). It is possible that a control
observation could be matched to two different treatment observations who entered a study in different
time periods. Using Table 5 we have the following matches for iteration one of the algorithm:

Time Treat ID Treat Score Control ID Control Score Difference

1 X 0.95 C 0.61 0.34

1 Y 0.03 E 0.15 0.12

2 Q 0.11 C 0.05 0.06

1 Z 0.65 A 0.63 0.02

Table 6: Possible matches for iteration one

Notice that control individual C has been matched to X in time period 1 and matched to Q in time
period 2. Since the propensity score difference between Q and C is smaller than the difference between
X and C, Q will be matched to C for time period 2, and X will not be matched to any control this round.
If X and Q enrolled in the same quarter, then control C would be matched to both treatments if the
replacement parameter was set to TRUE, indicating matching with replacement is desired. replacement
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Time Treat ID Treat Score Control ID Control Score Difference

1 X .95 C .61 .34

1 Y .03 E .15 .12

1 W .70 C .61 .09

2 Q .11 C .05 .06

Table 7: Alternative possible matches for iteration one

allows for multiple treatments to be assigned the same control observation if the treatments enrolled
in the same quarter. Consider the alternative set of matches in Table 7.

If replacement is TRUE and a control individual is matched to multiple treatment IDs for multiple
quarters, we take the average difference for all treatment IDs in each quarter to make the final decision.
In Table 7, control C is the best match for X and W in time period 1, and the best match for Q in time
period 2. The average difference for X and W is .215 and the average difference for Q is simply .06. In
this case, Control C will only be matched with treatment Q.

After each iteration of assignment, any matched treatment and control observations are removed
from the pool of potential matches and the process is repeated. Once all treatment observations have
been assigned the desired number of matches, or there are no more possible matches remaining, the
process is complete.

An explaination of caliper selection

Rosenbaum and Rubin used the results of Cochran and Rubin (1973) to conclude that under certain
conditions, specific caliper widths could remove a certain percentage of the bias of confounding
variables (Rosenbaum and Rubin, 1985). Let σ2

1 and σ2
2 be the variances of the logit of the propensity

scores (referred to as just variance going forward) for the treated and control groups, and let:

σ =
√
[(σ2

1 + σ2
2 )/2]. (1)

Finally, let our caliper equal α ∗ σ. According to Rosenbaum and Rubin, at different levels of α, we
can remove different levels of bias. Austin (2010) conducted Monte Carlo simulations to verify these
findings. We have outlined the reduction in bias in Table 8 . Note that in this case, the variance for the
treatment and control groups must be equal.

Alpha Rosenbaum and Rubin Austin

.2 99% At least 99.3%

.6 89% 95.2%-99.6%

Table 8: Expected bias reduction at various α levels

The likelihood that the variance of the two groups being equal is unknown, and although Rosen-
baum and Rubin (1985) provided estimates for bias reduction when they are equal, the guidance on
selecting a caliper is minimal. We have left the selection of the caliper width up to the user, but we will
go into further detail about the two parameters effecting the caliper that are included in rollmatch.

The alpha parameter must be 0 or greater. At 0, the trimming function is ignored. For all values
above 0, the dataset of potential control matches is trimmed based on if the difference between scores
is less than α ∗ σ.

The second decision the user can make is on how sigma is calculated. Both Rosenbaum and Rubin,
and Austin use the pooled standard deviation, which we have defined as σ above (Rosenbaum and
Rubin (1983); Austin (2010)). Consider the alternative formula for pooled standard deviation for i
groups:

σ =

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2 + . . . + (ni − 1)σ2

i
(n1 + n2 + . . . + ni)− i

(2)

Let σf 1 be the average pooled standard deviation that our sources have been using so far, and let
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σf 2 be equal to the weighted pooled standard deviation for that we just introduced (for i = 2). These
two calculations are only equal only under specific conditions (see Appendix A: Theorem). If a dataset
has a much larger treatment or control group, or the variances for the two groups propensity scores
are vastly different, the weighted pooled standard deviation may do a better job at selecting a cutoff.

Conclusion

We have presented rollmatch as an R package for performing rolling entry matching. When obser-
vational studies are conducted on a rolling entry basis or when control entry periods do not exist,
rollmatch is an effective package for finding matches between treated and untreated subjects. The
amount of bias introduced by confounding variables can often be reduced by using propensity score
matching. However, rolling entry matching furthers this ability by matching treated individuals to
control individuals as if they were enrolled at the same time. The parameters and options included in
rollmatch create a robust and user friendly package. We hope to continue expanding this package as
further development of rolling entry matching is completed.
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Appendix A: Theorem

Theorem 1. σf 1 is equal to σf 2 if and only if n1 = n2 or σ1 = σ2

Proof. Assume σf 1 and σf 2 are equal. We will show that this is true only when n1 = n2 or σ1 = σ2.

σf 1 = σf 2√
σ2

1 + σ2
2

2
=

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2

Variance’s are positive by nature and the number of samples in each group must be greater than 0.
We can remove the square root.

σ2
1 + σ2

2
2

=
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2

(σ2
1 + σ2

2 )(n1 + n2 − 2) = 2[(n1 − 1) ∗ σ2
1 + (n2 − 1) ∗ σ2

2 ]

σ2
1 ∗ n1 + σ2

1 ∗ n2 + σ2
2 ∗ n1 + σ2

2 ∗ n2 = 2σ2
1 ∗ n1 + 2σ2

2 ∗ n2

σ2
1 ∗ n2 + σ2

2 ∗ n1 = σ2
1 ∗ n1 + σ2

2 ∗ n2

This can be written two ways.

σ2
1 ∗ (n2 − n1) = σ2

2 ∗ (n2 − n1)

n2(σ
2
1 − σ2

2 ) = n1(σ
2
1 − σ2

2 )

Let’s examine these two equations. If n1 6= n2, we can divide (n2 − n1) from both sides of the first
equation, and we end up with σ2

1 = σ2
2 . This implies σ1 = σ2 because variances cannot be negative.

Similarly, if σ1 6= σ2, we can divide (σ2
1 − σ2

2 ) from both sides of the second equation and we find that
n1 = n2. The original equation can only hold if at least one equality holds: n1 = n2 or σ1 = σ2.
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Appendix B: Selecting the appropriate pooled standard deviation

Selection between σf 1 and σf 2 is important when the variances of the treatment and control group are
not equal. Setting α = .2 may not reduce 99% of the bias due to confounding variables if this is true.

Let us examine how different our results are when using different options. We will use the
following parameters:

formula <- as.formula(treat ~ qtr_pmt + yr_pmt + age)
tm = 'quarter'
entry = 'entry_q'
id = 'indiv_id'
lookback = 1
match_on = 'logit'
model_type = 'logistic'

For the smaller synthetic dataset, the variance (of the logit of the propensity score) of our treated
group is .891. While the variance of the untreated group is 4.690. In this case, σf 1 is equal to 1.658 and
σf 2 equals 2.141. The original comparison pool had 15,000 treatment and control comparison. Table 9
shows how the alpha value and choice of sigma limit the number of potential matches.

Table 9: Pooled standard deviation comparisons

Alpha Sigma Comparions Available
.2 σf 1 414
.2 σf 2 516
.6 σf 1 1044
.6 σf 2 1192
1.0 σf 1 1350
1.0 σf 2 1451

We did not do any simulations of our own to determine how much bias could be reduced when
variances are not equal and when the two σ calculations are implemented. Some studies such as Wang
et al. (2013) have used σf 2 in their calculations. However, when they used only a single treatment
group they still assumed equal variances.

To summarize why this is important, if variances among the groups are not equal, the amount of
bias reduced at certain levels of alpha will not be the same as what is suggested by Table 8.
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