The s@ Journal

Volume 11/1, June 2019

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial 4

Contributed Research Articles

Matching with Clustered Data: the CMatching Packagein R 7
Time-Series Clustering in R Using the dtweclust Package. 22
mixedsde: A Package to Fit Mixed Stochastic Differential Equations 44
Indoor Positioning and Fingerprinting: The R Package ipft N Y
What’s for dynr: A Package for Linear and Nonlinear Dynamic Modeling in R. . . . 91
RobustGaSP: Robust Gaussian Stochastic Process Emulationin R112
atable: Create Tables for Clinical Trial Reports137
Identifying and Testing Recursive vs. Interdependent Links in Simultaneous Equation

Models via the SIRE Package e e . . 149
BINCOR: An R package for Estimating the Correlation between Two Unevenly Spa(ed

Time Serieso 0
Optimization Routines for Enforcing One-to-One Matches in Record Linkage Problems 185
MDFS: MultiDimensional Feature Selectionin R198
fclust: An R Package for Fuzzy Clustering.21
Nowcasting: An R Package for Predicting Economic Variables Using Dynamic Factor

Models . .« o o oo s s s .230

Connecting R with D3 for dynamic graphics, to explore multivariate data with tours . 245

SimCorrMix: Simulation of Correlated Data with Multiple Variable Types Including

Continuous and Count Mixture Distributions250
shadow: R Package for Geometric Shadow Calculations in an Urban Environment . . 287
Integration of networks and pathways with StarBioTrek package310

ciuupi: An R package for Computing Confidence Intervals that Utilize Uncertain Prior
Information L0323

ipwErrorY: An R Package for Estimation of Average Treatment Effect with Misclassified

Binary Outcome . . . R . . Ce e 337
optimParallel: An R Packag_)e Providing a Parallel Version of the L-BFGS-B Optlnuza—
tion Method oL oL Lo s 352

Fixed Point Accelerationin R35

SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated

Semi-competing Risks Data - (]
RSSampling: A Pioneering Package for Ranked Set Samphng R L0
swgee: An R Package for Analyzing Longitudinal Data with Response Missingness and
Covariate Measurement Error R R e 416
unival: An FA-based R Package For A%%o%%mg Essential Unidime ns1ondhty Usmg
External Validity Information L. 427

News and Notes

R Foundation News.437
R News. o oo ... 438

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,

http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Norman Matloff, University of California, Davis, USA

Executive editors:
Dianne Cook, Monash University, Australia
Michael Kane, Yale University, USA
John Verzani, City University of New York, USA

Email:
r-journal@R-project.org

R Journal Homepage:
https://journal.r-project.org/

Editorial advisory board:

Roger Bivand, Norwegian School of Economics
Vincent Carey, Harvard Medical School, Boston, USA
Peter Dalgaard, Copenhagen Business School, Denmark
John Fox, McMaster University, Hamilton, Ontario, Canada
Bettina Gruen, Johannes Kepler Universitit Linz, Austria
Kurt Hornik, WU Wirtschaftsuniversitdt Wien, Vienna,
Austria
Torsten Hothorn, University of Zurich, Switzerland
Michael Lawrence, Genentech, USA
Friedrich Leisch, University of Natural Resources and Life
Sciences, Vienna, Austria
Paul Murrell, University of Auckland, New Zealand
Martyn Plummer, International Agency for Research on
Cancer, Lyon, France
Deepayan Sarkar, Indian Statistical Institute, Delhi, India
Heather Turner, University of Warwick, Coventry, UK
Hadley Wickham, RStudio, Houston, Texas, USA

The R Journal is indexed/abstracted by EBSCO and
Thomson Reuters.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
https://journal.r-project.org/

Editorial

by Norm Matloff

The editorial board and I are pleased to present the latst issue of the R Journal.

We apologize that this issue has been so late in publication. As this is my first issue as
Editor-in-Chief, I must personally thank Roger Bivand and John Verzani, the two previous
EiCs, for their guidance in the technical aspects of putting an issue together.

The good news, though, is that publication should be much more timely in the future,
due to improved internal technical documentation and the hiring of the journal’s first-ever
editorial assistants, Stephanie Kobakian and Mitchell O’Hara-Wild. We are thankful to the
R Consortium for a grant supporting the assistants (https://rjpilot.netlify.com).

This issue is chock full of interesting papers, many of them on intriguing, unusual topics.
For those of us whose connection to R goes back to the old S days, it is quite gratifying to
see the wide diversity of application areas in which R has been found productive.

Regular readers of this journal are aware of a change in policy that began January 2017,
under which we are moving away from a paradigm in which a typical article is merely an
extended user’s manual for the author’s R package.

To be sure, most articles will continue to be tied to specific packages. But we hope
for broader coverage, and even the package-specific articles should emphasize aspects such
as technical challenges the package needed to overcome, how it compares in features and
performance to similar packages, and so on. As described in the announcement:

Short introductions to contributed R packages that are already available on
CRAN or Bioconductor, and going beyond package vignettes in aiming to provide
broader context and to attract a wider readership than package users. Authors
need to make a strong case for such introductions, based for example on novelty
in implementation and use of R, or the introduction of new data structures
representing general architectures that invite re-use.

Clearly, there is some subjectivity in assessing these criteria, and views will vary from
one handling editor to the next. But this is the current aim of the journal, so please keep it
in mind in your submissions.

We wish the journal to further evolve in two more senses:

e In 2016, the American Statistical Assocation released a dramatic policy statement,
seriously questioning the general usefulness and propriety of p-values. Though the
statement did not call for a ban on the practice, it did have a strong theme that
p-values should be used more carefully and less often. Many of us, of course, had
been advocating a move away from p-values for years. We wish authors of future
submissions to the journal to be mindful of the ASA policy statement. We hope for
reduced emphasis on hypothesis testing, and in articles that do include testing, proper
consideration of power calculation.

o In the interest of reproducibility—a requirement already imposed by the journal on
article submissions—we will require that any real datasets used as examples in an
article must be provided. Note that this will mean that datasets with privacy issues or
datasets of extremely large size should not be used in an article.

Finally, we note our deep appreciation for the anonymous reviewers. A journal is only as
good as its reviewers, and most reviews are quite thoughtful and useful. If a handling editor
solicits your review for a paper, please make some time for it. And if you must decline the
request, a reply to that effect would be quite helpful; don’t just discard the editor’s e-mail
message. The handling editors are quite busy, and it is unfair to both them and the authors
to have the editors wait until they must conclude you will not reply, causing unnecessary
delay.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://rjpilot.netlify.com

Bibliography

R. Wasserstein and N. Lazar. The ASA’s Statement on p-Values: context, process, and
purpose. The American Statistician, 85(15):129-133, 2016. [p165]

Norm Matloff

Dept. of Computer Science
University of California, Davis
Davis, CA 95616

USA matloff@cs.ucdavis.edu

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:matloff@cs.ucdavis.edu

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Matching with Clustered Data: the
CMatching Package in R

by Massimo Cannas and Bruno Arpino

Abstract Matching is a well known technique to balance covariates distribution between treated
and control units in non-experimental studies. In many fields, clustered data are a very common
occurrence in the analysis of observational data and the clustering can add potentially interesting
information. Matching algorithms should be adapted to properly exploit the hierarchical structure.
In this article we present the CMatching package implementing matching algorithms for clustered
data. The package provides functions for obtaining a matched dataset along with estimates of most
common parameters of interest and model-based standard errors. A propensity score matching
analysis, relating math proficiency with homework completion for students belonging to different
schools (based on the NELS-88 data), illustrates in detail the use of the algorithms.

Background

Causal inference with observational data usually requires a preliminary stage of analysis corresponding
to the design stage of an experimental study. The aim of this preliminary stage is to reduce
the imbalance in covariates distribution across treated and untreated units due the non-random
assignment of treatment before estimating the parameters of interest. Matching estimators are widely
used for this task (Stuart, 2010). Matching can be done directly on the covariates (multivariate
matching) or on the propensity score (Rosenbaum and Rubin, 1983). The latter is defined as the
probability of the treatment given the covariates value and it has a central role for the estimation
of causal effects. In fact, the propensity score is a one dimensional summary of the covariates and
thus it mitigates the difficulty of matching observations in high dimensional spaces. Propensity
score methods have flourished and several techniques are now well established both in theory and in
practice, including stratification on the propensity score, propensity score weighting (PSW), and
propensity score matching (PSM).

Whilst the implementation of matching techniques with unstructured data has became a standard
tool for researchers in several fields (Imbens and Rubin, 2016), the increasing availability of clustered
(nested, hierarchical) observational data poses new challenges. In a clustered observational study
individuals are partitioned into clusters and the treatment is non-randomly assigned in each cluster so
that confounders may exist both at the individual and at the cluster level. Note that this framework
is different from clustered observational data where a treatment is non-randomly assigned for all
units in the cluster, for which an optimal matching strategy has been suggested by Zubizarreta
and Keele (2017). Such nested data structures are ubiquitous in the health and social sciences
where patients are naturally clustered in hospitals and students in schools, just to make two notable
examples. If relevant confounders are observed at both levels then a standard analysis, adjusting for
all confounders, seems reasonable. However, when only the cluster label — but not the cluster level
variables — is observed there is not a straightforward strategy to exploit the information on the
clustering. Intuitively, the researcher having a strong belief on the importance of the cluster level
confounders may adopt a 'within-cluster’ matching strategy. On the other extreme, a researcher may
decide to ignore the clustering by using only the pooled data. It is important to note that this pooling
strategy implicitly assumes that cluster level variables are not important confounders. Indeed, there
have been a few proposals to adapt PSW and PSM to clustered data, see Cafri et al. (2018) for a
review. Li et al. (2013) proposed several propensity score weighting algorithms for clustered data
showing, both analytically and by simulation, that they reduce the bias of causal effects estimators
when "clusters matter," that is, when cluster level covariates are important confounders. In the
PSM context, Arpino and Mealli (2011) proposed to account for the clustering in the estimation of
the propensity score via multilevel models. Recently, Rickles and Seltzer (2014) and Arpino and
Cannas (2016) proposed caliper matching algorithms to perform PSM with clustered data. As we
will discuss shortly, these algorithms can be used not only for PSM but also in the more general
context of multivariate matching,.

In the remaining of this paper, after reviewing the basic ideas underlying matching estimators,
we briefly describe the available packages for matching in the R environment. Then, we describe the
algorithms for matching with clustered data proposed by Arpino and Cannas (2016) and we present
the package CMatching implementing these algorithms. The applicability of these algorithms is very
broad and refers to all situations where cluster-level data are present (in medicine, epidemiology,
economics, etc.). A section is devoted to illustrate the use of the package on data about students
and schools, which is a common significant occurrence of clustered data.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=CMatching

CONTRIBUTED RESEARCH ARTICLES

Packages for matching unstructured data in R

A list of the most important packages for matching available for R users is shown in Table 1. The
Matching package, which is required to run CMatching, is a remarkably complete package offering
several matching options. Matching implements many greedy matching algorithms including genetic
matching (Diamond and Sekhon, 2013). It also contains a general MatchBalance function to measure
pre- and post-matching balance with a large suite of diagnostics. As for optimal matching, there are
dedicated packages like designmatch and optmatch. The latter can also be called from MatchIT, a
general purpose package implementing also the Coarsened Exact Matching approach of lacus et al.
(2011). Full matching is a particular form of optimal matching implemented by quickmatch with
several custom options.

Package Description Reference

Matching Greedy matching and balance analysis Sekhon (2011)

MatchIT Greedy matching and balance analysis Tacus et al. (2011)
optmatch Optimal matching Hansen and Klopfer (2006)
quickmatch Generalized full matching Savje et al. (2018)
designmatch Optimal matching and designs Zubizarreta et al. (2018)

Table 1: General purpose packages available from CRAN implementing matching algorithms.
The list is not exhaustive as there are several packages covering specialized matching
routines: a list can be found at http://www.biostat.jhsph.edu/ estuart/propensityscore-
software.html.

At the time of writing none of the packages described above offers specific routines for clustered
data. The CMatching package fills this important gap implementing the algorithms for matching
clustered data described in the next section.

Matching clustered data

Let us consider a clustered data structure D = {y;;,x;,t;5}, %= 1,---n;, j=1,---J. For
observation ¢ in cluster j we observe a vector of covariates X and a binary variable T specifying
the treatment status of each observation. Here n = > n; is the total number of observations and J
is the number of clusters in the data. We observe also a response variable Y whose average value
we are willing to compare across treated and untreated units. A matching algorithm assigns a
(possibly empty) subset of control units to each treated unit. The assignment is made with the aim
of minimizing a loss function, typically expressed in terms of covariates distance between treated
and untreated units. Matching algorithms can be classified as greedy or optimal depending whether
the cost function is minimized locally or globally, respectively. Optimal matching algorithms are not
affected by the order of the units being matched so they can reach the global optimum, but they are
typically more computer-intensive than greedy algorithms proceedings step by step. To bound the
possibility of bad matches in greedy matching, it is customary to define a maximum distance for
two units to be matched, i.e., a caliper, which is usually expressed in standard deviation units of the
covariates (or of the propensity score). one covariate.

A greedy matching procedure can then be articulated in the following steps:

1. fix the caliper;

2. match each treated with control unit(s) at minimum covariates distance (provided that distance
< caliper);

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Matching
https://CRAN.R-project.org/package=designmatch
https://CRAN.R-project.org/package=optmatch
https://CRAN.R-project.org/package=MatchIT
https://CRAN.R-project.org/package=quickmatch
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html

CONTRIBUTED RESEARCH ARTICLES

3. measure the residual covariates’ imbalance in the matched dataset and count the number of
unmatched units (drops);

4. carefully consider both the balance and the number of drops: if they are satisfactory then
proceed to the outcome analysis; otherwise stop or revise previous steps.

If matching proves successful in adjusting covariates, the researcher can proceed to outcome
analysis where the causal estimand of interest is estimated from the matched data using a variety
of techniques (Ho et al., 2007). On the other hand, if the procedure gives either an unsatisfactory
balance or an excessive number of unmatched units, the investigator may try to modify some aspects
of the procedure (e.g., the caliper, the way the distance is calculated).

Conceptually, the same procedure can be used also for hierarchical data. Indeed, it is not
atypical to find analysis ignoring the clustering and pooling together all units. A pooling strategy
implicitly assumes that the clustering is not relevant. However, in several cases the clustering
does matter, that is, the researcher can hypothesize or suspect that some important cluster-level
confounders are unobserved. In this case, the information on the cluster labels can be exploited in
at least two ways: i) forcing the matching to be implemented within-cluster only; ii) performing a
preferential within-cluster matching, an intermediate approach between the two extremes of pooled
and within-cluster matching (Arpino and Cannas, 2016). A within-cluster matching can be obtained
by modifying step 2 above in the following way:

2’ match each treated with the control unit(s) in group j at minimum covariate distance (provided
that distance < caliper).

This procedure may result in a large number of unmatched units (drops) so it increases the risk
of substantial bias due to incomplete matching (Rosenbaum and Rubin, 1985), in particular when
the clusters are small. This particular bias arises when a matched subset is not representative of
the original population of treated units because of several non random drops. Even in the absence
of bias due to incomplete matching, a high number of drops reduces the original sample size with
possible negative consequences in terms of higher standard errors.

It is possible to profit as much as possible of the the exact balance of (unobserved) cluster-level
covariates by first matching within clusters and then recovering some unmatched treated units in
a second stage. This leads to the preferential within-cluster matching, which can be obtained by
modifying step 2 above in the following way:

2” a) match each treated with the control units(s) in group j at minimum covariate distance
(distance < caliper);

2”7 b) match each unmatched treated unit from previous step with the control unit(s) at minimum
covariate distance in some group different from j (provided that distance < caliper).

Now consider the outcome variable Y. We can define for each unit potential outcomes Y1, Y0
as the outcome we would observe under assignment to the treatment and control group, respectively
(Holland, 1986). Causal estimands of interest are the Average Treatment effect: ATFE = E[Y1—Y0]
or, more often, the Average Treatment effect on the treated: ATT = TE[Y1 —Y0]. Given that a
unit is either assigned to the treatment or control group it is not possible to directly observe the
individual causal effect on each unit; we have Y =T -Y1+ (1 —T)-Y0. In a randomized study T is
independent of (Y0,Y1) so, for kK = 0,1, we have

E(Yk)=E(Yk|T =k)=E(Y|T =k)

which can be estimated from the observed data. In a observational study, matching can be used to
balance covariates across treated and control units and then the previous relation can be exploited to
impute the unobserved potential outcomes from the matched dataset. In our clustered data context,
after the matched dataset has been created using one of the algorithms above, the ATT and its
standard error can be estimated using a simple regression model:

Yij = a;j + T3 (1)

that is, a linear regression model with clustered standard errors to take into account within-
cluster dependence in the outcome (Arpino and Cannas, 2016). The resulting ATT estimate is
the difference of outcome means across treated and controls, i.e., ATT = mean(Y |T = 1) —
mean(Y | T = 0), computed on the matched data. Standard errors are calculated using the cluster
bootstrapping method for estimating variance-covariance matrices proposed by Cameron et al. (2011)
and implemented in the package multiwayvcov. In general, calculating standard errors for PSM in
clustered observational studies is a difficult problem requiring prudence from the researcher. While
close formulae exist for weighting estimators (Li et al., 2013), standard error estimation after PSM

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=multiwayvcov

CONTRIBUTED RESEARCH ARTICLES

10

matching relies upon approximation (Cafri et al., 2018), modelling assumption (Arpino and Cannas,
2016), or simulation (Rickles and Seltzer, 2014).

Multisets and matching output

In this section we briefly detail the two routines in the CMatching package. Multisets are useful
to compactly describe pseudo code so we recall some definitions and basic properties herein. A
multiset is a pair {U, m} where U is a given set, usually called universe, and m : z — N U {0} is
the multiplicity function assigning each x € U its frequency in U. Both the summation symbol
and union symbols are used to manipulate multisets and they have different meanings: if A and
B are multisets then C = A U B is defined by m¢g(z) = maz(ma(z), mp(x)), while C = A+ B
is defined by mc(z) = ma(x) + mp(x). For example if A = {1,2,2} and B = {1,2,3} then
AuB={1,2,2,3}, A+ B={1,1,2,2,2,3}. In our framework U is the set of observations indexes
and thus m gives information about the number of times a given observation occurred in the matched
dataset. Multisets then allow to naturally represent multiple matches arising from matching with
replacement. When using multiset notation to describe the output of a matching algorithm, we are
implicitly overlooking the fact that the output of a matching algorithm is richer as it also brings out
the pairings, i.e., the associations between matched treated and untreated observations. However,
it can be noted that this pairing is not relevant for calculating common estimates or common
balance measures (e.g., the ATT), as they are invariant to permutations of the labels of the matched
observations.

The routines MatchW and MatchPW

We denote with W; and W; the sets of treated observations matched within clusters and unmatched
within clusters, respectively. In Algorithms 1 and 2, the summation symbol (3]) denotes multiset
sum.

Algorithm 1: within—cluster matching
procedure MatchW (data)
find W; for each i using Match function
M := >, W; # find matched within
mdata := data[M] # extracts matched data
if data contains outcome variable Y:
estimate ATT and sd(m) from model on mdata
else ATT <— sd(m) <— NULL
return mdata, ATT and sd(m)

Algorithm 2: for preferential within—cluster matching
Procedure{MatchPW (data)

find W; and W; for each i using Match function

B := Match(},W; u all controls)

M = Zi W; + B

mdata := data[M] # extracts matched data

if data contains outcome variable Y:

estimate ATT and sd(m) from model on mdata
else ATT <— sd(A/T\T) <— NULL
return mdata, ATT and sd(ﬁ

In the first two lines, common to both algorithms, the Match function is repeatedly run to
produce the matched-within subsets M; ¢ =, ..., J. Then, in Algorithm 1 the sum of the M; in line
3 gives the matched subset M. Algorithm 2 is similar but after finding the M;’s an "additional"
subset B is found by recovering some unmatched units (line 3) and then combined to give the final
matched dataset. If a response variable Y was included the output of both algorithms also contains
an estimate of the ATT (default, but the user can choose also other estimands) and its standard
error.

Functions in the CMatching package

CMatching can be freely downloaded from CRAN repository and it contains the functions listed
in Table 2. The main function CMatch performs within-cluster and preferential within-cluster

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

11

matching via subfunctions MatchW and MatchPW, respectively. The output of the main function can
be passed to functions CMatchBalance and summary to provide summaries of covariates balance and
other characteristics of the matched dataset. CMatch exploits the Match function (see Matching)
implementing matching for unstructured data. Given a covariate X and a binary treatment T, the call
Match(X,T,...) gives the set of indexes of matched treated and matched control units. The CMatch
function has the same arguments plus the optional arguments G (specifying the cluster variable)
and type to choose between within-cluster matching or preferential-within-cluster matching. We
highlight that we chose to frame the CMatch in the Match function style so that Matching users can
easily implement PSM with clustered data in a familiar setting.

Function Description Input Output

CMatch Match X, TG A matched dataset
MatchW Match within X, T, G A matched dataset
MatchPW Match preferentially within X, T, G A matched dataset

summary.Match S3 method for CMatch objects A matched dataset General summaries

CMatchBalance Balance analysis A matched dataset Balance summaries

Table 2: Main input and output of functions in CMatching package.

I
I

/4
1.

9 9 9
10 10 10
Pooled Within Preferential-within
asam=173 asam=115 asam=216

Figure 1: Different matching solutions for the toy dataset (caliper = 2). Green and violet
circles indicate cluster 1 and cluster 2 units, respectively; arrows indicate matched
pairs of treated (left) and control units (right). For each matching we report the
absolute percent standardized mean difference of z in the matched subset (asam), a
measure of residual imbalance.

A simple usage example

For an illustration let us consider an artificial dataset consisting of two clusters, the first containing
two treated units and two control units, and the second containing two treated and four controls.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

12

We use g for the cluster identifier, x for the value of the individual level confounder, and t for the
binary treatment indicator:

> toy
[,11 [,21 [,3] [,4] [,5] [,6]1 [,7]1 [,8] [,91 [,10]
id 1 2 3.0 4.0 5.0 6 7 8 9.0 10.0

g 1 1 2.0 2.0 1.0 1 2 2 2.0 2.0
t 1 1 1.0 1.0 0.0 0 0 0 0.0 0.0
1 1 1.1 1.1 1.4 2 1 1 1.3 1.3

We also fix a caliper of 2 (in standard deviation units of X i.e., all units at distance greater or
equal than 2 - sd(z) ~ 2-0.312 = 0.624 will not be matched together) and we assume that the ATT
is the target parameter. Although artificial the dataset aims at representing the general situation
where pooled matching results in matched treated and control units not distributed homogeneously
across clusters (see Figure 1, left).

The pooled, within and preferential-within matchings for the toy data are depicted in Figure 1.

For each matching we report the asam, a measure of residual imbalance given by the absolute
percent mean difference of = across treated and controls divided by standard deviation of the treated
observations alone. The asam is widely used as a measure of imbalance (Stuart, 2010); its value in
the unmatched data is 491. The pooled matching (left) is a complete matching, i.e., all the treated
units could be matched. However, note that units in pairs 1-7 and 2-8 may differ in cluster level
covariates. Matching within-cluster (center) guarantees perfect balance in cluster level covariates
but it is incomplete because unit 2 cannot be matched within-cluster with the given caliper. This is
a typical disadvantage of within-cluster matching with smaller clusters. Unit 2 is matched with 9 in
the preferential within matching (right), which again is a complete matching.

The above matching solutions can be obtained easily using CMatch as follows. For the pooled
matching it is enough to call Match (or, equivalently, CMatch without type specification) while for
within and preferential-within matching it is enough to specify the appropriate type in the Match
call:

#pooled matching
pm <- Match(Y=NULL, Tr=t, X=x, caliper=2)

same output as before (with a warning about the absence of groups,
ties=FALSE,replace=FALSE)
pm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=NULL, caliper=2)

#within matching
wm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

#preferential-within matching
pwm <- CMatch(type="pwithin", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

The output of these object is quite rich. However, a quick look at the matchings can be obtained
by directly calling the index set of matched observations:

> pm$index.treated; pm$index.control
[11 1 2 5 6

[1] 7 8 109

> wm$index.treated; wm$index.control
[11 1 56

[11 37 8

> pum$index.treated; pwm$index.control
[11 1256

[1] 3 7 8 10

Note that vertical alignments in the table above correspond to arrows in Figure 1. With larger
datasets and when multiple matches are allowed (i.e., when replace=TRUE) it is probably better to
summarize the output. The output objects are of class "CMatch" and a summary method is available
for these objects. The summary shows the number of treated and the number of controls by group.
Moreover, when Y is not NULL it also shows the point estimate of ATT with its model-based
estimate of the standard error:

> summary (wm)

Estimate... O

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

13

SE......... NULL
Original number of observations.............. 10
Original number of treated obs............... 4

Original number of treated obs by group......

12
22

Matched number of observations............... 3
Matched number of observations (unweighted). 3

Caliper (8DS) ..ttt
Number of obs dropped by 'exact' or 'caliper' 1
Number of obs dropped by 'exact' or 'caliper' by group

12
10

This summary method does not conflict with the corresponding method for class "Match" which
is still available for objects of that class. From the summary above (see also Figure 1, center) we can
easily see that matching within groups resulted in one unmatched treated unit from group two. The
exact pairing can be recovered from the full output, in particular from the object mdata containing
the list of matched and unmatched units. As we noticed in the introduction, it is essential to analyze
covariate balance to evaluate the effectiveness of matching as a balancing tool. To this end objects
of class "CMatch' can be input of the CMatchBalance function, a wrapper of MatchBalance which
offers a large number of balance diagnostics:

> CMatchBalance(t~x , match.out=wm)

sokkkk (V1) x kkskkok

Before Matching After Matching
mean treatment........ 1.05 1.0667
mean control.......... 1.3333 1.1333
std mean diff......... -490.75 -115.47

...

From the output we see that the asam decreased from 491 to 115. One can more directly obtain
the standardized difference in means of these matchings by subcomponents:

> bwm$After[[1]] ["sdiff"]
$sdiff
[1] -115.4701

> bpwm$After[[1]] ["sdiff"]
$sdiff
[1] -216.5064

Whilst artificial, the previous example prompts some general considerations:

o forcing within-cluster matching may result in suboptimal matches with respect to pooled
matching. In the toy example, unit 2 is best matched with unit 8 but it is unmatched when

type=within is chosen (or it could be matched with a less similar control in the same cluster).

In both cases the increased bias (due to either incomplete matching or greater imbalance
in the observed x) may be at least in part compensated by lower imbalance in cluster level
variables;

o preferential-within matching may occasionally recover all unmatched treated units in the
within step by matching them between in step 2. However, this complete matching is generally
different from the complete pooled matching obtained by ignoring the clustering. In the
toy example, unit 2 is recovered in the preferential step but the final matching has a higher
imbalance than the pooled one. Again, it is up to the researcher to tune the trade-off between
bias due to incomplete matching and bias due to unobserved differences in group covariates.

In applications, when cluster level confounders are unobserved, it is not straightforward to decide
which of the matching strategies is the best. However, combining the within and preferential-within
routines offered by CMatching with sound subject matter knowledge, the researcher can decide how
much importance should be given to balance within-clusters based on the hypothesized strength

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

14

of unobserved cluster level confounders. Note that CMatching uses the same caliper for clusters,
under the assumption that the researcher is typically interested in estimating the causal effect of
the treatment in the whole population of treated units and not by each cluster. This is the main
difference between MatchW and Matchby from the Matching package. The latter exactly matches
on a categorical variable and the caliper is recalculated in each subset and for this reason MatchW
estimates generally differ from those obtained from Matchby. Another difference is that Matchby
does not adjust standard errors for within-cluster correlation in the outcome. A third difference is
that CMatching provides some statistics (e.g., number of drops) by cluster to better appreciate how
well the matched dataset resembles the original clustered structure in terms for example of cluster
size.

Demonstration of the CMatching package on NELS-88 data

The CMatching package includes several functions designed for matching with clustered data. In
this section we illustrate the use of CMatching with a an educational example.

Schools dataset

The example is based on data coming from a nationally representative, longitudinal study of 8th
graders in 1988 in the US, called NELS-88. CMatching contains a selected subsample of the NELS-88
data provided by Kraft and de Leeuw (1998) with 10 handpicked schools from the 1003 schools
in the full dataset. The subsample, named schools, is a data frame with 260 observations on 19
variables recording either school or student’s characteristics.

For the purpose of illustrating matching algorithms in CMatching, we consider estimation of the
causal effect of doing homework on mathematical proficiency. More specifically, our treatment is a
binary variable taking value 1 for students that spent at least one hour doing math homework per
week and 0 otherwise. The latter is a transformation of the original variable "homework" giving two
almost equal-sized groups. The outcome is math proficiency measured on a discrete scale ranging
from 0 to 80. For simplicity we first attach the dataset (attach(schools)) and name the treatment
and the outcome variables as T and Y, respectively. The variable schid is the school identifier and
we rename it as Group:

> T <- ifelse(homework>1, 1, 0)
> Y <- math
> Group <- schid

Since the NELS-88 study was an observational study, we do not expect a simple comparison of
math scores across treated and control students (those doing and those not doing math homework) to
give an unbiased estimate of the "homework effect" because of possible student-level and school-level
confounders. For the purpose of our example, we will consider the following student-level confounders:
"ses" (a standardised continuous measure of family socio-economic status), "sex" (1 = male, 2 =
female) and "white" (1 = white, O other race). The NELS-88 study also collected information
on school characteristics. In general, a researcher needs to include all potential confounders in
the matching procedure, irrespective of the hierarchical level. Here we considered one school-level
confounder: "public" (1 = public schools, 0 = private) but it is plausible to assume that one
or more relevant confounders at the school-level are not available. It is clear that, to make the
unconfoundedness assumption more plausible, richer data should be used. For example, students’
motivation and parents’ involvement are potentially important confounders. Thus, the following
estimates should be interpreted with caution.

Before illustrating the use of CMatching, it is useful to get a better understanding of the data
structure. In the school dataset we have a fairly balanced number of treated and control units (128
and 132, respectively). However, in some schools we have more treated than control students, with
proportion of treated ranging from 20% to 78%:

> addmargins(table(Group, T))

T
Group 0 1 Sum
7472 17 6 23
7829 6 14 20
7930 12 12 24
24725 15 7 22
25456 17 5 22

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

25642 16 4 20
62821 15 52 67
68448 8 13 21
68493 15 6 21
72292 11 9 20
Sum 132 128 260

From the table above we can notice that the total school sample size is fairly homogeneous
with the exception of one school (code = 62821) where the number of treated students (52) is
considerably higher than the number of control students (15). These considerations are important for
the implementation of the within-cluster and preferential within-cluster matching algorithms. In fact,
within-cluster matching can be difficult in groups where the proportion of treated units is high because
there are relatively few controls that can potentially serve as a match. Preferential-within-cluster
matching would be less restrictive.

This preliminary descriptive analysis is also useful to check if treated and control units are present
in each group. In fact, if a group is only composed of treated or control students then within-cluster
matching cannot be implemented. Groups with only treated or controls should be dropped before
the within-cluster matching algorithm is implemented. We now describe how Cmatching can be
used to implement matching in our school-clustered dataset.

Propensity score matching

CMatching requires to estimate the propensity score before implementing the matching. Here we
estimate propensity scores using a simple logistic regression with only main effects and then estimate
the predicted probability for each student:

> pmodel <- glm(T~ses + as.factor(sex) + white + public, family=binomial(link="logit"))
> eps <- fitted(pmodel)

We do not report the output of the propensity score model because in PSM the propensity score
is only instrumental to implement the matching. Within-cluster propensity score matching can be
implemented by using the function CMatch with the option type="within":

> psm_w <- CMatch(type="within", Y=Y, Tr=T, X=eps, Group=Group)

The previous command implements matching on the estimated propensity score, eps, by using
default settings of Match (one-to-one matching with replacement and a caliper of 0.25 standard
deviations of the estimated propensity score). The output is an object of class "CMatch' and a
customized summary method for objects of this class gives the estimated ATT and the main features
of the matched dataset:

> summary (psm_w)

Estimate... 5.2353
SE......... 2.0677
Original number of observations.............. 260
Original number of treated obs............... 128

Original number of treated obs by group......

7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
6 14 12 7 5 4 52 13 6 9

Matched number of observations............... 119
Matched number of observations (unweighted). 120

Caliper (BDS) ..ttt e 0.25
Number of obs dropped by 'exact' or 'caliper' 9
Number of obs dropped by 'exact' or 'caliper' by group

TAT2 7829 7930 24725 25456 25642 62821 68448 68493 72292
0 2 0 0 0 0 2 5 0 0

The summary starts reporting the original total number of students in our sample (260), the
total number of treated students (128) and how they are distributed across the different schools.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

16

It is of utmost importance to check how many treated units could be matched to avoid bias from
incomplete matching. For this reason the output indicates that 119 students in the treatment
group found a match ("Matched number of observations"), while the remaining 9 were dropped.
Note that the unweighted number of treated observations that found a match ("Matched number
of observations (unweighted)') is different because of ties. Ties management can be controlled
by option ties of the Match function: if ties=TRUE when one treated observation matches with
more than one control unit all possible pairs are included in the matched dataset and each pair is
weighted equal to the inverse of the number of matchedcontrols. If instead ties=FALSE is used ties
are randomly broken. Note that the summary reports the number of treated matched and dropped
units because it is assumed by default the ATT is the target estimand. Then the output also reports
how the 9 unmatched treated students are distributed across schools. For example, we notice that
in one school (68448), 5 of the 13 treated students did not find a match. This is because for these
5 students there was no control student in the same school with a propensity score falling within
the caliper. The report also recalls the caliper, which was set to 0.25 standard deviations of the
estimated propensity score in this example. The caliper can be set in standard deviation units using
the homonymous argument caliper. It may be more useful to calculate the percentage of dropped
units instead of the absolute numbers. These percentages are not reported in the summary but they
can be easily retrieved from the CMatch output. For example, we can calculate the percentage of
unmatched treated units, both overall and by school:

percentage of drops
> psm_w$ndrops / psm_w$orig.treated.nobs

[1] 0.0703

percentage of drops by school
> psm_w$orig.dropped.nobs.by.group / table(Group)

Group
7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.24 0.00 0.00

confirming that the percentage of drops is very low in all schools. We could also similarly calculate

the percentage of drops over treated observations, which turn out to be high for school 64448.

The next step before accepting a matching solution is the evaluation of the achieved balance of
confounders across the treatment and control groups. To this end the package contains function
CMatchBalance that can be applied to an object of class "CMatch" to compare the balance before
and after matching (the matched dataset must be specified in the match.out argument):

> b_psm_w <- CMatchBalance(T~ses + as.factor(sex) + white + public, data=schools,
match.out=psm_w)

sxkkk (V1) ses *kkkxk

Before Matching After Matching
mean treatment........ 0.23211 0.24655
mean control.......... -0.36947 0.14807
std mean diff......... 61.315 10.086

skkkk (V2) as.factor(sex)2 skkkk

Before Matching After Matching
mean treatment........ 0.52344 0.52941
mean control.......... 0.46212 0.56303
std mean diff......... 12.229 -6.706

sxkxx (V3) white kkkkx

Before Matching After Matching
mean treatment........ 0.73438 0.7563
mean control.......... 0.7197 0.71429
std mean diff......... 3.3103 9.7458

x*kxkx (V4) public *xkx*
Before Matching After Matching

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

17

mean treatment........ 0.59375 0.57983
mean control.......... 0.88636 0.57983
std mean diff......... -59.346 0
¢...)

The output reports the balance for each variable to allow the researcher to assess the effectiveness
of matching in balancing each variable. Many balance metrics are provided but for simplicity of
exposition we focus on comparing on the standardized mean difference between the two groups of
students. Note that the asam can be easily obtained by averaging the standardized mean differences:

vec <-vector()

for(i in 1:length()) {vec[[i]] <- b_psm_w$AfterMatching[[i]]$sdiff}
> mean(abs(vec))

[1] 6.634452

from which we can see that the initial asam of 34 (see Table 3) sharply decreased after matching.

Balance improved dramatically for ses and public (results not shown). In fact, for the latter it
was possible to attain exact matching. This is guaranteed by within-cluster matching because it
forces treated and control students to belong to the same school. For the same reason, within-cluster
matching also guarantees a perfect balance of all other school-level variables (even unobservable)
not included in the propensity score estimation. The balance improved also for the sex variable
but not for the dummy white (from 3.31% to 9.75%). In a real study, the investigator may attain
a matching solution with an even better balance of the dummies for white and sex by changing
the propensity score model or one or more options in the matching algorithms. For example, a
smaller caliper could be tried. Note that CMatchBalance is a wrapper of the MatchBalance function
(Matching package) so it measures balance globally and not by group. This is acceptable also in a
hierarchical context since we first and foremost consider the overall balance. While a group-by-group
balance analysis may be useful it is only the average asam which matters when estimating the ATT
on the whole population of treated units.

We highlighted that the within-cluster algorithm always guarantees a perfect balance in all
cluster-level confounders as in the example above. However, note that it was not possible to match
some treated observations and in part this can be due to the matching constrained to happen only

within clusters. The researcher can relax the constraint using preferential within-cluster matching.

This algorithm can be invoked using the option type="pwithin" in the CMatch function:

> psm_pw <- CMatch(type="pwithin", Y=Y, Tr=T, X=eps, Group=Group)
> summary (psm_pw)

A comparison of results between within and preferential within matching is given in Table 3.

The preferential within-cluster matching was able to match all treated students ("Matched number

of obs" = 128), i.e., the number of unmatched treated students is 0 ("Number of drops" = 0).

In this example, the 9 treated students that did not find a matched control within the caliper in
the same school found a control match in another school. Looking to the overall balance attained
by matching preferentially within, we can notice that preferential within-cluster matching showed
a slightly higher asam than within-matching. In fact there is no clear "winner" between the two
algorithms: the balance of the individual level variables ses and white improves slightly with the
preferential within-cluster matching while for sex the within-cluster matching is considerably better
(not shown). Importantly, using preferential within-cluster matching the absolute standardized mean
difference for the school-level variable public is 3.2% This is not a high value because most of the
treated units actually found a match within schools. However, this finding points to the fact that
preferential within-cluster matching is not able to perfectly balance cluster level variables as the
within-cluster approach.

Finally, having achieved a satisfactory balance with a very low number of drops we can estimate
the ATT on the matched dataset. When the argument Y is not NULL, an estimate is automatically
given otherwise the output of the CMatch function only gives information about the matching. The
estimated average effect of studying math for at least one hour per week on students’ math score is
5.24 with a standard error of 2.07 when matching within schools (Table 3). It is worth mentioning
that the reported SE is model based and adjusts for non-independence of students within schools.
From Table 3 we can see that the estimated ATT and SE for the preferential-within school approach
are very similar to those obtained with the within-cluster approach. We stress that the estimated
ATT should be considered carefully and only after checking the matching solution.

In conclusion, preferential within-cluster matching is expected to improve the solution of the
within-cluster matching in terms of a reduced number of unmatched units. On the other hand,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

PSM MAHT
Statistics within pwithin within pwithin
Orig. number of obs. 260 260 260 260
Orig. number of treated obs. 128 128 128 128
Matched number of treated obs. 119 128 84 128
Number of drops 9 0 44 0
ASAM before 34.05 34.05 34.05 34.05
ASAM after 6.63 8.13 0.47 6.31
ATT 5.24 5.18 4.25 4.34
SE 2.07 2.14 2.23 1.83

T PSM: propensity score matching; MAH: Mahalanobis matching.

Table 3: Matching to allow a fair comparison of math test score of students doing (treated)
and not doing homework in a school clustered dataset (NELS-88 data): comparing
matching solutions obtained from CMatching.

within-cluster matching guarantees a perfect balance of school-level variables (both observed and
unobserved) while preferential within does not. The researcher, choosing between the two algorithms,
has to consider the trade-off between having a perfect balance of cluster level variables (within-cluster
matching) or reducing the number of unmatched treated units (preferential within-cluster matching).
The researcher can also implement both approaches and compare the results as a sort of sensitivity
analysis.

Multivariate covariate matching

Instead of matching on the propensity score, the researcher may match directly on the covariates
space. This strategy can be advantageous when the number of covariates is fairly low and it is
expected to match exactly a large number of units on the original space. The syntax is very similar
to the above for propensity score matching: the only difference is that the user indicates the covariate
matrix instead of the propensity score in the X argument:

> mal_w <- CMatch(type="within", Y=Y, Tr=T, X=cbind(ses, sex, white, public),
Group=Group)

When X is a matrix, the covariate distance between a treated and a control unit is measured by
Mahalanobis metrics, i.e., essentially the multivariate Euclidean distance scaled by the standard
deviation of each covariate, a metrics which warrants an homogeneous imbalance reduction property
for (approximately) ellipsoidally distributed covariates (Rubin, 1980). From Table 3, columns 3-4,
we can see that the balance of covariates was indeed very good. Note that the estimated ATT using
Mahalanobis matching is lower than the corresponding estimate obtained with propensity score
matching. However, within-cluster matching using the Mahalanobis distance has generated a large

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

19

number of unmatched treated units (44). Therefore, in this case preferential within-cluster matching
could be used to avoid an high proportion of drops.

Other strategies

Other strategies for controlling unobserved cluster covariates in PSM have been suggested by Arpino
and Mealli (2011). The basic idea is to account for the clustering in the estimation of the propensity
score by using random- or fixed-effects models. This strategy can be combined with the matching
strategies presented before in order to ’doubly’ account for the clustering. This can be done easily
with CMatching. As an example we consider estimating the propensity score with a logit model with
dummies for schools and then matching preferentially within-schools using the estimated propensity
score:

estimate ps
> mod <- glm(T ~ ses + parented + public + sex + race + urban

schid - 1, family=binomial(link="logit"), data=schools)
eps <- fitted(mod)

match within on eps
> dpsm <- CMatch(type="pwithin", Y=math, Tr=T, X=eps, Group=NULL)

In concluding this section, we also mention some other matching strategies which can be
implemented using CMatching and some programming effort. First, the utility of the algorithms
naturally extends when there are more than two levels. In this case, it can be useful to match
preferentially on increasingly general levels, for example by allowing individuals to be matched first
between regions and then between countries. Another natural extension involves data where units
have multiple membership at the same hierarchical level. In this case it is possible to combine match
within (or preferential-within) across levels, for example by matching students both within schools
and within living district (e.g. 1 out of 4 possible combinations).

Summary

In this paper we presented the package CMatching implementing matching algorithms for clustered
data. The package allows users to implement two algorithms: i) within-cluster matching and
ii) preferential within-cluster matching. The algorithms provide a model-based estimate of the
causal effect and its standard error adjusted for within-cluster correlation among observations. In
addition, a tailored summary method and a balance function are provided to analyze the output. We
illustrated the case for within and preferential within-cluster matching analyzing data on students
enrolled in different schools for which it is reasonable to assume important confounding at the school
level. Finally, since the analysis of clustered observational data is an active area of research, we are
willing to improve on standard error calculations for matching estimators with clustered data if new
theoretical results in the causal inference literature will become available.

Bibliography

B. Arpino and M. Cannas. Propensity score matching with clustered data. An application to the
estimation of the impact of caesarean section on the Apgar score. Statistics in Medicine, 35(12):
2074-2091, 2016. URL https://10.1002/sim.6880. sim.6880. [p7, 9, 10]

B. Arpino and F. Mealli. The specification of the propensity score in multilevel observational studies.
Computational Statistics & Data Analysis, 55:1770-1780, 2011. URL https://dx.doi.org/10.

1016/j.csda.2010.11.008. [p7, 19]

G. Cafri, W. Wang, P. H. Chan, and P. C. Austin. A review and empirical comparison of causal
inference methods for clustered observational data with application to the evaluation of the
effectiveness of medical devices. Statistical Methods in Medical Research, 0(0):0962280218799540,
2018. URL https://10.1177/0962280218799540. [p7, 10]

A. C. Cameron, J. B. Gelbach, and D. L. Miller. Robust inference with multiway clustering. Journal of

Business € Economic Statistics, 29(2):238-249, 2011. URL https://10.1198/jbes.2010.07136.

[p9]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://10.1002/sim.6880
https://dx.doi.org/10.1016/j.csda.2010.11.008
https://dx.doi.org/10.1016/j.csda.2010.11.008
https://10.1177/0962280218799540
https://10.1198/jbes.2010.07136

CONTRIBUTED RESEARCH ARTICLES

20

A. Diamond and J. S. Sekhon. Genetic matching for estimating causal effects: A general multivariate
matching method for achieving balance in observational studies. Review of Economics and
Statistics, 95(3):932-945, 2013. URL https://doi.org/10.1162/REST_a_00318. [p8]

B. B. Hansen and S. O. Klopfer. Optimal full matching and related designs via network flows.
Journal of Computational and Graphical Statistics, 15(3):609-627, 2006. URL https://10.1198/
106186006X137047. [p8]

D. E. Ho, K. Imai, G. King, and E. A. Stuart. Matching as nonparametric preprocessing for reducing
model dependence in parametric causal inference. Political Analysis, 15(3):199-236, 2007. URL
https://10.1093/pan/mpl013. [p9|

P. W. Holland. Statistics and causal inference. Journal of the American Statistical Association, 81
(396):945-960, 1986. [pY]

S. M. Iacus, G. King, and G. Porro. Multivariate matching methods that are monotonic imbalance
bounding. Journal of the American Statistical Association, 106(493):345-361, 2011. URL https:
//doi.org/10.1198/jasa.2011.tm09599. [p§]

G. W. Imbens and D. B. Rubin. Causal Inference for Statistics, Social and Biomedical Sciences.
John Wiley & Sons, 2016. [p7

I. Kraft and J. de Leeuw. Introducing Multilevel Modeling. London, Sage, 1998. [p14]

F. Li, A. M. Zaslavsky, and M. B. Landrum. Propensity score weighting with multilevel data. Statistics
in Medicine, 32(19):3373-3387, 2013. ISSN 1097-0258. URL https://10.1002/sim.5786. [p7, 9]

J. H. Rickles and M. Seltzer. A two-stage propensity score matching strategy for treatment effect
estimation in a multisite observational study. Journal of Educational and Behavioral Statistics, 39
(6):612-636, 2014. URL https://10.3102/1076998614559748. [p7, 10]

P. Rosenbaum and D. Rubin. The central role of the propensity score in observational studies for
causal effects. Biometrika, 70:41-55, 1983. URL https://10.2307/2335942. [p7]

P. Rosenbaum and D. Rubin. Constructing a control group using multivariate matched sampling
methods that incorporate the propensity score. The American Statistician, 39:33-38, 1985. URL
https://doi.org/10.1080/00031305.1985.10479383. [pY]

D. B. Rubin. Bias reduction using mahalanobis-metric matching. Biometrics, 36(2):293-298, 1980.
URL https://10.2307/2529981. [pl§]

F. Savje, J. Sekhon, and M. Higgins. Quickmatch: Quick Generalized Full Matching, 2018. URL
https://CRAN.R-project.org/package=quickmatch. R package version 0.2.1. [p8]

J. S. Sekhon. Multivariate and propensity score matching software with automated balance opti-
mization: The Matching package for R. Journal of Statistical Software, 42(7):1-52, 2011. URL
https://dx.doi.org/10.18637/jss.v042.1i07. [p§]

E. A. Stuart. Matching methods for causal inference: A review and a look forward. Statist. Sci., 25
(1):1-21, 2010. URL https://10.1214/09-STS313. [p7, 12]

J. R. Zubizarreta, C. Kilcioglu, and J. P. Vielma. Designmatch: Matched Samples That Are Balanced
and Representative by Design, 2018. URL https://CRAN.R-project.org/package=designmatch.
R package version 0.3.1. [p8]

R. J. Zubizarreta and L. Keele. Optimal multilevel matching in clustered observational studies: A
case study of the effectiveness of private schools under a large-scale voucher system. Journal
of the American Statistical Association, 112:0, 2017. URL https://doi.org/10.1080/01621459.
2016.1240683. [p7]

Massimo Cannas

University of Cagliari

Via Sant’Ignazio 87, 09123 Cagliari, Italy
(ORCiD: hitps://orcid.org/0000-0002-1227-5875)

massimo.cannas@unica.it

Bruno Arpino
University of Florence

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1162/REST_a_00318
https://10.1198/106186006X137047
https://10.1198/106186006X137047
https://10.1093/pan/mpl013
https://doi.org/10.1198/jasa.2011.tm09599
https://doi.org/10.1198/jasa.2011.tm09599
https://10.1002/sim.5786
https://10.3102/1076998614559748
https://10.2307/2335942
https://doi.org/10.1080/00031305.1985.10479383
https://10.2307/2529981
https://CRAN.R-project.org/package=quickmatch
https://dx.doi.org/10.18637/jss.v042.i07
https://10.1214/09-STS313
https://CRAN.R-project.org/package=designmatch
https://doi.org/10.1080/01621459.2016.1240683
https://doi.org/10.1080/01621459.2016.1240683
mailto:massimo.cannas@unica.it

CONTRIBUTED RESEARCH ARTICLES

21

Viale Morgagni, 59 50134 Firenze, Italy

RECSM-UPF

Carrer Ramon Trias Fargas 25-27, 08005 Barcelona, Spain
(ORCiD: https://orcid.org/0000-0002-8374-3066)

bruno.arpino@unifi.it

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

mailto:bruno.arpino@unifi.it

CONTRIBUTED RESEARCH ARTICLES

22

Time-Series Clustering in R Using the
dtwclust Package

by Alexis Sardad-Espinosa

Abstract Most clustering strategies have not changed considerably since their initial definition.
The common improvements are either related to the distance measure used to assess dissimilarity, or
the function used to calculate prototypes. Time-series clustering is no exception, with the Dynamic
Time Warping distance being particularly popular in that context. This distance is computationally
expensive, so many related optimizations have been developed over the years. Since no single
clustering algorithm can be said to perform best on all datasets, different strategies must be tested
and compared, so a common infrastructure can be advantageous. In this manuscript, a general
overview of shape-based time-series clustering is given, including many specifics related to Dynamic
Time Warping and associated techniques. At the same time, a description of the dtwclust package
for the R statistical software is provided, showcasing how it can be used to evaluate many different
time-series clustering procedures.

Introduction

Cluster analysis is a task that concerns itself with the creation of groups of objects, where each
group is called a cluster. Ideally, all members of the same cluster are similar to each other, but are
as dissimilar as possible from objects in a different cluster. There is no single definition of a cluster,
and the characteristics of the objects to be clustered vary. Thus, there are several algorithms to
perform clustering. Each one defines specific ways of defining what a cluster is, how to measure
similarities, how to find groups efficiently, etc. Additionally, each application might have different
goals, so a certain clustering algorithm may be preferred depending on the type of clusters sought
(Kaufman and Rousseeuw, 1990).

Clustering algorithms can be organized differently depending on how they handle the data and
how the groups are created. When it comes to static data, i.e., if the values do not change with
time, clustering methods can be divided into five major categories: partitioning (or partitional),
hierarchical, density-based, grid-based, and model-based methods (Liao, 2005; Rani and Sikka,
2012). They may be used as the main algorithm, as an intermediate step, or as a preprocessing step
(Aghabozorgi et al., 2015).

Time-series is a common type of dynamic data that naturally arises in many different scenarios,
such as stock data, medical data, and machine monitoring, just to name a few (Aghabozorgi et al.,
2015; Aggarwal and Reddy, 2013). They pose some challenging issues due to the large size and high
dimensionality commonly associated with time-series (Aghabozorgi et al., 2015). In this context,
dimensionality of a series is related to time, and it can be understood as the length of the series.
Additionally, a single time-series object may be constituted by several values that change on the
same time scale, in which case they are identified as multivariate time-series.

There are many techniques to modify time-series in order to reduce dimensionality, and they
mostly deal with the way time-series are represented. Changing representation can be an important
step, not only in time-series clustering, and it constitutes a wide research area on its own (cf. Table
2 in Aghabozorgi et al. (2015)). While choice of representation can directly affect clustering, it can
be considered as a different step, and as such it will not be discussed further here.

Time-series clustering is a type of clustering algorithm made to handle dynamic data. The most
important elements to consider are the (dis)similarity or distance measure, the prototype extraction
function (if applicable), the clustering algorithm itself, and cluster evaluation (Aghabozorgi et al.,
2015). In many cases, algorithms developed for time-series clustering take static clustering algorithms
and either modify the similarity definition, or the prototype extraction function to an appropriate one,
or apply a transformation to the series so that static features are obtained (Liao, 2005). Therefore,
the underlying basis for the different clustering procedures remains approximately the same across

clustering methods. The most common approaches are hierarchical and partitional clustering (cf.

Table 4 in Aghabozorgi et al. (2015)), the latter of which includes fuzzy clustering.

Aghabozorgi et al. (2015) classify time-series clustering algorithms based on the way they treat
the data and how the underlying grouping is performed. One classification depends on whether the
whole series, a subsequence, or individual time points are to be clustered. On the other hand, the
clustering itself may be shape-based, feature-based, or model-based. Aggarwal and Reddy (2013)
make an additional distinction between online and offline approaches, where the former usually deals
with grouping incoming data streams on-the-go, while the latter deals with data that no longer

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dtwclust

CONTRIBUTED RESEARCH ARTICLES

23

change.

In the context of shape-based time-series clustering, it is common to utilize the Dynamic Time
Warping (DTW) distance as dissimilarity measure (Aghabozorgi et al., 2015). The calculation of the
DTW distance involves a dynamic programming algorithm that tries to find the optimum warping
path between two series under certain constraints. However, the DTW algorithm is computationally
expensive, both in time and memory utilization. Over the years, several variations and optimizations
have been developed in an attempt to accelerate or optimize the calculation. Some of the most
common techniques will be discussed in more detail in Dynamic time warping distance.

The choice of time-series representation, preprocessing, and clustering algorithm has a big impact
on performance with respect to cluster quality and execution time. Similarly, different programming
languages have different run-time characteristics and user interfaces, and even though many authors
make their algorithms publicly available, combining them is far from trivial. As such, it is desirable
to have a common platform on which clustering algorithms can be tested and compared against each
other. The dtwclust package, developed for the R statistical software, and part of its TumeSeries
view, provides such functionality, and includes implementations of recently developed time-series
clustering algorithms and optimizations. It serves as a bridge between classical clustering algorithms
and time-series data, additionally providing visualization and evaluation routines that can handle
time-series. All of the included algorithms are custom implementations, except for the hierarchical
clustering routines. A great amount of effort went into implementing them as efficiently as possible,
and the functions were designed with flexibility and extensibility in mind.

Most of the included algorithms and optimizations are tailored to the DTW distance, hence the
package’s name. However, the main clustering function is flexible so that one can test many different
clustering approaches, using either the time-series directly, or by applying suitable transformations
and then clustering in the resulting space. We will describe the new algorithms that are available in
dtwclust, mentioning the most important characteristics of each, and showing how the package can
be used to evaluate them, as well as how other packages complement it. Additionally, the variations
related to DTW and other common distances will be explored.

There are many available R packages for data clustering. The flexclust package (Leisch, 2006)
implements many partitional procedures, while the cluster package (Maecchler et al., 2019) focuses
more on hierarchical procedures and their evaluation; neither of them, however, is specifically
targeted at time-series data. Packages like TSdist (Mori et al., 2016) and TSclust (Montero and
Vilar, 2014) focus solely on dissimilarity measures for time-series, the latter of which includes a single
algorithm for clustering based on p values. Another example is the pdc package (Brandmaier, 2015),

which implements a specific clustering algorithm, namely one based on permutation distributions.

The dtw package (Giorgino, 2009) implements extensive functionality with respect to DTW, but
does not include the lower bound techniques that can be very useful in time-series clustering. New
clustering algorithms like k-Shape (Paparrizos and Gravano, 2015) and TADPole (Begum et al.,
2015) are available to the public upon request, but were implemented in MATLAB, making their
combination with other R packages cumbersome. Hence, the dtwclust package is intended to provide
a consistent and user-friendly way of interacting with classic and new clustering algorithms, taking
into consideration the nuances of time-series data.

The rest of this manuscript presents the different logical units required for a time-series clustering
workflow, and specifies how they are implemented in dtwclust. These build on top of each other and
are not entirely independent, so their coherent combination is critical. The information relevant to
the distance measures will be presented in Distance measures. Supported algorithms for prototype
extraction will be discussed in Time-series prototypes. The main clustering algorithms will be
introduced in Time-series clustering. Information regarding cluster evaluation will be provided
in Cluster evaluation. The provided tools for a complete time-series clustering workflow will be
described in Comparing clustering algorithms with dtwclust, and the final remarks will be given
in Conclusion. Note that code examples are intentionally brief, and do not necessarily represent a
thorough procedure to choose or evaluate a clustering algorithm. The data used in all examples is
included in the package (saved in a list called CharTraj), and is a subset of the character trajectories
dataset found in Lichman (2013): they are pen tip trajectories recorded for individual characters,
and the subset contains 5 examples of the x velocity for each considered character.

Distance measures

Distance measures provide quantification for the dissimilarity between two time-series. Calculating
distances, as well as cross-distance matrices, between time-series objects is one of the cornerstones
of any time-series clustering algorithm. The proxy package (Meyer and Buchta, 2019) provides
an extensible framework for these calculations, and is used extensively by dtwclust; Summary of
distance measures will elaborate in this regard.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=flexclust
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=TSdist
https://CRAN.R-project.org/package=TSclust
https://CRAN.R-project.org/package=pdc
https://CRAN.R-project.org/package=dtw
https://CRAN.R-project.org/package=proxy

CONTRIBUTED RESEARCH ARTICLES

24

The I; and Iz vector norms, also known as Manhattan and Euclidean distances respectively, are
the most commonly used distance measures, and are arguably the only competitive [, norms when
measuring dissimilarity (Aggarwal et al., 2001; Lemire, 2009). They can be efficiently computed,
but are only defined for series of equal length and are sensitive to noise, scale, and time shifts. Thus,
many other distance measures tailored to time-series have been developed in order to overcome these
limitations, as well as other challenges associated with the structure of time-series, such as multiple
variables, serial correlation, etc.

In the following sections a description of the distance functions included in dtwclust will be
provided; these are associated with shape-based time-series clustering, and either support DTW or
provide an alternative to it. The included distances are a basis for some of the prototyping functions
described in Time-series prototypes, as well as the clustering routines from Time-series clustering, but
there are many other distance measures that can be used for time-series clustering and classification
(Montero and Vilar, 2014; Mori et al., 2016). It is worth noting that, even though some of these
distances are also available in other R packages, e.g., DTW in dtw or Keogh’s DTW lower bound
in TSdist (see Dynamic time warping distance), the implementations in dtwclust are optimized
for speed, since all of them are implemented in C++ and have custom loops for computation of
cross-distance matrices, including multi-threading support; refer to Practical optimizations for more
information.

To facilitate notation, we define a time-series as a vector (or set of vectors in case of multivariate
series) . Each vector must have the same length for a given time-series. In general,] represents
the i-th element of the v-th variable of the (possibly multivariate) time-series z. We will assume
that all elements are equally spaced in time in order to avoid the time index explicitly.

Dynamic time warping distance

DTW is a dynamic programming algorithm that compares two series and tries to find the optimum
warping path between them under certain constraints, such as monotonicity (Berndt and Clifford,
1994). It started being used by the data mining community to overcome some of the limitations
associated with the Euclidean distance (Ratanamahatana and Keogh, 2004).

The easiest way to get an intuition of what DTW does is graphically. Figure 1 shows the
alignment between two sample time-series and y. In this instance, the initial and final points of
the series must match, but other points may be warped in time in order to find better matches.

- o=

,,,,,, L w©

o

» - O
2 —

g © | 0

U307 7?'
N

[=}

_ L

I
<
S

Time

Figure 1: Sample alignment performed by the DTW algorithm between two series. The dashed
blue lines exemplify how some points are mapped to each other, which shows how they
can be warped in time. Note that the vertical position of each series was artificially
altered for visualization.

DTW is computationally expensive. If z has length n and y has length m, the DTW distance
between them can be computed in O(nm) time, which is quadratic if m and n are similar. Additionally,
DTW is prone to implementation bias since its calculations are not easily vectorized and tend to be
very slow in non-compiled programming languages. A custom implementation of the DTW algorithm
is included with dtwclust in the dtw_basic function, which has only basic functionality but still
supports the most common options, and it is faster (see Practical optimizations).

The DTW distance can potentially deal with series of different length directly. This is not
necessarily an advantage, as it has been shown before that performing linear reinterpolation to

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

25

obtain equal length may be appropriate if m and n do not vary significantly (Ratanamahatana and

Keogh, 2004). For a more detailed explanation of the DTW algorithm see, e.g., Giorgino (2009).

However, there are some aspects that are worth discussing here.

The first step in DTW involves creating a local cost matrix (LCM or lem), which has n x m
dimensions. Such a matrix must be created for every pair of distances compared, meaning that
memory requirements may grow quickly as the dataset size grows. Considering « and y as the input
series, for each element (i, j) of the LCM, the I, norm between x; and y; must be computed. This is
defined in Equation 1, explicitly denoting that multivariate series are supported as long as they have
the same number of variables (note that for univariate series, the LCM will be identical regardless
of the used norm). Thus, it makes sense to speak of a DTW,, distance, where p corresponds to the
lp norm that was used to construct the LCM.

1/p
lem(i,j) = <Z|xf — y;»’|p> (1)

v

In the seconds step, the DTW algorithm finds the path that minimizes the alignment between x
and y by iteratively stepping through the LCM, starting at lem(1,1) and finishing at lem(n,m),
and aggregating the cost. At each step, the algorithm finds the direction in which the cost increases
the least under the chosen constraints.

The way in which the algorithm traverses through the LCM is primarily dictated by the chosen
step pattern. It is a local constraint that determines which directions are allowed when moving ahead
in the LCM as the cost is being aggregated, as well as the associated per-step weights. Figure 2
depicts two common step patterns and their names in the dtw package. Unfortunately, very few
articles from the data mining community specify which pattern they use, although in the author’s
experience, the symmetricl pattern seems to be standard. By contrast, the dtw and dtw_basic
functions use the symmetric2 pattern by default, but it is simple to modify this by providing the
appropriate value in the step.pattern argument. The choice of step pattern also determines whether
the corresponding DTW distance can be normalized or not (which may be important for series with
different length). See Giorgino (2009) for a complete list of step patterns and to know which ones
can be normalized.

Reference index
-
[
Reference index
N
[

Query index Query index

(a) symmetricl step pattern (b) symmetric2 step pattern

Figure 2: Two common step patterns used by DTW when traversing the LCM. At each step, the
lines denote the allowed directions that can be taken, as well as the weight associated
with each one.

It should be noted that the DTW distance does not satisfy the triangle inequality, and it is not
symmetric in general, e.g., for asymmetric step patterns (Giorgino, 2009). The patterns in Figure 2
can result in a symmetric DTW calculation, provided no constraints are used (see the next section),
or all series have the same length if a constraint is indeed used.

Global DTW constraints

One of the possible modifications of DTW is to use global constraints, also known as window
constraints. These limit the area of the LCM that can be reached by the algorithm. There are many

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

26

types of windows (see, e.g., Giorgino (2009)), but one of the most common ones is the Sakoe-Chiba
window (Sakoe and Chiba, 1978), with which an allowed region is created along the diagonal of the
LCM (see Figure 3). These constraints can marginally speed up the DTW calculation, but they are
mainly used to avoid pathological warping. It is common to use a window whose size is 10% of the
series’ length, although sometimes smaller windows produce even better results (Ratanamahatana
and Keogh, 2004).

Reference: samples 1..10

2 a 6 8 10

Query: samples 1..10

Figure 3: Visual representation of the Sakoe-Chiba constraint for DTW. The red elements will
not be considered by the algorithm when traversing the LCM.

Strictly speaking, if the series being compared have different lengths, a constrained path may not
exist, since the Sakoe-Chiba band may prevent the end point of the LCM to be reached (Giorgino,
2009). In these cases a slanted band window may be preferred, since it stays along the diagonal for
series of different length and is equivalent to the Sakoe-Chiba window for series of equal length. If a
window constraint is used with dtwclust, a slanted band is employed.

It is not possible to know a priori what window size, if any, will be best for a specific application,
although it is usually agreed that no constraint is a poor choice. For this reason, it is better to
perform tests with the data one wants to work with, perhaps taking a subset to avoid excessive
running times.

It should be noted that, when reported, window sizes are always integers greater than zero. If
we denote this number with w, and for the specific case of the slanted band window, the valid region
of the LCM will be constituted by all valid points in the range [(i,j — w), (¢, + w)] for all (i, j)
along the LCM diagonal. Thus, at each step, at most 2w + 1 elements may fall within the window
for a given window size w. This is the convention followed by dtwclust.

Lower bounds for DTW

Due to the fact that DTW itself is expensive to compute, lower bounds (LBs) for the DTW distance
have been developed. These lower bounds guarantee being less than or equal to the corresponding
DTW distance. They have been exploited when indexing time-series databases, classification of
time-series, clustering, etc. (Keogh and Ratanamahatana, 2005; Begum et al., 2015). Out of the
existing DTW LBs, the two most effective are termed LB_Keogh (I{eogh and Ratanamahatana,
2005) and LB_Improved (Lemire, 2009). The reader is referred to the respective articles for detailed
definitions and proofs of the LBs, however some important considerations will be further discussed
here.

Each LB can be computed with a specific [, norm. Therefore, it follows that the [, norms used
for DTW and LB calculations must match, such that LBy < DTW). Moreover, LB_ Keogh,, <
LB_Improved, < DTW), meaning that LB_Improved can provide a tighter LB. It must be noted
that the LBs are only defined for series of equal length and are not symmetric regardless of the [,
norm used to compute them. Also note that the choice of step pattern affects the value of the DTW
distance, changing the tightness of a given LB.

One crucial step when calculating the LBs is the computation of the so-called envelopes. These
envelopes require a window constraint, and are thus dependent on both the type and size of the
window. Based on these, a running minimum and maximum are computed, and a lower and upper
envelope are generated respectively. Figure 4 depicts a sample time-series with its corresponding
envelopes for a Sakoe-Chiba window of size 15.

In order for the LBs to be worth it, they must be computed in significantly less time than it takes

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

27

1.0

0.5

Series

0.0

Time

Figure 4: Visual representation of a time-series (shown as a solid black line) and its corresponding
envelopes based on a Sakoe-Chiba window of size 15. The green dashed line represents
the upper envelope, while the red dashed line represents the lower envelope.

to calculate the DTW distance. Lemire (2009) developed a streaming algorithm to calculate the
envelopes using no more than 3n comparisons when using a Sakoe-Chiba window. This algorithm
has been ported to dtwclust using the C++ programming language, ensuring an efficient calculation,
and it is exposed in the compute_envelope function.

LB_Keogh requires the calculation of one set of envelopes for every pair of series compared,
whereas LB_Improved must calculate two sets of envelopes for every pair of series. If the LBs must be
calculated between several time-series, some envelopes can be reused when a given series is compared
against many others. This optimization is included in the LB functions registered with proxy by
dtwclust.

Global alignment kernel distance

Cuturi (2011) proposed an algorithm to assess similarity between time series by using kernels. He
began by formalizing an alignment between two series x and y as 7, and defined the set of all possible
alignments as A(n, m), which is constrained by the lengths of z and y. It is shown that the DTW
distance can be understood as the cost associated with the minimum alignment.

A Global Alignment (GA) kernel that considers the cost of all possible alignments by computing
their exponentiated soft-minimum is defined, and it is argued that it quantifies similarities in a more
coherent way. However, the GA kernel has associated limitations, namely diagonal dominance and
a complexity O(nm). With respect to the former, Cuturi (2011) states that diagonal dominance
should not be an issue as long as one of the series being compared is not longer than twice the
length of the other.

In order to reduce the GA kernel’s complexity, Cuturi (2011) proposed using the triangular
local kernel for integers shown in Equation 2, where T represents the kernel’s order. By combining
it with the kernel x in Equation 3 (which is based on the Gaussian kernel ko), the Triangular
Global Alignment Kernel (TGAK) in Equation 4 is obtained. Such a kernel can be computed in
O(T min(n,m)), and is parameterized by the triangular constraint 7' and the Gaussian’s kernel
width o.

wl,y) = e (32)
1 _le—y)?
o) = 5o o9l +10g (2) (30)
_ 1 L iy = Wi)sy)
TGAK(m7y707T) =T (“J@ 2’%) (%337],:1]) - 2 *W(i,j)l{(l’,y) (4)

The triangular constraint is similar to the window constraints that can be used in the DTW
algorithm. When T' =0 or T' — o0, the TGAK converges to the original GA kernel. When T = 1,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

28

the TGAK becomes a slightly modified Gaussian kernel that can only compare series of equal length.

If T > 1, then only the alignments that fulfil —T" < 71 () — 72(i) < T are considered.

Cuturi (2011) also proposed a strategy to estimate the value of o based on the time-series
themselves and their lengths, namely c¢- med(||z — y||) - 4/med(|x|), where med(-) is the empirical
median, c is some constant, and x and y are subsampled vectors from the dataset. This, however,
introduces some randomness into the algorithm when the value of o is not provided, so it might be
better to estimate it once and re-use it in subsequent function evaluations. In dtwclust, the value of
cis set to 1.

The similarity returned by the TGAK can be normalized with Equation 5 so that its values lie
in the range [0, 1]. Hence, a distance measure for time-series can be obtained by subtracting the
normalized value from 1. The algorithm supports multivariate series and series of different length
(with some limitations). The resulting distance is symmetric and satisfies the triangle inequality,
although it is more expensive to compute in comparison to DTW.

()

exp (log (TGAK (2,5, 0,T)) — log (TGAK(z,z,0,T)) + log (TGAK(y, y, o, T)))

2

A C implementation of the TGAK algorithm is available at its author’s website!. An R wrapper
has been implemented in dtwclust in the GAK function, performing the aforementioned normalization
and subtraction in order to obtain a distance measure that can be used in clustering procedures.

Soft-DTW

Following with the idea of the TGAK, i.e., of regularizing DTW by smoothing it, Cuturi and Blondel
(2017) proposed a unified algorithm using a parameterized soft-minimum as shown in Equation 6
(where A(z,y) represents the LCM), and called the resulting discrepancy a soft-DTW, discussing
its differentiability. Thanks to this property, a gradient function can be obtained, and Cuturi and
Blondel (2017) developed a more efficient way to compute it. This can be then used to calculate
centroids with numerical optimization as discussed in Soft-DT'W centroid.

dtwy (z,y) = min” {{A, A(z,y)), A € A(n,m)} (6a)

min;<pa;, 7=0

6b
—ylog Yy e” 4, 4 >0 (6b)

min”{ai,...,an} = {

However, as a stand-alone distance measure, the soft-DTW distance has some disadvantages:
the distance can be negative, the distance between x and itself is not necessarily zero, it does not
fulfill the triangle inequality, and also has quadratic complexity with respect to the series’ lengths.
On the other hand, it is a symmetric distance, it supports multivariate series as well as different
lengths, and it can provide differently smoothed results by means of a user-defined ~.

Shape-based distance

The shape-based distance (SBD) was proposed as part of the k-Shape clustering algorithm (Paparrizos
and Gravano, 2015); this algorithm will be further discussed in Shape extraction and k-Shape
clustering. SBD is presented as a faster alternative to DTW. It is based on the cross-correlation
with coefficient normalization (NCCc) sequence between two series, and is thus sensitive to scale,
which is why Paparrizos and Gravano (2015) recommend z-normalization. The NCCc sequence is
obtained by convolving the two series, so different alignments can be considered, but no point-wise
warpings are made. The distance can be calculated with the formula shown in Equation 7, where
Il is the I2 norm of the series. Its range lies between 0 and 2, with 0 indicating perfect similarity.

_ max (NCCc(z,y))
llzll [yl

SBD(z,y) =1 (7)

This distance can be efficiently computed by utilizing the Fast Fourier Transform (FFT) to
obtain the NCCc sequence, although that might make it sensitive to numerical precision, especially in
32-bit architectures. It can be very fast, it is symmetric, it was very competitive in the experiments
performed in Paparrizos and Gravano (2015) (although the run-time comparison was slightly biased
due to the slow MATLAB implementation of DTW), and it supports (univariate) series of different

Ihttp://marcocuturi.net/GA.html, accessed on 2016-10-29

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://marcocuturi.net/GA.html

CONTRIBUTED RESEARCH ARTICLES

29

length directly. Additionally, some FFTs can be reused when computing the SBD between several
series; this optimization is also included in the SBD function registered with proxy by dtwclust.

Summary of distance measures

The distances described in this section are the ones implemented in dtwclust, which serve as basis for
the algorithms presented in Time-series prototypes and Time-series clustering. Table 1 summarizes
the salient characteristics of these distances.

Distance Computational Normalized Symmetric Multivariate Support for
cost support length

differences
LB_ Keogh Low No No No No
LB_ Improved Low No No No No
DTW Medium Can be* Can be* Yes Yes
GAK High Yes Yes Yes Yes
Soft-DTW High Yes Yes Yes Yes
SBD Low Yes Yes No Yes

Table 1: Characteristics of time-series distance measures implemented in dtwclust. Regarding
the cells marked with an asterisk: the DTW distance can be normalized for certain step
patterns, and can be symmetric for symmetric step patterns when either no window
constraints are used, or all time-series have the same length if constraints are indeed
used.

Nevertheless, there are many other measures that can be used. In order to account for this, the
proxy package is leveraged by dtwclust, as well as other packages (e.g., TSdist). It aggregates all its
measures in a database object called pr_DB, which has the advantage that all registered functions
can be used with the proxy::dist function. For example, registering the autocorrelation-based
distance provided by package TSclust could be done in the following way.

require("TSclust")

proxy: :pr_DB$set_entry(FUN = diss.ACF, names = c("ACFD"),
loop = TRUE, distance = TRUE,
description = "Autocorrelation-based distance")

proxy::dist(CharTraj[3L:8L], method = "ACFD", upper = TRUE)

.V3 A.V4 A.V5 B.V1 B.V2 B.V3

V3 0.7347970 0.7269654 1.3365966 0.9022004 0.6204877
. 7347970 0.2516642 2.0014314 1.5712718 1.2133404
.7269654 0.2516642 2.0178486 1.6136650 1.2901999
.3365966 2.0014314 2.0178486 0.5559639 0.9937621
.9022004 1.5712718 1.6136650 0.5559639 0.4530352
.6204877 1.2133404 1.2901999 0.9937621 0.4530352

0w wE ===
=<
= ol

O O OO

Any distance function registered with proxy can be used for time-series clustering with dtwclust.

More details are provided in Clustering examples.

Practical optimizations

As mentioned before, one of the advantages of the distances implemented as part of dtwclust is
that the core calculations are performed in C4++, making them faster. The other advantage is that
the calculations of cross-distance matrices leverage multi-threading. In the following, a series of
comparisons against implementations in other packages is presented, albeit without the consideration
of parallelization. Further information is available in the vignettes included with the package”.

2Visible at https://cran.r-project.org/web/packages/dtwclust/vignettes/

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://cran.r-project.org/web/packages/dtwclust/vignettes/

CONTRIBUTED RESEARCH ARTICLES

One of DTW’s lower bounds, LB_Keogh, is also available in TSdist as a pure R implementation.
We can see how it compares to the C++ version included in dtwclust in Figure 5, considering
different series lengths and window sizes. The time for each point in the graph was computed by
repeating the calculation 100 times and extracting the median time.

LB Keogh (dtwclust) LB Keogh (TSdist)
61.0
Tnj_ 60.5- 2500 A
=
()
£
= 60.0
c
8
S 2000+
(0]
= 59.54
59.0 1
1500
T T T T T T T T T T
109 130 152 173 196 109 130 152 173 196

Series' length

Window size 10 —e— 20 —e— 30 —e 40 50

Figure 5: Execution times of two implementations of LB_Keogh considering different time series
lengths and window sizes. Note the different vertical scales, although both are in
microseconds. The package of each implementation is written between parentheses.

Similarly, the DTW distance is also available in the dtw package, and possesses a C core. The
dtw_basic version included with dtwclust only supports a slanted window constraint (or none at
all), and the symmetricl and symmetric2 step patterns, so it performs less checks, and uses a
memory-saving version where only 2 rows of the LCM are saved at a time. As with LB_Keogh, a
comparison of the DTW implementations’ execution times can be seen in Figure 6.

dtw (dtw) dtw_basic (dtwclust)
300
1750
250
g
= 1500+
o
£ 2001
g
? 1250 A
s 1504
1000 A
1004
109 130 152 173 196 109 130 152 173 196

Series' length

Window size 10 —»- 20 - 30 —e- 40 50

Figure 6: Execution times of two implementations of DTW considering different time series
lengths and window sizes. Note the different vertical scales, although both are in
microseconds. The package of each implementation is written between parentheses.

The time difference in single calculations is not so dramatic, but said differences accumulate when
calculating cross-distance matrices, and become much more significant. The behavior of LB_Keogh
can be seen in Figure 7, with a fixed window size of 30 and series of length 100. The implementation
in dtwclust performs the whole calculation in C++, and only calculates the necessary warping
envelopes once, although it can be appreciated that this does not have a significant effect.

The behavior of the DTW implementations can be seen in Figure 8. The dtwclust version is an
order of magnitude faster, even single-threaded, and it can benefit from parallelization essentially

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

31

LB Keogh (dtwclust) LB Keogh (TSdist)
6 T T
| |
' 7500 '
51 | |
a | |
IS | |
e 41 | |
§ | 5000 |
3°7 '
5 | |
% I 2500 I
2+ | |
| |
| |
14 | |
T T T I T T T O L T T T I T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Total number of distance calculations

Amount of warping envelopes needed “

25 50 75 100

Figure 7: Execution times of the two implementations of LB_Keogh when calculating cross-
distance matrices. The points on the left of the dashed line represent square matrices,
whereas the ones on the right only have one dimension of the cross-distance matrix
increased (the one that results in more envelope calculations). Note the different
vertical scales, although both are in milliseconds. The package of each implementation
is written between parentheses.

proportionally to the number of threads available.

dtw (dtw) dtw_basic (dtwclust)
5 -
0.3
44
0
3 -
g 0.2
<
8
8 21
=
0.1+
l -
0 T T T T T 0.0 T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Total number of distance calculations

Figure 8: Execution times of the two implementations of DTW when calculating cross-distance
matrices. Note the different vertical scales, although both are in seconds. The package
of each implementation is written between parentheses.

Time-series prototypes

A very important step of time-series clustering is the calculation of so-called time-series prototypes.
It is expected that all series within a cluster are similar to each other, and one may be interested in
trying to define a time-series that effectively summarizes the most important characteristics of all
series in a given cluster. This series is sometimes referred to as an average series, and prototyping is
also sometimes called time-series averaging, but we will prefer the term “prototyping”, although

calling them time-series centroids is also common.

Computing prototypes is commonly done as a sub-routine of a larger task. In the context

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

32

of clustering (see Time-series clustering), partitional procedures rely heavily on the prototyping
function, since the resulting prototypes are used as cluster centroids. Prototyping could even be
a pre-processing step, whereby different samples from the same source can be summarized before
clustering (e.g., for the character trajectories dataset, all trajectories from the same character can
be summarized and then groups of similar characters could be sought), thus reducing the amount of
data and execution time. Another example is time-series classification based on nearest-neighbors,
which can be optimized by considering only group-prototypes as neighbors instead of the union of
all groups. Nevertheless, it is important to note that the distance used in the overall task should be
congruent with the chosen centroid, e.g., using the DTW distance for DTW-based prototypes.

The choice of prototyping function is closely related to the chosen distance measure and, in a
similar fashion, it is not simple to know which kind of prototype will be better a priori. There are
several strategies available for time-series prototyping, although due to their high dimensionality, what
exactly constitutes an average time-series is debatable, and some notions could worsen performance
significantly. The following sections will briefly describe some of the common approaches when
dealing with time-series.

Partition around medoids

One approach is to use partition around medoids (PAM). A medoid is simply a representative object
from a cluster, in this case also a time-series, whose average distance to all other objects in the
same cluster is minimal. Since the medoid object is always an element of the original data, PAM is
sometimes preferred over mean or median so that the time-series structure is not altered.

A possible advantage of PAM is that, since the data does not change, it is possible to precompute
the whole distance matrix once and re-use it on each iteration, and even across different number of
clusters and random repetitions. However, this is not suitable for large datasets since the whole
distance matrix has to be allocated at once.

In the implementation included in the package, the distances between all member series are
computed, and the series with minimum sum of distances is chosen as the prototype.

DTW barycenter averaging

The DTW distance is used very often when working with time-series, and thus a prototyping function
based on DTW has also been developed in Petitjean et al. (2011). The procedure is called DTW
barycenter averaging (DBA), and is an iterative, global method. The latter means that the order in
which the series enter the prototyping function does not affect the outcome.

DBA requires a series to be used as reference (centroid), and it usually begins by randomly
selecting one of the series in the data. On each iteration, the DTW alignment between each series in
the cluster C' and the centroid is computed. Because of the warping performed in DTW| it can be
that several time-points from a given time-series map to a single time-point in the centroid series, so
for each time-point in the centroid, all the corresponding values from all series in C' are grouped
together according to the DTW alignments, and the mean is computed for each centroid point using
the values contained in each group. This is iteratively repeated until a certain number of iterations
are reached, or until convergence is assumed.

The dtwclust implementation of DBA is done in C++ and includes several memory optimizations.
Nevertheless, it is more computationally expensive due to all the DTW calculations that must be
performed. However, it is very competitive when using the DTW distance and, thanks to DTW
itself, it can support series with different length directly, with the caveat that the length of the
resulting prototype will be the same as the length of the reference series that was initially chosen by
the algorithm, and that the symmetricl or symmetric2 step pattern should be used.

Soft-DTW centroid

Thanks to the gradient that can be computed as a by-product of the soft-DTW distance calculation
(see Soft-D'T'W), it is possible to define an objective function (see Equation (4) in Cuturi and Blondel
(2017)) and subsequently minimize it with numerical optimization. In addition to the smoothing
parameter of soft-DTW (7), the optimization procedure considers the option of using normalizing
weights for the input series, which noticeably alters the resulting centroids (see Figure 4 in Cuturi
and Blondel (2017)). The clustering and classification experiments performed by Cuturi and Blondel
(2017) showed that using soft-DTW (distance and centroid) provided quantitatively better results in
many scenarios.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

33

Shape extraction

A recently proposed method to calculate time-series prototypes is termed shape extraction, and is

part of the k-Shape algorithm (see k-Shape clustering) described in Paparrizos and Gravano (2015).

As with the corresponding SBD (see Shape-based distance), the algorithm depends on NCCec, and it
first uses it to match two series optimally. Figure 9 depicts the alignment that is performed using
two sample series.

o | o |
3 3
g o | 8 1
5 © ¢ g
7] m & i
9 9 |
3 3
! T T T T T ! T T T T T
0 50 100 150 200 0 50 100 150 200
Time Time
(a) Series before alignment (b) Series after alignment

Figure 9: Visualization of the NCCc-based alignment performed on two sample series. After
alignment, the second (red) series is either truncated and/or prepended/appended
with zeros so that its length matches the first(black) series.

As with DBA, a centroid series is needed, so one is usually randomly chosen from the data.

An exception is when all considered time-series have the same length, in which case no centroid is
needed beforehand. The alignment can be done between series with different length, and since one
of the series is shifted in time, it may be necessary to truncate and prepend or append zeros to the
non-reference series, so that the final length matches that of the reference. This is because the final
step of the algorithm builds a matrix with the matched series (row-wise) and performs a so-called
maximization of Rayleigh Quotient to obtain the final prototype; see Paparrizos and Gravano (2015)
for more details.

The output series of the algorithm must be z-normalized. Thus, the input series as well as the
reference series must also have this normalization. Even though the alignment can be done between
series with different length, it has the same caveat as DBA, namely that the length of the resulting
prototype will depend on the length of the chosen reference. Technically, for multivariate series, the
shape extraction algorithm could be applied for each variable v of all involved series, but this was
not explored by the authors of k-Shape.

Summary of prototyping functions

Table 2 summarizes the time-series prototyping functions implemented in dtwclust, including the
distance measure they are based upon, where applicable. It is worth mentioning that, as will
be described in Time-series clustering, the choice of distance and prototyping function is very
important for time-series clustering, and it may be ill-advised to use a distance measure that does
not correspond to the one used by the prototyping function. Using PAM is an exception, because
the medoids are not modified, so any distance can be used to choose a medoid. It is possible to use
custom prototyping functions for time-series clustering (see Clustering examples), but it is important
to maintain congruence with the chosen distance measure.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

34

Prototyping function Distance used Algorithm used

PAM — Time-series with minimum
sum of distances to the
other series in the group.

DBA DTW Average of points grouped
according to DTW
alignments.

Soft-DTW centroid Soft-DTW Numerical optimization
using the derivative of
soft-DTW.

Shape extraction SBD Normalized eigenvector of a
matrix created with
SBD-aligned series.

Table 2: Time-series prototyping functions implemented in dtwclust, and their corresponding
distance measures.

Time-series clustering

There are several clustering algorithms, but in general, they fall within 3 categories: hierarchical
clustering, which induces a hierarchy in the data; partitional clustering, which creates crisp partitions
of data; and fuzzy clustering, which creates fuzzy or overlapping partitions.

Hierarchical clustering is an algorithm that tries to create a hierarchy of groups in which, as the
level in the hierarchy increases, clusters are created by merging the clusters from the next lower level,
such that an ordered sequence of groupings is obtained; this may be deceptive, as the algorithms
impose the hierarchical structure even if such structure is not inherent to the data (Hastie et al.,
2009). In order to decide how the merging is performed, a (dis)similarity measure between groups
should be specified, in addition to the one that is used to calculate pairwise similarities. However, a
specific number of clusters does not need to be specified for the hierarchy to be created, and the
procedure is deterministic, so it will always give the same result for a chosen set of (dis)similarity
measures.

Hierarchical clustering has the disadvantage that the whole distance matrix must be calculated
for a given dataset, which in most cases has a time and memory complexity of O(N?) if N is the
total number of objects in the dataset. Thus, hierarchical procedures are usually used with relatively
small datasets.

Partitional clustering is a strategy used to create partitions. In this case, the data is explicitly
assigned to one and only one cluster out of k total clusters. The number of desired clusters must be
specified beforehand, which can be a limiting factor. Some of the most popular partitional algorithms
are k-means and k-medoids (Hastie et al., 2009). These use the Euclidean distance and, respectively,
mean or PAM centroids (see Time-series prototypes).

Partitional clustering algorithms commonly work in the following way. First, k£ centroids are
randomly initialized, usually by choosing k objects from the dataset at random; these are assigned
to individual clusters. The distance between all objects in the data and all centroids is calculated,
and each object is assigned to the cluster of its closest centroid. A prototyping function is applied
to each cluster to update the corresponding centroid. Then, distances and centroids are updated

iteratively until a certain number of iterations have elapsed, or no object changes clusters any more.

Most of the proposed algorithms for time-series clustering use the same basic strategy while changing
the distance and/or centroid function.

Partitional clustering procedures are stochastic due to their random start. Thus, it is common
practice to test different starting points to evaluate several local optima and choose the best result
out of all the repetitions. It tends to produce spherical clusters, but has a lower complexity, so it
may be applied to very large datasets.

In crisp partitions, each member of the data belongs to only one cluster, and clusters are mutually
exclusive. By contrast, fuzzy clustering creates a fuzzy or soft partition in which each member
belongs to each cluster to a certain degree. For each member of the data, the degree of belongingness
is constrained so that its sum equals 1 across all clusters. Therefore, if there are N objects in the
data and k clusters are desired, an N x k membership matrix u can be created, where all the rows

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

35

must sum to 1 (note that some authors use the transposed version of u).

Technically, fuzzy clustering can be repeated several times with different random starts, since u
is initialized randomly. However, comparing the results would be difficult, since it could be that the
values within u are shuffled but the overall fuzzy grouping remains the same, or changes very slightly,
once the algorithm has converged. Note that it is straightforward to change the fuzzy partition to a
crisp one by taking the argument of the row-wise maxima of u and assigning the respective series to
the corresponding cluster only.

The main clustering function in dtwclust is tsclust, which supports all of the aforementioned
clustering algorithms. Part of this support comes from functionality provided by other R packages.
However, the advantage of using dtwclust is that it can handle time-series nuances, like series with
different lengths and multivariate series. This is particularly important for partitional clustering,
where both distance and prototyping functions must be applicable to time-series data. For brevity,
the following sections will focus on describing the new clustering algorithms implemented in dtwclust,
but more information can be obtained in the functions’ documentation.

TADPole clustering

TADPole clustering was proposed in Begum et al. (2015), and is implemented in dtwclust in the
TADPole function. It adopts a relatively new clustering framework and adapts it to time-series
clustering with the DTW distance. Because of the way the algorithm works, it can be considered a
kind of PAM clustering, since the centroids are always elements of the data. However, this algorithm
is deterministic depending on the value of a cutoff distance (d.).

The algorithm first uses the DTW distance’s upper and lower bounds (Euclidean distance and
LB_Keogh respectively) to find series with many close neighbors (in DTW space). Anything below
dc is considered a neighbor. Aided with this information, the algorithm then tries to prune as many
DTW calculations as possible in order to accelerate the clustering procedure. The series that lie in
dense areas (i.e., that have lots of neighbors) are taken as cluster centroids. For a more detailed
explanation of each step, please refer to Begum et al. (2015).

TADPole relies on the DTW bounds, which are only defined for time-series of equal length.

Consequently, it requires a Sakoe-Chiba constraint. Furthermore, it should be noted that the
Euclidean distance is only valid as a DTW upper bound if the symmetricl step pattern is used
(see Figure 2). Finally, the allocation of several distance matrices is required, making it similar to
hierarchical procedures memory-wise, so its applicability is limited to relatively small datasets.

k-Shape clustering

The k-Shape clustering algorithm was developed by Paparrizos and Gravano (2015). It is a partitional
clustering algorithm with a custom distance measure (SBD; see Shape-based distance), as well as a
custom centroid function (shape extraction; see Shape extraction). It is also stochastic in nature,
and requires z-normalization in its default definition. In order to use this clustering algorithm,
the tsclust function should be called with partitional as the clustering type, SBD as the distance

measure, shape extraction as the centroid function, and z-normalization as the preprocessing step.

As can be appreciated, this algorithm uses the same strategy as k-means, but replaces both distance
and prototying functions with custom ones that are congruent with each other.

Clustering examples

In this example, three different partitional clustering strategies are used: the DTW3y distance
and DBA centroids, k-Shape, and finally TADPole. The results are evaluated using Variation
of Information (see Cluster evaluation), with lower numbers indicating better results. Note that
z-normalization is applied by default when selecting shape extraction as the centroid function. For
consistency, all algorithms used the reinterpolated and normalized data, since some algorithms
require series of equal length. A subset of the data is used for speed. The outcome should not
be generalized to other data, and normalization/reinterpolation may actually worsen some of the
algorithms’ performance.

Linear reinterpolation to same length

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
z-normalization

data <- zscore(data[60L:100L])

pc_dtw <- tsclust(data, k = 4L, seed = 8L,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 36

distance = "dtw_basic", centroid = "dba",
norm = "L2", window.size = 20L)

pc_ks <- tsclust(data, k = 4L, seed = 8L,
distance = "sbd", centroid = "shape")

pc_tp <- tsclust(data, k = 4L, type = "tadpole", seed = 8L,
control = tadpole_control(dc = 1.5, window.size = 20L))

sapply (1ist (DTW = pc_dtw, kShape = pc_ks, TADPole = pc_tp),
cvi, b = CharTrajLabels[60L:100L], type = "VI")

DTW.VI kShape.VI TADPole.VI
0.5017081 0.4353306 0.4901096

As can be seen, using a distance registered with proxy can be done by simply specifying its name
in the distance argument of tsclust. Using the prototyping functions included in dtwclust can be
done by passing their respective names in the centroid parameter, but using a custom prototyping
function is also possible. For example, a weighted mean centroid is implemented as follows. The
usefulness of such an approach is of course questionable.

weighted_mean_cent <- function(x, cl_id, k, cent, cl_old, ..., weights) {
x <- Map(x, weights, f = function(ts, w) { w * ts })
x_split <- split(x, cl_id)
new_cent <- lapply(x_split, function(xx) {
xx <- do.call(rbind, xx)
colMeans (xx)
»
}

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
weights <- rep(c(0.9,1.1), each = BL)
tsclust(data[1iL:10L], type = "p", k = 2L,

distance = "Manhattan",
centroid = weighted_mean_cent,
seed = 123,

args = tsclust_args(cent = list(weights = weights)))

partitional clustering with 2 clusters
Using manhattan distance
Using weighted_mean_cent centroids

Time required for analysis:
user system elapsed
0.024 0.000 0.023

Cluster sizes with average intra-cluster distance:

size av_dist
1 5 15.05069
2 5 18.99145

Cluster evaluation

Clustering is commonly considered to be an unsupervised procedure, so evaluating its performance
can be rather subjective. However, a great amount of effort has been invested in trying to standardize
cluster evaluation metrics by using cluster validity indices (CVIs). Many indices have been developed
over the years, and they form a research area of their own, but there are some overall details that
are worth mentioning. The discussion here is based on Arbelaitz et al. (2013) and Wang and Zhang
(2007), which provide a much more comprehensive overview.

In general, CVIs can be either tailored to crisp or fuzzy partitions. For the former, CVIs can be
classified as internal, external or relative depending on how they are computed. Focusing on the
first two, the crucial difference is that internal CVIs only consider the partitioned data and try to

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

37

define a measure of cluster purity, whereas external CVIs compare the obtained partition to the
correct one. Thus, external CVIs can only be used if the ground truth is known.

Note that even though a fuzzy partition can be changed into a crisp one, making it compatible
with many of the existing “crisp” CVIs, there are also fuzzy CVIs tailored specifically to fuzzy
clustering, and these may be more suitable in those situations. Fuzzy partitions usually have no
ground truth associated with them, but there are exceptions depending on the task’s goal (Lei et al.,
2017).

Several of the best-performing CVIs according to Wang and Zhang (2007), Arbelaitz et al. (2013),
and Lei et al. (2017) are implemented in dtwclust in the cvi function. Table 3 specifies which ones
are available and some of their particularities.

There are some advantages and corresponding caveats with respect to the dtwclust implementa-
tions. Many internal CVIs require additional distance calculations, and some also compute so-called
global centroids (a centroid that uses the whole dataset), which were calculated with, respectively, the
Euclidean distance and a mean centroid in the original definition. The implementations in dtwclust
change this, making use of whatever distance/centroid was utilized during clustering without further
intervention from the user, so it is possible to leverage the distance and centroid functions that
support time-series. Nevertheless, many CVIs assume symmetric distance functions, so the cvi
function warns the user when this is not fulfilled.

Knowing which CVI will work best cannot be determined a priori, so they should be tested for
each specific application. Many CVIs can be utilized and compared to each other, maybe using a
majority vote to decide on a final result, but there is no best CVI, and it is important to conceptually
understand what a given CVI measures in order to appropriately interpret its results. Furthermore,
it should be noted that, due to additional distance and/or centroid calculations, computing CVIs
can be prohibitive in some cases. For example, the Silhouette index effectively needs the whole
distance matrix between the original series to be calculated.

CVIs are not the only way to evaluate clustering results. The clue package (Hornik, 2005,7)
includes its own extensible framework for evaluation of cluster ensembles. It does not directly deal
with the clustering algorithms themselves, rather with ways of quantifying agreement and consensus
between several clustering results. As such, it is directly compatible with the results from dtwclust,
since it does not care how a partition/hierarchy was created. Support for the clue package framework
is included.

Cluster evaluation examples

In the following example, different numbers of clusters are computed, and, using internal CVIs, it
is possible to assess which one resulted in a partition with more “purity”. The majority of indices
suggest using k£ = 4 in this case.

subset
data <- CharTraj[1L:20L]
pc_k <- tsclust(data, k = 3L:5L, seed = 94L,
distance = "dtw_basic", centroid = "pam")
names (pc_k) <- pasteO("k_", 3L:5L)
sapply(pc_k, cvi, type = "internal")

k_3 k_4 k_5
Sil 6.897035e-01 7.295148e-01 6.726453e-01
SF 1.105005e-11 1.345888e-10 1.074494e-10
CcH 2.375816e+01 2.873765e+01 2.207096e+01
DB 4.141004e-01 3.225955e-01 2.858009e-01
DBstar 4.799175e-01 4.998963e-01 7.029138e-01
D 1.054228e+00 7.078230e-01 4.430916e-01
cop 1.176921e-01 7.768459e-02 7.153216e-02

If we choose the value of k = 4, we could then compare results among different random repetitions
with help of the clue package (or with CVIs again).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=clue

CONTRIBUTED RESEARCH ARTICLES 38

CVI Internal or Crisp or fuzzy Minimized or Considerations
external partitions Maximized

Rand External Crisp Maximized —
Adjusted rand External Crisp Maximized —
Jaccard External Crisp Maximized —
Fowlkes-Mallows External Crisp Maximized —
Variation of External Crisp Minimized —
information

Soft rand External Fuzzy Maximized —
Soft adjusted rand External Fuzzy Maximized —
Soft variation of External Fuzzy Minimized —
information

Soft normalized External Fuzzy Maximized —

mutual information

Silhouette Internal Crisp Maximized Requires the whole
cross-distance
matrix.

Dunn Internal Crisp Maximized Requires the whole
cross-distance
matrix.

COP Internal Crisp Minimized Requires the whole
cross-distance
matrix.

Davies-Bouldin Internal Crisp Minimized Calculates distances
to the computed
cluster centroids.

Modified Internal Crisp Minimized Calculates distances
Davies-Bouldin to the computed
(DB¥) cluster centroids.
Calinski-Harabasz Internal Crisp Maximized Calculates a global
centroid.
Score function Internal Crisp Maximized Calculates a global
centroid.
MPC Internal Fuzzy Maximized —
K Internal Fuzzy Minimized Calculates a global
centroid.
T Internal Fuzzy Minimized —
SC Internal Fuzzy Maximized Calculates a global
centroid.
PBMF Internal Fuzzy Maximized Calculates a global
centroid.

Table 3: Cluster validity indices included in dtwclust. The first four are calculated with the
comPart function from the flexclust package. The Silhouette index is calculated with the
silhouette function in the cluster package. Internal fuzzy CVIs use the nomenclature
from Wang and Zhang (2007).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

39

require("clue")

pc_4 <- tsclust(data, type = "p", k = 4L,

distance = "dtw_basic", centroid = "pam",
control = partitional_control(nrep = 5L),
seed = 95L)

names (pc_4) <- pasteO("r_", 1L:5L)
pc_4 <- cl_ensemble(list = pc_4)
cl_dissimilarity(pc_4)

Dissimilarities using minimal Euclidean membership distance:
r_1 r_2 r_3 r_4

_2 3.464102

_3 0.000000 3.464102

4 0.000000 3.464102 0.000000

5 0.000000 3.464102 0.000000 0.000000

r
r
r
r_

table(Medoid = cl_class_ids(cl_medoid(pc_4)),
"True Classes" = rep(c(4L, 3L, 1L, 2L), each = 5L))
True Classes

Medoid 1 2 3 4

15000
20500
30050
40005

Comparing clustering algorithms with dtwclust

As we have seen, there are several aspects that must be considered for time-series clustering. Some
examples are:

e Pre-processing of data, possibly changing the decision space.
e Type of clustering (partitional, hierarchical, etc.).

¢ Number of desired or expected clusters.

o Choice of distance measure, along with its parameterization.

e Choice of centroid function and its parameterization. This may also depend on the chosen
distance.

e Evaluation of clustering results.

e Computational cost, which depends not only on the size of the dataset, but also on the
complexity of the aforementioned aspects.

In order to facilitate more laborious workflows, dtwclust includes the compare_clusterings
function which, along with its helper functions, optimizes the way the different clustering algorithms
can be executed. Its main advantage is that it leverages parallelization. Using parallelization is not
something that is commonly explored explicitly in the literature, but it can be extremely useful in
practical applications. In the case of time-series clustering, parallel computation can result in a very
significant reduction in execution times.

Handling parallelization has been greatly simplified in R by different software packages. The
implementations done in dtwclust use the foreach package (Revolution Analytics and Weston, 2017)
for multi-processing, and ReppParallel for multi-threading (Allaire et al., 2018). Thanks to foreach,

the parallelized workflow can be executed not only in a local machine, but also in a computing cluster.

In order to avoid data copies and communication overhead in these scenarios, compare_clusterings
is coded in a way that, by default, less data is returned from the parallel processes. Nevertheless, as
will be shown shortly, the results can be fully re-created in the main process on demand.

With this infrastructure, it is possible to cover the whole clustering workflow with dtwclust.

Parallelized workflow example

This example uses the doParallel package (Microsoft Corporation and Weston, 2018), which is one
of the options that provides a parallel backend for foreach.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLES

40

The configuration is specified with two helper functions: compare_clusterings_configs and
pdc_configs. It tests partitional clustering with DTW distance and DBA centroids, exploring
different values for window size and norm. The value of the window size can have a very significant
effect on clustering quality (Dau et al., 2016)%, but there is no single size that performs best on all

datasets, so it is important to assess its effect on each specific case.

Since the ground truth is known in this scenario, an external CVI is chosen for evaluation: the
adjusted Rand index. The cvi_evaluators function generates functions that can be passed to

compare_clusterings which, internally, use the cvi function (see Cluster evaluation).

require("doParallel")

workers <- makeCluster (detectCores())
invisible(clusterEvalQ(workers, library(dtwclust)))
registerDoParallel (workers)

cfg <- compare_clusterings_configs(
types = "partitiomnal",
k = 20L,
controls = list(
partitional = partitional_control(
iter.max = 20L

)
),
distances = pdc_configs(
"distance",
partitional = list(
dtw_basic = list(
window.size = seq(from = 10L, to = 30L, by = 5L),
norm = c("L1i", "L2")
)
)
),
centroids = pdc_configs(
"centroid",
share.config = c("p"),
dba = list(
window.size = seq(from = 10L, to = 30L, by = 5L),
norm = c("L1", "L2")
)
),

no.expand = c(
"window.size",
’Inormll

evaluators <- cvi_evaluators("ARI", ground.truth = CharTrajLabels)

comparison <- compare_clusterings(CharTraj, types = "partitional",
configs = cfg, seed = 8L,
score.clus = evaluators$score,
pick.clus = evaluators$pick)

stopCluster (workers); registerDoSEQ()

some rows and columns from the results data frame

head (comparison$results$partitional [, c("config_id", "distance", "centroid",
"window.size_distance", "norm_distance",
"ARI")1)
config_id distance centroid window.size_distance norm_distance ARI
1 configl dtw_basic dba 10 L1 0.6021905
2 config2 dtw_basic dba 10 L2 0.6589223
3 config3 dtw_basic dba 15 L1 0.5306598

3The strategy presented in this reference is also included in dtwelust in the ssdtwclust function, and it is

implemented by leveraging compare_clusterings.

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 41

4 configd dtw_basic dba 15 L2 0.4733479
5 configb dtw_basic dba 20 L1 0.4474698
6 configh dtw_basic dba 20 L2 0.5840729

Based on the ARI, one of the configurations was picked as the best one, and it is possible to
obtain the clustering object by calling repeat_clustering:

clusters <- repeat_clustering(CharTraj, comparison, comparison$pick$config_id)

matrix(clusters@cluster, ncol = 5L, byrow = TRUE)
[,11 [,21 [,3]1 [,4] [,5]
[1,] 5 5 5 5 5
[2,1 7 7 7 7 7
[3,] 18 18 18 18 18
[4,] 15 15 15 15 15
5,1 17 17 17 17 17
[6,] 4 4 4 4 9
7,1 2 2 2 2 2
[8,] 3 3 3 3 11
[9,] 6 6 6 6 6
[10,] 20 20 20 20 20
[11,] 10 10 10 10 10
[12,] 10 19 19 19 19
[13,] 20 20 20 20 12

[14,] 14 8 16 8 8
[15,] 4 4 4 4 4
[16,] 2 2 2 2 2
[17,] 1 1 1 14 1
[18,] 6 6 6 6
[19,] 13 13 13 13 9

[20,] 8 12 17 17 17

Conclusion

In this manuscript a general overview of shape-based time-series clustering was provided. This
included a lot of information related to the DTW distance and its corresponding optimizations,
such as constraints and lower bounding techniques. At the same time, the dtwclust package for
R was described and showcased, demonstrating how it can be used to test and compare different
procedures efficiently and unbiasedly by providing a common infrastructure.

The package implements several different routines, most of which are related to the DTW
algorithm. Nevertheless, its modular structure enables the user to customize and complement the
included functionality by means of custom algorithms or even other R packages, as it was the case
with TSdist and clue. These packages are more specialized, dealing with specific tasks (respectively:
distance calculations and cluster evaluation). By contrast, dtwclust provides a more general purpose
clustering workflow, having enough flexibility to allow for the most common approaches to be used.

The goal of this manuscript was not to give a comprehensive and thorough explanation of all
the discussed algorithms, but rather to provide information related to what has been done in the
literature, including some more recent propositions, so that the reader knows where to start looking
for further information, as well as what can or cannot be done with dtwclust.

Choosing a specific clustering algorithm for a given application is not an easy task. There are
many factors to take into account and it is not possible to know a priori which one will yield the best
results. The included implementations try to use the native (and heavily optimized) R functions as
much as possible, relying on compiled code where needed, so we hope that, if time-series clustering
is required, dtwclust can serve as a starting point.

Bibliography

C. C. Aggarwal and C. K. Reddy. Time-series data clustering. In Data Clustering: Algorithms and
Applications, chapter 15. CRC Press, 2013. [p22]

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics in
high dimensional space. In J. V. den Bussche and V. Vianu, editors, International Conference on
Database Theory, pages 420-434. Springer-Verlag, 2001. [p24]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

42

S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering — a decade review.
Information Systems, 53:16-38, 2015. URL https://doi.org/10.1016/j.is.2015.04.007. [p22,
23]

J. Allaire, R. Francois, K. Ushey, G. Vandenbrouck, M. Geelnard, and Intel. RcppParallel:
Parallel Programming Tools for ’Repp’, 2018. URL https://CRAN.R-project.org/package=
RcppParallel. R package version 4.4.2. [p39]

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and 1. Perona. An extensive comparative

study of cluster validity indices. Pattern Recognition, 46(1):243-256, 2013. URL https://doi.

org/10.1016/j.patcog.2012.07.021. [p36, 37]

N. Begum, L. Ulanova, J. Wang, and E. Keogh. Accelerating dynamic time warping clustering with
a novel admissible pruning strategy. In Conference on Knowledge Discovery and Data Mining,
KDD ’15. ACM, 2015. ISBN 978-1-4503-3664-2/15/08. URL https://doi.org/10.1145/2783258.
2783286. [p23, 26, 35]

D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD
Workshop, volume 10, pages 359-370. Seattle, WA, 1994. [p24]

A. M. Brandmaier. pdc: An R package for complexity-based clustering of time series. Journal of
Statistical Software, 67(5):1-23, 2015. URL https://doi.org/10.18637/jss.v067.105. [p23]

M. Cuturi. Fast global alignment kernels. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 929-936, 2011. [p27, 28]

M. Cuturi and M. Blondel. Soft-DTW: a differentiable loss function for time-series. In D. Precup
and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 894-903, International Convention
Centre, Sydney, Australia, 2017. PMLR. URL http://proceedings.mlr.press/v70/cuturil7a.
html. [p28, 32]

H. A. Dau, N. Begum, and E. Keogh. Semi-supervision dramatically improves time series clustering
under dynamic time warping. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, pages 999-1008. ACM, 2016. URL https://doi.org/
10.1145/2983323.2983855. [p""l()}

T. Giorgino. Computing and visualizing dynamic time warping alignments in R: The dtw package.
Journal of Statistical Software, 31(7):1-24, 2009. URL https://doi.org/10.18637/jss.v031.107.
[p23, 25, 26]

T. Hastie, R. Tibshirani, and J. Friedman. Cluster analysis. In The Elements of Statistical Learning
2nd Edition, chapter 14.3. Springer-Verlag, 2009. [p34]

K. Hornik. A CLUE for CLUster ensembles. Journal of Statistical Software, 14(12):1-25, 2005. URL
https://doi.org/10.18637/jss.v014.112. [p37]

K. Hornik. clue: Cluster Ensembles, 2019. URL https://CRAN.R-project.org/package=clue. R
package version 0.3-57. [p37, 212]

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. An Introduction to Cluster Analysis,
volume 1, chapter 1. John Wiley & Sons, 1990. [p22]

E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and
information systems, 7(3):358-386, 2005. URL https://doi.org/10.1007/s10115-004-0154-9.
[p20]

Y. Lei, J. C. Bezdek, J. Chan, N. X. Vinh, S. Romano, and J. Bailey. Extending information-theoretic
validity indices for fuzzy clustering. IEEE Transactions on Fuzzy Systems, 25(4):1013-1018, 2017.
URL https://doi.org/10.1109/TFUZZ.2016.2584644. [pST]

F. Leisch. A toolbox for k-centroids cluster analysis. Computational Statistics & Data Analysis, 51
(2):526-544, 2006. URL https://doi.org/10.1016/j.csda.2005.10.006. [p23]

D. Lemire. Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recognition,
42(9):2169 — 2180, 2009. ISSN 0031-3203. URL https://doi.org/10.1016/j.patcog.2008.11.
030. [p24, 26, 27]

T. W. Liao. Clustering of time series data: A survey. Pattern recognition, 38(11):1857-1874, 2005.
URL https://doi.org/10.1016/j.patcog.2005.01.025. [p22]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1016/j.is.2015.04.007
https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=RcppParallel
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1145/2783258.2783286
https://doi.org/10.1145/2783258.2783286
https://doi.org/10.18637/jss.v067.i05
http://proceedings.mlr.press/v70/cuturi17a.html
http://proceedings.mlr.press/v70/cuturi17a.html
https://doi.org/10.1145/2983323.2983855
https://doi.org/10.1145/2983323.2983855
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v014.i12
https://CRAN.R-project.org/package=clue
https://doi.org/10.1007/s10115-004-0154-9
https://doi.org/10.1109/TFUZZ.2016.2584644
https://doi.org/10.1016/j.csda.2005.10.006
https://doi.org/10.1016/j.patcog.2008.11.030
https://doi.org/10.1016/j.patcog.2008.11.030
https://doi.org/10.1016/j.patcog.2005.01.025

CONTRIBUTED RESEARCH ARTICLES

43

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p23]

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. cluster: Cluster Analysis Basics
and Extensions, 2019. URL https://CRAN.R-project.org/package=cluster. R package version
2.0.8. [p23]

D. Meyer and C. Buchta. proxy: Distance and Similarity Measures, 2019. URL https://CRAN.R-
project.org/package=proxy. R package version 0.4-23. [p23]

Microsoft Corporation and S. Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package,
2018. URL https://CRAN.R-project.org/package=doParallel. R package version 1.0.14. [p39]

P. Montero and J. A. Vilar. TSclust: An R package for time series clustering. Journal of Statistical
Software, 62(1):1-43, 2014. URL https://doi.org/10.18637/jss.v062.101. [p23, 24]

U. Mori, A. Mendiburu, and J. A. Lozano. Distance measures for time series in R: The T'Sdist package.
R Journal, 8(2):451-459, 2016. URL https://journal.r-project.org/archive/2016/RJ-2016-
058/index.html. [p23, 24]

J. Paparrizos and L. Gravano. k-Shape: Efficient and accurate clustering of time series. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, pages 1855-1870, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9. URL
https://doi.org/10.1145/2949741.2949758. [p23, 28, 33, 35]

F. Petitjean, A. Ketterlin, and P. Gangarski. A global averaging method for dynamic time warping,
with applications to clustering. Pattern Recognition, 44(3):678 — 693, 2011. ISSN 0031-3203. URL
https://doi.org/10.1016/j.patcog.2010.09.013. [p32]

S. Rani and G. Sikka. Recent techniques of clustering of time series data: A survey. International
Journal of Computer Applications, 52(15), 2012. URL https://doi.org/10.5120/8282-1278.
(p22]

C. A. Ratanamahatana and E. Keogh. Everything you know about dynamic time warping is wrong.
In Third Workshop on Mining Temporal and Sequential Data. Citeseer, 2004. [p24, 25, 26]

Revolution Analytics and S. Weston. foreach: Provides Foreach Looping Construct for R, 2017. URL
https://CRAN.R-project.org/package=foreach. R package version 1.4.4. [p39]

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 26(1):43-49, 1978. ISSN 0096-3518.
URL https://doi.org/10.1109/TASSP.1978.1163055. [p26]

W. Wang and Y. Zhang. On fuzzy cluster validity indices. Fuzzy sets and systems, 158(19):2095-2117,
2007. URL https://doi.org/10.1016/j.fss.2007.03.004. [p36, 37, 38]

Alexis Sardd-Espinosa
alexis.sarda@gmail.com

Disclaimer: The software package was developed
independently of any organization or institution
that is or has been associated with the author.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=doParallel
https://doi.org/10.18637/jss.v062.i01
https://journal.r-project.org/archive/2016/RJ-2016-058/index.html
https://journal.r-project.org/archive/2016/RJ-2016-058/index.html
https://doi.org/10.1145/2949741.2949758
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.5120/8282-1278
https://CRAN.R-project.org/package=foreach
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1016/j.fss.2007.03.004
mailto:alexis.sarda@gmail.com

CONTRIBUTED RESEARCH ARTICLES

44

mixedsde: A Package to Fit Mixed
Stochastic Differential Equations

by Charlotte Dion, Simone Hermann, Adeline Samson

Abstract Stochastic differential equations (SDEs) are useful to model continuous stochastic
processes. When (independent) repeated temporal data are available, variability between the
trajectories can be modeled by introducing random effects in the drift of the SDEs. These models
are useful to analyze neuronal data, crack length data, pharmacokinetics, financial data, to cite some
applications among other. The R package focuses on the estimation of SDEs with linear random
effects in the drift. The goal is to estimate the common density of the random effects from repeated
discrete observations of the SDE. The package mixedsde proposes three estimation methods: a
Bayesian parametric, a frequentist parametric and a frequentist nonparametric method. The three
procedures are described as well as the main functions of the package. Illustrations are presented on
simulated and real data.

Introduction

Continuous stochastic processes are usually observed discretely in time (with equidistant time points
or not) leading to times series, although their intrinsic nature is of continuous time. While discrete
time stochastic models such as auto-regressive models (ARMA, GARCH, ...) have been widely
developed for time series with equidistant times, more and more attention have been focused on
Stochastic Differential Equations (SDEs). Examples of applications where SDEs have been used
include dynamics of thermal systems (Bacher and Madsen, 2011), solar and wind power forecasting
(Iversen et al., 2014), neuronal dynamics (Ditlevsen and Samson, 2014), pharmacokinetic/pharma-
codynamic (PK/PD) (Hansen et al., 2014), crack growth (Hermann et al., 2016). Estimation for
SDE is available in different softwares. We can cite among others the computer software CTSM
with a (extended) Kalman filter approach (Kristensen and Madsen, 2003), the sde package which
proposes several tools for the simulation and the estimation of a variety of SDEs, and more recently
the R-packages Sim.DiffProc (Guidoum and Boukhetala, 2017) and yuima (Iacus, 2018) (the last
one proposes also some tools for quantitative finance).

Depending on the applications, independent repeated temporal measures might be available.
For examples, drug concentration of several subjects is usually observed in PK; dynamics of several
neurons is measured along time; time to crack lengths can be measured repeatedly in crack growth
study. Each trajectory represents the behavior of a unit/subject. The functional form is similar
for all the trajectories. Fitting the overall data simultaneously obviously improves the quality of
estimation, but one has to take into account these variabilities between experiments. This is the
typical framework of mixed-effects models where some parameters are considered as random variables
(random effects) and proper to each trajectory. Hence the random effects represent the particularity
of each subject. Some parameters can also be considered as common to all the trajectories (fixed
effects).

In this work the model of interest is thus a mixed-effects stochastic differential equation (MSDE),
mixed-effects for both fixed and random effects. The mixedsde package has been developed to estimate
the density of the random effects from the discrete observations of M independent trajectories of a
MSDE. It is available from the Comprehensive R Archive Network (CRAN Dion et al., 2016). The
package’s development is actively continued with the latest source code available from a GitHub
repository https://github.com/charlottedion/mixedsde.

More precisely, we focus on MSDE with linear drift. We consider M diffusion processes
(X;(t),t =0),j=1,..., M with dynamics ruled by SDE, for ¢ € [0, T]
dX;(t) = (o — B X;(t))dt + oa(X;(t)dW;(t) 0
X;(0) =

where (W;)1..j...;m are M independent Wiener processes, (o, ;) are two (random) parameters,
oa(X;(+)) is the diffusion coefficient with a a known function and ¢ an unknown constant. The
initial condition x; is assumed fixed (and known) in the paper with possibly different values for each
trajectory.

In the package, we restrict the models to the two famous SDEs with linear drift, namely the
Ornstein-Uhlenbeck model (OU) with a(z) = 1 and the Cox-Ingersoll-Ross model (CIR) with
a(r) = y/x. For the CIR model, we assume that z; > 0, ¢ > 0, o > 02/2 and B; > 0 to ensure

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://github.com/charlottedion/mixedsde

CONTRIBUTED RESEARCH ARTICLES

45

that the process never crosses zero.

The random parameters are denoted ¢; and belong to R? with either d = 1 or d = 2:
1) ¢; = aj random and for all j = 1,..., M, 3; = fixed,

e (d=1) ¢; = B; random and for all j =1,..., M, a; = « fixed,

2) ¢; = (o, Bj) random.

The ¢;’s are assumed independent and identically distributed (7.i.d.) and independent of the W’s.
The mixedsde package aims at estimating the random effects ¢; and their distribution whose density

is denoted f, from N discrete observations of the M trajectories (X (t)); from Equation 1 at discrete
times tg = 0 < ¢1 < ... <ty =T (not necessarily equidistant).

Context: To the best of our knowledge, this is the first package in R language dedicated to the
estimation of MSDE. The main software considering mixed models is MONOLIX (2003) but methods
for mixed stochastic differential equations are not implemented for R. One package named PSM
(Mortensen and Klim, 2013) provides functions for estimation of linear and non-linear mixed-effects
models using stochastic differential equations. But the model includes measurement noise and
proposes only parameter estimation. Moreover, there is no mathematical property about the used
estimators. In this context, the package presented is this paper is pioneer.

Estimation procedures for MSDE have been proposed in the non-parametric and the para-
metric frameworks, with a frequentist and a Bayesian point of view. The parametric approaches
assume Gaussian random effects ¢;. Among other references, for parametric maximum likelihood
estimation, we can cite Ditlevsen and de Gaetano (2005); Picchini et al. (2010) (Hermite expan-
sion of the likelihood); Delattre et al. (2013) (explicit integration of the Girsanov likelihood) or
Delattre et al. (2016) (mixture of Gaussian distributions for the random effects); for parametric
Bayesian estimation, we can cite Oravecz et al. (2009) (restricted to Ornstein-Uhlenbeck) and
Hermann et al. (2016) (general methodology); for non-parametric estimation, we can cite Comte et al.
(2013); Dion (2014); Dion and Genon-Catalot (2015) (kernel estimator and deconvolution estimators).

Three estimation procedures are implemented in the mixedsde package: a kernel nonparametric
estimator (Dion and Genon-Catalot, 2015), a parametric maximum likelihood estimator (Delattre
et al., 2013) and a parametric Bayesian estimator (Hermann et al., 2016). The parametric frequentist
and Bayesian approaches assume the random effects Gaussian. The Bayesian approach seems the
most appropriate method for a small time of observation 7" and a small number of trajectories M.
The nonparametric approach can be used when no prior idea on the density is available and when T’
and M are both large enough. Finally, the parametric frequentist estimation can be used with a
large number of discrete observations.

This paper reviews in Section 8.2 the three estimation methods. An overview of the mixedsde
package is given in Section 8.3 through a description of the main functions and of other related
companion functions. The practical use of this package is illustrated in Section 8.4 on simulated
data and in Section 8.5 on one real dataset in neuronal modeling.

Density estimation in mixed stochastic differential models

We briefly recall the methodology of the three estimators implemented in the mixedsde package.
We start with the nonparametric approach, then the frequentist parametric Gaussian method and
finally the Bayesian parametric Gaussian method.

Nonparametric estimation of the random effects density

The first step of the nonparametric approach is to estimate the random effects. The idea is to
maximize the likelihood of the process X solution of the stochastic differential equation with fixed

. Assuming continuous observations of (X;(t),0 <t < T'), the likelihood function is obtained with
the Girsanov formula:

JT = PXP) JT(a—BXf(s))QdS)

lp(p) = exp <

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

46

Maximizing the likelihood yields to the following estimator of ¢;
-1
Aj=Vl; (2)

where U; and V; are the two sufficient statistics of the model. They are explicit depending on the
form of the random effects:

e «; random and § known

- (* 1 (s T Xj(s) Vo T 1 .
vy i= |, 2a2 (% ())+) a2 (5, ()) o2aZ (%, ()

e 3; random and o known

N . ¢1C) N D «1C) Y L 10 S
Ui= Jo o%a2(X; (3))) T Jo 2a2(X,(3)) VJ“L a2 (X, ()

e (aj,B;) random, denote b(z) = (1, —z)" with " the transposition of vector u. Here U; is a
column vector with size 2 x 1 and Vj = (Vj k ¢)k req1,2) @ 2 X 2 symmetric matrix:

(Xj(s))ds. 3)

Truncated versions of this estimator have been introduced for theoretical reasons. In the bidi-
mensional case ¢; = (aj,;), Dion and Genon-Catalot (2015) propose the following estimator

T b T bbt
U, = —— (X dX; V= —
J fo 02a2(j(s)) J(8)7 j .[0)

Aj = Aj]-sz Bj = {Vj = K\/f[g} = {min()\l,j,)\g,j) = K,\/T} (4)
with I the 2 x 2 identity matrix and A; j,7 = 1,2 the two eigenvalues of the symmetric non negative
matrix V}, and & a numerical constant that has been calibrated (Dion and Genon-Catalot, 2015). In
the one-dimensional case ¢; = 3; with o = 0, Genon-Catalot and Larédo (2016) propose

—~

A]‘ = Ajlvjz,%ﬁ (5)

with & a numerical constant calibrated in practice. Based on these estimators of the ¢;’s, we can
proceed to the second step, the estimation of their density f. Several nonparametric estimators of f
have been proposed (see Comte et al., 2013, for example). In the package mixedsde, we focus on the
kernel estimator of f. Let us introduce the kernel function K : RY — R, with d = 1,2 depending on
the dimension of ¢;. We assume K to be a C? function satisfying

fK(u)du =1, |K|?= JKZ(u)du < +0o, J(VK(u))Zdu <+
(with VK the gradient of K). A bandwidth h € (RT)?, for d = 1,2, is used to define the function

Kp(z) = %K (%) Lz e R%

Note that in the bidimensional case, h = (h1, h2) and the two marginal bandwidths are different.
The nonparametric estimator of the density f of ¢; is

— 1 M
ful@) = 57 D Kn(z — Ay). (6)
j=1

—~

M
= 1 ~ R
and the estimator fj(z) = i Z Kp(x — Aj) is computed when the truncated estimator A; is
i=1

different than A;.

In the mixedsde package, Gaussian kernel estimators are implemented with the R -functions
density (available in package stats) when d = 1 and kde2d (available in package MASS Venables
and Ripley (2016)) when d = 2 with an automatic selection of the bandwidth h. Note that when
there is only one random effect, the bandwidth is selected by unbiased cross-validation with the
argument bw="ucv", or as the default value given by the rule-of-thumb if the chosen bandwidth is
too small. Note that the estimator is unstable for small variance of the random effects.

It is important to notice that the two random effects are not assumed independent. When there
is only one random effect, the fixed parameter has to be entered by the user.

The computation of A; = Vj*lU ; does not require the knowledge of o2 as it appears both in U

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

47

and V. It requires however the evaluation of the two continuous integrals in U; and V; while observing
the trajectories (X;) at discrete times (tg,t1,...,tn). For Ay = tpy1 —tg, k=0,...,N —1, the

non-stochastic integrals Sg 9(X;(s))ds for the functions g = a% or g = ba—b; are approximated by

T N-1
| stxiends = 3 o
0 k=0

For the stochastic integrals, we use the following simple discretization

T N—-1
L 9(Xj())dXj(s) ~ 3 9(X;(t)) (X (tsr) — (X () A
k=0

Note that there is no integrability issue for these two types of integrals considering the two functions

t
g= a% or g = ba—bz, involved in the sufficient statistics.

Frequentist parametric estimation approach

In this section and the following one, we assume that the random parameters ¢; are Gaussian:
o whend=1, ¢; ~ N (i, w?) with p e R,

o when d =2, ¢; ~ N(u, Q) with p e R? and a diagonal covariance matrix Q = diag(w%7 w%)

For the bidimensional case d = 2 we estimate by maximum likelihood the parameters 0 := (u, Q).

We define the likelihood function assuming first that the trajectories are continuously observed,
similarly to the nonparametric approach (Section 8.2.1). Thanks to the Girsanov formula, the
likelihood function of the jth trajectory X is

1 1

L(X;,0) = ——exp |-
(X5,0) det(IQ—i-QVj)eXp[2

-1 -1 -1 1 -1
(n=V; Uj)/Rj (n=V; Uj)] exp (§UJ/VJ Uj)
with R;' = (I3 +V;Q)7'Vj and I is the 2 x 2 identity matrix.

For the case d = 1, the parameters to estimate are 8 := (u,w, 1) where ¢ denotes the fixed effect
a or 5. We adopt the subscript r for the value of random, equal to 1 or 2, and ¢ for the position of
the common fixed effect (thus 2 or 1). The likelihood function of the jth trajectory Xj is

1 1 _ —
L(X;,0) = ——————rcxp [—gvj,m(l + V)T (= Vi U — wvj,c,r))Q]
V1wV
2
1 _
X exp ('(/)Uj,c - ivj’c’c) exp (g(Uj,r - ¢‘/j,r,c)2vj)r1’r)

with the notations U, V from Equation 3. Details on this formula are available in the Appendix 8.6.
The likelihood function is defined as L(0) = H;‘il L(X;,0). The maximum likelihood estimator
0:= (ﬁ,ﬁ,zz) when d = 1 and 0 := (&, ﬁ) when d = 2 is defined by
N M
6 = arg max L(f) = arg max H L(X;,0). (7)
6 6 j=1
This estimator is not explicit. In the mixedsde package, the function optim is used to maximize
numerically the likelihood. The maximum is generally not unique and depend on the initialization.
A good initialization is another estimator, for example the moment estimator of . Function optim

is thus initialized with the mean and the variance of the estimators A; of the random parameters
(see Equation 2). Sufficient statistics U; and V; are discretized as explained in Section 8.2.1.

Note that this parametric approach requires the knowledge of 2 to compute the sufficient
statistics U; and Vj; because V; appears alone in R;. We plug the following estimator of o2

= 1 &1 NG (X (trr) - X5(t)?
> <N L nEm)) ®

A~

Selection of (non-nested) models can be performed with the BIC criteria, defined by —2log L(8) +

~,

2log(M) for model with one random effect and —2log L(6) + 4log(M) with two random effects and

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

48

A ~

the AIC criteria defined by —2log L(#) + 2 for one random effect and —21log L(6) + 4 for two random
effects. These asymptotic criteria indicate the trade-off between maximizing fit and minimizing
model complexity. Note that their theoretical properties are guaranteed only when o2 is known.

Theoretical results are obtained on these estimators in the continuous observations context
under the asymptotic regime T — 00, N — o0, see (Dion and Genon-Catalot, 2015; Delattre et al.,
2013). For discrete observations, similar results are obtained in the high frequency context: T = nA,
n — o0 (A — 0). Nevertheless, in practice the points may not be equidistant and the package allows
a non-regular grid. The influence of T is lighter in the parametric strategy. Moreover, asymptotic
normality is obtained under the additional assumption n/N — co.

Bayesian parametric approach

For the Bayesian approach we assume similarly to the frequentist parametric estimation method a
Gaussian distribution for ¢;, with a diagonal covariance matrix () = diag(w%,w%). In this method,
we estimate in the same time the diffusion coefficient 0. The parameters of interest are thus

0 = (u,Q,0) and we want to estimate their posterior distribution p(0|(X;(tx))j=1,... M k=1,. .N)-

Let denote X1.as = (X (tk))j=1,...,M k=1,..., N in the following.

We now introduce prior distributions implemented in mixedsde package for the parameters 6:

p~N(@m, V), V = diag(v)
Wi ~ 1CG(iy Buoi)s i = 1,2
02 ~ IG(O‘U7BU)7

where IG is the Inverse Gamma distribution which is conjugate to the normal likelihood and
m,V, o, Buw,i, 0, Bo are hyperparameters fixed by the user. The case of only one random effect
is nested by setting w% or w% equal to zero.

The aim is to calculate the posterior distribution p(6|X1.ps) which is not explicit for the whole
vector of parameters. Therefore, we simulate it through a Gibbs sampler (see e.g., Robert and Casella,
2004). Here, we have a true transition density of both processes that is used for the likelihood, see
lacus (2008). For a general hierarchical diffusion approach based on the Euler approximation, see
Hermann et al. (2016).

Analogically to the frequentist approach, there is a first step: sample from the full conditional
posterior of the random effects p(¢;|(X;(tx))k=1,....n,0),7 = 1,..., M. This is done by a Metropolis
Hastings (MH) algorithm.

The second step is the estimation of the hierarchical parameters p and). Full conditional
posteriors p(u|d1,. .., dar, Q) (resp. p(Q|é1,...,dnr, 1)) are Gaussian (resp. inverse Gamma) and
can, for example, be found in Hermann et al. (2016).

The last step of the Gibbs sampler is sampling from the full conditional posterior of o2. For the
CIR model, this is also conducted by a MH step. For the OU model, the inverse Gamma distribution
is conjugate to the normal likelihood. The full conditional posterior distribution is given by

2
o |X1:M7 ¢15 5¢M ~

M N 2
MN 1 Bi , ay , O\ —Bib
IG | o + == B0+ 2; k; A <Xj(tk) il GG

In the case of one random effect, there is one additional Gibbs sampler step for the fixed effect,
that is also conducted through a MH algorithm.

In the package, the starting values for the Gibbs sampler are set equal to the mean of the
prior distributions. In all the MH algorithms, one each has to choose a proposal density. In the
package mixedsde, we use a normal density for all location parameters with mean equal to the last
chain iteration and a proposal variance that has to be chosen. For the CIR model, the proposal

distribution for o2 is chosen by Va2 ~ N (4 /O‘%rev, variance) where Ugrev is the previous value of

o2, The remaining question is how to choose the suitable proposal variance. This variance controls
the chain dependence and the acceptance rate. If the variance is small, the acceptance rate is
large and the chains gets very dependent. If the proposal variance is large, only few candidates are
accepted with the advantage of weakly dependent chains. This problem is solved in the package with
an adaptive Metropolis-within Gibbs algorithm (Rosenthal, 2011) using the proposal distribution
N (0,62l) with [the logarithm of the standard deviation of the increment. This parameter is

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

49

chosen so that the acceptance rate is approximately 0.44 which is proposed to be optimal in the
Metropolis-within Gibbs sampler (Rosenthal, 2011). It is proposed to add/subtract an adoption
amount §(n) = min(0.1, n_l/Q) to/from t after every 50th iteration and adapt the proposal variance
if the acceptance rate is smaller than 0.3 or larger than 0.6.

Predictions

In many cases, one is not only interested in parameter estimation but also in the prediction for
future observations. The first step is the prediction of a future random effect ¢preq. The simulation
of a new random effect is direct for the frequentist parametric approach sampling from N (i, (A)) For
the nonparametric approach, first note that fh is an estimator given on a discrete grid {z1,...,zn},
i.e. a vector of corresponding {pi,...,pn} after normalisation. Simulating from the estimator fh
can therefore be performed simulating a discrete variable from vector {z1,...,2n} with (normalized)
probabilities {p1,...,pn}. For the Bayesian approach, a new ¢cq is sampled from the predictive
distribution p(¢pred|X1:3) = §P(Pprealrs, D)p(p, Q|Xq:01) d(p, Q) where the posterior of p and Q
is approximated by the results of the Gibbs sampler. This distribution is not explicit, and hence we
suggest to sample over a grid through inversion method, equal to the nonparametric case.

Given a new random effect ¢prcq, We are able to simulate predictive trajectories. This is performed
using the transition density p(X (t5)|X (t5—1), Ppreds o2) for the frequentist approach. The starting
points of the process x; are the observed ones. For the Bayesian approach, we implement two
prediction settings. Firstly, analogously to the frequentist approach a new trajectory is simulated
using the transition density p(X (tx)|X (ts—1), @pred; o2) where ®pred is sampled from the MCMC
(Markov chain Monte Carlo) posterior distribution p(¢|Xi.as). Secondly, we can calculate the
predictive distribution

p(X(ti)|X1:M) = JP(X(ti)|¢predv 02)p(¢pred: 0'2 |X1:M) d(¢pred: 0'2)

in each time point. We can then calculate only the quantiles for a prediction interval or to draw
directly samples from the predictive distribution. For this predictive distribution, we take the
starting point z; = zg to be the same for all series. If the starting points would vary, this is
an additional random effect whose density has to be estimated. This is not implemented in the
estimation procedure and will, therefore, left out for the prediction.

It is then interesting to compare the new trajectories with the real ones. If the number of new
trajectories is large enough we compute an empirical confidence interval.

Overview of the mixedsde functions

This Section presents an overview of the functions implemented in the package. Illustrations of the
code are given in Section 8.4.

Data

Data is a matrix X of size M x N for M trajectories with N time points. The time points are not
necessarily equidistant but are the same for the M trajectories. These time points are gathered in
the vector times of length N. Real datasets are available on the package, and detailed on Section
8.5.

To lead a simulation study, the function mixedsde.sim allows to generate a list with a M x N
matrix X of M trajectories on the interval [0, 7] with N equidistant points (default value 100) and
a vector times with the equidistant times. This function leans on function sde.sim available via
package sde (Iacus, 2006) to simulate SDE. One has to choose: model either OU or CIR; random
that fixes the position and the number of random effects: random = 1 for o; random, random = 2
for B; random or random = c(1,2) for a; and 8; random; o the diffusion coefficient; invariant,
default value 0 means that X is 0 (default) or fixed by the user, value 1 means that X is generated
from the invariant distribution (see details in the package documentation); density.phi to choose
the distribution of the random effect (see package documentations).

Main function

Main function is mixedsde.fit producing estimation of the random effects and their common density.

Inputs of mixedsde.fit are

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Class Freq.fit Bayes.fit
Method out out
Method plot plot
Method - plot2compare
Method print print
Method | summary summary
Method pred pred
Method valid valid

Table 1: Summary of the different methods for the two S4-classes Freq.fit and Bayes.fit
resulting of the package mixedsde.

e X a M x N matrix containing the trajectories by rows.
¢ times The vector of observations times.
e model The chosen model either OU or CIR.

» random It fixes the position and the number of random effects: random = 1 for a; random,
random = 2 for 8; random or random = c(1,2) for a;j and §; random.

o estim.method The estimation method: nonparam (see Section 8.2.1), paramML (see Section
8.2.2) or paramBayes (see Section 8.2.3).

o fixed The value of the fixed effect 8 (resp. o) when random = 1 (resp. random = 2), default
0. (Only for the frequentist approaches).

e estim.fix 1 if the fixed effect is estimated, default 0. (Only for the frequentist parametric
approach when random=1 or 2).

e gridf The x-axis grid on which the random effect distribution is computed: we recommend
a fine grid with at least 200 points, default value is a sequence of length 500 starting in
0.8 x min; ¢; and ending in 1.2 x max; ¢;. (Only for the frequentist approaches).

o prior The list of prior parameters m,v,alpha.omega,beta.omega,alpha.signa,
beta.sigma for paramBayes method: Default values are calculated based on the estimations
(A;); for the first min(3, [M - 0.1]) series and main estimation is only made with the remaining
[M -0.9]. (Only for the Bayesian approach).

o nMCMC The length of the Markov chain for paramBayes method. (Only for the Bayesian
approach).

Note that for the frequentist approach if there is only one random effect, then the user has the
choice: fix it to a value of the user choice (using: fixed= the value and estim.fix=0) or estimate
it through the package (choosing estim.fix=1. In the following we describe the related methods,
proposed in the package, they are summarized in Table 1.

Outputs

Output of mixedsde.fit is a S4 class called Freq.fit for the frequentist approaches and Bayes.fit
for the Bayesian approach. Results of the estimation procedure are available as a list applying
function out to the Freq.fit (resp. Bayes.fit) object.

Elements of Freq.fit are:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

o1

o sigma2 Estimator o2 given in Equation 8 of the diffusion coefficient.

o estimphi Estimator (A;); given in Equation 2 of the random effects.

e estimphi.trunc The truncated estimator (;1\])] given in Equation 4 or 5 of the random effects.

e estim.fixed The estimator of the fixed effect if random = 1 or 2, estim.method = paramML;
estim.fix = 1, default 0.

o gridf The x-axis grid on which the random effect distribution is computed.

e estimf The estimator of the density of the random effects (for both paramML method with
Equation 7 and nonparam method with Equation 6).

e cutoff Binary M-vector of binary values indicating the truncated trajectories, default FALSE
when no truncation.

e estimf.trunc The truncated estimation of the density of the random effects.

o mu Estimation of Gaussian mean of the random effects (only for paramML method from Equation
7).

« omega Estimation of Gaussian variance matrix of the random effects (only for paramML method
method from Equation 7).

e aic and bic AIC and BIC criteria (only for paramML method).

 index Indices of trajectories used for the estimation, excluded are trajectories with V; = 0 or
Vj = + (one random effect) or det V' = +00 (two random effects), trajectories containing
negative values for CIR model.

Elements of Bayes.fit are:

« sigma2 Trace of the Markov chain simulated from the posterior of o2.
e mu Trace of the Markov chain simulated from the posterior of u .
« omega Trace of the Markov chain simulated from the posterior of w?.

 alpha Trace of the Markov chain simulated from the posterior of a;, nMCMCx M matrix if « is
random effect, nMCMCx 1 otherwise.

o beta Trace of the Markov chain simulated from the posterior of §;, nMCMCx M matrix if 3 is
random effect, nMCMCx 1 otherwise.

e burnIn A proposal for the burn-in phase.
e thinning A proposal for the thin rate.

e ind.4.prior The indices used for the prior parameter calculation, M + 1 if prior parameters
were specified.

Outputs burnIn and thinning are only proposals for a burn-in phase and a thin rate. The proposed
burnlIn is calculated by dividing the Markov chains into 10 blocks and calculate the 95% credibility
intervals and the respective mean. Starting in the first one, the block is taken as burn-in as long as
the mean of the current block is not in the credibility interval of the following block or vice versa.
The thinning rate is proposed by the first lag which leads to a chain autocorrelation of less than
80%. It is not easy to automate these choices, so it is highly recommended by the authors to plot
the chains and look at the mixing property (the chain should not be piecewise constant).

Command plot () applied to a Freq.fit object produces a frequencies histogram of (A;(T")); (one
or two according to the number of random effects) with the estimated density (red curve) and the
truncated estimator if available (dotted grey red curve) and a quantile-quantile graph with the
quantiles of the A;’s versus the quantiles of a normal sample of the same length, with the same
empirical mean and standard deviation. This illustrates the normality of the sample. Applying
this function to the nonparametric results indicates if the Gaussian assumption of the parametric
approach is appropriate. When plot() is applied to a Bayes.fit object, one can choose four
different options, named style. The default value is chains, it plots the Markov chains for the
different parameter values. acf leads to the corresponding autocorrelation functions, density to
the approximated densities for each parameter and cred.int leads to the credibility intervals of
the random parameters with the input parameter level with default 0.05. For all options, with
the input parameter reduced = TRUE, the burn-in period is excluded and a thinning rate is taken,
default is FALSE. There is also a possibility to include the prior means in the plots by lines with
plot.priorMean = TRUE, default is FALSE.

In the Bayesian estimation the influence of prior parameters is interesting, thus for the Bayes.fit
object, there is a second plot method, named plot2compare where three estimation objects can
be compared. For reasons of clarity, only the densities are compared, with the default reduced =

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

52

TRUE. Here, there is also a possibility to include true.values, a list of the true parameters for the
comparison in a simulation example.

Command summary() applied to a Freq.fit object computes the kurtosis and the skewness

of the distribution, 02, the empirical mean and standard deviation computed from the estimators
(Aj)j, B, © (and the fixed effect & or 3), AIC, BIC criteria for the frequentist MLE method. When
applied to a Bayes.fit object, it computes means and credibility interval (default level 95%) for
each parameter (u, (), 0, a, 3). Here, there is also a possibility to choose the burn-in and the thinning
rate manually by the input parameters burnIn and thinning.

Command print() applied to a Freq.fit object returns the use or not of the cutoff and the
vector of excluded trajectories. When applied to a Bayes.fit object, it returns the acceptance rates
of the MCMC procedure.

Validation methods

Validation of a mixed model, obtained with function valid, is an individual validation. Indeed,
the validation of estimation of trajectory number j is obtained comparing it to M new trajectories
simulated with parameters (o, §) fixed to the estimator A; (or A;) in the frequentist approaches
and to the posterior means in the Bayesian approach. Inputs of the function are

e Freq.fit or Bayes.fit object.
e plot.valid 1 to generate a figure (default value is 1).
o numj A specific individual trajectory to validate (default: randomly chosen between 1 and M).

e Mrep The number of simulated trajectories (default value 100).

Each observation Xpumj(tx) is compared with the Mrep simulated values (Xrllumj (tr),- - ,XIII\;[;;‘J’ (tx)),
fork=1,...,N.

Outputs are the list of the (Xlllumj (tr)s-- -, Xﬁ;;? (tx)). If plot.valid=1, two plots are produced.
Left: plot of the Mrep new trajectories (black) and the true trajectory number numj (in grey/red).
Right: quantile-quantile plot of the quantiles of a uniform distribution and the N quantiles obtained

comparing Xnumj(tr) with the Mrep simulated values (Xiumj (tg), - - X Mren (tg)), for k=1,... N.

© “*numj
This is an empirical method. The recent work Kuelbs and Zinn (2015) on depth and quantile
regions for stochastic processes (see for example Zuo and Serfling (2000) for depth functions
definitions) should provide the theoretical context for a more extensive study. This could be done in
further works.

Prediction methods

Prediction (see Section 8.2.1) is implemented in function pred. Main inputs of the function are

e Freq.fit or Bayes.fit object.

o invariant TRUE if the new trajectories are simulated according to the invariant distribution.
o level The level of the empiric prediction intervals (default 0.05).

e plot.pred TRUE to generate a figure (default TRUE).

(and optional plot parameters). Function pred applied to a Freq.fit object returns a list with
predicted random effects phipred, predicted trajectories Xpred and indexes of the corresponding true
trajectories indexpred (see Section 8.2.4 for details of simulation). If plot.pred = TRUE (default)
three plots are produced. Left predicted random effects versus estimated random effects. Middle:
true trajectories. Right predicted trajectories and their empirical 95% prediction intervals (default

value level=0.05). The prediction can also be done from the truncated estimator Afhbased on the

ﬁj given by Equation 5, if the argument pred.trunc = 1.

Function pred applied to a Bayes.fit object returns a S4 class object Bayes.pred. The first ele-
ment of this class is Xpred, which depends on the input parameters. Including the input trajectories
= TRUE, matrix Xpred contains the M drawn trajectories by rows (see first method described for
the Bayesian approach in Section 8.2.4). Default is trajectories = FALSE which leads to the
calculation of the predictive distribution explained in Section 8.2.4. With the input only.interval
= TRUE (default), only the quantiles for the 1- 1level prediction interval are calculated, stored in qu.1
and qu.u. Input only.interval = FALSE provides additionally Xpred containing sample.length
(default 500) samples from the predictive distribution in each time point of the observations (except
the first). In both cases, with plot.pred = TRUE, two figures are produced. On the left side, the

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

53

data trajectories are compared with the prediction intervals and on the right side, the coverage
rate is depicted which is stored in entry coverage.rate, namely the amount of series covered by
the prediction intervals for each time point. The last class entry estim stores the results from the
Bayes.fit object in a list. Other input parameters are burnIn and thinning which allow for the
choice of other burn-in phase and thinning rate than proposed in the Bayes.fit object.

For the Bayes.pred class object, two plot methods are available. plot () repeats the figures that
are created with the plot.pred = TRUE command in the pred method. plot2compare() compares
up to three Bayes.pred objects, where in a first figure the prediction intervals are presented in colors
black, red and green and the observed data series in grey and in a second figure the corresponding
coverage rates are compared. With the input parameter names a vector of characters to be written
in a legend can be indicated.

Note that to avoid over-fitting, we recommend to use only 2/3 of the data for the estimation of
the density f and the last third for the prediction.

Package mixedsde through simulated examples

In this part two simulated examples are given to illustrate the strengths of each proposed method.
Two datasets are simulated according to:

1. CIR model with one non-Gaussian random effect 8; ~ I'(1.8,0.8), a; = 1, T = 50, M = 200,
N = 1000:

R> modell <- "CIR"; randoml <- 2; fixedl <- 1; sigmal <- 0.1 ; M1 <- 200;
R> T1 <- 50; N1 <- 1000; X01 <- 1; density.phil <- "gamma";
+ paraml <- c(1.8,0.8);

R> simul <- mixedsde.sim(M = M1, T = T1, N = N1, model = modelil,
+ random =randoml, fixed = fixedl, density.phi = density.phil,
+ param = paraml, sigma = sigmal, X0 = X01)

R> X1<- simul$X; phil <- simul$phi; timesl <-simul$times

2. OU model with one Gaussian random effect a; ~ ./\/(3,0.52), B; =5, 1T =1, M = 50,
N = 500:

R> model2 <- "OU"; random2 <- 1; sigma2 <- 0.1; fixed2 <- 5; M2 <- 50;
+ T2 <- 1;N2 <- 500; X02 <- 0; density.phi2 <- "normal";

+ param2 <- c(3, 0.5);

R> simu2 <- mixedsde.sim(M = M2, T = T2, N = N2, model = model2,

+ random = random2, fixed = fixed2, density.phi = density.phi2,

+ param = param2, sigma = sigma2, X0 = X02)

R> X2 <- simu2$X; phi2 <- simu2$phi; times2 <- simu2$times

Example 1 has non Gaussian random effect, the nonparametric method is the most appropriate
approach. Example 2 has T small and Gaussian random effect, nonparametric method is therefore
not the most appropriate approach. Parametric methods should performed better than the non-
parametric one as the number of trajectories M2 = 50 is not large (and only 2/3 are used for
the estimation of f). A small number of trajectories is especially a good framework to apply the
Bayesian estimation method.

Frequentist nonparametric estimation

We illustrate nonparametric estimation on Example 1. Code for the nonparametric estimation is

R> estim.method <- 'nonparam'

R> estim_nonparam <- mixedsde.fit(times = timesl, X = X1, model = modell,
+ random = randoml, fixed = fixedl, estim.method = estim.method)

R> outputsNP <- out(estim_nonparam) # stores the results in a list

Summary function provides:

R> summary(estim_nonparam)
[,1] [,2]
[1,] "sigma" "0.099868"

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Density of the random effect

04
|
Sample Quanties
i
"»,.
*a

2 2 a
Normal Quantiles

Figure 1: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation.
Left: histogram of estimated random effects (A;) and nonparametric estimation of f.
Right: qqplot of (A;) versus a Normal sample (true distribution is Gamma).

Random effect:

[,1]
empiric mean 1.355403
empiric sd 0.939410
kurtosis 3.695013
skewness 1.083577

As expected kurtosis is larger than 3 and skewness is positive which means that the distribution is
right-tail. Figure 1 is provided by

R> plot(estim_nonparam)

Nonparametric estimation fits well the histogram of (A;) (left plot) and we see that the random
effects are non-Gaussian (right plot). Because we are working on simulated data, we can compare
the estimations with the true random effects and the true f:

Comparison of the true f and its estimation

R> gridfl <- outputsNP$gridf

True density function

R> f1 <- dgamma(gridfi, shape = paraml[1], scale = paraml[2])
Nonparametric estimated density function

R> fhat <- outputsNP$estimf

R> plot(gridfl, f1, type='l', lwd=2, xlab='', ylab='')

R> lines(gridfl, fhat, col='red')

Comparison of the true random effects and their estimations
Estimated random effects

R> phihatl <- outputsNP$estimphi

R> plot(phil, phihatl, type = "p", pch = 18, xlab='', ylab='"')
R> abline(0, 1)

This results in Figure 2. On the left plot, the estimated density (dotted curve) is very close to
the true density f (plain line). The right plot shows that A; is a good estimation of ¢;. This
confirms that the nonparametric approach performs well for this settings. Validation of the MSDE
is produced by function valid. The two graphs on the right of Figure 5 are obtained by

R> validationCIR <- valid(estim_nonparam)
Prediction are obtained with pred and similar Figure 6 (not shown) can be obtained with

R> predNPCIR <- pred(estim_nonparam)

Frequentist parametric estimation

We present the parametric estimation on Example 2. The code is

Parametric estimation

R> estim.method<-'paramML';

R> estim_param <- mixedsde.fit(times2, X = X2, model = model2,
+ random = random2, estim.fix = 1, estim.method = 'paramML')

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

95

o S 2 3 a s ° 2 2 3 a s

Figure 2: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation,
comparison to the truth. Left: estimation f (dotted line) and true density f (plain
line). Right: Estimated random effects A; versus true random effects ¢;.

Store the results in a list:
R> outputsP <- out(estim_param)

Summary function provides:

R> summary(estim_param)
[,1] [,2]
[1,] "sigma" "0.109144"

Random and fixed effects:
[,1]

estim.fixed 4.914685

empiric mean 2.955582

MLE mean 2.955512

empiric sd 0.536956

MLE sd 0.519955

kurtosis 2.472399

skewness 0.427223
[,11 [,2]

[1,] "BIC" "-3780.383134"
[2,] "AIC" "-3795.335809"

Kurtosis is, as expected, close to 3 and skewness close to 0. The diffusion parameter o is well
estimated (true value 0.1). The fixed effect is also well estimated (true value 5). Empirical mean
and standard deviations are very close to MLE (estimator of the mean is the same in that case) and
close to the real ones (3, 0.5). Then, Figure 3 (left and right) is provided by

R> plot(estim_param)

The small number of observations makes the estimation harder, nevertheless here, the histogram
seems pretty well fitted by the parametrically estimated density. Because we are working on simulated
data, we can compare the estimations with the true random effects and the true f:

Comparison of the true f and its estimation

R> gridf2 <- outputsP$gridf

True demnsity

R> f2 <- dnorm(gridf2, param2[1], param2[2])

Parametric estimated density

R> fhat_param <- outputsP$estimf

R> plot(gridf2, £f2, type = 'l1', 1lwd = 2, xlab = '', ylab = '')
R> lines(gridf2, fhat_param, col='red', 1ty = 2, lwd = 2)

Comparison of the true random effects and their estimations
Estimated random effects

R> phihat2 <- outputsP$estimphi

R> plot(phi2, phihat2, type="p", pch=18, xlab='', ylab='")

R> abline(0, 1)

This results in Figure 4. It shows that estimation of the density is satisfactory (left) and estimation

of the random effects is very good (right). Validation of the MSDE is produced by function valid.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

56

Density of the random effect

0
Sample Quanties

3

»

T T T T T T T
20 =25 =20 as a0 as 50 20 =25 =20 as 40 a5 S0
Normal Quantiles

Figure 3: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation. Left: histogram of the (A;) and Gaussian parametric estimation of f.
Right parametric ggplot of (A4;) versus a Normal sample.

20 25 30 as 40 a5 so0 ° 2 2 EY a s

Figure 4: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation, comparison to the truth. Left: parametric estimation N (i, @2) (dotted
line) and true f (plain line). Right: true ¢; versus estimated random effects A;.

For example the individual validation of the first trajectory is plotted Figure 5, the first two graphs
on the left, using

R> validationOU <- valid(estim_param)

This illustrates the good estimation of the random effects: a beam of trajectories with the true one
in the middle and the lining up of the quantiles.

Finally, we can predict some trajectories using pred. Predictions are shown on Figure 6, as a
result of

R> predPOU <- pred(estim_param)

Beam of 32 predicted trajectories (right) is close to the true ones (middle). The lining up of
the predicted random effects versus the estimated random effects (left) shows the goodness of the
prediction from the estimated density, thus of the estimation of the density.

Bayesian estimation

Bayesian method is applied to Example 2. Priors are constructed from the true values, but default
values can be used.

R> prior2 <- list(m = c(param2[1], fixed2), v = c(param2[1], fixed2),

+ alpha.omega = 11, beta.omega = param2[2] ~ 2 * 10, alpha.sigma = 10,

+ Dbeta.sigma = sigma2 ~ 2 * 9)

R> estim.method <- 'paramBayes'

R> estim_bayes <- mixedsde.fit(times = times2, X = X2, model = '0U',

+ random = random2, estim.method = estim.method, prior = prior2, nMCMC = 10000)
R> outputsBayes <- out(estim_bayes)

Figure 7 is produced by

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

o7

Figure 5: Simulated examples frequentist approaches, outputs of valid method. Two top plots:
frequentist nonparametric estimation on example 1 (CIR process). Two bottom plots:
frequentist parametric estimation on example 2 (OU process).

Figure 6: Simulated example 2 (OU with one Gaussian random effect), frequentist parametric
estimation. Left: predicted random effects versus estimated random effects. Middle:
true trajectories. Right: predicted trajectories in black and 95% prediction interval in

grey (green).

R> plot(estim_bayes)

Traces of the Markov chains of ui, 3, w% and o are plotted, showing that all chains converge and
have the correct location. Command print() yields acceptance rates of the MH algorithm:

R> print(estim_bayes)
acceptance rates for random effect:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5569 0.5646 0.5676 0.5682 0.5718 0.5805

acceptance rate for fixed effect: 0.4248

The fixed effect 8 has a small acceptance rate, explaining the dependent chain (Figure 7 top right).

This is due to a very sharp likelihood because of the large amount of observations (N - M) in
comparison to the random effect (V).

Predictions in the Bayesian framework and the corresponding Figure & is obtained by

R> pred.result <- pred(estim_bayes)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

58

Markov Chain Markaov Chain
)
[l
o
o -
i
=
=] Wi
z =
= m o
=t
@ o
o4 -t
]
-t
)
o
T T T T I T I T T I I
1] 2000 4000 6000 8000 10000 L] 2000 4000 E000 B00D 10000
Imde: Index
Markov Chain Markov Chain
o]
(=]
2
E
= =
S %y
e
o | =
(=]
5] g
T T T T T | = T T T T T
[} 2000 4000 000 B000 10000 L] 2000 4000 E00D 00D 10000
I Index

Figure 7: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation.
Markov chains of p1, 3, w% and o2.

Figure 8: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation.
Left: predicted trajectories in black and 95% prediction interval in grey (green). Right:
coverage rates: amount of observed values covered by the prediction intervals.

Figure 8 shows the beam of simulated data trajectories together with the 95% prediction interval.

Coverage rates are shown on the right plot and we see that the intervals hold the level.

Package mixedsde through a real data example

A real dataset is available (neuronal.data.rda) through lists of a matrix X and a vector times.

We detail below the analysis of this dataset, following the next steps: run the two random effects
model with both the parametric and nonparametric procedure; choose the number of random effects
depending on the variability of the estimators (A; 1, A, 2), on the shape of f;, and the variance Q).

These data are available thanks to Rune Berg and Jufang He. Details on data acquisition can be
found in Lansky et al. (2006).

Neuronal data
Neurons are the basement of nervous system and each neuron is connected with around 1000 other
neurons. They are communicating through emission of electrical signal. We focus on the dynamic

of the neuron membrane potential between two spikes emission measured in volts as the difference
of ions concentration between the exterior and the interior of the cell. Data are obtained from

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

99

0.010 0.015
| |

0.005
|

0.000

0.00 0.05 0.10 0.15 0.20 0.25 0.30

time

Figure 9: Neuronal data.

one single neuron of a pig. Data are composed of M = 240 membrane potential trajectories with
N = 2000 equidistant observation times. Time step is § = 0.00015 [s] and observation time is
T = 0.3 [s]. Data are uploaded using data("neuronal.data"). They are presented on Figure 9.

These data have been previously analysed with a Ornstein-Uhlenbeck model with one additive
random effect (a;): Picchini et al. (2008) and Picchini et al. (2010) use parametric methods
assuming the normality of the random effect, and Dion (2014) with a nonparametric method. Here
a;j represents the local average input that the neuron receives after the jth spike. The initial voltage

(the value following a spike) is assumed to be equal to the resting potential and set to zero: z; = 0.

Parameter 3; (non negative) is the time constant of the neuron. It was fixed in Picchini et al. (2008)
and Picchini et al. (2010).

In this new analysis, we assume that both «; and 3; may change from one trajectory to another
because of other neurons or environment influence, for example. Indeed, the form of each trajectory
lead us to think that this is the good model: each one has its mean-reverting value and its own
speed to reach this value. There is no reason to assume that the speed is always the same, but
looking at the trajectories the stationary state seems to be reached nearly at the same time, thus
the second random effect should have a small variance.

Fitting with MISDEs

Our goal is also to compare the two models OU and CIR, both with two random effects, and two
approaches: the nonparametric density estimation and the parametric density estimation. Let us
remark that for the CIR model the algorithm removes two trajectories: 168 and 224, because they
contain negatives values. For two random effects the command is

R> estim <- mixedsde.fit(times, X = X, model = model, random = c(1,2),
+ estim.method = estim.method)

and they can be found in the help data file (command ?neuronal.data). We first apply the

two frequentist approaches on models with two random effects. Kurtosis and skewness of the
distribution of the estimation A; of the random effects given in Table 2 are not closed to a symmetric
distribution. The bidimensional density of (o, 8;) is estimated for both models with the parametric
and nonparametric methods running function mixedsde.fit. Figure 10 gives the 4 estimated
marginals. The blue (black) is for the OU model and the green (grey) for the CIR model. The
dotted lines are the estimations from the parametric method, the plain lines for the nonparametric
estimation. Parametric and nonparametric estimators are close, except for the second random effect
with the OU model. Indeed, parametric estimation produces a small variance for the second random
effect, suggesting it could be fixed. Would this assumption be valid, it explains the difference with
the nonparametric estimator which is not stable if the variance is to small. Estimation of o is
0 = 0.0136 for the OU model and ¢ = 0.163 for the CIR model.

To compare with previous literature results, we focus on the OU model. To select the number and
the position of the random effects, we run the code with one random effect, additive or multiplicative:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

60

Oou | CIR

Ajl Kurtosis | 6.17 | 11.70

Skewness | 0.96 2.32

Aj2 Kurtosis | 6.68 | 7.07

Skewness | 0.96 2.32

Table 2: Neuronal data. Kurtosis and skewness estimations for samples (A; 1)’s and (4;2)’s,
for OU and CIR models.

random = 1 or random = 2, for both models estimating the common fixed parameter with the
parametric frequentist strategy. Estimators of the means 1, u2 and standard deviations wi,ws are
given in Table 3. Criteria AIC and BIC are also given in Table 3. From this table, we can see that
models random = 1 and random = c(1,2) are the best according to the BIC and AIC criteria.

Finally, in Table 4 we compare the BIC and AIC criteria for random = 1 when the value of the

fixed effect is plugged in: the one we obtained in Table 3 and to values obtained in Picchini et al.

(2008) and Picchini et al. (2010). The preferred model is the one minimizing both criteria. Thus,
the OU model with one additive random effect ¢; = o; and 8 = 37.22 seems to be the best model

to describe these data. The summary method gives for the kurtosis: 4.55 and for the skewness -0.95.
Also 6 = 0.0136. Estimated densities obtained for this model with 3 = 37.22 are given in Figure 11.

The dotted line is the result of the parametric estimation and the plain line of the nonparametric
estimation, plotted on the histogram of the A;(7")’s. The nonparametric estimation detects a left
tail that is not detected by the parametric one. Otherwise both estimators are very close.

The OU model with random = 1 is then validated with valid function. Figure 12 illustrates the
result for a random trajectory (number 141): 100 simulated trajectories (black) and true trajectory
(X141, red) (left plot) and quantiles of the true measurement among the 100 simulated points at each
time points versus uniform quantiles. The qg-plot is satisfactory (compared to the graph obtained
on simulated data Figure 5).

Finally some prediction plots are performed (not shown) with the pred method and they confirm
that model OU with random = c(1,2) with the parameters obtain from the parametric estimation,
and the OU model with random = 1 and 8 = 37.22 produce very close trajectories and could be
both validated.

We then apply the Bayesian procedure. As already mentioned, for the Bayesian procedure, large
data sets are a problem because of the very long running time. Therefore, we thin the data set
by 10. That means, every 10th data point of the series is used for the estimation and also for the
prediction. Even with this thinning, one estimation with 20000 samples takes half an hour.

Based on the best model selected by the frequentist approach, the OU model with one random
effect ¢; = a; is fitted. No prior knowledge is available, we therefore leave this information out
and let the algorithm take the first 10%, i.e. 24, series for the calculation of the prior parameter,
as described in Section 8.3.2. Figure 13 plots the Markov chains estimated from the remaining
M — 24 = 216 trajectories and show good convergence of the chains. Bayesian point estimations,
i.e. posterior means, are i1 = 0.34, 1 = 4 /@% = 0.06, B =33 and ¢ = V52 = 0.01. Compared to
frequentist estimation (Table 4), we notice that these results are a compromise between Picchini
et al. (2010) and frequentist estimation.

In Figure 14, we can see a comparison of the prediction results for all three cases, «, 8 or
both being random effects. The black and the green lines are very similar, which means, that the
prediction intervals are nearly the same for o and both parameters being random effects. This

confirms the frequentist conclusion of Table 3. Therefore, it could be enough to treat o as random
and [as fixed effect.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

61

M1 w1 12 w2 BIC AIC
random=c(1,2) | 0.38 | 0.06 | 37.30 | 1.10 | -3229.67 | -3247.59
random=2 0.37 --| 37.70 | 7.47 | -3082.36 | -3103.40
random=1 0.38 | 0.06 | 37.22 - - | -3227.47 | -3248.51

Table 3: Neuronal data.

MLE given by Equation 7, BIC and AIC criteria, for OU model,

depending on the number of random effects (with estim.fix=1 for random = 1 or
random = 2).
21 w1 Ié] BIC AIC
B from Picchini 2008 0.27 | 0.04 | 25.64 -2971.59 -2980.55
B from Picchini 2010 0.47 | 0.08 | 47.00 -3043.89 -3052.86
Previous estimator MLE of 8 Table 3 | 0.38 | 0.06 | 37.22 | -3240.55 | -3249.51

Table 4: Neuronal data. Results obtained with random=1 for the OU model, where the value of
the fixed effect § is plugged in.

Figure 10: Neuronal data. Frequentist estimated marginals of the bidimensionnal density of
the random effects obtained from 4 estimators. Left: «;’s density, right: ;s
density. CIR model in green (grey), OU in blue (black). Nonparametric in plain line,

parametric in dotted line.

Discussion

In this paper we illustrate the functionality of the package mixedsde for inference of stochastic
differential equations with random and/or fixed effects. This package, and mainly the function
misedsde.fit, can be used to choose the best model to fit some data. It allows to compare two
models: OU or CIR with one or two random effects. The three estimation methods can be used to
help the decision maker. Nevertheless each method can be more appropriate to a specific situation,
as explained before: the Bayesian method is recommended for a small number of observations, the
frequentist nonparametric is a good tool with two random effects and no prior available. In particular
the frequentist parametric proposes for a large sample, an estimation of the fixed effect and of the

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

62

oA

T T T
0.0 oa 0.2 o3 0.4 o.s o6

Figure 11: Neuronal data, OU model, a random, g fixed to the estimator obtained by the
maximum likelihood estimator. Histogram of the A;’s estimators of the ¢; = «;.
Estimator of the density f: A(u,w?) parametric estimation in blue (black) dotted
line, non-parametric estimation blue (black) plain line.

Figure 12: Neuronal data, OU model, o random, § fixed, validation of the frequentist approaches.
Individual validation of trajectory 232. Left: 100 simulated trajectories in black and
true trajectory (X;) in grey (red). Right: quantiles of the true measurement among
the 100 simulated points at each time points versus uniform quantiles.

parameters of the Gaussian distribution for the fixed effect when there is only one. A neuronal
dataset is studied with the three methods. Furthermore, other real data should be investigated with

the present package.

Recently, the parameter estimation method developed in Delattre et al. (2016) for random effects
distributed according to a Gaussian mixture distribution has been implemented in the R package

MseParEst (Delattre and Dion, 2016).

Acknowledgements

The authors would like to thank Vincent Brault and Laurent Bergé for technical help on the package.
This work has been partially supported by the LabExPERSYVAL-Lab(ANR-11-LABX-0025-01).

The second author, Simone Hermann, was financially supported by Project B5 “Statistical
methods for damage processes under cyclic load” of the Collaborative Research Center “Statistical
modeling of nonlinear dynamic processes” (SFB 823) of the German Research Foundation (DFG).

Bibliography

P. Bacher and H. Madsen. Identifying Suitable Models for the Heat Dynamics of Buildings. Energy
and Buildings, 43:1511-1522, 2011. [p44]

F. Comte, V. Genon-Catalot, and A. Samson. Nonparametric Estimation for Stochastic Differential

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

63

Markov Chain Markov Chain
3 9 —
(=]
=+ _|
- @
<
™ — @ _|
I o o ©
- o
(5]
o
@ -
o ™
T T T I I T T T I I
0 200 400 600 800 0 200 400 600 800
Index Index
Markov Chain Markov Chain
(=)
<
[
(=] —
s 2
— S
or o ~ S
s 8] ° S|
=]
o
] o
2 =
o [
= T T | | S T | | T
0 200 400 600 800 ° 0 200 400 600 800
Index Index

Figure 13: Neuronal data, OU model, o random, 3 fixed, Bayesian estimation. Reduced Markov
chains (less the burn-in phase and the thinning rate).

0.015
1

0.010
1

e ---- 95%
random=1

coverage rates
0

— ‘random=1 —_—
~— random=2 @ — —— random=2

0.000 0.005
1 1
0.

—— random=(1,2) random=(1,2)

I I I I I I I I I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

times times

Figure 14: Neuronal data. Bayesian prediction results using the OU model, left: pointwise 95%
prediction intervals and data series, right: coverage rates, which means the amount
of observed values covered by the prediction intervals.

Equation with Random Effects. Stochastic Processes and their Applications, 7:2522-2551, 2013.
[p45, 46]

M. Delattre and C. Dion. MsdeParEst: Parametric Estimation in Mized-Effects Stochastic Dif-
ferential Equations, 2016. URL https://CRAN.R-project.org/package=NMsdeParEst. R package
version 1.7. [p62]

M. Delattre, V. Genon-Catalot, and A. Samson. Maximum Likelihood Estimation for Stochastic
Differential Equations with Random Effects. Scandinavian Journal of Statistics, 40:322-343, 2013.

[p15, 48]

M. Delattre, V. Genon-Catalot, and A. Samson. Mixture of Stochastic Differential Equations with
Random Effects: Application to Data Clustering. to appear in Journal of Statistical Planning and
Inference, 2016. [p45, 62]

C. Dion. Nonparametric Estimation in a Mixed-Effect Ornstein-Uhlenbeck Model. Metrika, 2014.
[p45, 59]

C. Dion and V. Genon-Catalot. Bidimensional Random Effect Estimation in Mixed Stochastic
Differential Model. Statistical Inference for Stochastic Processes, 18(3):1-28, 2015. [p45, 46, 48]

C. Dion, S. Hermann, and A. Samson. mixedsde: Mized Stochastic Differential Equations, 2016.
URL https://CRAN.R-project.org/package=mixedsde. R package version 4.0. [p44]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=MsdeParEst
https://CRAN.R-project.org/package=mixedsde

CONTRIBUTED RESEARCH ARTICLES

64

S. Ditlevsen and A. de Gaetano. Mixed Effects in Stochastic Differential Equation. REVSTAT -
Statistical Journal, 2:137-153, 2005. [p45]

S. Ditlevsen and A. Samson. Estimation in Partially Observed Stochastic Morris-Lecar Neuronal
Model with Particle Filter and Stochastic Approximation Methods. The annals of applied statistics,
8:674-702, 2014. [pi1]

V. Genon-Catalot and C. Larédo. Estimation for Stochastic Differential Equations with Mixed
Effects. Statistics, pages 1-22, 2016. [p46]

A. C. Guidoum and K. Boukhetala. Sim.DiffProc: Simulation of Diffusion Processes, 2017. URL
https://CRAN.R-project.org/package=Sim.DiffProc. R package version 4.0. [p44]

A. Hansen, A. K. Duun-Henriksen, R. Juhl, S. Schmidt, K. Norgaard, J. B. Jorgensen, and
H. Madsen. Predicting Plasma Glucose from Interstitial Glucose Observations Using Bayesian
Methods. Journal of diabetes science and technology, 8:321-330, 2014. [p44]

S. Hermann, K. Ickstadt, and C. Miiller. Bayesian Prediction of Crack Growth Based on a
Hierarchical Diffusion Model. to appear in: Applied Stochastic Models in Business and Industry,
2016. [p44, 45, 48]

S. M. Iacus. sde: Stochastic Differential Equations, 2006. URL http://CRAN.R-project.org/
package=sde. R package version 2.0-15. [p49]

S. M. lacus. Simulation and Inference for Stochastic Differential Equations. Springer-Verlag, 2008.
[p45]

S. M. Iacus. yuima: The YUIMA Project Package for SDEs, 2018. URL https://CRAN.R-project.
org/package=yuima. R package version 1.8.1. [p44]

E. B. Iversen, J. M. Morales, J. K. Moller, and H. Madsen. Probabilistic Forecasts of Solar Irradiance
Using Stochastic Differential Equations. Environmetrics, 25:152-164, 2014. [p44]

N. R. Kristensen and H. Madsen. Continuous time stochastic modelling, ctsm 2.3—mathematics
guide. Technical report, DTU, 2003. [p44]

J. Kuelbs and J. Zinn. Limit Theorems for Quantile and Depth Regions for Stochastic Processes.
to appear in High dimensional probability VII-Progress in Probabiliy, 2015. [p52]

P. Lansky, P. Sanda, and J. He. The Parameters of the Stochastic Leaky Integrate-and-Fire Neuronal
Model. Journal of Computational Neuroscience, 21:211-223, 2006. [p58]

MONOLIX. MONOLIX Software. MOdeles NOn LliInéaires o Effets miXtes, 2003. URL http:
//www.lixoft.com/. LIXOFT and INRIA. [p45]

S. B. Mortensen and S. Klim. PSM: Population Stochastic Modelling, 2013. URL https://CRAN.R~
project.org/package=PSM. R package version 0.8-10. [p45]

Z. Oravecz, F. Tuerlinckx, and J. Vandekerckhove. A Hierarchical Ornstein-Uhlenbeck Model for
Continuous Repeated Measurement Data. Psychometrica, 74:395-418, 2009. [p45]

U. Picchini, S. Ditlevsen, A. De Gaetano, and P. Lansky. Parameters of the Diffusion Leaky
Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal. Neural Computation, 20:
2696-2714, 2008. [p59, 60]

U. Picchini, A. De Gaetano, and S. Ditlevsen. Stochastic Differential Mixed-Effects Models. Scandi-
navian Journal of statistics, 37(1):67-90, 2010. [p45, 59, 60]

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, 2004. [p48]

J. S. Rosenthal. Optimal Proposal Distributions and Adaptive MCMC. Handbook of Markov Chain
Monte Carlo, pages 93-112, 2011. [p48, 49]

W. N. Venables and B. D. Ripley. MASS: Modern Applied Statistics with S, 2016. URL https:
//CRAN.R-project.org/package=MASS. R package version 7.3-45. [p46]

Y. Zuo and R. Serfling. General Notions of Statistical Depth Function. Annals of statistics, 28:
461-482, 2000. [p52]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Sim.DiffProc
http://CRAN.R-project.org/package=sde
http://CRAN.R-project.org/package=sde
https://CRAN.R-project.org/package=yuima
https://CRAN.R-project.org/package=yuima
http://www.lixoft.com/
http://www.lixoft.com/
https://CRAN.R-project.org/package=PSM
https://CRAN.R-project.org/package=PSM
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS

CONTRIBUTED RESEARCH ARTICLES

Appendix
When there is one random effect, what is the likelihood function and the MLE of the fixed effect?

Assume that we are in the case of random = 1, thus the process is
dX;(t) = (o= ¢; X;(t))dt + oa(X;(t))dW;(t).

Let us compute the log-likelihood function when ¢; = ¢ fixed. We omit the subscript j in the
following. We use the same notation as for random=c(1,2), where V' = (Vk7g)k74€{172} is a symmetric
matrix size 2 x 2. We have :

T T ;2
log L(X, a, ¢) de(s)_%fo V(X (s),)

0 o%(X(s)) o?(X(s))
a? QDQ
=alU; — ?Vl,l + (p[UQ — CXVLQ] — 7‘/272.

We assume that the random effect is Gaussian with density f¢, and denote & = (u,w) and 6 :=
(tyw, @). Thus,

2 2
L0,0) = [[exp (a0 = G Vi + o1tz - aVial - Vo) felode = [exple (e,

We find:
o? -2 -2
E(p) = ol = SVia — 5 [P (Vo +w72) = 20(Uz — aVip +) |
2 2
e 1 2, m 1 9 9
ol — S Vi1 — —==(p— R
all =5 V1 - 553 (p—m)" + oy2 “gHhvw
with
_ M+w2U2 —w2V172a 2 w2
B 1+ WQVQ,Q ’ 1+ w2V2,2.
Finally after simplification we get:
2
m 1 9 9 1 2 -1 -1 2 1 2
no_ - = (1 +w?Vao) Wasalu— Vig (Us — aVs — (Uz —aVi2)%
oz gH W 2(+w Vo 2) Vaalp— V5 (U2 —aVi2)] +2V272(2 —aVi)

Thus for random=1 we get

2
@ Va2
alUy — —Vi1 —

1
N S _ V22
NIETET p[2 M T 21 w?Vhy)

Then, when random = 2 the roles of a and ¢ are exchanged. To implement a general formula, we
note: r for random: 1 or 2, and ¢ for the number of the common effect. We denote 9 the fixed effect
and we the get the general formula:

L(X,0) = (1= Vsg (Ua — aVi2)]” +

(Ua — OcVLQ)Q
2Va2 '

2
WUe— Lo — —Vrr

(Ur — ¢Vre)?
2 7% 21+ w?Viy)

[0 = Vi (Ur = 0Ver) P + ==

L(X,0) = exp

-
A/ 1+ UJQVT,T

Charlotte Dion

Laboratory Jean Kuntzmann

Université Grenoble Alpes

Batiment IMAG

700 avenue Centrale

Campus de Saint Martin d’Héres BP 53

88041 Grenoble cedex 09 - France

and

Laboratory MAPS5

Université Paris Descartes 45, rue des Saint-Péres
75005 Paris

and

Laboratory LSTA

Université Pierre et Marie Curie 4, place Jussieu
75005 Paris

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

charlotte.dion@upmc.fr

Sitmone Hermann

Mathematik Raum 744

Anschrift: Fakultat Statistik
Technische Universitat Dortmund
44221 Dortmund

hermann@statistik.tu-dortmund.de

Adeline Samson

Laboratory Jean Kuntzmann

Université Grenoble Alpes

Batiment IMAG

700 avenue Centrale

Campus de Saint Martin d’Héres BP 53
38041 Grenoble cedex 09 - France

adeline.leclercq-samson@univ-grenoble-alpes.fr

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:charlotte.dion@upmc.fr
mailto:hermann@statistik.tu-dortmund.de
mailto:adeline.leclercq-samson@univ-grenoble-alpes.fr

CONTRIBUTED RESEARCH ARTICLES

67

Indoor Positioning and Fingerprinting:
The R Package ipft

by Emilio Sansano, Rail Montoliu, Oscar Belmonte and Joaquin Torres-Sospedra

Abstract Methods based on Received Signal Strength Indicator (RSSI) fingerprinting are in the
forefront among several techniques being proposed for indoor positioning. This paper introduces
the R package ipft, which provides algorithms and utility functions for indoor positioning using
fingerprinting techniques. These functions are designed for manipulation of RSSI fingerprint data
sets, estimation of positions, comparison of the performance of different positioning models, and
graphical visualization of data. Well-known machine learning algorithms are implemented in this
package to perform analysis and estimations over RSSI data sets. The paper provides a description
of these algorithms and functions, as well as examples of its use with real data. The ipft package
provides a base that we hope to grow into a comprehensive library of fingerprinting-based indoor
positioning methodologies.

Introduction

Intelligent spaces, as a particularity of the concept known as Ambient Intelligence (Aml) (Aarts and

Wichert, 2009; Werner et al., 2005), where agents communicate and use technology in a non-intrusive
way, have an interest in both open and closed environments. Since people spend 90% of time indoors
(Klepeis et al., 2001), one of the most relevant aspects of Aml is indoor localization, due to the

large number of potential applications: industrial and hospital applications, passenger transport,
residences, assistance to emergency services and rescue, localization and support guide for the
disabled, leisure applications, etc. It is expected that the global market for this type of location will
grow from USD 7.11 billion in 2017 to USD 40.99 billion by 2022 (Research and markets, 2017),
being among the key technologies in the future. This is a technology that has already awakened but
that in a short period of time will suffer a big explosion, as happened with the systems of positioning
by satellite in exteriors and its applications.

This paper introduces the R package ipft (Sansano, 2017), a collection of algorithms and utility
functions to create models, make estimations, analyze and manipulate RSSI fingerprint data sets
for indoor positioning. Given the abundance of potential applications for indoor positioning, the
package may have a broad relevance in fields such as pervasive computing, Internet of Things (IoT)
or healthcare, among many others.

The main progress in indoor location systems has been made during the last years. Therefore,
both the research and commercial products in this area are new, and researchers and industry are
currently involved in the investigation, development and improvement of these systems. We believe
that the R language is a good environment for machine learning and data analysis related research,
as its popularity is constantly growing : , researchers related to indoor positioning have explicitly
selected R as developing framework for their experiments (Quan et al., 2017; Harbicht et al., 2017;
Popleteev et al., 2011), it is well maintained by an active community, and provides an ecosystem of
good-quality packages that leverage its potential to become a standard programming platform for
researchers. There are some open source applications and frameworks to build indoor positioning
services, such as FIND 2, Anyplace 3 or RedPIN 1, based on fingerprinting techniques but, as far as
we know, there is not any public framework or package that provides functions and algorithms to
manipulate fingerprinting datasets and experiment with positioning algorithms.

RSSI (Received Signal Strength Indicator) positioning systems are based on measuring the
intensities of the received radio signals of the emitting devices (beacons) that are available at a

particular position, and comparing them with a previously built RSSI data set (yub Lee et al., 2013).

RSSI is used to measure the relative quality of a received signal to a client device, and each chipset
manufacturer is free to define their own scale for this term. The value read by a device is given on a

logarithmic scale and can correspond to an instant reading or a mean of some consecutive readings.

In this scenario, a fingerprint is an RSSI feature vector composed of received signal values
from different emitting devices or beacons, associated to a precise position. In the last years, this
technique is becoming increasingly important for indoor localization (Liu et al., 2007; He and Chan,
2016), since Wi-Fi is generally available in indoor environments where GPS signals cannot penetrate,

Ihttps://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.internalpositioning. com#about
Shttps://anyplace.cs.ucy.ac.cy

4http://redpin.org

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft
https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://www.internalpositioning.com#about
https://anyplace.cs.ucy.ac.cy
http://redpin.org

CONTRIBUTED RESEARCH ARTICLES

68

AP1 AP2

WiFi WiFi id strength
A o B
\ ~ ~ AP3 50dB

fingerprinting

7
v N
/ \ algorithm radiomap

yesf
estimated
DEVICE position
~ | ‘
—~ «
V/\\IPE') i estt Jest
1

Figure 1: During the on-line phase, once the radio map has been built, the fingerprinting
algorithm uses it to estimate the device’s position by comparing the RSSI values heard
by the device with the ones stored in the radio map.

and the wireless access points (WAPs) can be used as emitting devices (Li et al., 2006). Other types
of indoor localization RF emitters, such as Bluetooth (Wang et al.; 2013), RFID (Liu et al., 2011),
or Ultra Wide Band (UWB) (Gigl et al., 2007), can be also used in combination with Wi-Fi access
points or as a standalone positioning system.

The RSSI fingerprinting localization approach requires two phases of operation: a training phase,
also known as off-line or survey phase, and a positioning phase, sometimes referred as on-line,
runtime or tracking phase. In the training phase, multidimensional vectors of RSSI values (the
fingerprints) are generated and associated with known locations. These measurements are used to
build a data set (also known as radio map) that covers the area of interest. This data set can include,
along with the collected RSSI values and the location coordinates, many other useful parameters, as
the device type used in the measurements or its orientation. Later, during the positioning phase, an
RSSI vector collected by a device is compared with the stored data to generate an estimation of its
position (Figure 1).

Despite the increasing interest in RSSI positioning (Xiao et al., 2016), this topic has not been
explicitly covered yet by any publicly available R package. The proposed package has been developed
to provide users with a collection of fundamental algorithms and tools to manipulate RSSI radio
maps and perform fingerprinting analysis. While fundamental algorithms and similarity measurement
functions are implemented to provide a main framework for research and comparison purposes, these
are highly customizable, to allow researchers to tailor those methods with their own parameters and
functions.

This paper describes these algorithms and their implementation, and provides examples of how
to use them. The remainder of the paper is structured as follows: Section Problem statement.
Terminology and notation defines the fingerprinting problem statement and the nomenclature that
will be used in the rest of the paper. An overview of the implemented algorithms is given in Section
An overview of the implemented algorithms. Section Data wrangling outlines some data wrangling
techniques included in the package. Section Positioning algorithms describes the implemented
positioning algorithms. Section Beacon position estimation presents the included methods for access
point position estimation. Then, Section Data clustering discuses some tools and functions included
to create clusters or groups of fingerprints. Section Plotting functions illustrates the use of the
plotting functions also included in the package. In all these sections, functions are described and
explored using practical examples, and particular emphasis is placed on how to use them with real
world examples and data sets. Finally, the paper is summarized in Section Summary.

Problem statement. Terminology and notation

This section provides a brief and general introduction to the principles of fingerprinting positioning,
as well as a description of the notation and terminology that will be used in the next sections. The
terms described here are related to general concepts of fingerprinting techniques, while the remaining
of the paper describes the particular implementation of these concepts in the ipft package.

The main goal of the indoor localization techniques is to determine the position of a user

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

69

in an indoor environment, where the GPS signal might not be received. This objective might
require the use of an existing infrastructure, the deployment of a new one, the use of the so-called
signals-of-opportunity (Yang et al., 2014), or even a combination of some of these techniques. Many
of these techniques take advantage of the radio-frequency signals emitted by devices, whose position

can be known or not, to estimate the user’s position from the perceived strength of these signals.

There are many kinds of devices that can be used for this purpose, such as Wi-Fi access points,
bluetooth beacons, RFID or UWB devices, but for all of them, the information provided for a given
position, the fingerprint, can be stored as a vector of received signal strength intensities (RSSI),
whose length is determined by the number of detected emitters.

A radio map, or a fingerprinting data set, is composed of a set of collected fingerprints and the
associated positions where the measurements were taken, and may contain some additional variables,

such as the the type of device used or a time stamp of the observation, among any other useful data.

Let D be a fingerprinting data set. Then:

D ={F, L}

where F is the set of collected fingerprints and L is the set of associated locations.

For research purposes, a fingerprinting data set is usually divided into training and test sets.

The training data set is used to store the fingerprints and location data to create models of the
environment that can be used to estimate the position of a new fingerprint. The test data set is
used to test the models obtained from the training data, and to compute the errors from the results
of the position estimation.

Let Dyyqin be a training data set:

Dtrain = {]:traina Ctrain}

where
tr ytr tr
]:train = {Al ,)\2 7~-:)\n }

L . tr __tr tr
train = YT1 72 -, Tn

Dirain is composed of n fingerprints, stored as n vectors of RSSI measurements (/\gr, i€[1,2,...,n]),
and n locations (TfT i€[1,2,...,n]), stored as vectors, representing the position associated with its
correspondent fingerprint. Each fingerprint consists of ¢ RSSI values (pfl’:i, he[1,...,q]), where ¢ is

the number of beacons considered when building the training set:

tr tr tr tr .
A= {pl,i7p2,i7~"7pq,i}a i€[l,..,n]

and each associated position is composed of one or more values, depending on the number of
dimensions to be considered and the coordinate system used. The position can be given as a vector
of values representing its coordinates, although on multi-floor and multi-building environments
labels can be used to represent buildings, floors, offices, etc. Let [be the number of dimensions of a
position vector. Then:

tr tr _tr tr .
T = {V1,1'>V2,i7-~-7yl,i}7 LE [17-“,’”‘]

The test data set is also composed of a collection of fingerprints associated to known positions.

This data set is used for testing purposes, during research or during model building adjustments, to

assess the model’s performance by comparing its estimation of the positions with the ground truth.

The situation is different in real applications, where the goal is to estimate the unknown position
of the receiver given the RSSI values detected at a particular location, using a previously built
model. In this case, the test data set is just composed of a unique fingerprint, and the objective is to

estimate the actual location of the receiver. Therefore, no information about its location is provided.

The test data set is composed of m observations:

Dtest = {]:testwctest}

where

Frest = {A?,A?,...,Af;}

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

70

L ts _ts ts
test = YT1 72 -3 Tm

To be able to compare the test observations with the training fingerprints, the number of RSSI
values of its respective fingerprints has to be the same, and the position in the RSSI vector must
represent the same beacon in both data sets. Therefore, each one of the m observations of the test
data set is composed of a fingerprint with ¢ RSSI values:

t ts t t '
A = {Pijpzs,jv ~~-,quj}7 Jje[l,...,m]

and a location vector with the same spatial dimensions as the training location vectors:

t t ¢ t .
T]—S = {Vl‘?j,l/Q‘ij, ...,I/l’sj}, jell,...,m]

The notation depicted above will be used in the remaining of the paper to represent the
fingerprinting data. Symbols ¢ and j will be used to represent iterations over the training and test
data sets, respectively, while A will be used to iterate over the beacons present in each fingerprint.

An overview of the implemented algorithms

This section presents an introduction to the main functions, included in the ipft'_’ package, that
implement fingerprinting-based indoor localization methods. The package also provides two data
sets for training and validation purposes that are briefly described in this section.

The ipft package implements three algorithms to build models to estimate the position of a
receiver in an indoor environment. Two of these implementations are based on the well known
k-Nearest Neighbors algorithm (knn) (Cover and Hart, 1967) to, given an RSSI vector, select the k
most similar training examples from the radio map. The similarity between the RSSI value vectors
can be measured, for example, as the euclidean distance between them, but other distance functions
may be used (Torres-Sospedra et al., 2015b). The selection of a method to compute this measure can
be provided to the function in two ways, either choosing one of the already implemented distance
measurements (euclidean, manhattan, etc.), or by way of a reference to a function implemented by
the user that returns the distance (the lower, the more similar or ’closer’) between two matrices or
vectors. Once the k neighbors are selected, the location of the user is estimated as the weighted
average of the neighbors positions.

The first implementation, corresponding to the function ipfKnn, may behave in a deterministic
way, finding the & more similar neighbors using a deterministic similarity function such as the
euclidean or manhattan distances, or in a probabilistic way, using similarity functions such as LDG
(Logarithmic Gaussian Distance) or PLGD (Penalized Logarithmic Gaussian Distance) (Cramariuc
et al., 2016b), that are based upon statistical assumptions on the RSSI measurement error. The
similarity function can be chosen from the set of implemented options or provided by the user via a
custom function. This implementation is discussed in the Section The ipfKnn function.

The other implementation of the knn algorithm assumes a probabilistic nature for the received
signal distribution (Roos et al., 2002) and uses collections of many fingerprints at each particular
position, acquired during the training phase. Therefore, the radio map is composed of several

groups, where a group is a set of fingerprints (vectors of RSSI values) that share the same location.

Assuming that the RSSI value for a specific beacon can be modeled as a random variable following
a normal distribution (Haeberlen et al., 2004), any of these collections, or groups, of fingerprints
can be represented by the statistical parameters of this distribution, in this case, the mean and the
standard deviation. This implies that the original data set can be transformed into a new type of
data structure by storing the mean and the standard deviation of every detected beacon for every
group. All the original data for a group is transformed into two vectors, one storing the means and
the other the standard deviations. The trustworthiness of the data in the new data set will depend
on the number of measurements for every location of the original data. It is assumed that the more

measurements for a particular location, the more reliable will be their inferred statistical parameters.

The implementation of this probabilistic-based method takes the original radio map and a set
of group indices, and fits these groups of measurements to a normal (Gaussian) distribution for
every beacon and every location, so that the signal intensity distribution is determined by the

5The ipft package is available at CRAN and can be installed as any other R package:
> install.packages("ipft")
The package has to be loaded into the main environment to use it for the first time in an R session:
> library("ipft")

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES

71

mean and the standard deviation of the Gaussian fit. Then, given a test fingerprint, the algorithm
estimates its position by selecting the k£ most probable locations, making explicit use of the statistical
parameters of the data stored in the radio map to optimize the probabilities in the assignment of the
estimated position by computing a similarity function based on a summatory of probabilities. This
approach is implemented through the ipfProbabilistic function and is described in the Section
The ipfProbabilistic function.

Finally, the third implemented algorithm is based on a scenario where the location of the beacons
is known, and an estimation of the fingerprint position can be made using the log-distance path
loss model (Seybold, J.S.; 2005). The strength of the received signal at a particular point can be
modeled as a function of the logarithmic distance between the receiver and the emitter and some
parameters related to the environment properties and the devices characteristics. Therefore, as
this method uses an analytical model to evaluate the position, no radio map is needed to train a
model to compare fingerprints with, since the position might be estimated from the fingerprint data
and the position of the beacons. This method is implemented by the function ipfProximity and is
described in Section The ipfProximity function.

The previous functions ipfKnn, ipfProbabilistic and ipfProximity create models based on the
training data and parameters provided. These models can then be evaluated using the ipfEstimate

function, that internally detects the algorithm to apply based on the model that receives as parameter.

The package also includes data from the IPIN2016° Tutorial data set. In the ipftrain data
frame there are n = 927 observations, including the RSSI values for ¢ = 168 wireless access points,
the location, expressed in Cartesian coordinates, for the observation (x, y), and some other variables,
as timestamps for the measurements or an identifier for the user who took the survey. The ipftest
data frame contains m = 702 observations with the same structure, for testing and validation
purposes. The fingerprints included in both data sets where taken in the same building and the same
floor. The ipfpwap data frame contains the position of 39 of the WAPs included in the ipftrain
and ipftest data sets. The unknown positions of the remaining WAPs are stored as NA. The
characteristics of these data sets attributes are:

e RSSI values: Columns from 1 to 168. The values represent the strength of the received signal
expressed in decibels, on a scale that ranges from —30dBm to —97dBm in the training set,
and from —31dBm to —99dBm in the test set. The closer the value to zero, the stronger the
signal.

o position: Columns 169 (X) and 170 (Y). The position given in Cartesian coordinates, with
its origin in the same corridor where the data was acquired.

e user id: A numeric value from 1 to 8 to represent each of the 8 users that acquired the train
data set. The test dataset was acquired by a different user, represented by the value 0.

e timestamp: The UNIX time stamp of the observation, in seconds.

There are some other publicly available indoor location data sets that have been used to develop
and test this package and that are not included for size reasons, as the UJIIndoorLoc Data Set
(Torres-Sospedra et al., 2015a) or the Tampere University data set (Cramariuc et al., 2016a).

The theoretical foundations of the algorithms and its uses are discussed in detail in Section
Positioning algorithms. A description of the functions ipfKnn, ipfProximity, ipfProbabilistic
and ipfEstimate is given while presenting some simulations to show how these algorithms can be
useful in practice.

Data wrangling

An RSSI fingerprint is a vector composed of signal strength measurements from all the emitters
received by a client device at a particular point, and can be measured in any unit of power. It is
often expressed in decibels (dBm), or as percentage values between 1-100, and can be a negative or
a positive value. Typically this values are stored as negative figures, where the strongest signals are
closer to zero.

Some algorithms are sensitive to the scale of the data. For example, Neural Networks generally
work better (?) with data scaled to a range between [0, 1] or [—1, 1], since unscaled data may
slow down the learning process and the convergence of the network parameters and, in some cases,
prevent the network from effectively learning the problem. Thus, the first step before the data
can be fed to a positioning algorithm may involve some kind of transformation, depending on the
characteristics of the original data.

Shttp://www3.uah.es/ipin2016/

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

72

The data sets included in this package represent the RSSI data from a set of wireless access
points as negative integer numbers from —99 (weakest detected signal) to —30 (strongest detected
signal). When the RSSI of a WAP is not available, the value used is NA. This convention may be
inconvenient for some calculations. For example, a similarity measure between two fingerprints as
the euclidean distance will only take into account those WAPs that have been detected in both
observations, causing a loss of information that otherwise could be utilized.

The ipft package contains some functions to manipulate and wrangle raw fingerprint data. The
ipfTransform function mutates the given fingerprint data into a new data set with a specified range
for the RSSI signals. The signature of the function is:

ipfTransform <- function(data, outRange = c(0, 1), outNoRSSI = 0, inRange = NULL,
inNoRSSI = 0, trans = "scale", alpha = 24)

where:

e data: The input data set with the original RSSI fingerprints.

e outRange: A numeric vector with two values indicating the desired range of the output data.

e outNoRSSI: The desired value for not detected beacons in the output data.

e inRange: A numeric vector with two values indicating the range of signal strength values in
the input data. If this parameter is not provided, the function will infer it from the provided
data.

e inNoRSSI: The value given to a not detected beacon in the original data.
e trans: The transformation to perform over the RSSI data, either ’scale’ or ’exponential’.
e alpha: The a parameter for the exponential transformation.

The scale transformation scales the input data values to a range specified by the user. The
feature scaling is performed according to Equation 1:

out _ {wb.p;‘;ji, it pil'; # inNoRSSI 0

Phoi = outNoRSSI, otherwise

outMin — outMax

inMin — inMazx
a = outMin —inMin -b

where:

— p;’;‘f and pﬁ are the output and input RSSI values, respectively, for the ht" beacon from the

it" observation

— outMax and outMin are the maximum and minimum values, respectively, specified for the
output by the outRange parameter.

— inMax and inMin are the maximum and minimum values, respectively, of the input data.

— outNoRSSI and inNoRSSI are the values assigned in the fingerprint to represent a not
detected beacon for the output and input data, respectively, specified by the parameters
outNoRSSI and inNoRSSI.

The ezponential transformation (Torres-Sospedra et al., 2015b) changes the data according to the
next equation:

« K
K

out _ [exp(E2Wia)y g pin s inNoRSST
outNoRSSI, otherwise

pos(pil) — { Py — inMin, if pil'; # inNoRSSI
K3

0, otherwise

where « is a parameter for the exponential transformation. The authors establish « as a case-based
parameter, and find that 24 is a good value for RSSI fingerprinting data, but they did not study the
effects of a in the transformed data.

The following code scales the ipftrain and ipftest data sets RSSI data, stored in the columns
1:168, to a positive range of values, from 0 to 1, with NA representing a not detected WAP. As a
not detected WAP is represented by a NA value in the original data, this has to be indicated to the
function so it can transform these values to the desired output:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES 73

trainRSSI <- ipfTransform(ipftrain[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

testRSSI <- ipfTransform(ipftest[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

The ipfTransform function returns a new data set with the same structure (vector, matrix or
data frame) as the input.

Positioning algorithms

This section describes three positioning algorithms implemented in the ipft package. The examples
illustrating each description are based on the data previously scaled in Section Data wrangling .

The ipfKnn function.

The ipfKnn and ipfEstimate functions implement a version of the knn algorithm to select the &
nearest neighbors (the k£ more similar vectors from the training set) to a given RSSI vector. Many
different distance metrics (Torres-Sospedra et al., 2015b) can be used to compare two RSSI vectors
and measure how ’near’ or similar they are.

The distance metrics implemented in the package include some typical functions, as the L' norm,
or manhattan distance, or the LQ, or euclidean distance. The L" norm between two fingerprints
with indices a and b is defined as follows:

q 1/u
= <Z [(Ph,a — ph,b|u)
h=1

The package also implements some fingerprinting specific distance estimation functions such as
LDG and PLGD. The LGD between two RSSI vectors)\ﬁr and)\g-s of longitude ¢ is given by:

q
I/C:D()"tL'T7AtS = Z log maX ph @ p;:,]) 6)

where € is a parameter to avoid logarithm of zero, as well as having one beacon RSSI value influence
the LGD only above a certain threshold. G (p';:i, pﬁ j) represents the Gaussian similarity between

pil; and pi? ;» defined as

‘ L exp (— (eise 55?')2) if i # Oand pl; # 0
2] 3]

G(phrzaph]) = Vara? 2o " 7

0, otherwise

The o2 parameter represents the shadowing variance (Shrestha et al., 2013). Values for o in the
range between 4 and 10 dBm are usually good for indoor scenarios (Lohan et al., 2014).

The PLGD between two RSSI vectors)\fr and Azs of longitude ¢ is given as:

PLGD(A",\5%) = LEDOT, AY) + a(o(M", A5) + o(\5°, A7)

where z;S(/\;?T, /\z-s) is a penalty function for the beacons that are visible in the ith training fingerprint
but not in the jth test fingerprint, d)()\;s, /\?”) is a penalty function for the beacons that are visible

in the jth test fingerprint but not in the ith training fingerprint, and are defined as follows:

q
¢)\27 s)\t‘S Z Tmazx — p%“ for 0 < p]lt':l < Tonar and r; = 0)

q
qb(/\é-s, A?) = 2 Trmaz — pif}j, for 0 < pZS’j < Tmaz and r; = 0)
h=1

Tmaz is an upper threshold for the strength of the signal, and « is a scaling factor.

The similarity measurement method can be chosen by means of the parameter method, or by
providing a custom function (parameters FUN and ...). The signature of the ipfKnn function is:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

74

ipfKnn <- function(train_fgp, train_pos, k = 3, method = 'euclidean',
weights = 'distance', norm = 2, sd = 5, epsilon = le-3,
alpha = 1, threshold = 20, FUN = NULL, ...)
where:

train_fgp: A data frame of n rows and g columns containing the fingerprint vectors of the
training set.

train_pos: A data frame of n rows and [columns containing the positions of the training
observations.

k: The k parameter of the knn algorithm, the number of nearest neighbors to consider.
method: The distance metric to be used by the algorithm. The implemented options are
’euclidean’, 'manhatan’, 'norm’, 'LGD’ and "PLGD’

weights: The weight function to be used by the algorithm. The implemented options are
"distance’ and 'uniform’. The default ’distance’ function calculate the weights from the distances

as:
_ 1

Wit (1 +dj7t)Wj
where w; ; is the weight assigned to the t'" (¢ € [1..k]) neighbor of the j** (j € [1..m]) test
observation, d; ; is the distance in the feature (RSSI) space between the tth neighbor and the

jth test fingerprint, and W, is a term used to normalize the values so that the total sum of
the k weights is 1.

The "uniform’ function assigns the same weight value to each neighbor:

1
Wit =7
norm,sd,epsilon,alpha,threshold: Parameters for the 'norm’, 'LGD’ and 'PLGD’ methods.
FUN: An alternative function provided by the user to compute the distance.

...: Additional parameters for the function FUN.

For a training data set of n RSSI vectors (a data frame or a matrix named tr_fingerprints)
and a data set of n position vectors (a data frame or a matrix named tr_positions), the code for
fitting a knn model with a k value of 4 and the manhattan distance as the distance measurement
method is:

knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 4, method = 'manhattan')

This function returns an S3 object of class ipftModel containing the following properties:

params: A list with the parameters passed to the function.

data: A list with the fingerprints and the location data of the radio map.

To estimate the position of a new fingerprint, the ipfEstimate function makes use of the
previously obtained model. An ipfModel object holds the data model needed by the ipfEstimate
function to apply the selected algorithm and returns an estimation of the test fingerprints positions.
The signature of ipfEstimate is:

ipfEstimate <- function(ipfmodel, test_fgp, test_pos = NULL)

where:

ipfmodel: An S3 object of class ipfModel.
test_fgp: A data frame of m rows and ¢ columns containing the fingerprints of the test set.

test_pos: An optional parameter containing a data frame of m rows and [columns with the
position of the test observations.

The ipfEstimate function returns an S3 object of the class ipfEstimation with the following
elements:

location: A m x [matrix with the predicted position for each observation in the test data
set.

errors: If the actual location of the test observations is passed in parameter test_pos, and
the data that represents the position is numeric, this property returns a numeric vector of
length n with the errors, calculated as the euclidean distances between the actual and the
predicted locations.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

e confusion: If the actual location of the test observations is passed in parameter test_pos,
and the data that represents the position is a factor, the estimation of the actual position is
performed as a classification task, and this property returns a confusion matrix summarizing
the results of this classification.

e neighbors: A m x k matrix with the indices of the k selected neighbors for each observation
in the test data set.

e weights: A m x k matrix containing the weights assigned by the algorithm to the selected
neighbors.

The following R code shows an example of the usage of the ipfKnn function with the data set
included in the package. This example takes the data previously scaled and generates a positioning
model from the input data trainRSSI (the radio map) that is stored in knnModel. Then, the model
is passed to the ipfEstimate function, along with the test data, to get an estimation of the position
of the 702 test observations:

tr_fingerprints <- trainRSSI[, 1:168]

tr_positions <- ipftrain[, 169:170]

knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 7, method = "euclidean")
ts_fingerprints <- testRSSI[, 1:168]

ts_positions <- ipftest[, 169:170]

knnEstimation <- ipfEstimate(knnModel, ts_fingerprints, ts_positions)

Since the position of the test observations is known, the mean error for the 702 test observations
can be calculated as follows:

> mean(knnEstimation$errors)
[1] 3.302739

The mean positioning error is one of the most common evaluation metrics used in indoor
positioning (Liu et al., 2007) to assess the system’s accuracy. This metric corresponds to the average
Fuclidean distance between the estimated locations and the true locations. As positions in the

ipftrain and ipftest are expressed in meters, this metric represents the average error in meters
for this scenario.

The neighbors selected from the training data set for the 6 first test fingerprints are:

> head(knnEstimation$neighbors)

(.11 [,21 [,3] [,4] [,5] [,6] [,7]
[1,] 71 176 126 125 127 771 130
(2,1 71 176 126 125 127 771 130
[3,] 465 914 915 913 217 77 218
[4,] 465 914 915 176 913 461 217
[6,] 176 126 125 771 130 127 914
[6,] 77 914 915 217 176 465 218

where each row of the output corresponds to the indices of the k = 7 more similar vectors from the
training data set to the it" vector of the test data set.

As an example of how to use ipfKnn with a custom function, the next code shows the definition
of a C'++ function that implements a modified version of the manhattan distance. The function
needs at least two parameters, the two matrices representing the training and test data sets. A third
parameter is here introduced to represent a penalization value. This function penalizes the computed
distance between two RSSI measurements when one of the beacons is not detected (represented by
the value ¢¥), by multiplying the resulting distance by a factor F'. Given two fingerprints)\? and
)\;s of length ¢, the myD distance is:

q
myD(A]", A5 = Z d(pi s P)

where

t et t
myd(p}s Phij) = i pffﬂ' if pis # Dandpp; # &
h,i» h,J tr |F th .
ph g , otherwise

The following code implements the myD function and shows an example of its usage with ipfKnn,
as well as the results obtained. The function is coded in C++ to improve its performance when

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

using large data sets, although the method also accepts custom plain R functions. The myD function
assumes that the fingerprints are in a positive range:

library('ipft')
library('Rcpp')
cppFunction('

NumericMatrix myD(NumericMatrix train, NumericMatrix test, double F = 2.0) {
NumericMatrix distanceMatrix(test.nrow(), train.nrow());
double d = 0, pv = 0, rssil = 0, rssi2 = 0;
for (int itrain = 0; itrain < train.nrow(); itrain++) {

for (int itest = 0; itest < test.nrow(); itest++) {
d =0;
for (int i = 0; i < train.ncol(); i++) {
rssil = R_IsNA(train(itrain, i))? 0 : train(itrain, i);
rssi2 = R_IsNA(test(itest, i))? O : test(itest, 1i);
pv = (rssil != 0 && rssi2 != 0)7 1 : F;
d = d + std::abs(rssil - rssi2) * pv;

}
distanceMatrix(itest, itrain) = d;
}
}
return distanceMatrix;
}I
)
customModel <- ipfKnn(tr_fingerprints, tr_positions, k = 1, FUN = myD, F = 0.25)

customEstimation <- ipfEstimate(customModel, ts_fingerprints, ts_positions)

> head(customEstimation$neighbors)

[,1]
[1,1 773
[2,]1 773
[3,1 776
(4,1 773
(5,1 130
[6,1 130

The previous code outputs the selected neighbors for the first 6 observations in the test data set.
As the ts_positions data frame contains the actual location of the observations, the absolute error
committed by the model is returned in the ipfEstimation object:

> head(customEstimation$errors)
[1] 5.708275 5.708275 5.708275 5.708275 3.380000 3.380000

And the mean error with this custom similarity function is:

> mean(customEstimation$errors)
[1] 3.297342

An ipfEstimation object can be used directly to plot the Empirical cumulative distribution
function of the error (function ipfPlotEcdf()) and the Probability density function (function
ipfPlotPdf ()). Figures 1 and 2 show the plots obtained from the following code:

> ipfPlotEcdf (customEstimation)
> ipfPlotPdf (customEstimation)

The plotting functions included in the package are described in detail in Section Plotting
functions.

The ipfProbabilistic function.

Given the limitations of sensors accuracy (L.uo and Zhan, 2014) and the irregular character of signal
propagation (Ali et al., 2010), the RSSI vector stored for a particular position cannot have completely
reliable and accurate information about the emitters signal strength. This uncertainty is generally
modeled by a normal distribution (Haeberlen et al., 2004), but to do so many readings of the signals
at the same position are needed to obtain a representative set of statistical parameters to model
each RSSI present at that position.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES it

Empirical cumulative density function

* Mean

| Median

cumulative density of error

errar

Figure 2: Funtion ipfPlotEcdf. Empirical cumulative distribution function of the error. The
plot also shows the mean (red dotted line) and the median (blue dashed line) of the
€rrors.

Probability density function

* Mean
| median

0.15-

density

010~

0.05-

0.00-

v ' i ' ' ' ' ' ' ' ' " '
0 2 4 6 8 10 12 14 16 18 20 22 24
errar

Figure 3: Funtion ipfPlotPdf. Probability density function. The plot shows the normalized
histogram of the errors and its density function. The plot also shows the mean (red
dotted line) and the median (blue dashed line) of the errors.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

78

0.03

0.02

0.01

-100 -75 -50 -25 0
RSSI

Figure 4: § parameter for the probabilistic approach. This parameter sets the width of the
discretization steps.

Thus, the initial collection of RSSI observations associated to a particular point is transformed
into a pair of vectors containing the means and the standard deviations of the RSSI for each beacon,
and then the complete training data is stored as a set of statistical parameters that can be used to
infer the location of a test observation as the one that maximizes a probability function.

Let ﬁtrain be the new training set obtained from the previous procedure:
Dtrain = {]:train» £trm'n}
]:train = {Air,A3T7 7)‘2]7.}

A _ T o "t
Lirain = {Tlr,Tzrv mngT}

where]-A—tmm is the set of statistical parameters obtained from the fingerprints of the training set, g
is the number of groups of fingerprints with the same associated position, and L,y is the set of
positions associated to each group. Each one of the g observations of the training data set is now
composed of a fingerprint with ¢ values:

A = {ei’;,eg’;, ...,93;}, ie[l,...q]

" 2
Oh i ~ N (tn,i»0h i)

where pup, ; and afm are the mean and the variance, respectively, of the ht" RSSI of the it" group of
original fingerprints.

Let p’;j ; be the ht" RSSI measurement of the j*" test fingerprint (Ags), and let pp, ; and U;Qm be

the mean and the standard deviation of the A*" beacon distribution obtained for the i position

from the training set. The probability pg)j, of observing pzs)j at the it" position is:

T—pp g

ts
. P10 -
) ¥ 1 202
Py = ——— e hi dx

P =8 OhiV 2

where § is a parameter to allow the discretization of the normal distribution (Figure 4).

The set of all probabilities pgi)j, h € [1,...,q] obtained for a given test observation j, expresses the
similarity between the observation measurement and the training data for a particular location. An
evaluation of the total similarity for every location can be computed as a function of these individual
probabilities, like its sum or its product. In the ipft package, this algorithm is implemented by
the ipfProbabilistic and ipfEstimate functions, and by default uses the sum of probabilities as

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES

default operator to evaluate the similarity:

where wy) is the similarity between the jth test observation and the it" distribution from the
training data set. The function to evaluate the similarity can be passed to ipfProbabilistic as a
parameter.

As well as the ipfKnn and ipfProximity funtions, ipfProbabilistic returns a ipfModel object
with the same data structure seen in Section The ipfKnn function, but with the difference that now
the data property returns the probabilistic parameters that define the fitted distributions for every
group of fingerprints on the training set. The clustering or grouping of the training data is performed
by default over the location data provided by the user, but this behavior can be customized by
passing a parameter with the columns over which to group the data, or by passing the group indices
directly. The ipft package implements two functions (ipfGroup() and ipfCluster()) to perform
clustering tasks. These functions are described in Section Data clustering.

The signature of the ipfProbabilistic function is:

ipfProbabilistic <- function(train_fgp, train_pos, group_cols = NULL, groups = NULL,
k = 3, FUN = sum, delta =1, ...)

where train_fgp, train_pos and k have the same meaning and structure as described in Section
The ipfKnn function, and, given n observations in the training set:

e groups: is a numeric vector of length n, containing the index of the group assigned to each
observation of the training set. This parameter is optional.

e group_cols: is a character vector with the names of the columns to use as criteria to form
groups of fingerprints. This parameter is optional.

e FUN: is a function to estimate a similarity measure from the calculated probabilities.

e delta: is a parameter to specify the interval around the test RSSI value to take into account
when determining the probability.

e ...: are additional parameters for FUN.

The following code shows how to use the ipfProbabilistic function to obtain a probabilistic
model from the ipftrain and ipftest data sets. The default behavior of ipfProbabilistic groups
the training data attending at the position of each observation, in this case, its x and y coordinates:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 7, delta = 10)
> head(probModel$data$positions)

X Y
2
2

NN

o U WN

O O O O O o

NN O OO

O W O O N b

0 W O O b b
0 O O

1

Now the ipfModel$data property returns a list with 3 elements:

e means: a data frame with the means for every beacon and every group of fingerprints.
e sds: a data frame with the standard deviations for every beacon and every group of fingerprints.

e positions: a data frame with the position of each group of fingerprints.

To obtain an estimation from this model, the same code used in section The ipfKnn function
can be used to produce the estimated locations:

> ts_fingerprints <- ipftest[, 1:168]
> ts_positions <- ipftest[, 169:170]
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)

and their errors and its mean value:

> mean(probEstimation$errors)
[1] 6.069336

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

80

An alternative function can be passed to ipfProbabilistic. The following code uses the
maximum value of the probabilities as the similarity measure, and passes a parameter to remove NAs
from the data’:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 9, delta =
+ FUN = max, na.rm = TRUE)

> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)

> mean(probEstimation$errors)

[1] 8.652321

The ipfProximity function.

When the location of the access points is known, it’s possible to estimate the position of a fingerprint
using the log-distance path loss model (Seybold, J.S., 2005). Given a set of g beacons, and a
fingerprint vector A = {p1, p2, ..., pq} of length ¢, this model is expressed as:

Ph = le,h - 10a10g10 dh -7 he [1727 7q]

where py, is the value of the received signal from the Rt beacon, dj, is the distance from the
observation to the beacon, Py, j is the received power at 1 meter from the emitter, a is the path
loss exponent, and v ~ N(0, 03,) represents a zero mean Gaussian noise that models the random
shadowing effects of the environment.

The estimator of the distance between the emitting beacon and the position where the signal is
received is:

Ph=Pim. h

Cz\h =10 10«

This estimation follows a log-normal distribution that is:

Indy, ~ N(Indy,, 03)
where o4 = (04In10)/(10c).

The mean and the variance of the distribution are:

A

B[dy] = dy 73/
3 2 o2 52
Var[dp] = dj, e’ (e”2 —1)

Note that the variance grows quadratically with the distance, making the estimation less reliable
as the distance becomes larger. Therefore, the distances estimated from different beacons will have
different accuracies. To take this into account, the algorithm estimates the position of a fingerprint
as a minimization problem of the overall squared error of the estimated distances. The objective
function to minimize is:

p
. 5 2
minJ = 7 wpldy = s =)
h=1

where 7 is the position that minimizes the function, that is, the estimated position, g is the number
of beacons present in the fingerprint, and wy, = 1/Var[dy] are the weights.

The functions ipfProximity and ipfEstimate implement this design, and uses the Broyden-
Fletcher-Goldfard-Shano algorithm (BFGS) (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), a quasi-Newton method, to minimize the previous function to make an estimation of the
fingerprint position. The accuracy of the estimation is strongly dependent on the reliability of the
emitters positions. When these positions are unknown, they can be estimated with the function
ipfEstimateBeaconPositions. Section Beacon position estimation details the implementation and
usage of this function. The ipfProximity function returns an ipfModel object with the data needed
by the ipfEstimate function to estimate a fingerprint position.

The signature of the ipfProximity function is:

"The ipfProbabilistic function takes into account the NAs contained in the data when using the default
function (sum), but the user needs to manage this situation when a custom function is provided. In this
example, the data is not previously transformed, is passed as it is, with NAs for not detected WAPs, to
illustrate this situation.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

10,

CONTRIBUTED RESEARCH ARTICLES

ipfProximity <- function(bpos, rssirange = c(-100, 0), norssi = NA, alpha = 5,
wapPowl = -30)

where:

e bpos: a matrix or a data frame containing the position of the beacons, in the same order as
they appear in fingerprints.

e rssirange: the range of the RSSI data in the fingerprints.
e norssi: the value used to represent a not detected beacon.
o alpha: the path loss exponent ().

e wapPowl: a numeric vector with the received power at one meter distance from the beacon
(P1pm,n)- If only one value is supplied, it will be assigned to all beacons.

In the following example, the goal is to estimate the position of the 702 fingerprints included
in the test set, using the known position of the WAPs and the log-distance path loss model. The
ipfpwap dataset contains the location of 39 of the 168 wireless access points of the ipftrain and
ipftest data sets. The ipfProximity function returns a model that is used to estimate the position
of the fingerprints. As the real position of the test fingerprints is known, this information can be
also passed to the ipfEstimate function. Thus, the returned ipfEstimation object will contain,
along with the estimated positions, the associated errors:

> proxModel <- ipfProximity(ipfpwap, alpha = 4, rssirange = c(-100, 0),

+ norssi = NA, wapPowl = -32)

> fingerprints <- ipftest[, 1:168]

> positions <- ipftest[, 169:170]

> proxEstimation <- ipfEstimate(proxModel, ipftest[, 1:168], ipftest[, 169:170])
> mean(proxEstimation$errors)

[1] 8.0444

Positioning algorithms comparison

In a classical fingerprint-based positioning system, the radio map is constructed in accordance to
the positioning algorithm to be used in the online phase. The knn algorithm follows a deterministic
approach that performs well in most cases, while the probabilistic method is based on the assumption
that there is enough training data for each particular position to obtain reliable parameters to model
a distribution for each signal at each survey location. As regards to the proximity algorithm, it is
based on two assumptions; first, the ability to realistically simulate the propagation model of the
signal, and second, the known positions of the emitter beacons. These conditions are not met in
many scenarios, where changes in occupation, for example, modify the propagation model and thus
the performance of the positioning system.

To illustrate the previous considerations, Table 1 shows the mean and the quartile errors in
meters for the implemented algorithms, computed using the dataset included in the package. In this
particular case, given the characteristics of the training data, knn performs better than the rest.

Quartile error (m)

algorithm mean error (m) 0% 25% 50% 5% 100%
knn 3.3027 0.15172 1.46891 2.61281 4.08992 19.84650
probabilistic 6.0693 0.14289 3.26988 5.63051 8.19933 17.93031
proximity 8.0444 2.49865 5.71055 7.42602 9.88427 20.12029

Table 1: Comparison of the algorithms’ accuracy on the dataset included in the package

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

82

To compare the performance of the proposed implementation of the previous positioning algo-
rithms, we ran a benchmark test of 1000 iterations on each function, using the dataset included in
the package. The results for the model fitting functions are shown in Table 2. As it can be seen, the
proximity and knn algorithms are the fastest, as expected, since their model fitting process basically
consists in storing the training data for later processing during the estimation stage. In contrast,
the probabilistic algorith has to fit a normal distribution for each signal received at each position,
and thus, it takes longer to complete the process.

function elapsed (sec) relative
ipfKnn 0.031 1.409
ipfProbabilistic 1035.446 47065.727
ipfProximity 0.022 1.000

Table 2: Performance comparison of the model building functions

The outcomes are different when considering the results for the estimation function (Table 3).
The position estimation for the probabilistic algorithm is faster that the rest. For the knn algorithm,
the estimation process could be improved using clustering techniques to avoid comparing the test
fingerprint with all the instances in the training set. With regards to the estimation process for the
proximity algorithm, the fact that the result is computed by solving an unconstrained nonlinear
optimization through an iterative method highly penalyzes its performance.

model function elapsed (sec) relative
knn ipfEstimate 2508.079 2.998
probabilistic ipfEstimate 836.651 1.000

proximity ipfEstimate 28259.110 33.776

Table 3: Performance comparison of the estimation functions on each model

Beacon position estimation

If the actual position of the beacons is unknown, it can be estimated in many ways from the RSSI
data. Two basic methods for estimation of the beacons location have been included in the ipft
package through the ipfEstimateBeaconPositions function. The ’centroid’ and the ’weighted
centroid’ methods.

Both methods use the fingerprint data to guess the position of the beacons. Let ¢ be the number
of beacons and 72 be the set of beacons locations:
B B B B
T = {l/l,h?VQ,h7V3,h}? he [1,2,7(]]

the position of the ht" beacon is given by:

n n n
B _ tr tr tr
Th = Wil1,45 Wil 45 wiV3 i
i=1 i=1 i=1

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

where n is the number of fingerprints in the training set. The value of w; is:

1
w; = —
n
for the ’centroid’ method and:
t
Wi — Phi
S AT
=1 phr,l

for the 'weighted centroid’ method. Since the biggest weights have to be assigned to the strongest
RSSI values, the fingerprint vector values should be positive, or at least, positively correlated to
the beacon received intensity. This is checked by the function implementation so the input data is
internally transformed to a positive range when needed.

This is the signature of the ipfEstimateBeaconPositions function:

ipfEstimateBeaconPositions <- function(fingerprints, positions, method = 'wcentroid',
rssirange = c(-100, 0), norssi = NA)

where:

o fingerprints: is a data frame with the fingerprint vectors as rows.

e positions: a data frame with the position of the fingerprints.

e method: the method to use by the algorithm, either ’centroid’ or 'wcentroid’.
e rssirange: the range of the signal strength values of the fingerprints.

e mnorssi: the value assigned in the fingerprints to a non detected beacon.

The following code uses the function ipfEstimateBeaconPositions with the 'weighted centroid’
method to estimate the position of the wireless access points, under the assumption that this
position is unknown. Finally, the function ipfProximity estimates the positions of the first 6 test
fingerprints:

> bc_positions <- ipfEstimateBeaconPositions(ts_fingerprints, ts_positions,
method = 'wcentroid')
proxModel <- ipfProximity(bc_positions, rssirange = c(0.1, 1),
norssi = NA)
proxEstimation <- ipfEstimate(proxModel, fingerprints[1:6,],
positions[1:6,])

vV + V + V

proxEstimation$location
Vi V2
.686950 12.02117
.686950 12.02117
.654255 10.91767
.682121 10.96035
.711448 10.88966
.695007 10.09507

o O WN
L

Data clustering

Clustering techniques can be used with the aim of enhancing localization performance and reducing
computational overhead (Cramariuc et al., 2016b). The ipft package includes some functions for
cluster analysis and grouping of the fingerprinting and location data. These functions can be used
to create or detect clusters based on the position of the observations, on its signal levels, or on any
other criteria that might be useful to group the data by. Performing RSSI clustering before the
positioning process groups a large number of reference points into various clusters that can be used
to perform first-level classification. This allows to assess the testing point location by using only
the fingerprints in the matched cluster rather than the whole radio map. Furthermore, given the
amplitude atenuation that building partitions cause to electromagnetic signals, clusters usually can
be related to physical spaces such as buildings, floors or even rooms.

The main function for clustering tasks is ipfCluster. The more basic usage of the function takes
the provided data and uses the k-means algorithm to classify it into k disjoint sets of observations,
by selecting a set of k cluster centers to minimize the sum of the squared distances between the
data vectors and their corresponding centers.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

84

The k-means clustering procedure begins with an initial set of randomly selected centers, and
iteratively tries to minimize the sum of the squared distances. This makes the algorithm very
sensitive to the arbitrary selection of initial centers, and introduces variability in the results obtained
from one execution to another. Besides, the number of clusters has to be established beforehand,
and that may be inconvenient in some scenarios.

The signature of the ipftCluster function is:
ipfCluster <- function(data, method = 'k-means', k = NULL, grid = NULL, ...)
where
e data: is a data frame with the data to cluster. When using the k-means method, the data

frame must not contain any NA values.

e method: the algorithm used to create clusters. The implemented algorithms are ’k-means’ for
k-means algorithm, ’grid’ for clustering based on spatial grid partition, and AP’ for affinity
propagation algorithm.

e k: a numeric parameter for k-means algorithm.

e grid: a numeric vector with the size of the grid for the grid algorithm.

When using the default k-means algorithm, the function behaves as a wrapper around the
k-means function of the stats package, and therefore, the usage can be further customized by passing

extra parameters, as the number of iterations or the algorithm to be used ("Hartigan-Wong" is the
default).

The following example will find k£ = 30 clusters of similar fingerprints in the ipftrain dataset.

First the data set of fingerprints is transformed to eliminate the NA values that represent a not
detected beacon. Then, the data is passed to the ipfCluster function to find the 30 clusters using
the '"MacQueen’ algorithm:

> set.seed(1)

> cl_fingerprints <- ipfTransform(tr_fingerprints, inNoRSSI = NA, outNoRSSI = 0)
> clusterData <- ipfCluster(cl_fingerprints, k = 30, iter.max = 20,

+ algorithm = "MacQueen")

> head(clusterData$clusters)

[1] 333333

The outcome of the ipfCluster function is a list containing the indices of the k clusters and
its centroids. Given the previous example, clusterData$centers will return the k£ centroids, and
clusterData$clusters will return the cluster index i € [1, .., k] for every observation in ipftrain.

The ipfCluster function includes an implementation of the affinity propagation (AP) algorithm
(Frey and Dueck, 2007) that can be used to estimate the number of distinct clusters present in the
radio map. AP does not require the number of clusters to be determined before running it. It finds
members of the input set, known as ’exemplars’, that are representative of clusters by creating the
centers and the corresponding clusters based on the constant exchanging of reading similarities
between the observations. This message-passing process continues until a good set of centers and
corresponding clusters emerges.

The following code uses AP clustering to find groups of similar RSSI vectors from the ipftrain
data set. With no further parametrization, it will classify the RSSI data into 43 distinct clusters:

> clusterData <- ipfCluster(tr_fingerprints, method = 'AP')
> dim(clusterData$centers)
[1] 43 168

Now, clusterData$centers holds the 43 ’exemplars’, those RSSI vectors from the radio map
that are representative of a cluster, and clusterData$clusters contains the indices that link every
observation of the data set with its assigned cluster.

To perform a more simple grouping based on a precise set of variables, the ipfGroup function
provides a method to group the data by column name. The function signature is:

ipfGroup <- function(data, ...)
where

e data: is a data frame with the data to group.

e ...: The variables to group the data by.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

The ipfGroup function returns a numeric vector with the same length as the number of ob-
servations contained in the data data frame, containing the index of the group assigned to each
observation. The following example groups the data according to the position of the observations,
that in the ipftrain and ipftest datasets are represented by the columns 'X’ and "Y":

> groups <- ipfGroup(ipftrain, X, Y)
> head(groups)

[1] 4 4 4 4 22 22

> length(unique (groups))

(11 41

Plotting functions

Indoor positioning generally involves statistical analysis of datasets, and the ipft provides some
useful functions to produce graphs for exploring data. All the graphic functions included in the
package are built upon the ggplot2 package (Wickham, 2011), and return a ggplot object that can
be plotted or further personalized with custom labels, theme, etc.

The ipfPlotPdf and the ipfPlotEcdf have already been introduced in Section The ipfKnn
function. These functions will plot the probability density function and the empirical cumulative
distribution function, respectively. Both functions take an ipfEstimation object to produce the
plot, while the axis labels and plot tittle can be also supplied by the parameters xlab, ylab and
tittle. Their respective signatures are:

ipfPlotPdf <- function(estimation, xlab = 'error', ylab = 'density',
title = 'Probability density function')

ipfPlotEcdf <- function(estimation, xlab = 'error',
ylab = 'cumulative density of error',
title = 'Empirical cumulative density function')

The function ipfPlotLocation will produce a plot of the location of the data. The following
code shows its signature and presents an example of its use. The example calls the function with
parameter plabel set to TRUE, to plot labels identifying each location, and reverseAxis set to TRUE
to swap the axis. It also modifies the resulting object by changing the default ggplot2 theme to the
white one. The result is shown in Figure 5.

ipfPlotLocation <- function(positions, plabel = FALSE, reverseAxis = FALSE,
xlab = NULL, ylab = NULL, title = '')

library(ggplot2)
ipfPlotLocation(ipftrain[, 169:170], plabel = TRUE, reverseAxis = TRUE) + theme_bw()

The function ipfPlotEstimation plots the estimated position of the test observations based
on an ipfModel object and an ipfEstimation object, as well as the actual position (parameter
testpos), if known, and the position of the k selected fingerprints from the training set used to
guess its location (parameter showneighbors). The green dots indicate the actual position of the
observations, while the black dots indicate the estimated ones. The blue lines connect the estimated
positions with the k£ neighbors from which the location has been estimated, and the red arrows
connect the actual position of the fingerprint with the estimated one. The following code shows the
function signature and provides an example of its usage. The result plot is shown in Figure 6:

ipfPlotEstimation <- function(model, estimation, testpos = NULL, observations = c(1),
reverseAxis = FALSE, showneighbors = FALSE,
showLabels = FALSE, xlab = NULL, ylab = NULL,
title = '')

library(ggplot2)
probModel <- ipfProbabilistic(ipftrain[, 1:168], ipftrain[, 169:170])
probEst <- ipfEstimate(probModel, ipftest[, 1:168], ipftest[, 169:170])
ipfPlotEstimation(probModel, probEst, ipftest[, 169:170],
observations = c(61:62, 81:82), reverseAxis = TRUE,
showneighbors = TRUE, showLabels = TRUE) + theme_bw()

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES

86

33 39
. .
4
5 9 13 17 21 25 29
.
3
3 7 11 15 19 23 27 31 35 36 41
- L] . - - . . .
24
>
4 8 12 16 20 24 28 30 34 ar 40
. L]
1
2 6 10 14 18 22 26
. L] .
0 .I
32 36
. .
0 10 20 30
Y

Figure 5: Location of fingerprints included in the ipftrain data frame. The labels indicate the
group indices.

Y

Figure 6: Estimated and actual positions of test observations 61, 62, 81 and 82 from the ipftrain
data set. The circles indicate the actual positions of the observations. The squares
show the estimated positions. The red arrows connect the actual positions with the
estimated ones. The dashed lines connect the estimated positions with the k neighbors
from which the location has been estimated, represented by the crosses.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

87

Summary

In this paper, the package ipft is presented. The main goal of the package is to provide researchers
with a set of functions to manipulate, cluster, transform, create models and make estimations using
indoor localization fingerprinting data. This package enables researchers to use a well established
set of algorithms and tools to manipulate and model RSSI fingerprint data sets, and also allows
them to customize the included algorithms with personalized parameters and functions to adapt the
working mode to their particular research interests.

In this work some of the fundamental algorithms used in indoor fingerprinting localization
techniques have been formally presented and illustrated, while detailed examples and information
about its usage and implementation have been provided.

Future work

This package is an ongoing work, and future versions will implement new algorithms and tools
with the aim of providing a base framework for researchers, and become a reference library for
fingerprinting-based indoor positioning research.

In particular, future lines of work should consider the implementation of deep learning based
algorithms. Many deep learning techniques can be exploited to try to obtain better positioning
performance. Recurrent neural networks could be used to learn not only spatial but also temporal
patterns of the received signals. Deep autoencoders can be implemented as a way to encode
fingerprints and reduce their dimensionality to a few number of significant features. Their variational
and generative extensions can be of use to better model the stochastic nature of RSSI data. These
models can also be applied to generate new training data for deep learning-based clasisifiers, increasing
the robustness of positioning systems and trying to address problems caused by heterogeneity of
devices.

Acknowledgements

The authors would like to thank the two anonymous reviewers for providing useful feedback that
helped to improve the paper.

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness
through the "Proyectos I + D Excelencia" programme (TIN2015-70202-P) and by Jaume I University
"Research promotion plan 2017" programme (UJI-B2017-45).

Bibliography

E. Aarts and R. Wichert. Ambient intelligence. In Technology Guide, pages 244-249. Springer-Verlag,
2009. URL https://doi.org/10.1007/978-3-540-88546-7_47. [p67]

A. H. Ali, M. R. A. Razak, M. Hidayab, S. A. Azman, M. Z. M. Jasmin, and M. A. Zainol.

Investigation of Indoor WIFI Radio Signal Propagation. In Proceedings of the Symposium
on Industrial Electronics and Applications, (ISIEA’10), pages 117-119, 2010. URL https:
//doi.org/10.1109/isiea.2010.5679486. [p76]

C. Broyden. A new double-rank minimisation algorithm. preliminary report. In Notices of the
American Mathematical Society, volume 16, page 670. American Mathematical Society 201 Charles
ST, Providence, RI 02940-2213, 1969. [p8&0]

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21-27, 1967. URL https://doi.org/10.1109/tit.1967.1053964. [p70]

A. Cramariuc, H. Huttunen, and E. S. Lohan. Clustering benefits in mobile-centric wifi positioning
in multi-floor buildings. In 2016 International Conference on Localization and GNSS (ICL-GNSS),
pages 1-6. IEEE, 2016a. URL https://doi.org/10.1109/icl-gnss.2016.7533846. [p71]

A. Cramariuc, H. Huttunen, and E. S. Lohan. Clustering Benefits in Mobile-Centric WiFi Positioning
in Multi-Floor Buildings. In Proceedings of the 6th International Conference on Localization

and GNSS (ICL-GNSS’16), pages 1-6, 2016b. URL https://doi.org/10.1109/icl-gnss.2016.

7533846. [p70, 83]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://doi.org/10.1007/978-3-540-88546-7_47
https://doi.org/10.1109/isiea.2010.5679486
https://doi.org/10.1109/isiea.2010.5679486
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1109/icl-gnss.2016.7533846
https://doi.org/10.1109/icl-gnss.2016.7533846
https://doi.org/10.1109/icl-gnss.2016.7533846

CONTRIBUTED RESEARCH ARTICLES

88

R. Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317-322,
1970. [p80]

B. J. Frey and D. Dueck. Clustering by Passing Messages between Data Points. Science, 315(5814):
972-976, 2007. URL https://doi.org/10.1126/science.1136800. [p&4]

T. Gigl, G. J. M. Janssen, V. Dizdarevic, K. Witrisal, and Z. Irahhauten. Analysis of a uwb
indoor positioning system based on received signal strength. In Proceedings of the 4th Workshop
on Positioning, Navigation and Communication (PNC’07), pages 97-101, 2007. URL https:
//doi.org/10.1109/wpnc.2007.353618. [p68]

D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
Computation, 24(109):23-26, 1970. URL https://doi.org/10.1090/s0025-5718-1970-0258249~
6. [p30)]

A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki. Practical
robust localization over large-scale 802.11 wireless networks. In Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking (MobiCom’04), pages 70-84, 2004.
URL https://doi.org/10.1145/1023720.1023728. [p70, 76]

A. B. Harbicht, T. Castro-Santos, W. R. Ardren, D. Gorsky, and D. J. Fraser. Novel, continuous
monitoring of fine-scale movement using fixed-position radiotelemetry arrays and random forest
location fingerprinting. Methods in Ecology and Evolution, 8(7):850-859, 2017. URL https:
//doi.org/10.1111/2041-210x.12745. [p(iT]

S. He and S. H. G. Chan. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and
Comparisons. IEEE Communications Surveys & Tutorials, 18(1):466-490, 2016. URL https:
//doi.org/10.1109/comst.2015.2464084. [p67]

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C.
Hern, and W. H. Engelmann. The national human activity pattern survey (nhaps): a resource for
assessing exposure to environmental pollutants. Journal Of Exposure Analysis And Environmental
Epidemiology, 11:231 EP —, 2001. URL https://doi.org/10.1038/sj.jea.7500165. [p(7]

B. Li, J. Salter, A. Dempster, and C. Rizos. Indoor positioning techniques based on wireless lan. In
Proceedings of the 1st IEEE International Conference on Wireless Broadband and Ultra Wide-Band
Communications (AusWireless’06), pages 13-16, 2006. URL https://opus.lib.uts.edu.au/
bitstream/2100/170/1/113_Li.pdf. [p68§]

H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and
systems. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews,
37(6):1067-1080, 2007. URL https://doi.org/10.1109/tsmcc.2007.905750. [p67, 75)]

Y. Liu, H. Du, and Y. Xu. The research and design of the indoor location system based on rfid.
In Proceedings of the 4th International Symposium on Computational Intelligence and Design
(ISCID’11), pages 8790, 2011. URL https://doi.org/10.1109/iscid.2011.123. [p68]

E. S. Lohan, K. Koski, J. Talvitie, and L. Ukkonen. WLAN and RFID Propagation Channels for
Hybrid Indoor Positioning. In Proceedings of the 4th International Conference on Localization and
GNSS, (ICL-GNSS’14), 2014. URL https://doi.org/10.1109/icl-gnss.2014.6934184. [p73]

J. Luo and X. Zhan. Characterization of Smart Phone Received Signal Strength Indication for
WLAN Indoor Positioning Accuracy Improvement. Journal of Networks, 9(3):739-746, 2014. URL
https://doi.org/10.4304/jnw.9.3.739-746. [p70]

A. Popleteev, V. Osmani, O. Mayora, and A. Matic. Indoor localization using audio features of fm
radio signals. In International and Interdisciplinary Conference on Modeling and Using Context,
pages 246-249. Springer, 2011. URL https://doi.org/10.1007/978-3-642-24279-3_26. [p(7]

Y. Quan, L. Lau, F. Jing, Q. Nie, A. Wen, and S.-Y. Cho. Analysis and machine-learning based
detection of outlier measurements of ultra-wideband in an obstructed environment. In 2017 IEEE
15th International Conference on Industrial Informatics (INDIN), pages 997-1000. IEEE, 2017.
URL https://doi.org/10.1109/indin.2017.8104909. [p(’iﬂ

Research and markets. Indoor location market by component, deployment mode, appli-
cation, vertical and region - global forecast to 2022. Research and markets, 2017.
URL https://wuw.researchandmarkets.com/reports/4416241/indoor-location-market-by-
component-deployment. [p67]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1126/science.1136800
https://doi.org/10.1109/wpnc.2007.353618
https://doi.org/10.1109/wpnc.2007.353618
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1145/1023720.1023728
https://doi.org/10.1111/2041-210x.12745
https://doi.org/10.1111/2041-210x.12745
https://doi.org/10.1109/comst.2015.2464084
https://doi.org/10.1109/comst.2015.2464084
https://doi.org/10.1038/sj.jea.7500165
https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
https://doi.org/10.1109/tsmcc.2007.905750
https://doi.org/10.1109/iscid.2011.123
https://doi.org/10.1109/icl-gnss.2014.6934184
https://doi.org/10.4304/jnw.9.3.739-746
https://doi.org/10.1007/978-3-642-24279-3_26
https://doi.org/10.1109/indin.2017.8104909
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment

CONTRIBUTED RESEARCH ARTICLES

89

T. Roos, P. Myllyméki, H. Tirri, P. Misikangas, and J. Sievinen. A Probabilistic Approach to
WLAN User Location Estimation. International Journal of Wireless Information Networks, 9(3):
155-164, 2002. URL https://doi.org/10.1023/a:1016003126882. [p70]

E. Sansano. ipft: Indoor Positioning Fingerprinting Toolset, 2017. URL https://cran.r-project.
org/web/packages/ipft/index.html. [p67]

Seybold, J.S. Introduction to RF Propagation. John Wiley & Sons, 2005. [p71, 80]

D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics
of Computation, 24(111):647-656, 1970. URL https://doi.org/10.1090/s0025-5718-1970~
0274029-%. [p80]

S. Shrestha, J. Talvitie, and E. S. Lohan. On the Fingerprints Dynamics in WLAN Indoor Localization.
In Proceedings of the 13th International Conference on ITS Telecommunications (ITST’13), pages
122-126, 2013. URL https://doi.org/10.1109/itst.2013.6685532. [p73]

J. Torres-Sospedra, R. Montoliu, A. Martinez-Uso, J. P. Avariento, T. J. Arnau, M. Benedito-
Bordonau, and J. Huerta. UJIIndoorLoc: A New Multi-Building and Multi-Floor Database for
WLAN Fingerprint-Based Indoor Localization Problems. In Proceedings of the 5th International
Conference on Indoor Positioning and Indoor Navigation (IPIN’14), pages 261-270, 2015a. URL
https://doi.org/10.1109/ipin.2014.7275492. [p71]

J. Torres-Sospedra, R. Montoliu, S. Trilles, Oscar Belmonte, and J. Huerta. Comprehensive Analysis
of Distance and Similarity Measures for Wi-Fi Fingerprinting Indoor Positioning Systems. Ezpert
Systems with Applications, 42(23):9263-9278, 2015b. URL https://doi.org/10.1016/j.eswa.
2015.08.013. [p70, 72, 73]

Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert. Bluetooth positioning using rssi and triangula-
tion methods. In Proceedings of the 10th IEEE Consumer Communications and Networking Con-
ference, (CCNC’13), pages 837-842, 2013. URL https://doi.org/10.1109/ccnc.2013.6488558.

[p6]

W. Werner, J. Rabaey, and E. H. L. Aarts, editors. Ambient Intelligence. Springer-Verlag, 2005.
ISBN 978-3-540-27139-0. URL https://doi.org/10.1007/b138670. [p67]

H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2):180-185,
2011. URL https://doi.org/10.1002/wics.147. [p85]

J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni. A Survey on Wireless Indoor Localization from the Device
Perspective. ACM Computing Surveys, 49(2):1-31, 2016. URL https://doi.org/10.1145/
2933232. [p68]

C. Yang, T. Nguyen, and E. Blasch. Mobile Positioning via Fusion of Mixed Signals of Opportunity.
IEEE Aerospace and FElectronic Systems Magazine, 29(4):34-46, 2014. URL https://doi.org/10.
1109/maes.2013.130105. [p(i?)]

J. yub Lee, C. hwan Yoon, H. Park, and J. So. Analysis of location estimation algorithms for
wifi fingerprint-based indoor localization. In Proceedings of the 2nd International Conference on
Software Technology (SoftTech’13), pages 89-92, 2013. [p(7]

Emilio Sansano

Institute of New Imaging Technologies

Universitat Jaume I

Av. de Vicent Sos Baynat, s/n 12017 Castells de la Plana
Spain

esansano@uji.es

Raul Montoliu

Institute of New Imaging Technologies

Universitat Jaume I

Av. de Vicent Sos Baynat, s/n 12017 Castelld de la Plana
Spain

montoliu@uji.es

Oscar Belmonte
Institute of New Imaging Technologies

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1023/a:1016003126882
https://cran.r-project.org/web/packages/ipft/index.html
https://cran.r-project.org/web/packages/ipft/index.html
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1109/itst.2013.6685532
https://doi.org/10.1109/ipin.2014.7275492
https://doi.org/10.1016/j.eswa.2015.08.013
https://doi.org/10.1016/j.eswa.2015.08.013
https://doi.org/10.1109/ccnc.2013.6488558
https://doi.org/10.1007/b138670
https://doi.org/10.1002/wics.147
https://doi.org/10.1145/2933232
https://doi.org/10.1145/2933232
https://doi.org/10.1109/maes.2013.130105
https://doi.org/10.1109/maes.2013.130105
mailto:esansano@uji.es
mailto:montoliu@uji.es

CONTRIBUTED RESEARCH ARTICLES

90

Universitat Jaume I

Av. de Vicent Sos Baynat, s/n 12017 Castelld de la Plana
Spain

oscar.belmonte@uji.es

Joaquin Torres-Sospedra

Institute of New Imaging Technologies

Universitat Jaume I

Av. de Vicent Sos Baynat, s/n 12017 Castelld de la Plana
Spain

jtorres@uji.es

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

mailto:oscar.belmonte@uji.es
mailto:jtorres@uji.es

CONTRIBUTED RESEARCH ARTICLES

91

What’s for dynr: A Package for Linear

and Nonlinear Dynamic Modeling in R
by Lu Ou™, Michael D. Hunter™, and Sy-Miin Chow

Abstract Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in
nature, and may involve multiple units undergoing regime switches by showing discontinuities
interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear
differential /difference equation models with regime switches, there has been a scarcity of software
packages that are fast and freely accessible. We have created an R package called dynr that can
handle a broad class of linear and nonlinear discrete- and continuous-time models, with regime-
switching properties and linear Gaussian measurement functions, in C, while maintaining simple and
easy-to-learn model specification functions in R. We present the mathematical and computational
bases used by the dynr R package, and present two illustrative examples to demonstrate the unique
features of dynr.

Introduction

The past several decades have seen a significant rise in the prevalence of intensive longitudinal data
(ILD), particularly in the social and behavioral sciences (Bolger and Laurenceau, 2013; Byrom and
Tiplady, 2010; Stone et al., 2008). Differential equation and difference equation models in the form
of state-space models have been one of the most dominant tools for representing the dynamics of
ILD in disciplines such as the physical sciences, econometrics, engineering, and ecology. In parallel,
some computational advances have been proposed in estimating regime-switching models — namely,
models positing how otherwise continuous dynamic processes may undergo discontinuous changes
through categorical but unobserved phases known as “regimes” (Kim and Nelson, 1999; Hamilton,
1989; Muthén and Asparouhov, 2011; Chow et al., 2013, 2015; Dolan, 2009). Throughout, we use the
terms regimes and classes interchangeably to denote unobserved unit- and time-specific indicator
variables that serve to group portions of repeated measures into phases with homogeneous dynamics
or measurement properties.

Examples of regime-switching phenomena from psychology includes Piaget’s (1969) theory of
human cognitive development and related extensions (Dolan et al., 2004; van der Maas and Molenaar,
1992; Hosenfeld, 1997); Kohlberg’s (Kohlberg and Kramer, 1969) conceptualization of stagewise
development in moral reasoning; Van Dijk and Van Geert’s (2007) findings on discrete shifts in early
language development; as well as Fukuda and Ishihara’s (1997) work on the discontinuous changes
in infant sleep and wakefulness rhythm during the first six months of life. Related to, but distinct
from, hidden Markov models (Elliott et al., 1995; Visser, 2007), regime-switching differential and
difference equation models allow researchers to specify targeted differential or difference functions
to describe the continuous changes that occur within regimes. Ample work exists on fitting these
models (Hamilton, 1989; Dolan, 2009; Yang and Chow, 2010; Chow et al., 2013; Chow and Zhang,
2013; Chow et al., 2015; Muthén and Asparouhov, 2011; Tong and Lim, 1980; Tiao and Tsay, 1994),
but readily accessible software suited for handling such models with ILD are lacking.

Several programs and packages exist for fitting differential equation, difference equation, and
hidden Markov models. However, each program has certain limitations that dynr (Ou et al., 2018)
aims to overcome. Speaking broadly, the largest differences between dynr and other packages are
threefold: (1) dynr readily allows for multi-unit models, (2) dynr allows for nonlinear discrete-time
and continuous-time dynamics, and (3) dynr allows for regime switching throughout every part
of the model. Many R packages exist for univariate and multivariate time series. CRAN lists
hundreds of packages in its task view for TimeSeries (Hyndman, 2016), a complete review of which
is well-beyond the scope of this work. However, generally these packages lack facilities for fitting
time series from multiple units. Likewise there are very few software utilities designed for nonlinear
dynamics or regime switching (see Table 1 for an overview). Petris and Petrone (2011) reviewed
three packages for linear state-space models: dlm (Petris, 2010, 2014), KFAS (Helske, 2017a,b), and
dse (Gilbert, 2006 or later, 2015). These are among the state of the art for state-space modeling in
R. Although KFAS can accommodate in its measurement model all densities within the exponential
family, the corresponding dynamic model is required to be linear. In addition to these R packages,
the OpenMx 2.0 release (Neale et al., 2016; Boker et al., 2017) has maximum likelihood time-varying
linear discrete- and continuous-time state-space modeling (Hunter, 2017). Likewise, the MKFM6
program (Dolan, 2005) implements methods of Harvey (1989) for time-invariant linear state-space

*These two authors contributed equally to the work.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dynr
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=KFAS
https://CRAN.R-project.org/package=dse
https://CRAN.R-project.org/package=OpenMx

CONTRIBUTED RESEARCH ARTICLES

92

models. SsfPack (Koopman et al.,; 1999) implements the methods of Durbin and Koopman (2001)
for linear state-space modeling and Markov chain Monte Carlo methods for nonlinear modeling, but
it is primarily restricted to single-unit time series without regime switching. The ctsem package
(Driver et al., 2017b,a) has utilities for linear state-space modeling of multiple units in continuous
time, but lacks functionality for nonlinear models or regime switching. MATLAB (The MathWorks,
Inc., 2016) has numerous extensions for time series and state-space modeling (Grewal and Andrews,
2008), but lacks the ability to include regime switching and multiple units. Some R packages that
handle regime switching are only designed for hidden Markov models, for example, depmixS4 (Visser
and Speekenbrink, 2016, 2010) and RHmm (Taramasco and Bauer, 2012), while the others are only
for specific Markov-switching discrete-time time-series models, including MSwM (Sanchez-Espigares
and Lopez-Moreno, 2014) for univariate autoregressive models, MSBVAR (Brandt, 2016) for vector
autoregressive models, and MSGARCH (Ardia et al., 2017) for generalized autoregressive conditional
heteroskedasticity models. The pomp package (KKing et al., 2016, 2018) lists among its features hidden
Markov models and state-space models, both of which can be discrete- or continuous-time, non-
Gaussian, and nonlinear. However, pomp does not currently support regime-switching functionality
beyond the regime switching found in hidden Markov modeling. Helske (2017a) included a review of
numerous other packages for non-Gaussian time series models which generally do not involve latent
variables.

Overall, developments in fitting differential/difference equation models that evidence discontinu-
ities in dynamics are still nascent. Despite some of the above-mentioned advances in computational
algorithms, there is currently no readily available software package that allows researchers to fit
differential /difference equations with regime-switching properties. As stated previously, currently
available computational programs for dynamic modeling are limited in one of several ways: (1)
they are restricted to handling only linear models within regimes such as the package OpenMx, (2)
they can only handle very specific forms of nonlinear relations among latent variables, (3) they are
computationally slow, (4) they do not allow for stochastic qualitative shifts in the dynamics over
time, or (5) they require that the user write complex compiled code to enhance computational speed
at the cost of high user burden. Efficient and user-friendly computer software needs to be developed
to overcome these restrictions so the estimation of dynamic models can become more applicable by
researchers.

We present an R package, dynr, that allows users to fit both linear and nonlinear differential
and difference equation models with regime-switching properties. All computations are performed
quickly and efficiently in C, but are tied to a user interface in the familiar R language. Specifically,
for a very broad class of linear and nonlinear differential/difference equation models with linear
Gaussian measurement functions, dynr provides R helper functions that write appropriate C code
based on user input in R into a local (potentially temporary) C file, which is then compiled on
user’s end with a call to an R function in dynr. The C function pointers are passed to the back-end
for computation of a negative log-likelihood function, which is numerically optimized also in C using
the optimization routine SLSQP (Kraft, 1988, 1994) for parameter estimation. During the process,
the user never has to write or even see the C code that underlies dynr and yet, the computations
are performed entirely in C, with no interchanges between R and C to reduce memory copying and
optimize speed. This removes some of the barriers to dynamic modeling, opening it as a possibility to
a broader class of users, while retaining the flexibility of specifying targeted model-specific functions
in C for users wishing to pursue models that are not yet supported in the R interface.

In the remaining sections, we will first present the mathematical and computational bases of the
dynr R package, and then demonstrate the interface of dynr for modeling multivariate observations
with Gaussian measurement errors using two ILD modeling examples from the social and behavioral
sciences. Key features of the dynr package we seek to highlight include: (1) dynr fits discrete-
and continuous-time dynamic models to multivariate longitudinal/time-series data; (2) dynr deals
with dynamic models with regime-switching properties; (3) for improved speed, dynr computes and
optimizes negative log-likelihood function values in C; (4) dynr handles linear and nonlinear dynamic
models with an easy-to-use interface that includes a matrix form (for linear dynamic models only)
and formula form (for linear as well as nonlinear models); (5) dynr removes the burden on the user
to perform analytic differentiation in fitting nonlinear differential/difference equation models by
providing the user with R’s symbolic differentiation; and (6) dynr provides ready-to-present results
through IATEX equations and plots.

General modeling framework

At a basic level, our general modeling framework comprises a dynamic model and a measurement
model. The former describes the ways in which the latent variables change over time, whereas the
latter portrays the relationships between the observed variables and latent variables at a specific

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ctsem
https://CRAN.R-project.org/package=depmixS4
https://CRAN.R-project.org/package=RHmm
https://CRAN.R-project.org/package=MSwM
https://CRAN.R-project.org/package=MSBVAR
https://CRAN.R-project.org/package=MSGARCH
https://CRAN.R-project.org/package=pomp

CONTRIBUTED RESEARCH ARTICLES

93

time.

The dynamic model for a particular regime in continuous-time assumes the following form:

dni(t) = fs,) (1:(t), ¢, xi(t)) dt + dw;(t), (1)

where ¢ indexes the smallest independent unit of analysis, ¢ indexes time, #;(¢) is the r x 1 vector
of latent variables at time ¢, x;(t) is the vector of covariates at time ¢, and fg,(;)(.) is the vector
of (possibly nonlinear) dynamic functions which depend on the latent regime indicator, S;(t). The
left-hand side of Equation 1, dy;(¢), gives the differential of the vector of continuous latent variables,
1:(t), and fg, ;) () is called the drift function. Added to these deterministic changes induced by the
drift function is w;(t), an r-dimensional Wiener process. The differentials of the Wiener processes
have zero means and covariance matrix, Q Si(t)> called the diffusion matrix. When the dynamic
model consists only of linear functions, Equation 1 reduces to:

dni(t) = (“Si(t) + Fs,(y1i(t) + Bg, (1) Xi (t)> dt + dw;(t). (2)

where the general function fg, (;)() is replaced with a linear function consisting of (1) an intercept

term ag, (), (2) linear dynamics in a matrix Fg, (), and (3) linear covariate regression effects Bg, ;).

For discrete-time processes, we adopt a dynamic model in state-space form (Durbin and Koopman,
2001) as

1i(tij+1) = fs,t,,) (Mitig) ti g, xiti j+1)) +wi(tij+1), (3)
now postulated to unfold at discrete time points indexed by sequential positive integers, t; j,
Jj =1,2,---. In this case, w;(t; ;) denotes a vector of Gaussian distributed process noise with

covariance matrix, Q Si(tig) We have intentionally kept notation similar between discrete- and
continuous-time models to facilitate their linkage. dynr allows for an easy transition between these
two frameworks with a binary flag. In a similar vein, we refer to fg, ;)(.) in both Equations | and 3
broadly as the dynamic functions. The same structure as Equation 2 is possible in discrete time as
the linear analog of Equation 3,
Ni(tij+1) = ag, @, ;) + Fs, 0,)Mi(tij) + Bs,(r,) xi(ti j+1) + wilti j+1)- (4)
In both the discrete- and continuous-time cases, the initial conditions for the dynamic functions
are defined explicitly to be the latent variables at a unit-specific first observed time point, ¢; 1,
denoted as #;(t;,1), and are specified to be normally distributed with means py, and covariance
matrix, Zn,:
7itin) ~ N (pns, Ema) - (5)

Likewise for both discrete- and continuous-time models, we assume that observations only occur
at selected, discrete time points. Thus, we have a discrete-time measurement model in which
1;(t;,;) at discrete time point ¢; ; is indicated by a p x 1 vector of manifest observations, y;(t; ;).
Continuous-time processes allow unequal time intervals for these observations. Missing data may
be present under either specification. The vector of manifest observations is linked to the latent
variables as

Yi(tiy) = Ts,t, ;) + As; e) Mi(lig) + Agye, yXiltig) + €i(tiyy), €ltiz) ~N <O,Rsi(ti,,-)) . (6)

where Tg, (4, ;) is a p x 1 vector of intercepts, Ag,(y,) is a matrix of regression weights for the
covariates, A Si(ts;) is a p x r factor loadings matrix that links the observed variables to the latent
variables, and €; (ti,j) is a p x 1 vector of measurement errors assumed to be serially uncorrelated
over time and normally distributed with zero means and covariance matrix, Ry, (¢, ;). Of course, all
parts of the measurement model may be regime-dependent.

The subscript S;(t) in Equations 1-6 indicates that these functions and matrices may depend
on S;(t), the operating regime. To make inferences on S;(t; ;), we initialize the categorical latent
variable S;(t; ;) on the first occasion and then provide a model for how S;(¢; ;) changes over time.
The initial regime probabilities for S;(t; 1) are represented using a multinomial regression model as

exp(am +bhx;(t;1))

A
Pr (Si(ti,1) = m|x;(ti,1)) = Tm,i1 = ,
YLy explay, + bl xi(ti1))

(7)

where M denotes the total number of regimes, am, is the logit intercept for the mth regime and
by, is a ny x 1 vector of regression slopes linked to a vector of covariates that explain between-unit
differences in initial log-odds (LO). For identification, ay, and all entries in by, are set to zero for
some regime, m.

We use a first-order Markov process to define how the classes change over time in a transition

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

94

probability matrix, which contains all possible transitions from one regime to another. In the matrix,
the rows index the previous regime at time ¢; ;_1 and the columns index the current regime at time
t;,j- The rows of this matrix sum to 1 because the probability of transitioning from a particular
state to any other state must be 1. This transition matrix may also depend on covariates. Thus, a
multinomial logistic regression equation is assumed to govern the probabilities of transitions between
regimes as:

exp(cim + di,, Xi(ti ;)
M
Yh1 expleg + dhxi(t; 5))

A
Pr (Si(ti;) = m|Si(tij—1) = 1, %i(ti ;) = Tim,it = , (8)

where 7, ;1 denotes unit i’s probability of transitioning from class [at time ¢; ;_1 to class m at
time ¢; ;, ¢y, denotes the logit intercept for the transition probability, and d;,, is a ng x 1 vector of
logit slopes summarizing the effects of the covariates in x;(t; ;) on that transition probability. One
regime, again, has to be specified as the reference regime by fixing all LO parameters, including c¢;,,,
and all elements in dﬁn for some regime m, to zero for identification purposes.

To summarize, the model depicted in Equations 1 — 8 may take on the form of various linear or
nonlinear dynamic models in continuous or discrete time. Moreover, these dynamic models may
have regime-switching properties. Systematic between-unit differences stem primarily from changes
in the unit- and time-specific regime, S;(t; ;), and the corresponding changes in the dynamic and
measurement models over units and occasions.

Estimation procedures

In this section, we outline the procedures implemented in dynr for estimating the model shown in
Equations 1 — 8. An overview of the estimation procedures involved, the different special cases
handled by dynr, and the software packages that can handle these special cases are summarized in
Table 1.

Discrete-time models

Broadly speaking, the estimation procedures implemented in dynr are based on the Kalman filter
(KF; Kalman, 1960), its various continuous-time and nonlinear extensions, and the Kim filter
(Anderson and Moore, 1979; Bar-Shalom et al., 2001; Kim and Nelson, 1999; Yang and Chow, 2010;
Chow and Zhang, 2013; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014; Chow et al., 2018).
The Kim filter, designed to extend the Kalman filter to handle regime-switching state-space models,
was proposed by Kim and Nelson (1999) and extended by Chow and Zhang (2013) to allow for
nonlinear dynamic functions. In dynr, models are allowed to (1) be in discrete or continuous time,
(2) be single regime or regime switching, (3) have linear or nonlinear dynamics, (4) involve stochastic
or deterministic dynamics, and (5) have one or more units. All combinations of these variations are
possible in dynr, creating 32 different kinds of models.

In the case of linear discrete-time dynamics without regime-switching, the model reduces to
a linear state-space model, and we apply the Kalman filter to estimate the latent variable values
and obtain other by-products for parameter optimization. At each time point, the KF consists
of two steps. In the first step, the dynamics are used to make a prediction for the latent state
at the next time point conditional on the observed measurements up to time ¢; ;_1, creating a
predicted mean #;(t; ;|t; j—1) = E(1;(t;,5)|Y4(t;,;—1)) and covariance matrix for the latent state
P;(t;jlti j—1) = Cov[n;(ts ;)|Y:(ts j—1)], where Y;(t; j_1) includes manifest observations from time
t;1 up to time t; ;1. In the second step, the prediction is updated based on the measurement
model (Equation 6) and the new measurements, yielding #;(t; j|t; ;) = E(;(t; ;)Y ;(t;;)) and
associated covariance matrix, P;(t; ;|t; ;) = Cov[#;|Y;(t; j)]. Assuming that the measurement and
process noise components are normally distributed and that the measurement equation is linear,
as in Equation 6, the prediction errors, Y;(t; ;) — E(Y;(t; ;)Y i(t:;)), are multivariate normally
distributed. Thus, these by-products of the KF can be used to construct a log-likelihood function
known as the prediction error decomposition function (De Jong, 1988; Harvey, 1989; Hamilton, 1994;
Chow et al., 2010). This log-likelihood function is optimized to yield maximum-likelihood (ML)
estimates of all the time-invariant parameters, as well as to construct information criterion (IC)
measures (Chow and Zhang, 2013; Harvey, 1989) such as the Akaike Information Criterion (AIC;
Akaike, 1973) and Bayesian Information Criterion (BIC; Schwarz, 1978). Standard errors of the
parameter estimates are obtained by taking the square root of the diagonal elements of the inverse
of the negative numerical Hessian matrix of the prediction error decomposition function at the point
of convergence.

At convergence, other products from the linear KF include updated latent states, 7;(t; ;|t; j),

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

95

and the updated latent covariance matrices, P;(t; j|t; ;). In the social and behavioral sciences, the
entire time series of observations has often been collected prior to model fitting. In such cases, we use
the fixed interval smoother (Anderson and Moore, 1979; Ansley and Kohn, 1985) to refine the latent
variable estimates, yielding the smoothed latent variable estimates, fj;(t; ;j|T3) = E(11;(t; ;)Y (T%)),
and associated covariance matrices, P;(t; ;|T3).

When the dynamic model takes on the form of a nonlinear state-space model with differentiable
dynamic functions, the linear KF is replaced with the extended Kalman filter (EKF; Anderson and
Moore, 1979; Bar-Shalom et al., 2001) so that the nonlinear dynamic functions are “linearized” or
approximated by the first-order Taylor series. Then, a log-likelihood function can be constructed in
similar form to the linear state-space prediction error decomposition. However, the corresponding
parameter estimates are only “approximate” ML estimates due to the truncation errors in the EKF.
The feasibility of this approach has been demonstrated by Chow et al. (2007).

When a linear state-space model is used as the dynamic model but it is characterized by regime-
switching properties, dynr uses an extension of the KF, known as the Kim filter, and the related
Kim smoother (Kim and Nelson, 1999; Yang and Chow, 2010). The Kim filter combines the KF, the
Hamilton filter (Hamilton, 1989) that yields filtered state probabilities, and a collapsing procedure

to avoid the need to store M2 new values of ﬁi(tiyﬂti)j)l’m A Eln;(t;;)|S:(ti j—1) = 1, Si(t; ;) =

m, Yi(ti,j)]7 as well as Pi(ti7]‘|ti7j)l’m A COV[ﬂi(ti,j)|Si(ti7j_1) =1, Si(ti,j) = m,Yi(tm)] with each
additional time point. The collapsing procedure averages the estimates over the previous regime [so
only the marginal estimates, 7;(t; ;|t; ;)™ = E[5;(t: j)|Si(ts,;) = m, Y;(t; ;)]), and the associated
covariance matrix, P;(t; ;|t; j)™, need to be stored at each time step. To handle cases in which
nonlinearities are present in Equation 3, a method proposed by Chow and Zhang (2013), called the
extended Kim filter, is used for estimation instead. The extended Kim filter replaces the KF portion
of the Kim filter with the EKF.

Continuous-time models

Finally, when the dynamics are in continuous time—whether composed of linear or nonlinear dynamic
functions—the resultant estimation procedures are the continuous-discrete extended Kalman filter
(CDEKF; Bar-Shalom et al., 2001; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014). The
CDEKF handles a single-regime special case of the general model shown in Equations 1-6.

For continuous processes in the form of Equation 1, let #;(t) = E(51;(t)|'Y;(t; j—1)) and P;(t) =
Cov[n;(t)|Y;(t;,j—1)] denote the mean and covariance matrix of the latent variables, respectively,
at time ¢ in the interval [t; j_1,%; ;]. In the CDEKF framework, the prediction step of the KF is
replaced by solving a set of ordinary differential equations (ODEs) at time t; ;, given the initial
conditions at time tij—1: ﬁi(ti,j—l) = ﬁi(ti,j—1|ti,j—1) and Pi(ti,j—l) = Pi(ti,j—1|ti,j—1)- This
set of ODESs is obtained by only retaining the first term, fg, ;) (fi(¢),t, xi(t)), in the Taylor series
expansion of fg, ;) (1i(t),t, x;(t)) around the expectation };(t), and is shown below:

WO _ fo oy), 1,20, Q
dPy(t) f sy (i) t,xi(0)) Of s,y (i), (1)
dt() _ s et)+ P(t) (Si(t) S) + Qs (1) (10)
Of s, (v) (i (£),t,x: (1)) .

where is the Jacobian matrix of fg, ;) (:(t),t, x;(t)) with respect to fj;(t) at time

it
t. Kulikov ang ii)ulikova (2014, Kulikova and Kulikov 2014) suggested solving for equations 9 and
10 using adaptive ODE solvers. We adopt an approximate numerical solution — the fourth-order
Runge-Kutta (Press et al., 2002) method — to solve Equations 9 and 10. In cases where the
hypothesized continuous-time dynamics are linear, explicit analytic solutions exist and there is no
need to use numerical solvers. However, in our simulation work, estimating known special cases
of linear stochastic differential equation models using numerical solvers yielded both comparable
estimates and computational time to estimating the same models using their known solutions. Thus,
for generality, we utilize numerical solvers in solving both linear and nonlinear differential equations
in dynr.

As in the case involving nonlinear discrete-time dynamic models, parameter estimates obtained
from optimizing the log-likelihood function constructed from by-products of the CDEKF are also
approximate ML estimates; however, the approximations now stem both from the truncation errors
from the first-order Taylor series in the CDEKF, as well as the numerical solution of Equations 9
and 10.

In cases involving regime-switching ordinary or stochastic differential equations, the algorithms

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

96

for estimating regime-switching continuous-time models are essentially estimation procedures that
combine the CDEKF and part of the Kim filter designed to handle estimation of the regime-switching
portion of the model. The resultant procedure, referred to herein as continuous-discrete extended
Kim filter, is summarized in Chow et al. (2018).

Steps for preparing and “cooking” a model

The theme around the naming convention exploits the pronunciation of the package name: dynr is
pronounced the same as “dinner”. Therefore, the names of functions and methods are specifically
designed to relate to things done surrounding dinner, such as gathering ingredients such as the data,
preparing recipes, cooking, which involves combining ingredients according to a “modeling” recipe
and applies heat, and serving the finished product.

The general procedure for using the dynr package can be summarized in five steps. First, data
are gathered and identified with the dynr.data() function. Second, recipes are prepared. To each
part of a model there is a corresponding prep.*() recipe function. Each of these functions creates
an object of class "dynrRecipe". Each prep.*() function creates an object of class "dynr*" which
is in turn a subclass of "dynrRecipe". These recipe functions include:

1. The prep.measurement () function defines the measurement part of the model, that is, how
latent variables and exogenous covariates map onto the observed variables.

2. The prep.matrixDynamics() and prep.formulaDynamics() functions define the dynamics of
the model with either a strictly linear, matrix interface or with a possibly nonlinear formula
interface, respectively.

3. The prep.initial() function defines the initial conditions of the model. The initial conditions
are used by the recursive algorithms as the starting point for latent variable estimates. As
such, the prep.initial() function describes the initial mean vector and covariance matrix of
the latent variables, assumed to be multivariate normally distributed.

4. The prep.noise() function defines the covariance structure for both the measurement (or
observation) noise and the dynamic (or latent) noise.

5. The prep.regimes() function provides the regime switching structure of the model. Single-
regime models do not require a "dynrRegimes" object.

Once the data and recipes are prepared, the third step mixes the data and recipes together into a
model object of class "dynrModel" with the dynr.model() function. Fourth, the model is cooked
with dynr.cook() to estimate the free parameters and standard errors. Fifth and finally, results
are served in summary tables using summary (), IATEX equations using printex(), and plots of
trajectories and equations using plot (), dynr.ggplot (), autoplot (), and plotFormula().

We will demonstrate the interface of dynr using two examples: (1) a linear state-space example
with regime-switching based on Yang and Chow (2010) and (2) a regime-switching extension of the
predator-prey model (Lotka, 1925; Volterra, 1926).

Example 1: Regime-switching linear state-space model

Facial electromyography (EMG) has been used in the behavioral sciences as one possible indicator
of human emotions (Schwartz, 1975; Cacioppo and Petty, 1981; Cacioppo et al., 1986; Dimberg
et al., 2000). A time series of EMG data contains bursts of electrical activity that are typically
magnified when an individual is under emotion induction. Yang and Chow (2010) proposed us-
ing a regime-switching linear state-space model in which the individual may transition between
regimes with and without facial EMG activation. As such, heterogeneities in the dynamic pat-
terns and variance of EMG data are also accounted for through the incorporation of these latent
regimes. Model fitting was previously performed at the individual level. Data from the partici-
pant shown in Figure 1(A) are made available as part of the demonstrative examples in dynr. A
complete modeling script for this example is available as a demo in dynr and can be found by
calling file.edit(system.file("demo","RSLinearDiscreteYang.R",package = "dynr")), and a
full explanation is included as a package vignette called ‘LinearDiscreteTimeModels’.

Here we present selected segments of code to showcase how a linear state-space model with
regime-switching can be specified in dynr. The model of interest is the final model selected for this
participant by Yang and Chow (2010):

Yi(ti) = tys,(t, ;) + Bsi(t, ;) Selfreport (s ;) +mi(ti,5), (11)
Ni(tij+1) = b5t)M (i) + Gi(tijv1), (12)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

in which we allowed the intercept, p, Si(ti)i the regression slope, Bg, (ti ;) and the autoregression
coefficient, ¢Si(ti,_7‘)7 to be regime-dependent. By allowing ¢S7:(t71,j) to be regime-specific, we indirectly
allowed the total variance of the latent component, 7;(t; j+1), to be heterogeneous across the
deactivation and activation stages, in spite of requiring the dynamic noise variance, E(;(t)?), to be

constant across regimes.

(A) (B) Results from RS—AR model
1

Measured [EMG

w

~

Self—ﬁeport
o

Smoothed State Values
N

Integrated EMG (pv)
{
0y

i : S Lo . 0 50 . 100
***** - time

variable —eta
regime ' Activated Deactivated

* Time (seconds) w0

Figure 1: (A) A plot of integrated electromyography (iIEMG) and self-report affect ratings for one
participant with a time interval of 0.2 seconds between two adjacent observations. Self—
report = self-report affect ratings; iIEMG = integrated EMG signals. (B) An automatic
plot of the smoothed state estimates for the regime-switching linear state-space model.

The first step in dynr modeling is to structure the data. This is done with the dynr.data()
function.

require("dynr")

data("EMG")
EMGdata <- dynr.data(EMG, id = 'id', time = 'time',
observed = 'iEMG', covariates = 'SelfReport')

The first argument of this function is either a "ts" class object of single-unit time series or a
"data.frame" object structured in a long relational format with different measurement occasions
from the same unit appearing as different rows in the data frame. When a "ts" class object is
passed to dynr.data(), no other inputs are needed. Otherwise, the id argument needs the name
of the variable that distinguishes units, allowing multiple replicated time series to be analyzed
together. The time argument needs the name of the variable that indicates unit-specific measurement
occasions. If a discrete-time model is desired, the time variable should contain sequential positive
integers. If the measurement occasions for a unit are sequential but not consecutive, NAs will be
inserted automatically to create equally spaced data. If a continuous-time model is being specified,
the time variable can contain unit-specific increasing sequences of irregularly spaced real numbers.
In this particular example, a discrete-time model is used. The observed and covariates arguments
are vectors of the names of the observed variables and covariates in the data.

The next step in dynr modeling is to build the recipes for the various parts of a model. The
recipes are created with prep.*() functions.

The dynamic functions in Equations 1 and 3, can be specified using either prep.formulaDynamics ()
or prep.matrixDynamics (). In this example, the dynamics as in Equation 12 are linear and discrete-
time, so we can describe the dynamics in terms of Equation 4 as

ni(tije1) = 0 +égu, ymiltiz)+ 0 xiti) + Giltij41)- (13)
~~ Nt ~~ N~ 7
83 ti) Fs,(¢;) Bsictig w;(ti,j+1)

The prep.matrixDynamics () function allows the user to specify the structures of the intercept vector
&S, (1) through values.int and params.int; the covariate regression matrix BSi(ti,j)’ through
values.exo and params.exo; and the one-step-ahead transition matrix FSi(tz‘,j)7 through values.dyn
and params.dyn. We illustrate this function below. The values.dyn argument gives a list of matrices
for the starting values of st(ti, .- The params.dyn argument names the free parameters. These
are the ¢g, in Equation 12. The isContinuousTime argument switches between continuous-time
modeling and discrete-time modeling. The arguments corresponding to the intercepts (values.int
and params.int) and the covariate effects (values.exo and params.exo) are omitted to leave these

matrices as zeros.

recDyn <- prep.matrixDynamics(values.dyn = list(matrix(0.1, 1, 1), matrix(0.5, 1, 1)),
params.dyn = list(matrix('phi_1', 1, 1), matrix('phi_2', 1, 1)),
isContinuousTime = FALSE)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

98

The noise recipe is created with prep.noise (). The noise recipe is stored in the recNoise object,
an abbreviation for “recipe noise”. The latent noise covariance matrix is a 1 x 1 matrix with a free
parameter called dynNoise, short for “dynamic noise”. The observed noise covariance matrix is also
a 1 x 1 matrix, but has the measurement noise variance fixed to zero using the special keyword
fixed.

recNoise <- prep.noise(values.latent = matrix(1, 1, 1),
params.latent = matrix('dynNoise', 1, 1),
values.observed = matrix(0, 1, 1), params.observed = matrix('fixed', 1, 1))

The prep.regimes() function specifies the structure of the regime time evolution shown in
Equation 8. In this example, we do not have any covariates in the regime-switching (RS) functions.
The problem then reduces to the specification of a 2 x 2 transition log-odds (LO) matrix. We
provide starting values that imply persisting in the same regime is more likely than transitioning
to another regime, and set the second regime LO to zero for identification, making it the reference
regime. The first column of the transition LO matrix, is populated with the starting values of: (1)
c11 = 0.7, corresponding to exp(0.7) = 2.01 times greater LO of staying within the Deactivated
regime as transitioning to the Activated regime; and (2) c21 = —1, corresponding to exp(—1) =
0.37 times lower LO of transitioning to the Deactivated regime.

recReg <- prep.regimes(values = matrix(c(0.7, -1, 0, 0), 2, 2),
params = matrix(c('cll', 'c21', 'fixed', 'fixed'), 2, 2))

In essence, the above code creates the following transition probability matrix:

Deactivated; Activatedy

i,+1 ij+1 Dy, . Ag. .
D rivated exp(cir) exp(0) ii+1 041
eactivatedy, ; czp(ein) +exp(0) czp(eir) +exp(0) _ D¢, (0.668 0.332 >
; ewp(ca1) exp(0) T A 0.269 0.731
ACtzvatedti,j ea;p(czl)-‘relzp(O) exp(ca1)+exp(0) b
011=.7 012=71
(14)

In many situations it is useful to specify the structure of the transition LO matrix in deviation
form — that is, to express the LO intercepts in all but the reference regime as deviations from
the LO intercept in the reference regime. The package vignette illustrates this by invoking the
deviation argument of prep.regimes().

After the recipes for all parts of the model are defined, the dynr.model() function creates
the model and stores it in the "dynrModel" object. Each recipe object created by prep.*() and
the data prepared by dynr.data() are given to this function. The dynr.model() function always
requires dynamics, measurement, noise, initial, and data. When there are multiple regimes,
the regimes argument should also be provided. When parameters are subject to transformation
functions, a transform argument can be added, which will be discussed in the second example. The
dynr.model () function combines information from the recipes and data to write the text for a C
function. This text is written to a file optionally named by the outfile argument, so that the user
can inspect or modify the generated C code. The default outfile is a temporary file returned by
tempfile().

rsmod <- dynr.model(dynamics = recDyn, measurement = recMeas,
noise = recNoise, initial = recIni, regimes = recReg,
data = EMGdata, outfile = "RSLinearDiscreteYang.c")

yum <- dynr.cook(rsmod)

In the last line above, the model is “cooked” with the dynr.cook() function to estimate the free
parameters and their standard errors. When cooking, the C code in the outfile is compiled
and dynamically linked to the rest of the compiled dynr code. If the C functions have previously
been compiled then the user can prevent re-compilation by setting compileLib = FALSE in the
"dynrModel" object given to dynr.cook(). After compilation the C code is executed to optimize
the free parameters while calling the dynamically linked C functions that were created from the
user-specified recipes. In this way, dynr provides an R interface for dynamical systems modeling
while maintaining much of the speed associated with C.

The final step associated with dynr modeling is serving results (a "dynrCook" object) after
the model has been cooked. To this end, several standard, popular S3 methods are defined for
the "dynrCook" class, including coef (), confint (), deviance(), logLik(), AIC(), BIC(), names(),
nobs (), summary(), and vcov(). These methods perform the same tasks as their counterparts for
regression models in R. Additionally, dynr provides a few other model-serving functions illustrated
here: summary(), plot(), dynr.ggplot() (or autoplot()), plotFormula(), and printex(). The

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

99

summary () method provides a table of free parameter names, estimates, standard errors, t-values,
and Wald-type confidence intervals.

summary (yum)

Coefficients:
Estimate Std. Error t value ci.lower ci.upper Pr(>|t|)

phi_1 0.26608 0.04953 5.372 0.16900 0.36315 5.33e-08 ***
phi_2 0.47395 0.04425 10.711 0.38722 0.56068 < 2e-16 ***
beta_2 0.46449 0.04394 10.571 0.37837 0.55061 < 2e-16 *xx
mu_1 4.55354 0.02782 163.658 4.49901 4.60807 < 2e-16 ***
mu_2 4.74770 0.14250 33.318 4.46842 5.02699 < 2e-16 ***
dynNoise 0.20896 0.01129 18.504 0.18683 0.23110 < 2e-16 *xx
cl1 5.50199 0.70939 7.756 4.11160 6.89237 < 2e-16 ***
c21 -5.16170 1.00424 -5.140 -7.12998 -3.19342 1.79e-07 *x*x
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

-2 log-likelihood value at convergence = 1002.52
AIC = 1018.52
BIC = 1054.87

These parameter estimates, standard errors, and likelihood values closely mirror those reported
in Yang and Chow (2010, p. 755-756). In the Deactivated regime, the autoregressive parameter
(phi_1) and the intercept (mu_1) are lower than those in the Activated regime. So, neighboring EMG
measurements are more closely related in the Activated regime and the overall level is slightly higher.
This matches very well with the idea that the Activated regime consists of bursts of facial muscular
activities and an elevated emotional state. Similarly, the effect of the self-reported emotional level is
positive in the Activated regime and fixed to zero in the Deactivated regime, as the freely estimated
value was close to zero with a nonsignificant ¢-value. So, in the Deactivated regime the self-reported
emotional level and the facial muscular activity decouple. The dynamic noise parameter gives a
sense of the size of the intrinsic unmeasured disturbances that act on the system. These forces
perturb the system with a typical magnitude of a little less than half a point on the EMG scale seen
in Figure 1(A). Lastly, the log-odds parameters (c11 and c21) can be turned into the transition
probability matrix yielding

Deactivatedy, ;,, Activatedy, ;,,
Deactivatedy; ; 0.9959 0.0041 (15)
Activatedy, ; 0.0057 0.9943

which implies that both the Deactivated and the Activated regimes are strongly persistent with high
self-transistion probabilities. Next we consider some of the visualization options for serving a model.

The default plot() method is used to visualize the time series in a collection of plots: (1) a plot
of time series created by dynr.ggplot() (or autoplot()), (2) a histogram of predicted regimes, and
(3) a plot of equations created by plotFormula().

plot(yum, dynrModel = rsmod, style = 1, textsize = 5)

The dynr.ggplot () (or autoplot()) method creates a plot of the smoothed state estimates with
the predicted regimes. It needs the result object and model object as inputs, and allows for plotting
(1) user-selected smoothed state variables by default or (2) user-selected observed-versus-predicted
values by setting style = 2. An illustrative plot is created from the code below and shown in
Figure 1(B).

dynr.ggplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = 1, text = element_text(size = 24), is.bw = TRUE)

This shows that for the first 99 seconds the participant is in the Deactivated regime, with their
latent state n;(t; j+1) varying according to the lower autocorrelation model and having no relation
to the variation in the self-reported emotional data in Figure 1(A). Then the participant switches
to the Activated regime and their latent state becomes more strongly autocorrelated and coupled
to the self-report data. There follows a brief period in the Deactivated regime around time=130
seconds with a subsequent return to the Activated regime for the remainder of the observation. Of
course, note that Figure 1(A) shows the observed EMG data whereas Figure 1(B) shows the latent
state which is related to the observed data by Equation 11.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 100

The plotFormula() method can be used to display model equations on R plots. Equations
can be viewed in several ways with different inputs to the ParameterAs argument: (1) with free
parameter names, for example, returned by names (rsmod), as illustrated in Figure 2(A); (2) with
parameter starting values; or (3) after estimation with fitted parameter values, for example, returned
by coef (yum), as in Figure 2(B). The plotFormula() method does not require the user to install
IATEX facilities and compile IATEX code in a separate step, and hence are convenient to use. To
maximize the readability of the equations, it is only shown here using equations for the dynamic and
measurement models, which can be obtained by respectively setting the printDyn and printMeas
arguments to true.

plotFormula(dynrModel = rsmod, ParameterAs = names(rsmod),
printDyn = TRUE, printMeas = TRUE) + ggtitle("(A)") +

theme (plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))
plotFormula(dynrModel = rsmod, ParameterAs = coef (yum),

printDyn = TRUE, printMeas = TRUE) + ggtitle("(B)") +

theme (plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

We can see that the equations in Figure 2(A) are precisely those from Equations 11 and 12 which
we used to define the model except that we have fixed 81 to zero. If these equations did not match,
it may indicate that we made a mistake in our model specification.

(GY) ®)
Dynamic Model Dynamic Model
Regime 1: Regime 1:
n(t+1) = @ xn(t) +waq(t) n(t+1) = 0.27 xn(t) +wa(t)
Regime 2: Regime 2:
n(t+1) = @2 N +wa () n(t+1) = 0.47 xn(t) +wa(t)
Measurement Model Measurement Model
Regime 1: Regime 1:
iIEMG =0 x SelfReport+p; +n iIEMG = 0 x SelfReport+4.55 +n
Regime 2: Regime 2:
IEMG = 3, x SelfReport+p, +n iIEMG = 0.46 x SelfReport+4.75 +n

Figure 2: Automatic plots of model equations with (A) parameter names and (B) estimated
parameters for the regime-switching linear state-space model.

Finally, for IATEX users, the printex() method helps generate equations for the model in

IATEX form.
printex(rsmod, ParameterAs = names(rsmod), printInit = TRUE, printRS = TRUE,
outFile = "RSLinearDiscreteYang.tex")

The ParameterAs argument functions the same as that in the plotFormula() method. Here we
have specified to use the names of the free parameters. In this case, the initial conditions and
regime-switching functions are included in the equations, as indicated by the printInit and printRS
arguments being set to TRUE. The IATEX code for the equations is written to ‘RSLinearDiscreteYang.tex’,
which the user can then work with and modify as they wish. Of course, this function is designed
more as a convenience feature for users who already use IATEX and requires all the IATEX-related
facilities on the user’s computer.

This example has used real EMG data from a previous study (Yang and Chow, 2010) to illustrate
many parts of the user-interface for dynr. Of particular note are the various “serving” functions
which allow users to both verify their model and examine their results in presentation-ready formats.
In the next example, we will use simulated data to further illustrate features of dynmr, especially the
nonlinear formula interface for dynamics.

Example 2: Nonlinear continuous-time models

In the study of human dynamics many processes are characterized by changes that are dependent
on interactions with other processes producing dynamics with nonlinearities. Nonlinear ordinary

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 101

differential equations have been used to model, among other phenomena, ovulatory regulation (Boker

et al., 2014), circadian rhythms (Brown and Luithardt, 1999), cerebral development (Thatcher,
1998), substance use (Boker and Graham, 1998), cognitive aging (Chow and Nesselroade, 2004),
parent-child interactions (Thomas and Martin, 1976), couple dynamics (Chow et al., 2007; Gottman,
2002), and sudden transitions in attitudes (van der Maas et al., 2003).

Single-regime nonlinear continuous-time model

In addition to the linear/matrix dynamics interface, dynr also provides users with a formula
interface to accommodate nonlinear as well as linear dynamic functions. To illustrate the use of the
formula interface in dynr, we use a benchmark nonlinear ordinary differential equation model, the
predator-prey model (Lotka, 1925; Volterra, 1926; Hofbauer and Sigmund, 1988). One can find the
complete demo scripts in dynr, using file.edit(system.file("demo","NonlinearODE.R",package
= "dynr")) and file.edit(system.file("demo","RSNonlinearODE.R",package = "dynr")), and
related explanation in the package vignette ‘NonlinearContinuousTimeModels’.

The predator-prey model is a classic model for representing the nonlinear dynamics of interacting
populations. The most often cited behavior of the predator-prey system while in a particular
parameter range is ongoing nonlinear oscillations in the predator and prey populations with a phase
lag between them. The utility of the predator-prey model extends far beyond the area of population
dynamics. Direct applications or extensions of this predator-prey system include the epidemic
models of the onset of social activities (EMOSA) used to study the spread of smoking, drinking,
delinquency, and sexual behaviors among adolescents (Rodgers and Rowe, 1993; Rodgers et al.,
1998); the cognitive aging model (Chow and Nesselroade, 2004); and the model of couples’ affect
dynamics (Chow et al., 2007).

Written as a differential equation, the predator-prey model is expressed as:

d(prey(t)) = (a prey(t) — b prey(t) predator(t)) dt, (16)
d(predator(t)) = (—c predator(t) + d prey(t) predator(t)) dt, (17)

where the parameters a, b, ¢, d are all nonnegative. These equations make up the continuous-time
dynamics, Equation 1, for this system. Examining the prey equation (Equation 16), the prey
population would increase exponentially without bound if there were zero predators. Similarly,
examining the predator equation (Equation 17), if the prey population was zero, then the predator
population would decrease exponentially to zero. For demonstration purposes, we have included
with the dynr package a set of simulated data generated with true parameter values: a = 2,b =
l,ce=4,d=1,e=.25f =5.

Using the formula interface in dynr, which supports all native mathematical functions available
in R, the predator-prey model can be specified as:

preyFormula <- prey ~ a * prey - b * prey * predator
predFormula <- predator ~ - c * predator + d * prey * predator
ppFormula <- list(preyFormula, predFormula)
ppDynamics <- prep.formulaDynamics(formula = ppFormula,
startval = c(a = 2.1, ¢ =0.8, b=1.9, d = 1.1), isContinuousTime = TRUE)

The first argument of the prep.formulaDynamics() function is formula. More specifically, this is a
list of formulas. Each element in the list is a single, univariate, formula that defines a differential
(if isContinuousTime = TRUE) or difference (if isContinuousTime = FALSE) equation. There
should be one formula for every latent variable, in the order in which the latent variables are
specified by using the state.names argument in prep.measurement (). The left-hand side of each
formula is either the one-step-ahead projection or the differential of the latent variable: namely,
the left-hand side of Equations 1 and 3, respectively. In both cases, users only need to specify the
names of the latent variables that match the specification in prep.measurement () on the left-hand
side of the formulas. The right-hand side of each formula gives a linear or nonlinear function
that may involve free or fixed parameters, numerical constants, exogenous covariates, and other
arithmetic/mathematical functions that define the dynamics of the latent variables. The startval
argument is a named vector giving the names of the free parameters and their starting values.
Just as in the prep.matrixDynamics() function, the isContinuousTime argument is a binary flag
that switches between continuous- and discrete-time modeling. The rest of dynr code for fitting
the predator-prey model can be specified in similar ways to the code shown in Example 1 and is
omitted here for space constraints. A fully functional demo script can be found in dynr, using
file.edit(system.file("demo","NonlinearODE.R",package = "dynr")), and further comments
are included as a package vignette.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 102

With the formula interface, dynr uses the D() function to symbolically differentiate the for-
mulas provided. Hence, dynr uses the analytic Jacobian of the dynamics in its extended Kalman
filter, greatly increasing its speed and accuracy. The D() function can handle the differentiation of
functions involving parentheses, arithmetic operators, for instance, +, —, #, /, and ", and numer-
ous mathematical functions such as exp(), log(), sin(), cos(), tan(), sinh(), cosh(), sqrt(),
pnorm(), dnorm(), asin(), acos(), atan(), and gamma(). Thus, for a very large class of nonlinear
functions, the user is spared from supplying the analytic Jacobian of the dynamic functions. However,
symbolic differentiation will not work for all formulas. For instance, formulas involving the absolute
value function cannot be symbolically differentiated. For formulas that cannot be differentiated
symbolically, the user must provide the analytic first derivatives through the jacobian argument.
One can use file.edit(system.file("demo","RSNonlinearDiscrete.R",package = "dynr")) to
find an example. An explanation is also included as a package vignette.

Regime-switching extension

Just as with the prep.matrixDynamics (), the formula interface also allows for regime-switching
functionality. Consider an extension of the classical predator-prey model that lets the prey and
predator interaction follow seasonal patterns. In the Summer regime, we have the predator-prey
model as previously described, but in the Winter regime we now have a predator-prey model
characterized by within-species competition and limiting growth/decay. In this competitive predator-
prey model, the two populations do not grow/decline exponentially without bound in absence of the
other, but rather, they grow logistically up to some finite carrying capacity. This logistic growth
adds to the between-species interactions with the other population. This model can be specified as:

cPreyF <- prey ~ a * prey - e * prey ~ 2 - b * prey * predator
cPredF <- predator ~ f * predator - c * predator = 2 + d * prey * predator
cpFormula <- list(cPreyF, cPredF)

where the predator and prey equations are combined and supplied as a list.

To specify the regime-switching predator-prey model, we combine the classical predator-prey
model and the predator-prey model with within-species competition into a list of lists. Then we
provide this list to the usual prep.formulaDynamics() function as the formula argument.

rsFormula <- list(ppFormula, cpFormula)

dynm <- prep.formulaDynamics(formula = rsFormula,
startval = c(a =2.1, c =3, b=1.2,d=1.2, e =1, f =2),
isContinuousTime = TRUE)

Many dynamic models only lead to permissible values in particular parameter ranges. As such,
we often need to add box constraints to model parameters. This is accomplished by setting bounds
on the parameters as shown in the next section. An alternative in dynr is to apply unconstrained
optimization to a transformed set of parameters. This latter strategy uses prep.tfun(). For
example, the a — f parameters should take on positive values. Thus, we may choose to optimize
their log-transformed values and exponentiate the unconstrained parameter values during likelihood
evaluations to ensure that their values are always positive. To achieve this, we supply a list of
transformation formulas to the formula.trans argument in the prep.tfun() function as follows:

tformList <- list(a ~ exp(a), b ~ exp(b), ¢ ~ exp(c),
d ~ exp(d), e ~ exp(e), £ ~ exp(£))
tformInvList <- list(a ~ log(a), b ~ log(b), c ~ log(c),
d ~ log(d), e ~ log(e), £ ~ log(£))
trans <- prep.tfun(formula.trans = tformList, formula.inv = tformInvList)

In cases involving transformation functions, the delta method is used to yield standard error estimates
for the parameters on the constrained scales. If the starting values of certain parameters are indicated
on a constrained scale, the formula.inv argument should then give a list of inverse transformation
formulas.

In our hypothetical example, we have discussed how the weather condition may govern the
regime switching processes. Specifically, we assume a covariate cond (with a value of 0 indicating
the warmer weather and 1 indicating the colder weather) has an effect on the regime-switching
transition probabilities. Then, we can specify the logistic regression model by

regimes <- prep.regimes(

values = matrix(c(0, 0, -1, 1.5, 0, 0, -1, 1.5), nrow = 2, ncol = 4, byrow = TRUE),
params = matrix(c("fixed", "fixed", "int_1", "slp_1",

"fixed", "fixed", "int_2", "slp_2"), nrow = 2, ncol = 4, byrow = TRUE),

covariates = "cond")

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 103

In essence, the above code creates a matrix in the following form:

c11 =0d11 =0cio =int; = —1djo = slp; = 1.5

777 , (18)
c21 =0do1 =0co2 =inty = —1doo = slps =1.5
which in turn creates the following transition probability matrix:
Swnmertw+1 Wimfertw+1
Summery, . exp(0+0><gond) exp(inty +slp} x cond)
iJ exp(0+0x cond)+exp(int1 +slpi xcond) exp(0+0xcond)+exp(inti+slpy X cond) (19)
Winter exp(0+0x cond) exp(inta+slps X cond) :
tij exp(0+0x cond)+exp(ints+slps x cond) exp(0)+exp(inta+slps X cond)

Here we consider the Summer regime as the reference regime, so the first two columns of the transition
LO matrix (Equation 18) are fixed at zero. The third and fourth columns of the transition LO matrix
respectively correspond to the regression intercepts and slopes associated with the covariate, whose
starting values are respectively set at —1 and 1.5. With this set of starting values, the transition
probability from any regime to the Summer regime is 0.73 when cond = 0, and 0.38 when cond = 1.
The negative intercept implies that in warmer days (cond = 0), there is a greater chance of the
process transitioning into the Summer regime, and the regression slope greater than the absolute
value of the intercept suggests that in colder days (cond = 1), the transition into the Winter regime
is more likely.

We fitted the specified model to the simulated data. Figure 3 is created from the dynr.ggplot ()
(or autoplot()) method with style = 2, and shows that the predicted trajectories match with the
observed values and alternate between different regimes.

0 10 20 30
time

regime Summer Winter variable = x.observed -~ x.predicted - y.observed -~ y.predicted

Figure 3: Built-in plotting feature for the predicted trajectories with observed values for the
regime-switching nonlinear ODE model.

Other miscellaneous control options

In parameter estimation, dynr utilizes a sequential quadratic programming algorithm (Kraft, 1988,
1994) available from an open-source library for nonlinear optimization — NLOPT (Johnson, 2008).
By default, we do not set boundaries on the free parameters. However, one can set the upper and
lower bounds by respectively modifying the ub and 1b slots of the model object. An example is
given below to constrain the int_1 and int_2 parameters to be between —10 and 0, while limiting
slp_1 and slp_2 to be between 0 to 10:

model2.2$ub[c("int_1", "int_2", "slp_1", "slp_2") 1 <- c(0, 0, 10, 10)
model2.2$1b[c("int_1", "int_2", "slp_1", "slp_2")] <- c(-10, -10, 0, 0)

Similarly, the stopping criteria of the optimization can be modified through the options slot of the
"dynrModel" object, which is a list consisting of the relative tolerance on optimization parameters

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 104

xtol_rel; the stopping threshold of the objective value stopval; the absolute and relative tolerance
on function value, ftol_abs and ftol_rel; the maximum number of function evaluations maxeval;
and the maximum optimization time maxtime.

If there is no need to re-compile the C functions in a call to dynr.cook(), the user can change the
compileLib slot of the "dynrModel" object from default true to false. The output of the estimation
function, dynr.cook(), is an object of class "dynrCook". It not only includes estimation results
displayed with summary (), but also contains information on posterior regime probabilities in the
pr_t_given_T slot, smoothed state estimates #;(t; ;|T;) = E(5:(t; ;)| Y:(T3)) of the latent variables
in the eta_smooth_final slot, and smoothed error covariance matrices P;(t; ;|T;) of the latent
variables in the error_cov_smooth_final slot, at all available time points. They can be retrieved
by using the $ operator.

Discussion and conclusions

This paper has introduced the dynr package that attempts to carefully balance intuitive usability with
flexibility in the specification to satisfy the need of the broad social and behavioral science community.
dynr offers linear and nonlinear time series methods for latent variables in both the traditional
discrete-time models and in the hybrid continuous-time models that have discrete measurements
with continuous underlying processes. Moreover, regime-switching can be layered on top of any
aspect of these models.

Even though dynr can specify some models that other programs cannot, all of the features of
other programs that exist for time series modeling are not subsets of dynr. For example, KFAS
allows for nonlinear measurement (Helske, 2017a) which is not currently possible in dynr. Moreover,
SsfPack has nonlinear measurement capabilities along with many MCMC methods that dynr lacks
(Koopman et al., 1999). The pomp package has also implemented several algorithms absent in dynr,
including MCMC methods, Bayesian methods, particle filtering, as well as ensemble filtering and
forecasting. However, to our knowledge, no other software allows for regime-switching nonlinear
dynamics with latent variables.

The dynr package highlighted the use of recipe objects to prepare components of the model.
The recipes divide the full model into meaningful conceptual chunks for ease of specification and
interactive inspection. The recipes seamlessly handle various bookkeeping tasks like the creation
and management of the free parameter vector and how free parameters map onto model components.
This is in contrast to several other packages offload this management on the user, often writing their
own functions in the process. In addition to sparing the user sundry bothersome tasks, the recipes
allow for interactive error checking and model verification using standard commands that should
already be familiar to users of R. The contents of each recipe can be printed in the R console,
letting the user verify that the recipe they intended to specify was actually created. Along this vein,
plotFormula() allows the user to see nicely formatted equations for their models directly in R, and
printex() outputs IATEX equations for their models which can be typeset immediately or modified
for inclusion in manuscripts, presentations, and reports.

The dynr package critically depends on several data structures and methods from the GNU
Scientific Library (GSL; GSL Project Contributors, 2010) for fast and accurate scientific computing,
and consequently requires the user to install GSL on their system. We wanted to allow users the
flexibility of specifying their own models, while not sacrificing computational speed that would be
influenced by frequent interchanges between R and C functions. Thus, dynr requires that users
generate and compile the C code “on the fly”, and pass the C function pointers to the back-end
directly. Hence, dynr has a nontrivial set-up cost as compared to other R packages. However,
to alleviate this burden we have written an installation and configuration guide as a vignette
labeled ‘InstallationGuideForUsers’. We generally find set-up of dynr to be similar to that of other
packages that allow “on the fly” compilation and ready C interfaces like Repp (Eddelbuettel, 2013;
Eddelbuettel et al., 2018) and ReppGSL (Eddelbuettel and Francois, 2018).

Alternative computational strategies tended to worsen performance, increase user burden for
model specification, or simply trade one difficult configuration task for another. In dynr the user
only needs to specify a possibly nonlinear model of interest using standard R syntax. By contrast
with Repp/ReppGSL the user would have to write C functions and hand differentiate their nonlinear
dynamics functions: an error-prone process with a much steeper learning curve that acts as a deterrent
to adoption, particularly to many researchers in the social and behavioral sciences. Additionally,
we have found that automatic generation of a model specification file coded in C provides more
sophisticated users with the opportunity to define modeling variations directly in C that are not
already supported by the R interface functions.

Currently dynr only allows nonlinearity in the dynamics but not the measurement model to

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppGSL

CONTRIBUTED RESEARCH ARTICLES 105

capitalize on the availability of a Gaussian approximate log-likelihood function for fast parameter
estimation. Future extensions will incorporate Markov chain Monte Carlo (MCMC) techniques
(Chow et al., 2011; Durbin and Koopman, 2001; Kim and Nelson, 1999; Lu et al., 2015) and
pertinent frequentist-based estimation techniques (Fahrmeir and Tutz, 1994) to accommodate a
broader class of measurement models consisting of nonlinear functions and non-Gaussian densities.
In addition, several other extensions are being pursued and implemented in the dynr package.
For example, dynr currently handles missingness in the dependent variables via full-information
maximum likelihood but does not allow for missingness in the covariates. Future plans include
interfacing dynr with R packages such as mice (van Buuren and Groothuis-Oudshoorn, 2011, 2017)
to handle missingness in the covariates and/or dependent variables via multiple imputation. Further,
models with nonlinearities at the dynamic level currently are not supported by well-established fit
indices. Although dynr provides AIC (Akaike, 1973) and BIC (Schwarz, 1978) for model comparison
purposes, the tenability of using these criteria when nonlinearities at the dynamic level are present
and the optimized log-likelihood function involves approximations and truncation errors is yet
to be investigated. Finally, even though difference and differential equations have served as and
remain one of the most popular modeling tools across myriad scientific disciplines, their use is still
nascent in many social and behavioral sciences. Tools to aid model developments and explorations
are important extensions to enable and promote modeling efforts utilizing difference/differential
equations (Chow et al., 2016; Ramsay et al., 2009). Fortunately, several existing packages in R offer
many of the functionalities to support these modeling endeavors and may be used in conjunction or
interfaced in the future with dynr for these purposes.

Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N.
Petrov and F. Csaki, editors, Second International Symposium on Information Theory, pages
267-281. Akademiai Kiado, Budapest, 1973. [p94, 105]

B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979.
[p94, 95, 111]

C. F. Ansley and R. Kohn. Estimation, filtering and smoothing in state space models with
incompletely specified initial conditions. The Annals of Statistics, 13:1286-1316, 1985. [p95]

D. Ardia, K. Bluteau, K. Boudt, L. Catania, B. Peterson, and D.-A. Trottier. Markov-Switching
GARCH Models in R: The MSGARCH, 2017. R package version 1.3. [p92]

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. FEstimation with Applications to Tracking and
Navigation: Theory Algorithms and Software. John Wiley & Sons, New York, NY, 2001. [p94, 95,
111]

S. M. Boker and J. Graham. A dynamical systems analysis of adolescent substance abuse. Multivariate
Behavioral Research, 33(4):479-507, 1998. URL https://doi.org/10.1207/s15327906mbr3304_3.
[p101]

S. M. Boker, M. C. Neale, and K. L. Klump. A differenial equations model for the ovarian hormone
cycle. In P. C. M. Molenaar, R. M. Lerner, and K. M. Newell, editors, Handbook of Developmental
Systems Theory and Methodology, pages 369-391. Guilford Press, New York, NY, 2014. [p101]

S. M. Boker, M. C. Neale, H. H. Maes, M. Spiegel, T. R. Brick, R. Estabrook, T. C. Bates, R. J.
Gore, M. D. Hunter, J. N. Pritikin, M. Zahery, and R. M. Kirkpatrick. OpenMz: Extended
Structural Equation Modelling, 2017. URL https://CRAN.R-project.org/package=0pentx. R
package version 2.8.3. [p91]

N. Bolger and J.-P. Laurenceau. Intensive Longitudinal Methods: An Introduction to Diary and
Experience Sampling Research. Guilford Press, New York, NY, 2013. [p91]

P. Brandt. MSBVAR: Markov-Switching, Bayesian, Vector Autoregression Models, 2016. URL
https://CRAN.R-project.org/package=MSBVAR. R package version 0.9-3. [p92]

E. N. Brown and H. Luithardt. Statistical model building and model criticism for human circa-
dian data. Journal of Biological Rhythms, 14:609-616, 1999. URL https://doi.org/10.1177/
074873099129000975. [p101]

B. Byrom and B. Tiplady. ePRO: Electronic Solutions for Patient-Reported Data. Gower, Farnham,
England, 2010. [p91]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mice
https://doi.org/10.1207/s15327906mbr3304_3
https://CRAN.R-project.org/package=OpenMx
https://CRAN.R-project.org/package=MSBVAR
https://doi.org/10.1177/074873099129000975
https://doi.org/10.1177/074873099129000975

CONTRIBUTED RESEARCH ARTICLES 106

J. T. Cacioppo and R. E. Petty. Electromyograms as measures of extent and affectivity of information
processing. American Psychologist, 36:441-456, 1981. [p90]

J. T. Cacioppo, R. E. Petty, M. E. Losch, and H. S. Kim. Electromyographic activity over facial
muscle regions can differentiate the valence and intensity of affective reactions. Journal of
Personality and Social Psychology, 50(2):260-268, 1986. [p96]

S.-M. Chow and J. R. Nesselroade. General slowing or decreased inhibition? Mathematical models
of age differences in cognitive functioning. Journals of Gerontology B, 59(3):101-109, 2004. [p101]

S.-M. Chow and G. Zhang. Nonlinear regime-switching state-space (RSSS) models. Psychometrika,
78(4):740-768, 2013. URL https://doi.org/10.1007/s11336-013-9330-8. [p91, 94, 95, 111]

S.-M. Chow, E. Ferrer, and J. R. Nesselroade. An unscented Kalman filter approach to the estimation
of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2):283-321, 2007.
URL https://doi.org/10.1080/00273170701360423. [p95, lUl]

S.-M. Chow, M.-H. R. Ho, E. J. Hamaker, and C. V. Dolan. Equivalences and differences between
structural equation and state-space modeling frameworks. Structural Equation Modeling, 17:
303-332, 2010. URL https://doi.org/10.1080/10705511003661553. [p94]

S.-M. Chow, N. Tang, Y. Yuan, X. Song, and H. Zhu. Bayesian estimation of semiparametric
nonlinear dynamic factor analysis models using the Dirichlet process prior. British Journal of
Mathematical and Statistical Psychology, 64(1):69-106, 2011. URL https://doi.org/10.1348/
000711010x497262. [p105

S.-M. Chow, K. J. Grimm, F. Guillaume, C. V. Dolan, and J. J. McArdle. Regime-switching
bivariate dual change score model. Multivariate Behavioral Research, 48(4):463-502, 2013. URL
https://doi.org/10.1080/00273171.2013.787870. [p91]

S.-M. Chow, K. Witkiewitz, R. P. P. P. Grasman, and S. A. Maisto. The cusp catastrophe model as
cross-sectional and longitudinal mixture structural equation models. Psychological Methods, 20:
142-164, 2015. URL https://doi.org/10.1037/20038962. [p9l]

S.-M. Chow, J. J. Bendezt, P. M. Cole, and N. Ram. A comparison of two-stage approaches for
fitting nonlinear ordinary differential equation (ode) models with mixed effects. Multivariate
Behavioral Research, 51(2-3):154-184, 2016. URL https://doi.org/10.1080/00273171.2015.
1123138. [p105]

S.-M. Chow, L. Ou, A. Ciptadi, E. Prince, D. You, M. D. Hunter, J. M. Rehg, A. Rozga, and
D. S. Messinger. Representing sudden shifts in intensive dyadic interaction data using differential
equation models with regime switching. Psychometrika, 83(2):476-510, 2018. URL https:
//doi.org/10.1007/s11336-018-9605-1. [p94, 96, 111]

P. De Jong. The likelihood for a state space model. Biometrika, 75(1):165-169, 1988. URL
https://doi.org/10.2307/2336450. [p94]

U. Dimberg, M. Thunberg, and K. Elmehed. Unconscious facial reactions to emotional facial
expressions. Psychological Science, 11(1):86-89, 2000. URL https://doi.org/10.1111/1467~
9280.00221. [p96]

C. V. Dolan. MKFM6: Multi-Group, Multi-Subject Stationary Time Series Modeling Based on the
Kalman Filter, 2005. URL http://users/fmg.uva.nl/cdolan/. [p91]

C. V. Dolan. Structural equation mixture modeling. In R. E. Millsap and A. Maydeu-Olivares, editors,
The SAGE Handbook of Quantitative Methods in Psychology, pages 568-592. Sage, Thousand
Oaks, CA, 2009. [p91]

C. V. Dolan, B. R. Jansen, and H. L. J. Van der Maas. Constrained and unconstrained multivariate
normal finite mixture modeling of piagetian data. Multivariate Behavioral Research, 39(1):69-98,
2004. URL https://doi.org/10.1207/s15327906mbr3901_3. [pf,)l}

C. Driver, M. Voelkle, and H. Oud. Ctsem: Continuous Time Structural Equation Modelling, 2017a.
URL https://CRAN.R-project.org/package=ctsemn. R package version 2.5.0. [p92]

C. C. Driver, J. H. L. Oud, and M. C. Voelkle. Continuous time structural equation modelling with
R package ctsem. Journal of Statistical Software, 2017b. URL https://doi.org/10.18637/jss.
v077.105. [p92]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1007/s11336-013-9330-8
https://doi.org/10.1080/00273170701360423
https://doi.org/10.1080/10705511003661553
https://doi.org/10.1348/000711010x497262
https://doi.org/10.1348/000711010x497262
https://doi.org/10.1080/00273171.2013.787870
https://doi.org/10.1037/a0038962
https://doi.org/10.1080/00273171.2015.1123138
https://doi.org/10.1080/00273171.2015.1123138
https://doi.org/10.1007/s11336-018-9605-1
https://doi.org/10.1007/s11336-018-9605-1
https://doi.org/10.2307/2336450
https://doi.org/10.1111/1467-9280.00221
https://doi.org/10.1111/1467-9280.00221
http://users/fmg.uva.nl/cdolan/
https://doi.org/10.1207/s15327906mbr3901_3
https://CRAN.R-project.org/package=ctsem
https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.18637/jss.v077.i05

CONTRIBUTED RESEARCH ARTICLES 107

J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford University
Press, Oxford, United Kingdom, 2001. [p92, 93, 105]

D. Eddelbuettel and R. Francois. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1-18, 2011. URL https://doi.org/10.18637/jss.v040.108. [p104, 212]

D. Eddelbuettel and R. Francois. ReppGSL: ‘Repp’ Integration for ‘GNU GSL’ Vectors and Matrices,
2018. URL https://CRAN.R-project.org/package=RcppGSL. R package version 0.3.6. [p104]

D. Eddelbuettel, R. Francois, J. Allaire, K. Ushey, Q. Kou, N. Russell, D. Bates, and J. Chambers.
Repp: Seamless R and C++ Integration, 2018. URL https://CRAN.R-project.org/package=
Repp. R package version 1.0.0. [p104]

R. J. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov Models: Estimation and Control.
Springer-Verlag, New York, 1995. [p91]

L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling Based on Generalized Linear Models.
Springer-Verlag, New York, NY, 1994. [p105]

K. Fukuda and K. Ishihara. Development of human sleep and wakefulness rhythm during the first
six months of life: Discontinuous changes at the 7th and 12th week after birth. Biological Rhythm
Research, 28:94-103, 1997. URL https://doi.org/10.1076/brhm.28.3.5.94.13132. [p91]

P. Gilbert. Dse: Dynamic Systems Estimation (Time Series Package), 2015. URL https://CRAN.R-
project.org/package=dse. R package version 2015.12-1. [p91]

P. D. Gilbert. Brief User’s Guide: Dynamic Systems Estimation, 2006 or later. URL http://cran.r-
project.org/web/packages/dse/vignettes/Guide.pdf. [p9]]

J. M. Gottman. The Mathematics of Marriage: Dynamic Nonlinear Models. The MIT Press,
Cambridge, MA, 2002. [p101]

M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. John
Wiley & Sons, Hoboken, NJ, 3rd edition, 2008. [p92]

GSL Project Contributors. GSL - GNU Scientific Library - GNU Project - Free Software Foundation
(FSF), 2010. URL http://www.gnu.org/software/gsl/. [pl04]

J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the
business cycle. Econometrica, 57:357-384, 1989. URL https://doi.org/10.2307/1912559. [pIl,

J. D. Hamilton. T%ime Series Analysis. Princeton University Press, Princeton, NJ, 1994. [p94]

A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, Cambridge, United Kingdom, 1989. [p91, 94]

J. Helske. KFAS: Exponential family state space models in R. Journal of Statistical Software, 2017a.
URL https://doi.org/10.18637/jss.v078.110. [p91, 92, 104]

J. Helske. KFAS: Kalman Filter and Smoother for Exponential Family State Space Models, 2017b.
URL https://CRAN.R-project.org/package=KFAS. R package version 1.2.9. [p91]

J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems: Mathematical
Aspects of Selection (London Mathematical Society Student Texts). Cambridge University Press,
1988. ISBN 0521358388. URL http://www.worldcat.org/isbn/0521358388. [pl01]

B. Hosenfeld. Indicators of discontinuous change in the development of analogical reasoning. Journal
of Ezxperimental Child Psychology, 64:367-395, 1997. URL https://doi.org/10.1006/jecp.1996.
2351. [p91]

M. D. Hunter. State space modeling in an open source, modular, structural equation modeling
environment. Structural Equation Modeling: A Multidisciplinary Journal, pages 1-18, 2017. URL
https://doi.org/10.1080/10705511.2017.1369354. [pE)l]

R. J. Hyndman. CRAN task view: Time series analysis. Online, 2016. URL https://CRAN.R-
project.org/view=TimeSeries. Accessed on October 09, 2016. [p91]

S. G. Johnson. The NLopt Nonlinear-Optimization Package, 2008. URL http://ab-initio.mit.
edu/nlopt. [p103]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.18637/jss.v040.i08
https://CRAN.R-project.org/package=RcppGSL
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.1076/brhm.28.3.5.94.13132
https://CRAN.R-project.org/package=dse
https://CRAN.R-project.org/package=dse
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
http://www.gnu.org/software/gsl/
https://doi.org/10.2307/1912559
https://doi.org/10.18637/jss.v078.i10
https://CRAN.R-project.org/package=KFAS
http://www.worldcat.org/isbn/0521358388
https://doi.org/10.1006/jecp.1996.2351
https://doi.org/10.1006/jecp.1996.2351
https://doi.org/10.1080/10705511.2017.1369354
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/view=TimeSeries
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

CONTRIBUTED RESEARCH ARTICLES 108

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35-45, 1960. URL https://doi.org/10.1115/1.3662552. [p94, 111]

C.-J. Kim and C. R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-
Sampling Approaches with Applications. MIT Press, Cambridge, MA, 1999. [p91, 94, 95, 105,
111]

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov
processes via the R package pomp. Journal of Statistical Software, 69(12):1-43, 2016. URL
https://doi.org/10.18637/jss.v069.112. [p92]

A. A. King, E. L. Tonides, and C. Breto. Pomp: Statistical Inference for Partially Observed Markov
Processes, 2018. URL https://CRAN.R-project.org/package=pomp. R package version 1.18.
(p92]

L. Kohlberg and R. Kramer. Continuities and discontinuities in childhood and adult moral devel-
opment. Human development, 12(2):93-120, 1969. URL https://doi.org/10.1159/000270857.

[p91]

S. J. Koopman, N. Shephard, and J. A. Doornik. Statistical algorithms for models in state space using
SsfPack 2.2. Econometrics Journal, 2(1):113-166, 1999. URL https://doi.org/10.1111/1368-
423x.00023. [p92, 104]

D. Kraft. A software package for sequential quadratic programming. Technical Report 88-28,
DFVLR-FB, Oberpfaffenhofen, Germany, 1988. [p92, 103]

D. Kraft. Algorithm 733: TOMP — Fortran Modules for Optimal Control Calculations. ACM
Transactions on Mathematical Software, 20(3):262-281, 1994. URL https://doi.org/10.1145/
192115.192124. [p92, 103]

G. Y. Kulikov and M. V. Kulikova. Accurate numerical implementation of the continuous-discrete
extended kalman filter. IEEE Transactions on Automatic Control, 59(1), 2014. URL https:
//doi.org/10.1109/tac.2013.2272136. [p94, 95]

M. V. Kulikova and G. Y. Kulikov. Adaptive ODE Solvers in Extended Kalman Filtering Algorithms.
Journal of Computational and Applied Mathematics, 262:205-216, 2014. URL https://doi.org/
10.1016/j.cam.2013.09.064. [pﬁ)*’l, 95}

A. J. Lotka. Elements of Physical Biology. Williams & Wilkins, Baltimore, MD, 1925. [p96, 101]

Z.-H. Lu, S.-M. Chow, A. Sherwood, and H. Zhu. Bayesian analysis of ambulatory cardiovascular
dynamics with application to irregularly spaced sparse data. Annals of Applied Statistics, 9:
1601-1620, 2015. URL https://doi.org/10.1214/15-a0as846. [pl05]

B. O. Muthén and T. Asparouhov. LTA in Mplus: Transition probabilities influenced by covariates.
Mplus Web Notes: No. 13., 2011. URL http://www.statmodel.com/examples/{LTA}webnote.

pdf. [p91]

M. C. Neale, M. D. Hunter, J. N. Pritikin, M. Zahery, T. R. Brick, R. M. Kirkpatrick, R. Estabrook,
T. C. Bates, H. H. Maes, and S. M. Boker. OpenMx 2.0: Extended structural equation and
statistical modeling. Psychometrika, 80(2):535-549, 2016. URL https://doi.org/10.1007/
$11336-014-9435-8. [p91]

L. Ou, M. D. Hunter, and S.-M. Chow. Dynr: Dynamic Modeling in R, 2018. R package version
0.1.13-4. [p91]

G. Petris. An R package for dynamic linear models. Journal of Statistical Software, 36(12):1-16,
2010. URL https://doi.org/10.18637/jss.v036.112. [p91]

G. Petris. Dim: Bayesian and Likelihood Analysis of Dynamic Linear Models, 2014. URL https:
//CRAN.R-project.org/package=dlm. R package version 1.1-4. [p91]

G. Petris and S. Petrone. State space models in R. Journal of Statistical Software, 41(4):1-25, 2011.
URL https://doi.org/10.18637/jss.v041.1i04. [p91]

J. Piaget and B. Inhelder. The Psychology of the Child. Basic Books, New York, NY, 1969. [p91]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, 2002. [p95]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1115/1.3662552
https://doi.org/10.18637/jss.v069.i12
https://CRAN.R-project.org/package=pomp
https://doi.org/10.1159/000270857
https://doi.org/10.1111/1368-423x.00023
https://doi.org/10.1111/1368-423x.00023
https://doi.org/10.1145/192115.192124
https://doi.org/10.1145/192115.192124
https://doi.org/10.1109/tac.2013.2272136
https://doi.org/10.1109/tac.2013.2272136
https://doi.org/10.1016/j.cam.2013.09.064
https://doi.org/10.1016/j.cam.2013.09.064
https://doi.org/10.1214/15-aoas846
http://www.statmodel.com/examples/{LTA}webnote.pdf
http://www.statmodel.com/examples/{LTA}webnote.pdf
https://doi.org/10.1007/s11336-014-9435-8
https://doi.org/10.1007/s11336-014-9435-8
https://doi.org/10.18637/jss.v036.i12
https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=dlm
https://doi.org/10.18637/jss.v041.i04

CONTRIBUTED RESEARCH ARTICLES 109

J. O. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB.
Springer-Verlag, New York, NY, 2009. [p105]

J. L. Rodgers and D. C. Rowe. Social contagion and adolescent sexual behavior: A developmental
EMOSA model. Psychological Review, 100(3):479-510, 1993. URL https://doi.org/10.1037/
0033-295x.100.3.479. [p'l()'l]

J. L. Rodgers, D. C. Rowe, and M. Buster. Social contagion, adolescent sexual behavior, and
pregnancy: a nonlinear dynamic EMOSA model. Developmental Psychology, 34(5):1096-1113,
1998. URL https://doi.org/10.1037/0012-1649.34.5.1096. [p101]

J. A. Sanchez-Espigares and A. Lopez-Moreno. MSwM: Fitting Markov Switching Models, 2014.
URL https://CRAN.R-project.org/package=NMSull. R package version 1.2. [p92]

G. E. Schwartz. Biofeedback, self-regulation, and the patterning of physiological processes. American
Scientist, 63:314-324, 1975. [p90]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.
[p94, 105]

A. Stone, S. Shiffman, A. Atienza, and L. Nebeling. The Science of Real-Time Data Capture:
Self-Reports in Health Research. Oxford University Press, NY, 2008. [p91]

O. Taramasco and S. Bauer. Hidden Markov Models Simulations and Estimations, 2012. R package
version 2.0.2. [p92]

R. W. Thatcher. A predator-prey model of human cerebral development. In K. M. Newell and P. C. M.
Molenaar, editors, Applications of Nonlinear Dynamics to Developmental Process Modeling, pages
87-128. Lawrence Erlbaum, Mahwah, NJ, 1998. [p101]

The MathWorks, Inc. MATLAB Version 9.1 (R2016b). The MathWorks, Inc., Natick, MA, 2016.
[p92]

E. A. Thomas and J. A. Martin. Analyses of parent-infant interaction. Psychological Review, 83(2):
141-156, 1976. URL https://doi.org/10.1037/0033-295x.83.2.141. [p101]

G. C. Tiao and R. S. Tsay. Some advances in non-linear and adaptive modelling in time series.
Journal of Forecasting, 13:109-131, 1994. URL https://doi.org/10.1002/for.3980130206. [p9Il]

H. Tong and K. S. Lim. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal
Statistical Society B, 42:245-292, 1980. URL https://doi.org/10.1142/9789812836281_0002.

[po1]

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in R. Journal of Statistical Software, 45(3):1-67, 2011. URL https://doi.org/10.18637/]ss.
v045.103. [p105]

S. van Buuren and K. Groothuis-Oudshoorn. Mice: Multivariate Imputation by Chained Equations,
2017. URL https://CRAN.R-project.org/package=mice. R package version 2.46.0. [p105]

H. L. J. van der Maas and P. C. M. Molenaar. Stagewise cognitive development: An application of
catastrophe theory. Psychological Review, 99(3):395-417, 1992. [p91]

H. L. J. van der Maas, R. Kolstein, and J. van der Pligt. Sudden transitions in attitudes. Sociological
Methods € Research, 32(125-152), 2003. URL https://doi.org/10.1177/0049124103253773.

[p101]

M. van Dijk and P. van Geert. Wobbles, humps and sudden jumps: A case study of continuity,
discontinuity and variability in early language development. Infant and Child Development, 16(1):
7-33, 2007. URL https://doi.org/10.1002/icd.506. [p9l]

I. Visser. Depmix: An R-package for fitting mixture models on mixed multivariate data with
Markov dependencies. Technical report, University of Amsterdam, 2007. URL http://cran.r-
project.org. [p9l]

I. Visser and M. Speekenbrink. depmixS4: An R package for hidden Markov models. Journal of
Statistical Software, 36(7):1-21, 2010. URL https://doi.org/10.18637/jss.v036.107. [p92]

I. Visser and M. Speekenbrink. depmizS4: Dependent Mizture Models - Hidden Markov Models
of GLMs and Other Distributions in S4, 2016. URL https://CRAN.R-project.org/package=
depmixS4. R package version 1.3-3. [p92]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1037/0033-295x.100.3.479
https://doi.org/10.1037/0033-295x.100.3.479
https://doi.org/10.1037/0012-1649.34.5.1096
https://CRAN.R-project.org/package=MSwM
https://doi.org/10.1037/0033-295x.83.2.141
https://doi.org/10.1002/for.3980130206
https://doi.org/10.1142/9789812836281_0002
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://CRAN.R-project.org/package=mice
https://doi.org/10.1177/0049124103253773
https://doi.org/10.1002/icd.506
http://cran.r-project.org
http://cran.r-project.org
https://doi.org/10.18637/jss.v036.i07
https://CRAN.R-project.org/package=depmixS4
https://CRAN.R-project.org/package=depmixS4

CONTRIBUTED RESEARCH ARTICLES

110

V. Volterra. Fluctuations in the abundance of a species considered mathematically. Nature, 118:
558-560, 1926. URL https://doi.org/10.1038/118558a0. [p96, 101]

M. Yang and S.-M. Chow. Using state-space model with regime switching to represent the dynamics
of facial electromyography (EMG) data. Psychometrika: Application and Case Studies, 74(4):
744-771, 2010. URL https://doi.org/10.1007/s11336-010-9176-2. [p91, 94, 95, 96, 99, 100]

Funding for this study was provided by NSF' grant SES-1357666, NIH grants ROIMH61388, RO1HD07699,
RO1GM105004, Pennsylvania State Quantitative Social Sciences Initiative, and UL TR000127 from
the National Center for Advancing Translational Sciences.

Lu Ou

ACTNext

ACT, Inc.

500 Act Drive

Towa City, TA 52244
E-mail: 1u.ou0act.org

Michael D. Hunter

Georgia Institute of Technology
J.S. Coon Bldg, Room 225

648 Cherry St NW

Atlanta, GA 30313

E-mail: mhunter430gatech.edu

Sy-Miin Chow

Department of Human Development and Family Studies
The Pennsylvania State University

420 Biobehavioral Health Building

University Park, PA 16802

E-mail: emailqucl6@psu.edu

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1038/118558a0
https://doi.org/10.1007/s11336-010-9176-2
mailto:lu.ou@act.org
mailto:mhunter43@gatech.edu

CONTRIBUTED RESEARCH ARTICLES

111

Discrete-time

Continuous-time

Linear Linear state-space model Linear SDE/ODE

KF CDEKF

g dynr, OpenMx, pomp, KFAS, dlm, dse, dynr, pomp, OpenMx, ctsem,
Ej

E MKFM6, SsfPack, MATLAB MATLAB
2
2

Nonlinear Nonlinear state-space model Nonlinear SDE/ODE

EKF CDEKF

dynr, pomp, SsfPack, MATLAB dynr, pomp, MATLAB

Linear RS state-space model RS SDE/ODE

Kim filter CD Kim filter

g dynr, dynr only
BD
i

= GAUSS code, MATLAB

=
=

Nonlinear RS nonlinear state-space model RS nonlinear SDE/ODE

Extended Kim filter

dynr only

CD extended Kim filter

dynr only

Table 1: Models, algorithms, and software for the framework of regime-switching (non)linear
state space models in discrete- and continuous-time. SDE = Stochastic Differential
Equation, ODE = Ordinary Differential Equation, CD = Continuous-Discrete, RS =
Regime-Switching, KF = Kalman filter (Kalman, 1960), EKF = Extended Kalman filter
(Anderson and Moore, 1979; Bar-Shalom et al., 2001), Kim filter = KF + Hamilton filter
+ Collapsing procedure (Kim and Nelson, 1999). Extended Kim filter was proposed by
Chow and Zhang (2013); the CD extended Kim filter is proposed by Chow et al. (2018).

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 112

RobustGaSP: Robust Gaussian
Stochastic Process Emulation in R

by Mengyang Gu, Jesus Palomo, and James O. Berger

Abstract Gaussian stochastic process (GaSP) emulation is a powerful tool for approximating
computationally intensive computer models. However, estimation of parameters in the GaSP
emulator is a challenging task. No closed-form estimator is available and many numerical problems
arise with standard estimates, e.g., the maximum likelihood estimator. In this package, we implement
a marginal posterior mode estimator, for special priors and parameterizations. This estimation
method that meets the robust parameter estimation criteria was discussed in Gu et al. (2018);
mathematical reasons are provided therein to explain why robust parameter estimation can greatly
improve predictive performance of the emulator. In addition, inert inputs (inputs that almost have no
effect on the variability of a function) can be identified from the marginal posterior mode estimation
at no extra computational cost. The package also implements the parallel partial Gaussian stochastic
process (PP GaSP) emulator (Gu and Berger (2016)) for the scenario where the computer model
has multiple outputs on, for example, spatial-temporal coordinates. The package can be operated in
a default mode, but also allows numerous user specifications, such as the capability of specifying
trend functions and noise terms. Examples are studied herein to highlight the performance of the
package in terms of out-of-sample prediction.

Introduction

A GaSP emulator is a fast surrogate model used to approximate the outcomes of a computer model
(Sacks et al. (1989); Bayarri et al. (2007); Paulo et al. (2012); Palomo et al. (2015); Gu and Berger
(2016)). The prediction accuracy of the emulator often depends strongly on the quality of the
parameter estimates in the GaSP model. Although the mean and variance parameters in the GaSP
model are relatively easy to deal with, estimation of parameters in the correlation functions is
difficult (Kennedy and O’Hagan (2001)). Standard methods of estimating these parameters, such as
maximum likelihood estimation (MLE), often produce unstable results leading to inferior prediction.
As shown in (Gu et al. (2018)), the GaSP emulator is unstable when the correlation between any
two different inputs are estimated to be close to one or to zero. The former case causes a near
singularity when inverting the covariance matrix (this can partially be addressed by adding a small
nugget (Andrianakis and Challenor (2012))), while the latter problem happens more often and has
no easy fix.

There are several packages on the Comprehensive R Archive Network (CRAN, https://CRAN.
R-project.org/) which implement the GaSP model based on the MLE, including DiceKriging
(Roustant et al. (2012)), GPfit (MacDonald et al. (2015)), mleGP (Dancik (2013)), spatial (Venables
and Ripley (2002)), and fields (Nychka et al. (2016)). In these packages, bounds on the parameters
in the correlation function are typically implemented to overcome the numerical problems with the
MLE estimates. Predictions are, however, often quite sensitive to the choice of bound, which is
essentially arbitrary, so this is not an appealing fix to the numerical problems.

In Gu (2016), marginal posterior modes based on several objective priors are studied. It has
been found that certain parameterizations result in more robust estimators than others, and, more
importantly, that some parameterizations which are in common use should clearly be avoided.
Marginal posterior modes with the robust parameterization are mathematically stable, as the
posterior density is shown to be zero at the two problematic cases—when the correlation is nearly
equal to one or to zero. This motivates the RobustGaSP package; examples also indicate that the
package results in more accurate in out-of-sample predictions than previous packages based on
the MLE. We use the DiceKriging package in these comparisons, because it is a state-of-the-art
implementation of the MLE methodology

The RobustGaSP package (Gu et al. (2016)) for R builds a GaSP emulator with robust parameter
estimation. It provides a default method with regard to a specific correlation function, a mean/trend
function and an objective prior for the parameters. Users are allowed to specify them, for example,
by using a different correlation and/or trend function, another prior distribution, or by adding a
noise term with either a fixed or estimated variance. Although the main purpose of the RobustGaSP
package is to do emulation/approximation of a complex function, this package can also be used in
fitting the GaSP model for other purposes, such as nonparameteric regression, modeling spatial data
and so on. For computational purposes, most of the time consuming functions in the RobustGaSP
package are implemented in C++.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=GPfit
https://CRAN.R-project.org/package=mleGP
https://CRAN.R-project.org/package=spatial
https://CRAN.R-project.org/package=fields
https://CRAN.R-project.org/package=RobustGaSP

CONTRIBUTED RESEARCH ARTICLES 113

We highlight several contributions of this work. First of all, to compute the derivative of the
reference prior with a robust parametrization in (Gu et al. (2018)) is computationally expensive,
however this information is needed to find the posterior mode by the low-storage quasi-Newton
optimization method (Nocedal (1980)). We introduce a robust and computationally efficient prior,
called the jointly robust prior (Gu (2018)), to approximate the reference prior in the tail rates of the
posterior. This has been implemented as a default setting in the RobustGaSP package.

Furthermore, the use of the jointly robust prior provides a natural shrinkage for sparsity and thus
can be used to identify inert/noisy inputs (if there are any), implemented in the findInertInputs
function in the RobustGaSP package. A formal approach to Bayesian model selection requires a
comparison of 2P models for p variables, whereas in the RobustGaSP package, only the posterior
mode of the full model has to be computed. Eliminating mostly inert inputs in a computer model is
similar to not including regression coefficients that have a weak effect, since the noise introduced in
their estimation degrades prediction. However, as the inputs have a nonlinear effect to the output,
variable selection in GaSP is typically much harder than the one in the linear regression. The
findInertInputs function in the RobustGaSP package can be used, as a fast pre-experimental check,
to separate the influential inputs and inert inputs in highly nonlinear computer model outputs.

The RobustGaSP package also provides some regular model checks in fitting the emulator, while
the robustness in the predictive performance is the focus in Gu et al. (2018). More specifically,
the leave-one-out cross validation, standardized residuals and Normal QQ-plot of the standardized
residuals are implemented and will be introduced in this work.

Lastly, some computer models have multiple outputs. For example, each run of the TITAN2D
simulator produces up to 10° outputs of the pyroclastic flow heights over a spatial-temporal grid of
coordinates (Patra et al. (2005); Bayarri et al. (2009)). The computational complexity of building a
separate GaSP emulator for the output at each grid is O(kn3), where k is the number of grids and
n is the number of computer model runs. The package also implements another computationally
more efficient emulator, called the parallel partial Gaussian stochastic process emulator, which has
the computational complexity being the maximum of O(n®) and O(kn?) (Gu and Berger (2016)).
When the number of outputs in each simulation is large, the computational cost of PP GaSP is
much smaller than the separate emulator of each output.

The rest of the paper is organized as follows. In the next section, we briefly review the statistical
methodology of the GaSP emulator and the robust posterior mode estimation. In Section An
overview of RobustGaSP , we describe the structure of the package and highlight the main functions
implemented in this package. In Section Numerical examples , several numerical examples are
provided to illustrate the behavior of the package under different scenarios. In Section Concluding
remarks, we present conclusions and briefly discuss potential extensions. Examples will be provided
throughout the paper for illustrative purposes.

The statistical framework

GaSP emulator

Prior to introducing specific functions and usage of the RobustGaSP package, we first review the
statistical formulation of the GaSP emulator of the computer model with real-valued scalar outputs.
Let x € X denote a p-dimensional vector of inputs for the computer model, and let y(x) denote the
resulting simulator output, which is assumed to be real-valued in this section. The simulator y(x)
is viewed as an unknown function modeled by the stationary GaSP model, meaning that for any
inputs {x1,...,xn} from X, the likelihood is a multivariate normal distribution,

(y(x1),-. ., y(xn)) " |, 0%, R~ MN((u(x1), ..., u(xn)) T, 0°R), (1)

here () is the mean function, 62 is the unknown variance parameter and R is the correlation
matrix. The mean function is typically modeled via regression,

q
nx) = h(x)0 = 3 hi(x)0:, (2)
t=1

where h(x) = (h1(x), ha(x), ..., hq(x)) is a vector of specified mean basis functions and 6; is the
unknown regression parameter for basis function h¢(-). In the default setting of the RobustGaSP
package, a constant basis function is used, i.e., h(x) = 1; alternatively, a general mean structure can
be specified by the user (see Section An overview of RobustGaSP for details).

The (i,7) element of R in (1) is modeled through a correlation function ¢(x;,x;). The product

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 114

Matérn o = 5/2 (1+@+%) exp (7@)
Matérn o = 3/2 (1 + @) exp <_@)

«
Power exponential exp {f (%) }, 0<a<?

Table 1: Correlation functions currently implemented in RobustGaSP. Here ~ is the range
parameter and d is the distance between two points in each dimension. For simplicity,
the subscript ! in Equation (3) has been dropped.

correlation function is often assumed in the emulation of computer models (Santner et al. (2003)),
P

c(x4, x5) = H ACTITR (3)
=1

where ¢;(+, -) is an one-dimensional correlation function for the I*" coordinate of the input vector.
Some frequently chosen correlation functions are implemented in the RobustGaSP package, listed
in Table 1. In order to use the power exponential covariance function, one needs to specify the
roughness parameter «;, which is often set to be close to 2; e.g., oy = 1.9 is advocated in Bayarri
et al. (2009), which maintains an adequate smoothness level yet avoids the numerical problems with

Q) = 2.
The Matérn correlation is commonly used in modeling spatial data (Stein (2012)) and has
recently been advocated for computer model emulation (Gu et al. (2018)); one benefit is that the

roughness parameter of the Matérn correlation directly controls the smoothness of the process. For
example, the Matérn correlation with a; = 5/2 results in sample paths of the GaSP that are twice
differentiable, a smoothness level that is usually desirable. Obtaining this smoothness with the
more common squared exponential correlation comes at a price, however, as, for large distances, the
correlation drops quickly to zero. For the Matérn correlation with a; = 5/2, the natural logarithm
of the correlation only decreases linearly with distance, a feature which is much better for emulation
of computer models. Based on these reasons, the Matérn correlation with a; = 5/2 is the default
correlation function in RobustGaSP. It is also the default correlation function in some other packages,
such as DiceKriging (Roustant et al. (2012)).

Since the simulator is expensive to run, we will at most be able to evaluate y(x) at a set of
design points. Denote the chosen design inputs as xP = XID,XQD, ...,xE}7 where D ¢ X. The
resulting outcomes of the simulator are denoted as yD = (yi ,y2D Yy yr?)T. The design points are
usually chosen to be “space-filling", including the uniform design and lattice designs. The Latin
hypercube (LH) design is a “space-filling" design that is widely used. It is defined in a rectangle
whereby each sample is the only one in each axis-aligned hyperplane containing it. LH sampling for
a 1-dimensional input space is equivalent to stratified sampling, and the variance of an estimator
based on stratified sampling has less variance than the random sampling scheme (Santner et al.
(2003)); for a multi-dimensional input space, the projection of the LH samples on each dimension
spreads out more evenly compared to simple stratified sampling. The LH design is also often used
along with other constraints, e.g., the maximin Latin Hypercube maximizes the minimum Euclidean
distance in the LH samples. It has been shown that the GaSP emulator based on maximin LH
samples has a clear advantage compared to the uniform design in terms of prediction (see, e.g., Chen
et al. (2016)). For these reasons, we recommend the use of the LH design, rather than the uniform
design or lattice designs.

Robust parameter estimation

The parameters in a GaSP emulator include mean parameters, a variance parameter, and range
parameters, denoted as (61, .., 0, 02, Y1, .-, Yp)- The objective prior implemented in the RobustGaSP
package has the form

(6, 02,7)06%, (4)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 115

wfi(y) T ()M

mR(@E) |1*(&)|Y? with & = log(1/y), for I = 1,...,p

mRB) (X, CiBy)exp(—bY)_ CifBy), with By = 1/y;, for I =1,...,p

Table 2: Different priors for the parameters in the correlation function implemented in Robust-
GaSP. Here I*(-) is the expected Fisher information matrix, after integrating out (6, o2).
The default choice of the prior parameters in 77/ () is a = 0.2, b = n~YP(a + p), and
C) equal to the mean of \1:5 —:UZL for1<i4,57<mn,1#j.

where 7(y) is an objective prior for the range parameters. After integrating out (6, 0'2) by the prior
in (4), the marginal likelihood is

£GP R H R PR (7)) 6

where 52 = (y2)TQyP with Q = R™'P and P = I,, - h(xP){h" (xP)R'h(xP)} "'h' (xP)R !,
with I, being the identity matrix of size n.

The reference prior 7%(-) and the jointly robust prior 77/ (-) for the range parameters with
robust parameterizations implemented in the RobustGaSP package are listed in Table 2. Although
the computational complexity of the value of the reference prior is the same as the marginal
likelihood, the derivatives of the reference prior are computationally hard. The numerical derivative
is thus computed in the package in finding the marginal posterior mode using the reference prior.
Furthermore, the package incorporates, by default, the jointly robust prior with the prior parameters
(C1,...,Cp,a,b) (whose values are given in Table 2). The properties of the jointly robust prior
are studied extensively in Gu (2018). The jointly robust prior approximates the reference prior
reasonably well with the default prior parameters, and has a close form derivatives. The jointly
robust prior is a proper prior with a closed form of the normalizing constant and the first two
moments. In addition, the posterior modes of the jointly robust prior can identify the inert inputs,
as discussed in Section 14.2.4.

The range parameters (71, ..., 7p) are estimated by the modes of the marginal posterior distribution

N ~ D
(31, -+ Ap) = argmaz(L(y " |71, vp)T (1, -, 9p))- (6)
Y15

When another parameterization is used, parameters are first estimated by the posterior mode and
then transformed back to obtain (41,...9p)-

Various functions implemented in the RobustGaSP package can be reused in other studies.
log_marginal_lik and log_marginal_lik_deriv give the natural logarithm of the marginal likeli-
hood in (5) and its directional derivatives with regard to v, respectively. The reference priors 7rR(')/)
and 7TR(§) are not coded separately, but neg_log_marginal_post_ref gives the negative values of
the log marginal posterior distribution and thus one can use -neg_log_marginal_post_ref minus
log_marginal_lik to get the log reference prior. The jointly robust prior /B (B) and its directional
derivatives with regard to B are coded in log_approx_ref_prior and log_approx_ref_prior_deriv,
respectively. All these functions are not implemented in other packages and can be reused in other
theoretical studies and applications.

Prediction

After obtaining 4, the predictive distribution of the GaSP emulator (after marginalizing (6, o%) out)
at a new input point x* follows a student ¢ distribution

y(x*) | y7, 4 ~ T@(x*),6%** n—q), (7)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 116

with n — ¢ degrees of freedom, where

) = mEMo+r (R (y7 -he)d),
= -0 (y°-n)8) R (y7 - he")d).
o= ox® xF) — T ()R r(x*) + (h(x*) - hT(xD)R_lr(x*))T
< (0TP)RBP)) T (Bec) — b PR () ®)

N -1
with 6 = (hT xP)R~! h(xD)) h' (xP)R7'yP being the generalized least squares estimator for
6 and r(x*) = (c(x*,xP),..., e(x*, x5 .
The emulator interpolates the simulator at the design points xZD, 1 < i < n, because when
x* = x?, one has v’ (x*)R™! = ¢, where e; is the n dimensional vector with the i entry being 1
and the others being 0. At other inputs, the emulator not only provides a prediction of the simulator

(i.e., §(x*)) but also an assessment of prediction accuracy. It also incorporates the uncertainty
arising from estimating 6 and o2 since this was developed from a Bayesian perspective.

We now provide an example in which the input has one dimension, ranging from [0, 10] (Higdon
and others (2002)). Estimation of the range parameters using the RobustGaSP package can be done
through the following code:

R> library(RobustGaSP)

R> library(lhs)

R> set.seed(1)

R> input <- 10 * maximinLHS(n=15, k=1)

R> output <- higdon.1.data(input)

R> model <- rgasp(design = input, response = output)
R> model

Call:

rgasp(design = input, response = output)
Mean parameters: 0.03014553

Variance parameter: 0.5696874

Range parameters: 1.752277

Noise parameter: O

The fourth line of the code generates 15 LH samples at [0, 10] through the maximinLHS function
of the Ihs package (Carnell (2016)). The function higdon.1.data is provided within the RobustGaSP
package which has the form y(z) = sin(27z/10) + 0.2 sin(27z/2.5). The third line fits a GaSP model
with the robust parameter estimation by marginal posterior modes.

The plot function in RobustGaSP package implements the leave-one-out cross validation for a
"rgasp" class after the GaSP model is built (see Figure 1 for its output):

R> plot(model)
The prediction at a set of input points can be done by the following code:

R> testing_input <- as.matrix(seq(0, 10, 1/50))
R> model.predict<-predict(model, testing_input)
R> names(model.predict)

[1] "mean" "lower95" "upper95" "sd"

The predict function generates a list containing the predictive mean, lower and upper 95% quantiles
and the predictive standard deviation, at each test point x*. The prediction and the real outputs
are plotted in Figure 2; produced by the following code:

R> testing_output <- higdon.1l.data(testing_input)
R> plot(testing_input, model.predict$mean,type='1l', col='blue',

+ xlab='input', ylab='output')
R> polygon(c(testing_input,rev(testing_input)), c(model.predict$lower95s,
+ rev(model.predict$upper95)), col = "grey80", border = F)

R> lines(testing_input, testing_output)
R> lines(testing_input,model.predict$mean, type='l', col='blue')
R> lines(input, output, type='p')

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=lhs

CONTRIBUTED RESEARCH ARTICLES 117

Leave—one—out

o

e
w 0]
‘5‘ o
=
3 2 4
Ee) o
Q
k=
[T -

o

Ti —

T T T T T
-1.0 -0.5 0.0 0.5 1.0
Exact outputs
Standardized residuals

n o
o <7 °
© o
] i
5
g o
- o
o ° [e] ° ° o o
2 1 o
5 0
§ 77
n o

2

| o

T T T T T T T
2 4 6 8 10 12 14
Num
Normal QQ-plot of standardized residuals

Te}

@
0 i
2
2 0 |
I o
>
o -
Q 0
Q s -
£ 9
©
b i

Te]

Ti -

Theoretical Quantiles

Figure 1: Leave-one-out fitted values for the GaSP model of the higdon.1.data function in the
RobustGaSP package.

It is also possible to sample from the predictive distribution (which is a multivariate ¢ distribution)
using the following code:

R> model.sample <- simulate(model, testing_input, nu.m_sample=10)

R> matplot(testing_input, model.sample, type='l', xlab='input', ylab='output')
R> lines(input, output,type='p')

The plots of 10 posterior predictive samples are shown in Figure 3.

Identification of inert inputs

Some inputs have little effect on the output of a computer model. Such inputs are called inert
inputs (Linkletter et al. (2006)). To quantify the influence of a set of inputs on the variability of the
outputs, functional analysis of the variance (functional ANOVA) can be used, often implemented
through Sobol’s Indices (Sobol” (1990); Sobol (2001)). Methods for numerical calculation of Sobol’s
Indices have been implemented in the sensitivity package (Pujol et al. (2016)) for R.

The identification of inert inputs through the posterior modes with the jointly robust prior
p g p J y p
(w7 B(.)) for the range parameters is discussed in Ciu (2018). The package discussed here implements

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sensitivity

CONTRIBUTED RESEARCH ARTICLES 118

1.0

output

input

Figure 2: The predictive mean (blue curve), the 95% predictive credible interval (grey region)
and the real function (black curve). The outputs at the design points are the black
circles.

0.5 1.0
|

output
0.0
|

input

Figure 3: 10 posterior predictive samples from the RobustGaSP. The outputs at the design
points are the black circles.

this idea, using the estimated normalized inverse range parameters,
. C B
P = 1]: W 7

Zi=1 Czﬂi

for I = 1,...,p. The involvement of C; (defined in Table 2) is to account for the different scales of
different inputs. The denominator (le C;pB;) reflects the overall size of the estimator and C;3;

(9)

gives the contribution of the 1t input. The average P, is 1 and the sum of P} is p. When P} is very
close to 0, it means the Ith input might be an inert input. In the RobustGaSP package, the default
threshold is 0.1; i.e., when P, < 0.1, it is suggested to be an inert input. The threshold can also be
specified by users through the argument threshold in the function findInertInputs.

For demonstration purpose, we build a GaSP emulator for the borehole experiment (Worley
(1987); Morris et al. (1993); An and Owen (2001)), a well-studied computer experiment benchmark
which models water flow through a borehole. The output y is the flow rate through the borehole in

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 119

o o o o
< < < <
— — — —
N g = N g =
3 3 3 3 -/
[[o] o |
© © © ©
& & A & &
T T T T T T T T T T T T T T T T T T 1T 177
0.06 0.12 0 30000 70000 110000 1000 1080
input 1 input 2 input 3 input 4
o o o o
< < < <
— — i —
5 8 5 84 = S = 8
g - g - g - g -
s 3 \ 3 -\ s 1 _—
o _| o | o | o |
(=} (=] =} o
8 - 8 A 8 - S -
T T T T T T T 1T 17T 177 T T T T T T T T T T
70 90 700 760 820 1100 1500 10000 12000
input 5 input 6 input 7 input 8

Figure 4: Values of the borehole function by varying one input at a time.

m> /year and it is determined by the equation:

27Ty (Hy — Hy)

In(r/ru)[1+ M(ﬁ% +

Yy =

T’(L ’

Ty]

where 7, r, Ty, Hy,T;, Hy, L and K, are the 8 inputs constrained in a rectangular domain with the
following ranges

rw € [0.05,0.15], 7 € [100,50000], Ty € [63070,115600], Hy, € [990,1110],
Tj € [63.1,116], H; € [700,820], L e [1120,1680], K., € [9855,12045].

We use 40 maximin LH samples to find inert inputs at the borehole function through the following
code.

R> set.seed(1)

R> input <- maximinLHS(n=40, k=8) # maximin 1lhd sample

R> # rescale the design to the domain of the borehole function
R> LB <- c(0.05, 100, 63070, 990, 63.1, 700, 1120, 9855)

R> UB <- c¢(0.15, 50000, 115600, 1110, 116, 820, 1680, 12045)
R> range <- UB - LB

R> for(i in 1:8) {

R> input[,i] = LB[i] + range[i] * input[,i]

R> }

R> num_obs <- dim(input) [1]

R> output <- matrix(0,num_obs,1)

R> for(i in 1:num_obs) {

+ output[i] <- borehole(input[i,])

+}

R> m <- rgasp(design = input, response = output, lower_bound=FALSE)
R> P <- findInertInputs(m)

The estimated normalized inverse range parameters are : 3.440765 8.13156e-09

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 120

4.983695e-09 0.844324 4.666519e-09 1.31081 1.903236 0.5008652
The inputs 2 3 5 are suspected to be inert inputs

Similar to the automatic relevance determination model in neural networks, e.g. MacKay
(1996); Neal (1996), and in machine learning, e.g. Tipping (2001); Li et al. (2002), the function
findInertInputs of the RobustGaSP package indicates that the Q”d,?fd7 and 5" inputs are
suspected to be inert inputs. Figure 4 presents the plots of the borehole function when varying one
input at a time. This analyzes the local sensitivity of an input when having the others fixed. Indeed,
the output of the borehole function changes very little when the 2nd7 STd7 and 5" inputs vary.

Noisy outputs

The ideal situation for a computer model is that it produces noise-free data, meaning that the output
will not change at the same input. However, there are several cases in which the outputs are noisy.
First of all, the numerical solution of the partial differential equations of a computer model could
introduce small errors. Secondly, when only a subset of inputs are analyzed, the computer model is
no longer deterministic given only the subset of inputs. For example, if we only use the 5 influential
inputs of the borehole function, the outcomes of this function are no longer deterministic, since the
variation of the inert inputs still affects the outputs a little. Moreover, some computer models might
be stochastic or have random terms in the models.

For these situations, the common adjustment is to add a noise term to account for the error,
such as §(-) = y(-) + ¢, where y(-) is the noise-free GaSP and € is an i.i.d. mean-zero Gaussian
white noise (Ren et al. (2012); Gu and Berger (2016)). To allow for marginalizing out the variance
parameter, the covariance function for the new process §(-) can be parameterized as follows:

025(xl7Xm):02{C(xl7Xm) + 775lm}: (10)

where 7 is defined to be the nugget-variance ratio and J;,,, is a Dirac delta function when [= m,
Oim = 1. After adding the nugget, the covariance matrix becomes:

o’R = (R + nln). (11)

Although we call n the nugget-variance ratio parameter, the analysis is different than when a nugget
is directly added to stabilize the computation in the GaSP model. As pointed out in Roustant
et al. (2012), when a nugget is added to stabilize the computation, it is also added to the covariance
function in prediction, and, hence, the resulting emulator is still an interpolator, meaning that the
prediction will be exact at the design points. However, when a noise term is added, it does not go
into the covariance function and the prediction at a design point will not be exact (because of the
effect of the noise).

Objective Bayesian analysis for the proposed GaSP model with the noise term can be done by

defining the prior

~ 2 7 Y,

70,07y, m)oc "1, (12)
where 7(7,n) is now the prior for the range and nugget-variance ratio parameters (,n). The
reference prior and the jointly robust prior can also be extended to be #7%(-) and #7%(-) with robust
parameterizations listed in Table 2. Based on the computational feasibility of the derivatives and
the capacity to identify noisy inputs, the proposed default setting is to use the jointly robust prior
with specified prior parameters in Table 2.

As in the previous noise-free GaSP model, one can estimate the range and nugget-variance ratio
parameters by their marginal maximum posterior modes

N A N D ~
(31, Aps M) = argmax Ly~ |71, ¥p, WA (V15 -9, 1) (13)
Y1seesYpsN

After obtaining 4 and 7, the predictive distribution of the GaSP emulator is almost the same as
in Equation (7); simply replace c(-,-) by &(-,-) and R by R.

Using only the influential inputs of the borehole function, we construct the GaSP emulator with
a nugget based on 30 maximin LH samples through the following code:

R> m.subset <- rgasp(design = input[,c(1,4,6,7,8)], response = output,
+ nugget . est=TRUE)
R> m.subset

Call:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 121

y,m) [Ty,)2
(& n) |TEn)Y? with & = log(1/y), for I =1,...,p

#RB.m) (O, CiBy) exp(—b(X_, CiBy +n)), with By = 1/, for I = 1,...,p

Table 3: Different priors for the parameters in the correlation function implemented in Robust-
GaSP, when a noise term is present. Here I*(-) is the expected fisher information
matrix after integrating out (6, 02). The default choices of the prior parameters in
B (B,n) are: a = 0.2, b =n"YP(a +p), and C; equal to the mean of 2D — xﬁ|, for
1<4,5<n,i#]j.

rgasp(design = input[, c(1, 4, 6, 7, 8)], response = output,
nugget.est = TRUE)

Mean parameters: 170.9782

Variance parameter: 229820.7

Range parameters: 0.2489396 1438.028 1185.202 5880.335 44434.42

Noise parameter: 0.2265875

To compare the performance of the emulator with and without a noise term, we perform some
out-of-sample testing. We build the GaSP emulator by the RobustGaSP package and the DiceKriging
package using the same mean and covariance. In RobustGaSP, the parameters in the correlation
functions are estimated by marginal posterior modes with the robust parameterization, while in
DiceKriging, parameters are estimated by MLE with upper and lower bounds. We first construct
these four emulators with the following code.

R> m.full <- rgasp(design = input, response = output)

R> m.subset <- rgasp(design = input[,c(1,4,6,7,8)], response = output,
+ nugget .est=TRUE)

R> dk.full <- km(design = input, response = output)

R> dk.subset <- km(design = input[,c(1,4,6,7,8)], response = output,

+ nugget .estim=TRUE)

We then compare the performance of the four different emulators at 100 random inputs for the
borehole function.

R> set.seed(1)

R> dim_inputs <- dim(input) [2]

R> num_testing_input <- 100

R> testing_input <- matrix(runif (num_testing_input*dim_inputs),

+ num_testing_input,dim_inputs)

R> for(i in 1:8) {

R> testing_input[,i] <- LB[i] + range[i] * testing_input[,i]

R> }

R> m.full.predict <- predict(m.full, testing_input)

R> m.subset.predict <- predict(m.subset, testing_input[,c(1,4,6,7,8)])
R> dk.full.predict <- predict(dk.full, newdata = testing_input,type = 'UK')
R> dk.subset.predict <- predict(dk.subset,

+ newdata = testing_input[,c(1,4,6,7,8)],type = 'UK')
R> testing_output <- matrix(0, num_testing_input, 1)

R> for(i in 1:num_testing_input) {

+ testing_output[i] <- borehole(testing_input[i,])

+}

R> m.full.error <- abs(m.full.predict$mean - testing_output)

R> m.subset.error <- abs(m.subset.predict$mean - testing_output)

R> dk.full.error <- abs(dk.full.predict$mean - testing_output)

R> dk.subset.error <- abs(dk.subset.predict$mean - testing_output)

Since the DiceKriging package seems not to have implemented a method to estimate the noise
parameter, we only compare it with the nugget case. The box plot of the absolute errors of these

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 122

o —
N
o
[Te) -]
g]
= -
o 1
(] '
i) ,
50 | ,
o - .
(%) '
o '
[+]
v 9
5]

RobustGaSP RobustGaSP DiceKriging DiceKriging
full set subset full set subset

Figure 5: Absolute out-of-sample prediction errors at 100 random samples by different emulators
of the borehole function based on n = 30 maximin LH samples. The first two boxes
are the absolute predictive errors from RobustGaSP, with the full set of inputs and
with only influential inputs (and a nugget), respectively, whereas the last two boxes
are from DiceKriging with the full set of inputs and with only influential inputs (and
a nugget), respectively.

4 emulators (all with the same correlation and mean function) at 100 held-out points are shown
in Figure 5. The performance of the RobustGaSP package based on the full set of inputs or only
influential inputs with a noise is similar, and they are both better than the predictions from the
DiceKriging package.

An overview of RobustGaSP

Main functions

The main purpose of the RobustGaSP package is to predict a function at unobserved points based on
only a limited number of evaluations of the function. The uncertainty associated with the predictions
is obtained from the predictive distribution in Equation (7), which is implemented in two steps. The
first step is to build a GaSP model through the rgasp function. This function allows users to specify
the mean function, correlation function, prior distribution for the parameters, and to include a noise
term or not. In the default setting, these are all specified. The mean and variance parameters are
handled in a fully Bayesian way, and the range parameters in the correlation function are estimated
by their marginal posterior modes. Moreover, users can also fix the range parameters, instead of
estimating them, change/replace the mean function, add a noise term, etc. The rgasp function
returns an object of the "rgasp" S4 class with all needed estimated parameters, including the mean,
variance, noise and range parameters to perform predictions.

The second step is to compute the predictive distribution of the previously created GaSP
model through the predict function, which produces the predictive means, the 95% predictive
credible intervals, and the predictive standard deviations at each test point. As the predictive
distribution follows a student ¢ distribution in (7) for any test points, any quantile/percentile of the
predictive distribution can be computed analytically. The joint distribution at a set of test points is
a multivariate ¢ distribution whose dimension is equal to the number of test points. Users can also
sample from the posterior predictive distribution by using the simulate function.

The identification of inert inputs can be performed using the findInertInput function. As it
only depends on the inverse range parameters through Equation (9), there is no extra computational
cost in their identification (once the robust GaSP model has been built through the rgasp function).
We suggest using the jointly robust prior by setting the argument prior_choice="ref_approx" in

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 123

the rgasp function before calling the findInertInput function, because the penalty given by this
prior is close to an L penalty for the logarithm of the marginal likelihood (with the choice of default
prior parameters) and, hence, it can shrink the parameters for those inputs with small effect.

Besides, the RobustGaSP package also implements the PP GaSP emulator introduced in Gu
and Berger (2016) for the computer model with a vector of outputs. In the PP GaSP emulator, the
variances and the mean values of the computer model outputs at different grids are allowed to be
different, whereas the covariance matrix of physical inputs are assumed to be the same across grids.
In estimation, the variance and the mean parameters are first marginalized out with the reference
priors. Then the posterior mode is used for estimating the parameters in the kernel. The ppgasp
function builds a PP GaSP model, which returns an object of the "ppgasp" S4 class with all needed
estimated parameters. Then the predictive distribution of PP GaSP model is computed through
the predict.ppgasp function. Similar to the emulator of the output with the scalar output, the
predict.ppgasp function returns the predictive means, the 95% predictive credible intervals, and
the predictive standard deviations at each test point.

The rgasp function

The rgasp function is one of the most important functions, as it performs the parameter estimation
for the GaSP model of the computer model with a scalar output. In this section, we briefly review
the implementation of the rgasp function and its optimization algorithm.

The n x p design matrix xP and the n x 1 output vector yD are the only two required arguments
(without default values) in the rgasp function. The default setting in the argument trend is a
constant function, i.e., h(x?) = 1,,. One can also set zero.mean=TRUE in the rgasp function to
assume the mean function in GaSP model is zero. By default, the GaSP model is defined to be
noise-free, i.e., the noise parameter is 0. However, a noise term can be added with estimated or
fixed variance. As the noise is parameterized following the form (10), the variance is marginalized
out explicitly and the nugget-variance parameter 7 is left to be estimated. This can be done by
specifying the argument nugget.est = T in the rgasp function; when the nugget-variance parameter
7 is known, it can be specified; e.g., n = 0.01 indicates the nugget-variance ratio is equal to 0.01 in
rgasp and n will be not be estimated with such a specification.

Two classes of priors of the form (4), with several different robust parameterizations, have been
implemented in the RobustGaSP package (see Table 3 for details). The prior that will be used is
controlled by the argument prior_choice in the rgasp function. The reference prior 7%%(-) with 7 (the
conventional parameterization of the range parameters for the correlation functions in Table 1) and
¢ = log(1/) parameterization can be specified through the arguments prior_choice="ref_gamma"
and prior_choice="ref_xi", respectively. The jointly robust prior 7/%(-) with the g = 1/v
parameterization can be specified through the argument prior_choice="ref_approx"; this is the
default choice used in rgasp, for the reasons discussed in Section Statistical framework.

The correlation functions implemented in the RobustGaSP package are shown in Table 1, with the
default setting being kernel_type = "matern_5_2" in the rgasp function. The power exponential
correlation function requires the specification of a vector of roughness parameters & through the
argument alpha in the rgasp function; the default value is oy = 1.9 for [= 1, ..., p, as suggested in
Bayarri et al. (2009).

The ppgasp function

The ppgasp function performs the parameter estimation of the PP GaSP emulator for the computer
model with a vector of outputs. In the ppgasp function, the output y? is a n x k matrix, where
each row is the k-dimensional computer model outputs. The rest of the input quantities of the
ppgasp function and rgasp function are the same.

Thus the ppgasp function return the estimated parameters, including k estimated variance
parameters, and ¢ x k mean parameters when the mean basis has ¢ dimensions.

The optimization algorithm

Estimation of the range parameters v is implemented through numerical search for the marginal
posterior modes in Equation (6). The low-storage quasi-Newton optimization method (Nocedal
(1980); Liu and Nocedal (1989)) has been used in the 1bfgs function in the nloptr package (Ypma
(2014)) for optimization. The closed-form marginal likelihood, prior and their derivatives are all
coded in C++. The maximum number of iterations and tolerance bounds are allowed to be chosen
by users with the default setting as max_eval=30 and xtol_rel=1e-5, respectively.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr

CONTRIBUTED RESEARCH ARTICLES 124

Although maximum marginal posterior mode estimation with the robust parameterization
eliminates the problems of the correlation matrix being estimated to be either I,, or lnl;lr, the
correlation matrix could still be close to these singularities in some scenarios, particularly when the
sample size is very large. In such cases, we also utilize an upper bound for the range parameters v
(equivalent to a lower bound for B = 1/7). The derivation of this bound is discussed in the Appendix.
This bound is implemented in the rgasp function through the argument lower_bound=TRUE, and this
is the default setting in RobustGaSP. As use of the bound is a somewhat ad hoc fix for numerical
problems, we encourage users to also try the analysis without the bound; this can be done by
specifying lower_bound=FALSE. If the answers are essentially unchanged, one has more confidence
that the parameter estimates are satisfactory. Furthermore, if the purpose of the analysis is to
detect inert inputs, users are also suggested to use the argument lower_bound=FALSE in the rgasp
function.

Since the marginal posterior distribution could be multi-modal, the package allows for different
initial values in the optimization by setting the argument multiple_starts=TRUE in the rgasp
function. The first default initial value for each inverse range parameter is set to be 50 times their
default lower bounds, so the starting value will not be too close to the boundary. The second initial
value for each of the inverse range parameter is set to be half of the mean of the jointly robust
prior. Two initial values of the nugget-variance parameter are set to be n = 0.0001 and n = 0.0002
respectively.

Examples

In this section, we present further examples of the performance of the RobustGaSP package, and
include comparison with the DiceKriging package in R. We will use the same data, trend function,
and correlation function for the comparisons. The default correlation function in both packages is
the Matérn correlation with o = 5/2 and the default trend function is a constant function. The

only difference is the method of parameter estimation, as discussed in Section Statistical framework,
where the DiceKriging package implements the MLE (by default) and the penalized MLE (PMLE)
methods, Roustant et al. (2018).

The modified sine wave function

It is expected that, for a one-dimensional function, both packages will perform well with an adequate
number of design points, so we start with the function called the modified sine wave discussed in Gu
(2016). It has the form

y = 3sin(bnz) + cos(7rz),

where z = [0,1]. We first perform emulation based on 12 equally spaced design points on [0, 1].

R> sinewave <- function(x) {

+ 3*sin(B*pixx)*x + cos(7*pi*x)

+}

R> input <- as.matrix(seq(0, 1, 1/11))
R> output <- sinewave(input)

The GaSP model is fitted by both the RobustGaSP and DiceKriging packages, with the constant
mean function.

R> m <- rgasp(design=input, response=output)
R>m

Call:

rgasp(design = input, response = output)
Mean parameters: 0.1402334

Variance parameter: 2.603344

Range parameters: 0.04072543

Noise parameter: O

R> dk <- km(design = input, response = output)
R> dk

Call:
km(design = input, response = output)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 125

0.0 0.2 0.4 0.6 0.8 1.0

input

Figure 6: Emulation of the modified sine wave function with 12 design points equally spaced
in [0,1]. The black curve is the graph of the function and the outputs at the design
points are the black circles. The blue curve is the predictive mean and the grey region
is the 95% posterior credible interval obtained by the RobustGaSP package. The red
curve is the predictive mean produced by the DiceKriging package.

Trend coeff.:

Estimate

(Intercept) 0.1443

Covar. type : matern5_2
Covar. coeff.:

Estimate

theta(design) 0.0000

Variance estimate: 2.327824

A big difference between two packages is the estimated range parameter, which is found to be around
0.04 in the RobustGaSP package, whereas it is found to be very close to zero in the DiceKriging
package. To see which estimate is better, we perform prediction on 100 test points, equally spaced
in [0,1].

R> testing_input <- as.matrix(seq(0, 1, 1/99))
R> m.predict <- predict(m, testing_input)
R> dk.predict <- predict(dk, testing_input, type='UK')

The emulation results are plotted in Figure 6. Note that the red curve from the DiceKriging
package degenerates to the fitted mean with spikes at the design points. This unsatisfying phe-
nomenon, discussed in Gu et al. (2018), happens when the estimated covariance matrix is close to
an identity matrix, i.e., R & I, or equivalently 4 tends to 0. Repeated runs of the DiceKriging
package under different initializations yielded essentially the same results.

The predictive mean from the RobustGaSP package is plotted as the blue curve in Figure 6 and
is quite accurate as an estimate of the true function. Note, however, that the uncertainty in this
prediction is quite large, as shown by the wide 95% posterior credible regions.

In this example, adding a nugget is not helpful in DiceKriging, as the problem is that R ~ I;
adding a nugget is only helpful when the correlation estimate is close to a singular matrix (i.e.,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 126

< <
N N
5 5
g g
5 O 5 o -
o o
o N
| |
< <
i i
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
input input

Figure 7: Emulation of the modified sine wave function with 13 design points equally spaced
in [0,1]. The black curve is the graph of the function and the outputs at the design
points are the black circles. The blue curve is the predictive mean and the grey region
is the 95% posterior credible interval found by RobustGaSP. The red curve is the
predictive mean obtained by DiceKriging. The left panel and the right panel are two
runs from DiceKriging, with different convergences of the optimization algorithm.

R~ 1n12). However, increasing the sample size is helpful for the parameter estimation. Indeed,
emulation of the modified sine wave function using 13 equally spaced design points in [0, 1] was
successful for one run of DiceKriging, as shown in the right panel of Figure 7. However, the left
panel in Figure 7 gives another run of DiceKriging for this data, and this one converged to the
problematical v &~ 0. The predictive mean from RobustGaSP is stable. Interestingly, the uncertainty
produced by RobustGaSP decreased markedly with the larger number of design points.

It is somewhat of a surprise that even emulation of a smooth one-dimensional function can be
problematical. The difficulties with a multi-dimensional input space can be considerably greater, as
indicated in the next example.

The Friedman function
The Friedman function was introduced in Friedman (1991) and is given by
y = 10sin(rz12) + 20(x3 — 0.5) + 1024 + 5x5,

where z; € [0,1] for i = 1,...,5. 40 design points are drawn from maximin LH samples. A GaSP
model is fitted using the RobustGaSP package and the DiceKriging package with the constant mean
basis function (i.e., h(x) = 1).

R> input <- maximinLHS(n=40, k=5)

R> num_obs <- dim(input) [1]

R> output <- rep(0, num_obs)

R> for(i in 1:num_obs) {

+ output[i] <- friedman.5.data(input[i,])
+ 3

R> m <-rgasp(design=input, response=output)
R> dk <- km(design=input, response=output)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 127

Prediction on 200 test points, uniformly sampled from [0, 1]5, is then performed.

R> dim_inputs <- dim(input) [2]

R> num_testing_input <- 200

R> testing_input <- matrix(runif (num_testing_input * dim_inputs),
+ num_testing_input, dim_inputs)

R> m.predict <- predict(m, testing_input)

R> dk.predict <- predict(dk, testing_input, type='UK')

To compare the performance, we calculate the root mean square errors (RMSE) for both methods,

RMSE = \/Z?*l (9(x}) —y(x}))? 7

nF
where y(x}) is the i*" held-out output and §(xF) is the prediction for x; by the emulator, for
i=1,..,n%

R> testing_output <- matrix(0, num_testing_input, 1)

R> for(i in 1:num_testing_input) {

+ testing_output[i] < -friedman.5.data(testing_input[i,])
+}

R> m.rmse <- sqrt(mean((m.predict$mean - testing_output) 2))
R> m.rmse

[1] 0.2812935

R> dk.rmse <- sqrt(mean((dk.predict$mean - testing_output)”2))
R> dk.rmse

[1] 0.8901442

Thus the RMSE from RobustGaSP is 0.28, while the RMSE from RobustGaSP is 0.89. The
predictions versus the real outputs are plotted in Figure 8. The black circles correspond to the
predictive means from the RobustGaSP package and are closer to the real output than the red
circles produced by the DiceKriging package. Since both packages use the same correlation and
mean function, the only difference lies in the method of parameter estimation, especially estimation
of the range parameters, y. The RobustGaSP package seems to do better, leading to much smaller
RMSE in out-of-sample prediction.

The Friedman function has a linear trend associated with the 4" and the 5" inputs (but not
the first three) so we use this example to illustrate specifying a trend in the GaSP model. For
realism (one rarely actually knows the trend for a computer model), we specify a linear trend for all
variables; thus we use h(x) = (1,x), where x = (21, ..., z5) and investigate whether or not adding
this linear trend to all inputs is helpful for the prediction.

R> colnames(input) <- c("x1", "x2", "x3", "x4", "x5")

R> trend.rgasp <- cbind(rep(1l, num_obs), input)

R> m.trend <- rgasp(design=input, response=output, trend=trend.rgasp)

R> dk.trend <- km(formula ~ x1 + x2 + x3 + x4 + x5, design=input, response=output)
R> colnames(testing_input) <- c("x1", "x2", "x3", "x4", "x5")

R> trend.test.rgasp <- cbind(rep(l, num_testing_input), testing_input)

R> m.trend.predict <- predict(m.trend, testing_input,

+ testing_trend=trend.test.rgasp)

R> dk.trend.predict <- predict(dk.trend, testing_input, type='UK')

R> m.trend.rmse <- sqrt(mean((m.trend.predict$mean - testing_output)~2))
R> m.trend.rmse

[1] 0.1259403

R> dk.trend.rmse <- sqrt(mean((dk.trend.predict$mean - testing_output) ~2))
R> dk.trend.rmse

[1] 0.8468056

Adding a linear trend does improve the out-of-sample prediction accuracy of the RobustGaSP
package; the RMSE decreases to 0.13, which is only about one third of the RMSE of the previous
model with the constant mean. However, the RMSE using the DiceKriging package with a linear

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

20 25

real output

10

prediction

Figure 8: Prediction of 200 held-out test points of the Friedman Function based on 40 maximin
LH samples. The y-axis is the real output and the x-axis is the prediction. The black
circles are the predictive mean from RobustGaSP and the red circles are the predictive
mean from DiceKriging. A constant mean basis function is used, i.e., h(x) = 1.

mean increases to 0.85, more than 6 times larger than that for the RobustGaSP. (That the RMSE
actually increased for DiceKriging is likely due to the additional difficulty of parameter estimation,
since now the additional linear trend parameters needed to be estimated; in contrast, for RobustGaSP,
the linear trend parameters are effectively eliminated through objective Bayesian integration.) The
predictions against the real output are plotted in Figure 9. The black circles correspond to the
predictive means from the RobustGaSP package, and are an excellent match to the real outputs.

In addition to point prediction, it is of interest to evaluate the uncertainties produced by the
emulators, through study of out-of-sample coverage of the resulting credible intervals and their
average lengths,

’ﬂ

Por(95%) = Z 1{y; (xF) € CL(95%)},

Lep(95%) = — Z length{CI;(95%)},

where CI;(95%) is the 95% posterior credible interval. An ideal emulator would have Poy(95%)
close to the 95% nominal level and a short average length. We first show Pc7(95%) and Lo (95%)
for the case of a constant mean basis function.

R> prop.m <- length(which((m.predict$lower95 <= testing_output)

+ & (m.predict$upper95 >= testing_output))) / num_testing_input

R> length.m <- sum(m.predict$upper95 - m.predict$lower95) / num_testing_input
R> prop.m

[1] o0.97

R> length.m

[1] 1.122993

R> prop.dk <- length(which((dk.predict$lower95 <= testing_output)

+ & (dk.predict$upper95 >= testing_output))) / num_testing_input
R> length.dk <- sum(dk.predict$upper95 - dk.predict$lower95) / num_testing_input
R> prop.dk

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 129

real output

prediction

Figure 9: Prediction of 200 held-out test points for the Friedman Function based on 40 maximin
LH design points. The y-axis is the real output and the x-axis is the prediction. The
black circles are the predictive means obtained from RobustGaSP, and the red circles
are the predictive means obtained from the DiceKriging package. In both cases, linear
terms are assumed for the mean basis function, i.e., h(x) = (1, x).

[1] 0.97
R> length.dk
[1] 3.176021

The Po1(95%) obtained by the RobustGaSP is 97%, which is close to the 95% nominal level;
and Lor(95%), the average lengths of the 95% credible intervals, is 1.12. In contrast, the coverage
of credible intervals from DiceKriging is also 97%, but this is achieved by intervals that are, on
average, about three times longer than those produced by RobustGaSP.

When linear terms are assumed in the basis function of the GaSP emulator, h(x) = (1,x),

R> prop.m.trend <- length(which((m.trend.predict$lower95 <= testing_output)

+ &(m.trend.predict$upper95 >= testing_output))) / num_testing_input
R> length.m.trend <- sum(m.trend.predict$upper9s -
+ m.trend.predict$lower95) / num_testing_input

R> prop.m.trend
[11 1

R> length.m.trend
[1] 0.8392971

R> prop.dk.trend <- length(which((dk.trend.predict$lower95 <= testing_output)

+ & (dk.trend.predict$upper95 >= testing_output))) / num_testing_input
R> length.dk.trend <- sum(dk.trend.predict$upper9s -
+ dk.trend.predict$lower95) / num_testing_input

R> prop.dk.trend
[1] 0.985
R> length.dk.trend

[1] 3.39423

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 130

The Pc1(95%) for RobustGaSP is 100% and Lo7(95%) = 0.839, a significant improvement over
the case of a constant mean. (The coverage of 100% is too high, but at least is conservative and is
achieved with quite small intervals.) For DiceKriging, the coverage is 98.5% with a linear mean, but
the average interval size is now around 4 times as those produced by RobustGaSP.

To see whether or not the differences in performance persists when the sample size increases, the
same experiment was run on the two emulators with sample size n = 80. When the constant mean
function is used, the RMSE obtained by the RobustGaSP package and the DiceKriging package
were 0.05 and 0.32, respectively. With h(x) = (1, x), the RMSE’s were 0.04 and 0.34, respectively.
Thus the performance difference remains and is even larger, in a proportional sense, than when the
sample size is 40.

DIAMOND computer model

We illustrate the PP GaSP emulator through two computer model data sets. The first testbed is
the ‘diplomatic and military operations in a non-warfighting domain’ (DIAMOND) computer model
(Taylor and Lane (2004)). For each given set of input variables, the dataset contains daily casualties
from the 2nd and 6th day after the earthquake and volcanic eruption in Giarre and Catania. The
input variables are 13-dimensional, including the speed of helicopter cruise and ground engineers,
hospital and food supply capacity. The complete list of the input variables and the full data set are
given in Overstall and Woods (2016).

The RobustGaSP package includes a data set from the DIAMOND simulator, where the training
and test output both contain the outputs from 120 runs of the computer model. The following code
fit a PP GaSP emulator on the training data using 3 initial starting points to optimize the kernel
parameters and an estimated nugget in the PP GaSP model. We then make prediction on the test
inputs using the constructed PP GaSP emulator.

R> data(humanity_model)

R> m.ppgasp <- ppgasp(design=humanity.X ,response=humanity.Y,
+ nugget.est=TRUE, num_initial_values=3)

R> m_pred <- predict(m.ppgasp, humanity.Xt)

R> sqrt(mean((m_pred$mean - humanity.Yt)~2))

[1] 294.9397
R> sd(humanity.Yt)
[1] 10826.49

The predictive RMSE of the PP GaSP emulator is 294.9397, which is much smaller than the
standard deviation of the test data. Further exploration shows the output has strong positive
correlation with the 11th input (food capacity). We then fit another PP GaSP model where the
food capacity is included in the mean function.

R> n < -dim(humanity.Y) [1]

R> n_testing=dim(humanity.Yt) [1]

R> H <- cbind(matrix(1, n, 1), humanity.X$foodC)

R> H_testing <- cbind(matrix(1l, n_testing, 1), humanity.Xt$foodC)

R> m.ppgasp_trend <- ppgasp(design=humanity.X, response=humanity.Y, trend=H,

+ nugget.est=TRUE, num_initial_values=3)

R> m_pred_trend <- predict(m.ppgasp_trend, humanity.Xt, testing_trend=H_testing)
R> sqrt(mean((m_pred_trend$mean - humanity.Yt)~2))

[1] 279.6022

The above result indicates the predictive RMSE of the PP GaSP emulator becomes smaller when
the food capacity is included in the mean function. We also fit GaSP emulators by the DiceKriging
package independently for each daily output. We include the following two criteria.

k n*
1
Por(95%) = 1 >) Wul' (x)) € C1L;(95%)}
i=1j=1
k n*
1
Lor(95%) = 1 D7) length{C1;;(95%)},
i=1j=1

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 131

RMSE Pr(95%) Ler(95%)

Independent GaSP emulator constant mean 720.16 0.99000 3678.5
Independent GaSP emulator selected trend — 471.10 0.96667 2189.8
PP GaSP constant mean 204.94 0.95167 1138.3
PP GaSP selected trend 279.60 0.95333 1120.6

Table 4: Predictive performance between the independent GaSP emulator by the DiceKriging
package (first two rows) and PP GaSP emulator by the RobustGaSP package (last
two rows). The selected trend means the food capacity input is included in the mean
function of the emulator, whereas the constant mean denotes the constant mean function.
An estimated nugget is included in all methods. The baseline RMSE is 10817.47 using
the mean of the output to predict.

where for 1 < i < kand 1 <j <n®*, y;k (x;") is the held-out test output of the it" run at the jth
day; g5 (x;‘) is the corresponding predicted value; C1I;;(95%) is the 95% predictive credible interval;
and length{C1T;;(95%)} is the length of the 95% predictive credible interval. An accurate emulator
should have the Poj(95%) close to the nominal 0.95 and have small Lo7(95%) (the average length
of the predictive credible interval).

The predictive accuracy by the independent GaSP emulator by the DiceKriging and the PP
GaSP emulator for the DIAMOND computer model is recorded in Table 4. First, we noticed the
predictive accuracy of both emulators seems to improve with the food capacity included in the mean
function. Second, the PP GaSP seems to have much lower RMSE than the Independent GaSP
emulator by the DiceKriging in this example, even though the kernel used in both packages are the
same. One possible reason is that estimated kernel parameters by the marginal posterior mode from
the RobustGaSP are better. Nonetheless, the PP GaSP is a restricted model, as the covariance
matrix is assumed to be the same across each output variable (i.e. casualties at each day in this
example). This assumption may be unsatisfying for some applications, but the improved speed in
computation can be helpful. We illustrate this point by the following example for the TITAN2D
computer model.

TITAN2D computer model

In this section, we discuss an application of emulating the massive number of outputs on the spatio-
temporal grids from the TITAN2D computer model (Patra et al. (2005); Bayarri et al. (2009)). The
TITAN2D simulates the volcanic eruption from Soufriere Hill Volcano on Montserrat island for a given
set of input, selected to be the flow volume, initial flow direction, basal friction angle, and interval
friction angle. The output concerned here are the maximum pyroclastic flow heights over time at
each spatial grid. Since each run of the TITAN2D takes between 1 to 2 hours, the PP GaSP emulator
was developed in Gu and Berger (2016) to emulate the outputs from the TITAN2D. The data from
the TITAN2D computer model can be found in https://github.com/MengyangGu/TITAN2D.

The following code will load the TITAN2D data in R:

R> library(repmis)
R> source_data("https://github.com/MengyangGu/TITAN2D/blob/master/TITAN2D.rda?raw=True")

[1] "input_variables" "pyroclastic_flow_heights"
[3] "loc_index"

> rownames (loc_index)

[1] "crater" "small_flow_area" "Belham_Valley"

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://github.com/MengyangGu/TITAN2D

CONTRIBUTED RESEARCH ARTICLES

132

The data contain three data frames. The input variables are a 683 x 4 matrix, where each row is

a set of input variables for each simulated run. The output pyroclastic flow heights is a 683 x 23040
output matrix, where each row is the simulated maximum flow heights on 144 x 160 grids. The
index of the location has three rows, which records the index set for the crater area, small flow area
and Belham Valley.

We implement the PP GaSP emulator in the RobustGaSP package and test on the TITAN2D

data herein. We use the first 50 runs to construct the emulator and test it on the latter 633 runs.
As argued in Gu and Berger (2016), almost no one is interested in the hazard assessment in the
crater area. Thus we test our emulator for two regions with habitat before. The first one is the
Belham Valley (a northwest region to the crater of the Soufriére Hill Volcano. The second region is
the “non-crater" area, where we consider all the area after deleting the crater area. We also delete
all locations where all the outputs are zero (meaning no flow hits the locations in the training data).
For those locations, one may predict the flow height to be zero.

The following code will fit the PP GaSP emulator and make predictions on the Balham Valley

area for each set of held out output.

R>
R>
R>
R>
R>
R>

input <- input_variables[1:50,]

testing_input <- input_variables[51:683,]

output <- pyroclastic_flow_heights[1:50, which(loc_index[3,]==1)]
testing_output <- pyroclastic_flow_heights[51:683, which(loc_index[3,]==1)]
n=dim(output) [1]

n_testing <- dim(testing_output) [1]

##delete those location where all output are zero

R>
R>
+
+
+

+}

index_all_zero <- NULL

for(i_loc in 1: dim(output) [2]) {

if (sum(output[,i_loc]==0)==50) {
index_all_zero <- c(index_all_zero, i_loc)

}

##transforming the output

R>
R>
+
R>
+
R>

output_log_1 <- log(output+1)

trend=cbind(rep(1, n),input[,1]), nugget.est=TRUE,max_eval=100, num_initial_values=3)
pred_ppgasp=predict.ppgasp(m.ppgasp, testing_input[,1:3],
testing_trend=cbind(rep(l, n_testing), testing_input[,1]))

m_pred_ppgasp_mean <- exp(pred_ppgasp$mean)-1

R> m_pred_ppgasp_LB <- exp(pred_ppgasp$lower95)-1

R>
R>

m_pred_ppgasp_UB <- exp(pred_ppgasp$upper95)-1

sqrt (mean(((m_pred_ppgasp_mean - testing_output_nonallzero)~2)))

[1] 0.2999377

In the above code, we fit the model using the transformed output and the first three inputs, as

the fourth input (internal friction input) has almost no effect on the output. We also transform it
back for prediction. As the fourth input is not used for emulation, we add a nugget to the model.
The flow volume is included to be in the mean function, as the flow volume is positively correlated
with the flow heights in all locations. These settings were used in Gu and Berger (2016) for fitting
the PP GaSP emulator to emulate the TITAN2D computer model. The only function we have not
implemented in the current version of the RobustGaSP package is the “periodic folding" technique
for the initial flow angle, which is a periodic input. This method will appear in a future version of
the package.

We compare the PP GaSP emulator with the independent GaSP emulator by the DiceKriging

package with the same choice of the kernel function, mean function and transformation in the output.
The PP GaSP emulator performs slightly better in terms of the predictive RMSE and the data
covered in the 95% predictive credible interval by the PP GaSP is also slightly closer to the nominal
95% level.

The biggest difference is the computational time for these examples. The computational

complexity by the independent GaSP emulator by the DiceKriging package is O(kzn?’)7 as it fits
k emulators independently for the outputs at k spatial grid. In comparison, the computational
complexity by the PP GaSP is the maximum of O(n®) and O(kn?). When k » n, the computational
time of the PP GaSP is dominated by O(kn?), so the computational improvement in this example
is thus obvious. Note that n is only 50 here. The ratio of the computational time between the
independent GaSP and PP GaSP gets even larger when n increases.

We have to acknowledge that, however, the PP GaSP emulator assumes the same covariance

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

m.ppgasp <- ppgasp(design=input[,1:3], response=as.matrix(output_log_1[,-index_all_zero]),

CONTRIBUTED RESEARCH ARTICLES 133

Belham Valley RMSE Pgr(95%) Ler(95%) Time (s)

Independent GaSP emulator 0.30166 0.91100 0.52957 294.43

PP GaSP 0.29994 0.93754 0.59474 4.4160

Non-crater area RMSE Por(95%) Lcr(95%) Time (s)

Independent GaSP emulator 0.33374 0.91407 0.53454 1402.04

PP GaSP 0.32516 0.94855 0.60432 20.281

Table 5: Predictive performance between the independent GaSP emulator by the DiceKriging
package and PP GaSP emulator by the RobustGaSP package for the outputs of the
TITAN2D computer model in the Belham Valley and non-crater area. 50 runs were
used to fit the emulators and the 633 runs were used as the held-out test outputs. The
RMSE, Por(95%), Lcor(95%) and the computational time in seconds are shown in
the second column to the fifth column for each method, respectively.

matrix across all output vector and estimate the kernel parameters using all output data. This
assumption may not be satisfied in some applications. We do not believe that the PP GaSP
emulator performs uniformly better than the independent GaSP emulator. Given the computational
complexity and predictive accuracy shown in the two real examples discussed in this paper, the PP
GaSP emulator can be used as a fast surrogate of a computer model with massive output.

Concluding remarks

Computer models are widely used in many applications in science and engineering. The Gaussian
stochastic process emulator provides a fast surrogate for computationally intensive computer models.
The difficulty of parameter estimation in the GaSP model is well-known, as there is no closed-form,
well-behaved, estimator for the correlation parameters; and poor estimation of the correlation
parameters can lead to seriously inferior predictions. The RobustGaSP package implements marginal
posterior mode estimation of these parameters for parameterizations that satisfy the “robustness"
criteria from Gu et al. (2018). Part of the advantage of this method of estimation is that the posterior
has zero density for the problematic cases in which the correlation matrix is an identity matrix or
the matrix or all ones. Some frequently used estimators, such as the MLE, do not have this property.
Several examples have been provided to illustrate the use of the RobustGaSP package. Results of
out-of-sample prediction suggest that the estimators in RobustGaSP, with small to moderately large
sample sizes, perform considerably better than the MLE.

Although the main purpose of the RobustGaSP package is to emulate computationally in-
tensive computer models, several functions could be useful for other purposes. For example, the
findInertInputs function utilizes the posterior modes to find inert inputs at no extra computational
cost than fitting the GaSP model. A noise term can be added to the GaSP model, with fixed or
estimated variance, allowing RobustGaSP to analyze noisy data from either computer models or,
say, spatial experiments.

While posterior modes are used for estimating the correlation parameters in the current software,
it might be worthwhile to implement posterior sampling for this Bayesian model. In GaSP models,
the usual computational bottleneck for such sampling is the evaluation of the likelihood, as each
evaluation requires inverting the covariance matrix, which is a computation of order of O(n?’)7 with
n being the number of observations. As discussed in Gu and Xu (2017), however, exact evaluation of
the likelihood for the Matérn covariance is only O(n) for the case of a one-dimensional input, using
the stochastic differential equation representation of the GaSP model. If this could be generalized to
multi-dimensional inputs, posterior sampling would become practically relevant.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 134

Acknowledgements

This research was supported by NSF grants DMS-1007773, DMS-1228317, EAR-1331353, and
DMS-1407775. The research of Mengyang Gu was part of his PhD thesis at Duke University. The
authors thank the editor and the referee for their comments that substantially improved the article.

Bibliography

J. An and A. Owen. Quasi-regression. Journal of complezity, 17(4):588-607, 2001. [p118]

I. Andrianakis and P. G. Challenor. The effect of the nugget on gaussian process emulators of
computer models. Computational Statistics €& Data Analysis, 56(12):4215-4228, 2012. [pl112]

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu. A
framework for validation of computer models. Technometrics, 49(2):138-154, 2007. [p112]

M. J. Bayarri, J. O. Berger, E. S. Calder, K. Dalbey, S. Lunagomez, A. K. Patra, E. B. Pitman,
E. T. Spiller, and R. L. Wolpert. Using statistical and computer models to quantify volcanic
hazards. Technometrics, 51:402-413, 2009. [p113, 114, 123, 131]

R. Carnell. Lhs: Latin Hypercube Samples, 2016. URL https://CRAN.R-project.org/package=1hs.
R package version 0.13. [pl16]

H. Chen, J. Loeppky, J. Sacks, and W. Welch. Analysis methods for computer experiments: How to
assess and what counts? Statistical science, 31(1):40-60, 2016. [p114]

G. M. Dancik. Mlegp: Maximum Likelihood Estimates of Gaussian Processes, 2013. URL https:
//CRAN.R-project.org/package=mlegp. R package version 3.1.4. [p112]

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1-67, 1991.
[p126]

M. Gu. Robust Uncertainty Quantification and Scalable Computation for Computer Models with
Massive Output. PhD thesis, Duke University, 2016. [p112, 124]

M. Gu. Jointly robust prior for Gaussian stochastic process in emulation, calibration and variable
selection. Bayesian Analysis, In Press. arXiv preprint arXiv:1804.09329, 2018. [p113, 115, 117]

M. Gu and J. O. Berger. Parallel partial Gaussian process emulation for computer models with
massive output. The Annals of Applied Statistics, 10(3):1317-1347, 2016. [p112, 113, 120, 123,
131, 132]

M. Gu and Y. Xu. Nonseparable Gaussian stochastic process: A unified view and computational
strategy. arXiv preprint arXiw:1711.11501, 2017. [p133]

M. Gu, J. Palomo, and J. O. Berger. RobustGaSP: Robust Gaussian Stochastic Process Emulation,
2016. URL https://CRAN.R-project.org/package=RobustGaSP. R package version 0.5.7. [p112]

M. Gu, X. Wang, and J. O. Berger. Robust Gaussian stochastic process emulation. The Annals of
Statistics, 46(6A):3038-3066, 2018. [p112, 113, 114, 125, 133]

D. Higdon and others. Space and space-time modeling using process convolutions. Quantitative
methods for current environmental issues, 37-56, 2002. [p116]

M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society B, 63(3):425-464, 2001. [p112]

Y. Li, C. Campbell, and M. Tipping. Bayesian automatic relevance determination algorithms for
classifying gene expression data. Bioinformatics, 18(10):1332-1339, 2002. [p120]

C. Linkletter, D. Bingham, N. Hengartner, D. Higdon, and Q. Y. Kenny. Variable selection for
gaussian process models in computer experiments. Technometrics, 48(4):478-490, 2006. [p117]

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503-528, 1989. [p123]

B. MacDonald, P. Ranjan, and H. Chipman. Gpfit: An r package for fitting a gaussian process
model to deterministic simulator outputs. Journal of Statistical Software, 64(i12), 2015. [p112]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=mlegp
https://CRAN.R-project.org/package=mlegp
https://CRAN.R-project.org/package=RobustGaSP

CONTRIBUTED RESEARCH ARTICLES 135

D. J. C. MacKay. Bayesian methods for backpropagation networks. In E. Domany, J. L. van
Hemmen, and K. Schulten, editors, Models of Neural Networks III, chapter 6, pages 211-254.
Springer-Verlag, 1996. [p120]

M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of computer experiments:
Use of derivatives in surface prediction. Technometrics, 35(3):243-255, 1993. [p118]

R. M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics.
Springer-Verlag, 1996. [p120]

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of computation, 35
(151):773-782, 1980. [pl13, 123]

D. Nychka, R. Furrer, and S. Sain. fields: Tools for Spatial Data. R Package Version 8.4-1, 2016.
URL https://CRAN.R-project.org/package=fields. [pl12]

A. M. Overstall and D. C. Woods. Multivariate emulation of computer simulators: Model selection
and diagnostics with application to a humanitarian relief model. Journal of the Royal Statistical
Society C, 65(4):483-505, 2016. [p130]

J. Palomo, R. Paulo, G. Garcia-Donato, and others. SAVE: An R package for the statistical analysis
of computer models. Journal of Statistical Software, 64(13):1-23, 2015. [p112]

A. K. Patra, A. Bauer, C. Nichita, E. B. Pitman, M. Sheridan, M. Bursik, B. Rupp, A. Webber,
A. Stinton, L. Namikawa, and others. Parallel adaptive numerical simulation of dry avalanches
over natural terrain. Journal of Volcanology and Geothermal Research, 139(1):1-21, 2005. [pl13,
131]

R. Paulo, G. Garcia-Donato, and J. Palomo. Calibration of computer models with multivariate
output. Computational Statistics & Data Analysis, 56(12):3959-3974, 2012. [p112]

G. Pujol, B. Iooss, A. J. with contributions from Khalid Boumhaout, S. D. Veiga, J. Fruth,
L. Gilquin, J. Guillaume, L. Le Gratiet, P. Lemaitre, B. Ramos, T. Touati, and F. Weber.
Sensitivity: Global Sensitivity Analysis of Model Outputs, 2016. URL https://CRAN.R-project.
org/package=sensitivity. R package version 1.12.2. [p117]

C. Ren, D. Sun, and C. He. Objective bayesian analysis for a spatial model with nugget effects.
Journal of Statistical Planning and Inference, 142(7):1933-1946, 2012. [p120]

O. Roustant, D. Ginsbourger, and Y. Deville. Dicekriging, diceoptim: Two r packages for the analysis
of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical
Software, 51(1):1-55, 2012. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v051.101.
[pl12, 114, 120]

O. Roustant, D. Ginsbourger, and Y. Deville. DiceKriging: Kriging Methods for Computer Ez-
periments, 2018. URL https://CRAN.R-project.org/package=DiceKriging. R package version
1.5.6. [p124]

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments.
Statistical science, 4(4):409-423, 1989. [p112]

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Ezperiments.
Springer-Verlag, 2003. [p114]

I. M. Sobol” On sensitivity estimation for nonlinear mathematical models. Matematicheskoe
Modelirovante, 2(1):112-118, 1990. [p117]

I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their monte carlo
estimates. Mathematics and computers in simulation, 55(1):271-280, 2001. [p117]

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, 2012. [p114]

B. Taylor and A. Lane. Development of a novel family of military campaign simulation models.
Journal of the Operational Research Society, 55(4):333-339, 2004. [p130]

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of machine
learning research, 1(Jun):211-244, 2001. [p120]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, 2002. [p112]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=fields
https://CRAN.R-project.org/package=sensitivity
https://CRAN.R-project.org/package=sensitivity
https://doi.org/10.18637/jss.v051.i01
https://CRAN.R-project.org/package=DiceKriging

CONTRIBUTED RESEARCH ARTICLES 136

B. Worley. Deterministic uncertainty analysis, ornl-0628. Awailable from National Technical
Information Service, 5285, 1987. [p118]

J. Ypma. Nloptr: R Interface to NLopt, 2014. URL https://CRAN.R-project.org/package=nloptr.
R package version 1.0.4. [p123]

Mengyang Gu

Department of Statistics and Applied Probability
University of California, Santa Barbara

Santa Barbara, California, USA

michaelguzju@gmail.com

Jestis Palomo

Department of Business Administration
Rey Juan Carlos University

Madrid, Spain

jesus.palomoQurjc.es

James O. Berger

Department of Statistical Science
Duke University

Durham, North Carolina, USA
berger@stat.duke.edu

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr
mailto:michaelguzju@gmail.com
mailto:jesus.palomo@urjc.es
mailto:berger@stat.duke.edu

CONTRIBUTED RESEARCH ARTICLES 137

atable: Create Tables for Clinical Trial
Reports

by Armin Stréobel

Abstract Examining distributions of variables is the first step in the analysis of a clinical trial
before more specific modelling can begin. Reporting these results to stakeholders of the trial is
an essential part of a statistician’s work. The atable package facilitates these steps by offering
easy-to-use but still flexible functions.

Introduction

Reporting the results of clinical trials is such a frequent task that guidelines have been established
that recommend certain properties of clinical trial reports; see Moher et al. (2010). In particular,
Item 17a of CONSORT states that “Trial results are often more clearly displayed in a table rather
than in the text”. Item 15 of CONSORT suggests “a table showing baseline demographic and clinical
characteristics for each group”.

The atable package facilitates this recurring task of data analysis by providing a short approach
from data to publishable tables. The atable package satisfies the requirements of CONSORT
statements Item 15 and 17a by calculating and displaying the statistics proposed therein, i.e. mean,
standard deviation, frequencies, p-values from hypothesis tests, test statistics, effect sizes and
confidence intervals thereof. Only minimal post-processing of the table is needed, which supports
reproducibility. The atable package is intended to be modifiable: it can apply arbitrary descriptive
statistics and hypothesis tests to the data. For this purpose, atable builds on R’s S3-object system.

R already has many functions that perform single steps of the analysis process (and they perform
these steps well). Some of these functions are wrapped by atable in a single function to narrow the
possibilities for end users who are not highly skilled in statistics and programming. Additionally,
users who are skilled in programming will appreciate atable because they can delegate this repetitive
task to a single function and then concentrate their efforts on more specific analyses of the data at
hand.

Context

The atable package supports the analysis and reporting of randomised parallel group clinical trials.
Data from clinical trials can be stored in data frames with rows representing ’patients’ and columns
representing 'measurements’ for these patients or characteristics of the trial design, such as location
or time point of measurement. These data frames will generally have hundreds of rows and dozens
of columns. The columns have different purposes:

e Group columns contain the treatment that the patient received, e.g. new treatment, control
group, or placebo.

o Split columns contain strata of the patient, e.g. demographic data such as age, sex or time
point of measurement.

e Target columns are the actual measurements of interest, directly related to the objective of
the trial. In the context of ICH E9 ICH E9 (1999), these columns are called ’endpoints’.

The task is to compare the target columns between the groups, separately for every split column.
This is often the first step of a clinical trial analysis to obtain an impression of the distribution of
data. The atable package completes this task by applying descriptive statistics and hypothesis tests
and arranges the results in a table that is ready for printing.

Additionally atable can produce tables of blank data.frames with arbitrary fill-ins (e.g. X.xx) as
placeholders for proposals or report templates.

Usage

To exemplify the usage of atable, we use the dataset arthritis of multgee Touloumis (2015). This
dataset contains observations of the self-assessment score of arthritis, an ordered variable with five
categories, collected at baseline and three follow-up times during a randomised comparative study of
alternative treatments of 302 patients with rheumatoid arthritis.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=multgee

CONTRIBUTED RESEARCH ARTICLES 138

library(atable)
library(multgee)
data(arthritis)
All columns of arthritis are numeric. Set more appropriate classes:
arthritis = within(arthritis, {
score = ordered(y)
baselinescore = ordered(baseline)
time = pasteO("Month ", time)
sex = factor(sex, levels = c(1,2), labels c("female", "male"))
trt = factor(trt, levels = c(1,2), labels = c("placebo", "drug"))})

First, create a table that contains demographic and clinical characteristics for each group. The
target variables are sex, age and baselinescore; the variable trt acts as the grouping variable:

the_table <- atable::atable(subset(arthritis, time == "Month 1"),
target_cols = c("age", "sex", "baselinescore"),
group_col = "trt")

Now print the table. Several functions that create a INTEX-representation Mittelbach et al. (2004)
of the table exist: latex of Hmisc Harrell Jr et al. (2018), kable of knitr Xie (2018) or xtable of
xtable Dahl et al. (2018). latex is used for this document.

Table 1 reports the number of observations per group. The distribution of numeric variable
age is described by its mean and standard deviation, and the distributions of categorical variable
sex and ordered variable baselinescore are presented as percentages and counts. Additionally,
missing values are counted per variable. Descriptive statistics, hypothesis tests and effect sizes are
automatically chosen according to the class of the target column; see table 3 for details. Because
the data is from a randomised study, hypothesis tests comparing baseline variables between the
treatment groups are omitted.

Now, present the trial results with atable. The target variable is score, variable trt acts as
the grouping variable, and variable time splits the dataset before analysis:

the_table <- atable(score ~ trt | time, arthritis)

Table 2 reports the number of observations per group and time point. The distribution of ordered
variables score is presented as counts and percentages. Missing values are also counted per variable
and group. The p-value and test statistic of the comparison of the two treatment groups are shown.
The statistical tests are designed for two or more independent samples, which arise in parallel group
trials. The statistical tests are all non-parametric. Parametric alternatives exist that have greater
statistical power if their requirements are met by the data, but non-parametric tests are chosen for
their broader range of application. The effect sizes with a 95% confidence interval are calculated;
see table 3 for details.

IATEX is not the only supported output format. All possible formats are:

o IATEX(as shown in this document), further processed with e.g. latex of Hmisc, kable of knitr
or xtable of xtable.

e HTML, further processed with e.g. knitr: :kable of knitr.

e Word, can be further processed with e.g. flextable of flextable Gohel (2018).

¢ R’s console. Human readable format meant for explorative interactive analysis.

The output format is declared by the argument format_to of atable, or globally via atable_options.
The settings package van der Loo (2015) allows global declaration of various options of atable.

Modifying atable

The current implementation of tests and statistics (see table 3) is not suitable for all possible datasets.
For example, the parametric t-test or the robust estimator median may be more adequate for some
datasets. Additionally, dates and times are currently not handled by atable.

It is intended that some parts of atable can be altered by the user. Such modifications are
accomplished by replacing the underlying methods or adding new ones while preserving the structures
of arguments and results of the old functions. The workflow of atable (and the corresponding function
in parentheses) is as follows:

1. calculate statistics (statistics)

2. apply hypothesis tests (two_sample_htest or multi_sample_htest)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=settings

CONTRIBUTED RESEARCH ARTICLES

139

Table 1: Demographics of dataset arthritis.

Group placebo drug
Observations
149 153
age
Mean (SD) 51 (11) 50 (11)
valid (missing) 149 (0) 153 (0)
sex
female 29% (43) 26% (40)
male 71% (106) 74% (113)
missing 0% (0) 0% (0)
baselinescore
1 7.4% (11) 7.8% (12)
2 23% (35) 25% (38)
3 47% (70) 45% (69)
4 19% (28) 18% (28)
5 3.4% (5) 3.9% (6)
missing 0% (0) 0% (0)

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 140

Table 2: Hypothesis tests of dataset arthritis.

Group placebo drug p stat Effect Size (CI)
Month 1
Observations
149 153
score
1 6% (9) 1.3% (2) 0.08 9.9e+03 -0.12 (-0.24; 0.0017)
2 23% (35) 10% (16)
3 34% (50) 50% (77)
4 30% (45) 33% (51)
5 6% (9) 3.3% (5)
missing 0.67% (1) 1.3% (2)
Month 3
Observations
149 153
score
1 6% (9) 2% (3) 0.0065 9e+03 -0.2 (-0.32; -0.08)
2 21% (32) 18% (27)
3 42% (63) 34% (52)
4 24% (36) 33% (50)
5 5.4% (8) 10% (16)
missing 0.67% (1) 3.3% (5)
The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

Month 5

CONTRIBUTED RESEARCH ARTICLES 141

Table 3: R classes, scale of measurement and atable. The table lists the descriptive statistics and
hypothesis tests applied by atable to the three R classes factor, ordered and numeric.
The table also reports the corresponding scale of measurement. atable treats the classes
character and logical as the class factor.

R class factor ordered numeric
scale of measure- nominal ordinal interval
ment
statistic counts occurrences as factor Mean and standard
of every level deviation
two-sample test x? test Wilcoxon rank sum Kolmogorov-
test Smirnov test
effect size two levels: odds ra- Cliff’s A Cohen’s d

tio, else Cramér’s
)

multi-sample test X2 test Kruskal-Wallis test =~ Kruskal-Wallis test

3. format statistics results (format_statistics)
4. format hypothesis test results (format_tests).

These five functions may be altered by the user by replacing existing or adding new methods to
already existing S3-generics. Two examples are as follows:

Replace existing methods

The atable package offers three possibilities to replace existing methods:

e pass a function to atable_options. This affects all following calls of atable.

e pass a function to atable. This affects only a single call of atable and takes precedence over
atable_options.

o replace a function in atable’s namespace. This is the most general possibility, as it is applicable
to all R packages, but it also needs more code than the other two and is not as easily reverted.
We now define three new functions to exemplify these three possibilities.

First, define a modification of two_sample_htest.numeric, which applies t.test and ks.test
simultaneously. See the documentation of two_sample_htest: the function has two arguments called
value and group and returns a named list.

new_two_sample_htest_numeric <- function(value, group, ...){
d <- data.frame(value = value, group = group)
group_levels <- levels(group)

x <- subset(d, group %inJ) group_levels[1], select = "value", drop
y <- subset(d, group %in), group_levels[2], select = "value", drop

TRUE)
TRUE)

ks_test_out <- stats::ks.test(x, y)
t_test_out <- stats::t.test(x, y)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 142

out <- list(p_ks = ks_test_out$p.value,
p_t = t_test_out$p.value)

return(out)

}

Secondly define a modification of statistics.numeric, that calculates the median, MAD, mean
and SD. See the documentation of statistics: the function has one argument called x and the
ellipsis The function must return a named list.

new_statistics_numeric <- function(x, ...){

statistics_out <- list(Median = median(x, na.rm = TRUE),
MAD = mad(x, na.rm = TRUE),
Mean = mean(x, na.rm = TRUE),
SD = sd(x, na.rm = TRUE))

class(statistics_out) <- c("statistics_numeric", class(statistics_out))
We will need this new class later to specify the format

Third, define a modification of format_statistics: the median and MAD should be next to each
other, separated by a semicolon; the mean and SD should go below them. See the documentation
of format_statistics: the function has one argument called x and the ellipsis The function
must return a data.frame with names tag and value with class factor and character, respectively.
Setting a new format is optional because there exists a default method for format_statistics that
performs the rounding and arranges the statistics below each other.

new_format_statistics_numeric <- function(x, ...){
Median_MAD <- paste(round(c(x$Median, x$MAD), digits = 1), collapse = "; ")
Mean_SD <- paste(round(c(x$Mean, x$SD), digits = 1), collapse = "; ")

out <- data.frame(
tag = factor(c("Median; MAD", "Mean; SD"), levels = c("Median; MAD", "Mean; SD")),
the factor needs levels for the non-alphabetical order
value = c(Median_MAD, Mean_SD),
stringsAsFactors = FALSE)
return(out)

}
Now apply the three kinds of modification to atable: We start with atable’s namespace:

utils::assignInNamespace(x = "two_sample_htest.numeric",
value = new_two_sample_htest_numeric,
ns = "atable")

Here is why altering two_sample_htest.numeric in atable’s namespace works: R’s lexical scoping
rules state that when atable is called, R first searches in the enclosing environment of atable to
find two_sample_htest.numeric. The enclosing environment of atable is the environment where it
was defined, namely, atable’s namespace. For more details about scoping rules and environments,
see e.g. Wickham (2014), section ‘Environments’.

Then modify via atable_options:
atable_options('statistics.numeric' = new_statistics_numeric)

Then modify via passing new_format_statistics_numeric as an argument to atable, together
with actual analysis. See table 4 for the results.

the_table <- atable(age ~ trt, arthritis,
format_statistics.statistics_numeric = new_format_statistics_numeric)

The modifications in atable_options are reverted by calling atable_options_reset (), changes in
the namespace are reverted by calling utils: :assignInNamespace with suitable arguments.

Replacing methods allows us to create arbitrary tables, even tables independent of the supplied
data. We will create a table of a blank data.frame with arbitrary fill-ins (here X.xx) as placeholders.
This is usefull for proposals or report templates:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

143

Table 4: Modified atable now calculates the median, MAD, t-test and KS-test for numeric
variables. The median is greater than the mean in both the drug and placebo group,
indicating a skewed distribution of age. Additionally the KS-test is significant at the
5% level, while the t-test is not.

Group placebo drug p_ks p_t
Observations

447 459
age

Median; MAD 55; 10.4 53; 10.4 0.043 0.38

Mean; SD 50.7; 11.2 50.1; 11

create empty data.frame with non-empty column names
E <- atable::test_data[FALSE,]

stats_placeholder <- function(x, ...){

return(list (Mean = "X.xx",
SD = "X.xx"))
}

the_table <- atable::atable(E, target_cols = c("Numeric", "Factor"),
statistics.numeric = stats_placeholder)

See table 5 for the results. This table also shows that atable accepts empty data frames without
errors.

Add new methods
In the current implementation of atable, the generics have no method for class Surv of survival
Therneau (2015). We define two new methods: the distribution of survival times is described by

its mean survival time and corresponding standard error; the Mantel-Haenszel test compares two
survival curves.

statistics.Surv <- function(x, ...){
survfit_object <- survival::survfit(x ~ 1)

copy from survival:::print.survfit:
out <- survival:::survmean(survfit_object, rmean = "common")

return(list(mean_survival_time = out$matrix["*rmean"],
SE = out$matrix["*se(rmean)"]))
}

two_sample_htest.Surv <- function(value, group, ...){

survdiff_result <- survival::survdiff(value~group, rho=0)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES

144

Table 5: atable applied to an empty data frame with placeholder statistics for numeric variables.
The placeholder-function is applied to the numeric variable, printing X.xx in the table.
The empty factor variable is summarized in the same way as non-empty factors: by
returning percentages and counts; in this case yielding 0/0 = NaN percent and counts of
0 in every category, as expected. Note, that the empty data frame still needs non-empty

column names.

Group value
Observations
0

Numeric

Mean X.xx

SD X.xx
Factor

G3 NaN% (0)

G2 NaN% (0)

G1 NaN% (0)

GO NaN% (0)

missing NaN% (0)

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 145

copy from survival:::print.survdiff:

etmp <- survdiff_result$exp

df <- (sum(1 * (etmp > 0))) - 1

p <- 1 - stats::pchisq(survdiff_result$chisq, df)

return(list(p = p,
stat = survdiff_result$chisq))

These two functions are defined in the user’s workspace, the global environment. It is sufficient to
define them there, as R’s scoping rules will eventually find them after going through the search path,
see Wickham (2014).

Now, we need data with class Surv to apply the methods. The dataset ovarian of survival
contains the survival times of a randomised trial comparing two treatments for ovarian cancer.
Variable futime is the survival time, fustat is the censoring status, and variable rx is the treatment

group.

library(survival)
set classes
ovarian <- within(survival::ovarian, {time_to_event = survival::Surv(futime, fustat)})

Then, call atable to apply the statistics and hypothesis tests. See tables 6 for the results.

atable(ovarian, target_cols = c("time_to_event"), group_col = "rx")

Table 6: Hypothesis tests of the dataset ovarian.

Group 1 2 p stat

Observations

13 13

time to event

mean_ survival time 650 889 0.3 1.1

SE 120 115

Discussion

A single function call does the job, and in conjunction with report-generating packages such as knitr,
accelerates the analysis and reporting of clinical trials.

Other R packages exist to accomplish this task:
e furniture Barrett et al. (2018)
« tableone Yoshida and Bohn. (2018)

o stargazer Hlavac (2018): focus is more on reporting regression models; no grouping variables,
so no two-sample hypothesis tests included; and descriptive statistics are comparable to atable

e DescTools Signorell (2018): comparable functions are Desc (only describes data.frames, no
hypothesis tests) and PercTable (contingency tables only).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=furniture
https://CRAN.R-project.org/package=tableone
https://CRAN.R-project.org/package=stargazer
https://CRAN.R-project.org/package=DescTools

CONTRIBUTED RESEARCH ARTICLES 146

furniture and tableone have high overlap with atable, and thus we compare their advantages relative
to atable in greater detail:

Advantages of furniture: :tablel are:
o interacts well with margrittr’s pipe %>% Bache and Wickham (2014), as mentioned in the
examples of 7tablel. This facilitates reading the code.

« handles objects defined by dplyr’s group_by to define grouping variables Wickham et al. (2019).
atable has no methods defined for these objects.

o uses non-standard evaluation, which allows the user to create and modify variables from within
the function itself, e.g.:

tablel(df, x2 = ifelse(x > 0, 1, 0)).
This is not possible with atable.
Advantages of tableone: :CreateTableOne are:

o allows arbitrary column names and prints these names in the resulting table unaltered. This is
useful for generating human-readable reports. Blanks and parentheses are allowed for reporting
e.g. 'Sex (Male) x%’. Also, non-ASCII characters are allowed. This facilitates reporting in
languages that have little or no overlap with ASCII. atable demands syntactically valid names
defined by make.names.

e counting missing values is easily switched on and off by an argument of tableone: : CreateTableOne.
In atable a redefinition of a function is needed.

o allows pairwise comparisons tests when data is grouped into more than two classes. atable
allows only multivariate tests.

Advantages of atable are:

e options may be changed locally via arguments of atable and globally via atable_options,
e easy expansion via S3 methods,

e formula syntax,

o distinction between split_cols and group_col,

e accepts empty data.frames. This is useful when looping over a list of possibly empty data
frames in subgroup analysis, see table 5,

« allows to create tables with a blank data.frame with arbitrary fill-ins (e.g. X.xx) as placeholders

for proposals or report templates, also see table 5.

Changing options is exemplified in section 16.4: passing options to atable allows the user to modify
a single atable-call; changing atable_options will affect all subsequent calls and thus spares the
user passing these options to every single call.

Descriptive statistics, hypothesis tests and effect sizes are automatically chosen according to
the class of the target column. R’s S3-object system allows a straightforward implementation and
extension of this feature, see section 16.4.

atable supports the following concise and self-explanatory formula syntax:
atable(target_cols ~ group_col | split_cols, ...)

R users are used to working with formulas, such as via the 1m function for linear models. When
fitting a linear model to randomised clinical trial data, one can use

Im(target_cols ~ group_col, ...)

to estimate the influence of the interventions group_col on the endpoint target_cols. atable
mimics this syntax:

atable(target_cols ~ group_col, ...)

performs a hypothesis test, whether there is an influence of the interventions group_col on the
endpoint target_cols.
Also, statisticians know the notion of conditional probability:

P(target_cols | split_cols).

This denotes the distribution of target_cols given split_cols. atable borrows the pipe | from
conditional probability:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=margrittr
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLES 147

atable(target_cols ~ group_col | split_cols)

shows the distribution of the endpoint target_cols within the interventions group_col given the
strata defined by split_cols.

atable distinguishes between split_cols and group_col: group_col denotes the randomised
intervention of the trial. We want to test whether it has an influence on the target_cols; split_cols
are variables that may have an influence on target_cols, but we are not interested in that influence
in the first place. Such variables, for example, sex, age group, and time point of measurement, arise
often in clinical trials. See table 2: the variable time is such a supplementary stratification variable:
it has an effect on the arthritis score, but that is not the effect of interest; we are interested in the
effect of the intervention on the arthritis score.

The package can be used in other research contexts as a preliminary unspecific analysis. Displaying
the distributions of variables is a task that arises in every research discipline that collects quantitative
data.

I thank the anonymous reviewer for his/her helpful and constructive comments.

Bibliography

S. M. Bache and H. Wickham. Magrittr: A Forward-Pipe Operator for R, 2014. URL https:
//CRAN.R-project.org/package=magrittr. R package version 1.5. [pl140]

T. S. Barrett, E. Brignone, and D. J. Laxman. Furniture: Tables for Quantitative Scientists, 2018.
URL https://CRAN.R-project.org/package=furniture. R package version 1.7.9. [p145]

D. B. Dahl, D. Scott, C. Roosen, A. Magnusson, and J. Swinton. Xtable: Ezxport Tables to LaTeX
or HTML, 2018. URL https://CRAN.R-project.org/package=xtable. R package version 1.8-3.
[p138]

D. Gohel. Flextable: Functions for Tabular Reporting, 2018. URL https://CRAN.R-project.org/
package=flextable. R package version 0.4.4. [p138]

F. E. Harrell Jr, with contributions from Charles Dupont, and many others. Hmisc: Harrell
Miscellaneous, 2018. URL https://CRAN.R-project.org/package=Hmisc. R package version
4.1-1. [pl38]

M. Hlavac. Stargazer: Well-Formatted Regression and Summary Statistics Tables. Central European
Labour Studies Institute (CELSI), Bratislava, Slovakia, 2018. URL https://CRAN.R-project.
org/package=stargazer. R package version 5.2.2. [p145]

ICH E9. ICH Harmonised Tripartite Guideline. Statistical Principles for Clinical Trials. International
Conference on Harmonisation E9 Expert Working Group. Statistics in medicine, 18:1905-1942,
1999. ISSN 0277-6715. [p137]

F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley. The LaTeX Companion
(Tools and Techniques for Computer Typesetting). Addison-Wesley Professional, 2004. ISBN
0-201-36299-6. URL https://www.amazon.com/LaTeX-Companion-Techniques-Computer-
Typesetting/dp/02013629967SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-
20&1inkCode=xm2&camp=2025&creative=165953&creativeASIN=0201362996. [p138|

D. Moher, S. Hopewell, K. F. Schulz, V. Montori, P. C. Ggtzsche, P. J. Devereaux, D. Elbourne,
M. Egger, and D. G. Altman. Consort 2010 explanation and elaboration: Updated guidelines
for reporting parallel group randomised trials. BMJ, 340, 2010. ISSN 0959-8138. URL https:
//doi.org/10.1136/bmj.c869. [pl37]

A. Signorell. DescTools: Tools for Descriptive Statistics, 2018. URL https://cran.r-project.org/
package=DescTools. R package version 0.99.24. [p145]

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.org/
package=survival. version 2.38. [p143]

A. Touloumis. R package multgee: A generalized estimating equations solver for multinomial
responses. Journal of Statistical Software, 64(8):1-14, 2015. URL http://www.jstatsoft.org/
v64/108/. [p137]

M. van der Loo. Settings: Software Option Settings Manager for R, 2015. URL https://CRAN.R-
project.org/package=settings. R package version 0.2.4. [p13§]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=furniture
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=stargazer
https://CRAN.R-project.org/package=stargazer
https://www.amazon.com/LaTeX-Companion-Techniques-Computer-Typesetting/dp/0201362996?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201362996
https://www.amazon.com/LaTeX-Companion-Techniques-Computer-Typesetting/dp/0201362996?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201362996
https://www.amazon.com/LaTeX-Companion-Techniques-Computer-Typesetting/dp/0201362996?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0201362996
https://doi.org/10.1136/bmj.c869
https://doi.org/10.1136/bmj.c869
https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
http://www.jstatsoft.org/v64/i08/
http://www.jstatsoft.org/v64/i08/
https://CRAN.R-project.org/package=settings
https://CRAN.R-project.org/package=settings

CONTRIBUTED RESEARCH ARTICLES 148

H. Wickham. Advanced R. Taylor & Francis Inc, 2014. ISBN 1466586966. URL https://dx.doi.
org/10.1201/b17487. [pl142, 145]

H. Wickham, R. Frangois, L. Henry, and K. Miller. Dplyr: A Grammar of Data Manipulation, 2019.
URL https://CRAN.R-project.org/package=dplyr. R package version 0.8.0.1. [p146]

Y. Xie. Knitr: A General-Purpose Package for Dynamic Report Generation in R, 2018. URL
https://yihui.name/knitr/. R package version 1.20. [p138]

K. Yoshida and J. Bohn. Tableone: Create "Table 1’ to Describe Baseline Characteristics, 2018.
URL https://CRAN.R-project.org/package=tableone. R package version 0.9.3. [p145]

Armin Strébel
German Center for Neurodegenerative Diseases (DZNE)
Witten

Armin-Michael.Stroebel@dzne.de

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://dx.doi.org/10.1201/b17487
https://dx.doi.org/10.1201/b17487
https://CRAN.R-project.org/package=dplyr
https://yihui.name/knitr/
https://CRAN.R-project.org/package=tableone
mailto:Armin-Michael.Stroebel@dzne.de

CONTRIBUTED RESEARCH ARTICLES 149

Identifying and Testing Recursive vs.

Interdependent Links in Simultaneous
Equation Models via the SIRE
Package

by Gianmarco Vacca and Maria Grazia Zoia

Abstract Simultaneous equation models (SEMs) are composed of relations which either represent
unidirectional links, which entail a causal interpretation, or bidirectional links, due to feedback
loops, which lead to the notion of interdependence. The issue is of prominent interest in several
respects. Investigating the causal structure of a SEM, on the one hand, brings to light the theoretical
assumptions behind the model and, on the other hand, pilots the choice of the befitting estimation
method and of which policy to implement. This paper provides an operational method to distinguish
causal relations from interdependent ones in SEMs, such as macro-econometric models, models
in ecology, biology, demography, and so forth. It is shown that the causal structure of a system
crucially rests on the feedback loops, which possibly affect the equations. These loops are associated
to the non-null entries of the Hadamard product of matrices encoding the direct and indirect links
among the SEM dependent variables. The effectiveness of feedbacks is verified with a Wald test
based on the significance of the aforementioned non-null entries. An R package, SIRE (System of
Interdependent/Recursive Equations), provides the operational completion of the methodological
and analytic results of the paper. SIRE is applied to a macroeconomic model to illustrate how this
type of analysis proves useful in clarifying the nature of the complex relations in SEMs.

Introduction

As is well known, each equation in a simultaneous equation model (SEM) represents a specific link
between a dependent (endogenous) variable and a set of other variables which play an explicative
role for the former. These links can reflect either one-way relations between the dependent and their
explicative variables or two-ways relations, ascribable to the presence of feedback loops operating
either at a systematic or a stochastic level. SEMs are of recursive type as long as the equations
represent unidirectional links. Otherwise, if the equations are bidirectional, the SEM (or part of
it) is interdependent. Interdependence is, both structurally connected to the presence of current
endogenous variables playing an explicative role, and can result as a by-product of error-term
dependencies.

Investigating the nature, causal rather than interdependent, of a SEM is important in several
respects. First the analysis, unfolding the dynamics among variables, sheds more light on the
rationale behind the theoretical assumptions of the model. For instance, in an economic framework,
the distinction between interdependent and causal SEMs leads to models which can be traced
back to two main streams of economic theory: Neoclassical and Keynesian (Bellino et al., 2018).
Furthermore, the implication of interdependence vs. causality is crucial for undertaking parameter
estimation, given that a set of causal equations can be estimated equation by equation by ordinary
least squares (OLS), while simultaneous estimation methods, like three stage least squares (3SLS)
are required when interdependence occurs. Given that large SEMs have become increasingly popular,
the need for an analytical set-up, able to effectively detect and test causality versus interdependence,
has of course become more urgent.

Starting from this premise and following Strotz and Wold, 1960; Wold, 1964; and more recently
Faliva, 1992; Faliva and Zoia, 1994); in this paper we have devised an operational method to
distinguish the causal from the interdependent equations of a SEM. Other approaches for detecting
feedback-loops arising in deterministic (error free) models are based on either graph or system theory
(see e.g., Gilli 1992). Our methodological proposal goes beyond the aforementioned methods, as
besides covering both the cases of deterministic and error-driven feedback effects, it provides a way
for testing the feedback effectiveness. In addition, it differs in principle from other approaches, as
the one proposed by Granger (see Granger, 1980) and the Covariance Structural Analysis (CSA;
Joreskog). The former essentially rests on a predictability criterion for defining causality regardless of
the theory behind the model. The latter, which is meant to find the best parametric approximation
of the sample covariance matrix in terms of a given theoretical SEM structure; as such, it does not
lead to a causal/interdependent interpretation of the model links as the one developed in our paper.

The feedbacks identified by the method proposed here demand statistical confirmation on certain

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 150

empirical evidence arguments. Lack of significance of (one or more of) the estimated feedbacks can
overturn the nature of the connections among model variables. To this end, a Wald type test is
devised to check whether a given equation is significantly affected by feedback or not. The statistic
of this test hinges on the parameter matrices of the model: the matrix associated to the endogenous
variables playing an explicative role and the dispersion matrix of the error terms. If an equation is
affected by feedback loops, the testing procedure allows to diagnose which endogenous variables are
significantly connected in the loop of interest. Indeed, testing the significance of feedbacks means
also checking if the links among variables, suggested by the theory at the basis of the model, are
confirmed according to an empirical evidence argument.

The methodological approach put forth in this paper is implemented in R with the SIRE package.
Besides integrating functions usually employed for the estimation of SEM’s, the package provides
new functions meant to duly split a system of equations into its unidirectional and bidirectional
links, and test their significance. To our knowledge, extant alternative approaches to causality do
not offer a similar test.

The paper is structured as follows. The first section provides the methodological set-up devised
to single out causal and interdependent relations in a SEM. In the second section, a Wald-type
test is worked out to check whether a given equation is affected by feedbacks or not. The third
section shows how the method and the R code work for detecting and testing feedback-loops in a
macroeconomic model. An Appendix, with proofs of the main theoretical results, completes the

paper.

Detecting Loops in an Equation System

An equation system is a set of structural equations representing economic theory-driven relations
linking the variables relevant to the study at hand.

It is customary to specify an equation system as follows
yvi =Ty + Az + e t=1,...,T (1)

where y¢ is a L x 1 vector of current dependent or endogenous variables, z; is a J x 1 vector of
explicative variables and €; is a L x 1 vector of error terms. T is the sample period. I and A are,
respectively, L x L and L x J sparse parameter matrices. In particular T', expressing the relations
among current endogenous variables, is a hollow matrix to prevent any endogenous variable from
explaining itself. Furthermore, it is assumed that (I —I') is of full rank, meaning that the equations
are linearly independent.

Error terms are assumed to be non-systematic, stationary in a wide sense, and uncorrelated over
time, that is

E(er) = 0r (2)

E(et€)) = {

Z(LXL) ift=r
O(LXL) lft?éT

Actually, the pattern of relations recognizable in an econometric model can be interpreted either in
terms of causal or interdependent schemes. A causal relation among variables is an asymmetric,
theoretically-grounded and predictive relations which can be ideally meant as a stimulus-response
mechanism (see Wold, 1964 and Strotz and Wold 1960). The equations of a model form a causal
chain when, once they are properly ordered, each current endogenous variable turns out to be, on
the one hand, resultant of the joint effect of the endogenous which precede it in the chain and, on
the other hand, cause of the current endogenous which follow the same endogenous in the chain. A
model with equations that form a causal chain is defined recursive. The following simple equation
system provides an example of a recursive model (see Figure 1, left panel)

Y1t =a1ze + €1y (3)
Y2t =72,1Y1,t + ‘1/2215 +eat

Y3,t =73,2Y2,t +V3,1Y1,¢ + agzt + €3t

Ya,t =74,3Y3,t +v41Y1,t + aﬁlzt +eq

Recursive systems can be easily estimated, equation by equation, using OLS, starting from the top
of the chain.

When a causal chain exists among blocks of current endogenous variables, a causal order can be
established among those blocks of equations. In this case, the current endogenous variables of a

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=SIRE

CONTRIBUTED RESEARCH ARTICLES 151

block are effects of the variables belonging to the blocks which come before them in the chain, as
well as the causes of the variables belonging to blocks which follow the block at stake in the chain.
In this case, the model is of block-recursive type. The following simple equation system provides an
example of a recursive model (see Figure 1, middle panel)

Y1t =7V12y2t + a1z + €1y (4)

Yy2,t =72,19Y1,t + az; + €2,t

Y3,t =732Y2,t +73,4Y4,¢t + aézt +e3t

Ya,t =Y4,3Y3,t + V4,191t + uﬁLZt +eay

Here, the chain is formed by two blocks of variables (y1, y2) and (y3 and y4) with the variables of
the first block explaining those of the second.

Sometimes the composite nature of the connections among variables leads to a closed sequence
of dependencies among variables to be ascribed to feedback loops. This type of interaction among
endogenous variables is usually called interdependence. Interdependence is structurally connected
to the presence of both current endogenous variables on the right-hand side of the model and the
correlation between contemporaneous error terms.See the system below as an example in this regard
(see Figure 1, right panel)

Y1t =7v12y2t + a1z + €1y (5)
Y2,t =Y2,1Y1,t +72,3Y3,¢ + abzs + €2t
Y3t =732Y2,t +73,4Y4,¢t + ﬂfazt +e3t

/
Ya,t =Y4,3Y3,t +V4,1Y1,t + A42¢ + €4t

(a) Recursive model (3). (b) block-recursive model (4). (c) interdependent model (5).

Figure 1: The three patterns of relations in a simultaneous equation model.

Based on this premise, it is clear that the causal or interdependent features of a model’s
equations depend on the pair of matrices I and Z. The former matrix highlights the possible
(circular) dependencies or feedbacks among endogenous variables, while the latter features those
induced by the stochastic components. In fact, the correlation of error terms associated to an
equation-pair may transform the link between the endogenous, explained by these equations, into a
relation with feedback.

Moreover, the essential information concerning the causal structure of a model can be obtained
from the topological propertiesl of the pair of the mentioned matrices and, at the very end, from
the topological properties of the associated binary matrices rand x°. ?

Following Faliva (Faliva, 1992) matrix I" can be split as follows

r=C+% (6)

IThe term topological properties refers to those properties of a matrix which depend exclusively on the
number and the relative position of its null and non-null elements (Marimont, 1969).

2A binary matrix associated to a matrix G is a matrix whose entries are equal to 1 if the corresponding
entries of G are non-null, or 0 otherwise. Binary matrices preserve the topological properties of the parent
matrices.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 152

where € includes the coefficients associated to current endogenous variables involved in feedback
loops, and ¥(those associated to endogenous variables involved in causal relations.

Matrix € is specified as follows _
C=C+¥y (7)

where C includes the feedbacks arising in the systematic part of the model and matrix ¥; those
induced by the correlation of the error terms. Matrices C and ¥; are defined as follows

L—-1 N
C=T*R R = [;1(r)] (8)
¥, =(T—C)x« [zb (I+R)}b, (9)

where the symbol "#" denotes the Hadamard product.:)’4 The rationale of (8) hinges on the fact
that a direct feedback between variables y; and y; corresponds to the simultaneous non-nullity of
7i,; and 7y; ; of coefficient matrix I'. This entails that a direct feedback between these two variables
exists if the (i, j)-th element of the matrix °

T« (1% (10)

is non null. An indirect feedback between the same variables is instead associated to a bidirectional
connection between y; and y; established through other variables and equations. In algebraic terms
this corresponds to the simultaneous non-nullity of the (Z,j)-th element of T and of the (i, 7)-th
element of a positive power of I’ (Fiedler, 2013). This entails that an indirect feedback exists
between the mentioned variables if the (i, j)-th element of the following matrix

L—1 RN
- [Z (r”)] (11)
r=2
is non-null.
Accordingly, matrix
¥Y=T-C (12)

includes the coefficients associated to endogenous variables which, as far as the systematic aspects
of the model are concerned, have a causal role."

In order to show how feedbacks operating in the systematic part of a model can be detected, let

3The Hadamard product of two matrices, A and B of the same order, is defined as the matrix of the
term-to-term products of the elements of these matrices, that is (A B)(i,5) = a(i,j)b¢,5)-

4 An alternative approach for determining the feedbacks operating at a systematic level in a model is based
on graph theory (see Joreskog and Wold, 1982 and Ponstein, 1966).

5The element +, ; of T corresponds to the element ; ; of I’

6Tt is worth mentioning that ¥ is Hadamard-orthogonal to C (two matrices A and B are said to be
Hadamard-orthogonal if A % B=0). Furthermore, while matrix C is co-spectral to I (i.e., they have the same
eigenvalues), matrix ¥ is a hollow-nilpotent matrix, like I' (a square matrix N is nilpotent if N* = 0 for some
k < M, where M is the matrix dimension). A hollow, nilpotent matrix can always be expressed in triangular
form.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 153

us consider as an example the following deterministic model

/
YLt =Y1,5Y5,t + V1,7Y7,¢ + 412 (13)
/
Y2t =a222 ¢
/
Y3,t =73,11Y11,t + A3t
!
Y4t =74,3Y3,t + A4Z¢
!
Ys,t =75,10Y10,t + A5Zt
!
Y6,t =76,5Y5,t +76,9Y9,t T A2t
I
Y7,t =V7,6Y6,t T A7Zt
!
Yg,t =78,12Y12,t + A8Zt
!
Y9,t =79,7Y7,t + A9zt
/
Y10,t =7Y10,5Y5,¢t T A1022,¢
/
Y11,t =7Y11,12Y12,t + 4112t
!
Y12, =V12,4Y4,¢ + Y12,11Y11,¢ + A122¢

/
Y13,t =713,2Y2,t T Y13,6Y6,t T A132t

Matrix T? is given by

r P P PR
SRS SN R

r’ = SRR (14)
.1
...... 1-
P 1. -
L-1.---1-- i

P TP [

B T TR

Looking at matrix Cb, we see that the simultaneous non-nullity of the c5 10, c10,5, c11,12, and c12,11
elements imply the existence of two direct feedbacks: one between the variable-pair ys and y19, and
the other between 11 and y12. The non-nullity of the c3,11, c4,3, and c124 elements denotes the
existence of indirect feedbacks between the four variables y3, y4, y11, and y12. Similarly, variables
Y6, Y7, and yg are connected by an (indirect) feeback as a consequence of the non-nullity of the
6,9, C7,6, and cg 7 elements. Looking at matrix ¥ we conclude that variables y5 and y7 have a
causal role in the first equation. Variables y5 and y12 have the same role in the equations six and
eight, while variables yo and yg play a causal role in the last equation. The results ensuing from the
decomposition of I® are depicted in Figure 2.

T I
5 &

Figure 2: Interdependent links (in red) and causal links (in black) operating in the model (13).

obi

If the error terms are correlated, the causal structure of a model could no longer match that of

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

154

its systematic counterpart since part of the relations that are recursive at systematic level, namely
Yy, may become interdependent as a consequence of the feedback mechanisms induced by the
stochastic terms in X. In this case, matrix ¥ turns out to be the sum of two Hadamard-orthogonal
matrices, ¥g and ¥, that is

Y=Y +¥: Yo+ ¥1 =01 (16)

where

¥ _giF F— [Zb(I+R)}b (17)

Here, matrix ¥; includes the coefficients associated to the endogenous variables involved in loops

induced by disturbances. In fact, it can be proved (see 1. in Appendix) that the matrix [Zb I+ R)]b
is the binary counterpart of the covariance matrix between the error terms and the endogenous
variables given by

E(etyt) = [E(I-T)7] (18)
The non-null elements of the above matrix express the effect of the model’s left-hand side (LHS)
endogenous variables on the right-hand side (RHS) ones, which are induced by the error term
correlation.

Equations (16) and (17) rest on the logical relations between the concepts of causality and
predictability, where the notion of optimal predictor (in mean-square sense) tallies with that of
conditional expectation. In fact, given that causal relations are also predictive, but not vice-versa,
we can define as causal those relations that are both causal in the deterministic model and predictive
in a stochastic context. This means that if the conditional expectations of the relations, which are
causal in the deterministic model, namely Yy, are not affected by the error terms, then Yy turns
out to also have a causal role in a stochastic context. Accordingly, we can say that the stochastic
specification is neutral with respect to the underlying systematic causal structure if the following
holds (Faliva, 1992)

E(Yy: + e:[Yy:) = Yy: + E(et|¥y:) = ¥yt (19)

meaning that
]E(et|Tyt) =0 (20)

Otherwise, the correlation between the error terms and the endogenous variables may affect the
conditional expectation of the error term as follows (see Faliva, 1992)

E(et[¥yt) = Y1yt (21)
which, in turn, implies that
E(Yy: + €|Yyt) = Yyr — Y1yt = Yoyt (22)

In this case, only the subset ¥gy: of the original set of causal relations, playing a predictive role, is
causal. This, in turn, implies that the overall feedback operating in the system is included in matrix
C=C+Y;.

To highlight the role played by the stochastic specification on the model causal structure, let us
consider as an example the following specification for matrix x?

-1 -
-1
111
Siidg
)L N A T (23)
11-111-1
+1-1-1-11
1--11::1-1
ce1 111
1-:-11::1-1:1
L -1 11---1-1]
Then, matrices C? and ‘I’g are
r 1.1- T 1.1
(el Sl h =Cb+‘[’l1’: R T + (24)
R R |
1. .. R
1 SRR 11
1 R
L 1,1_ | o 1

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 155

I S
The non-null correlation between the pairs of error terms {es,e1}, {€s, €13}, {€7,€1} and {e12,€es}
(see Equation (23)) has transformed the relations among the pairs of variables {ys,y1}, {v6,v13},
{y7,y1}, and {y12, ys}, which were causal in the deterministic model (13), into interdependent links.
Figure 3 shows the effect of the stochastic specification (23) on the feedbacks originally detected in
the deterministic model (13).

@%\)

1§

() @%@

Figure 3: Interdependent (in red) and causal (in black) links operating in the model (13) when
the stochastic specification is as in (23). Dashed red lines with double-headed arrows
denote interdependent links induced by the correlation of the error terms.

The flow-chart in Figure 4 shows the different cases, according to the structure of matrices I’
and X.

yes no
yes
Interdependence <—

no

yes
— Recursiveness

o (1 o

VL Block recursiveness J‘

Figure 4: Flow-chart showing the possible outcome of the system decomposition in terms of T’
and X.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 156

Testing the Significance of Feedback Loops

In the previous section an analytic framework was set up to describe the potential feedbacks operating
in a model. In fact, the analysis developed, relying on binary matrices, was meant to be qualitative
since it only highlights the feedback set that potentially operates in a model, given the characteristics
of its relations and its stochastic specification. Only once the model has been duly estimated, can the
coefficients of matrix C be properly evaluated. At this point, it proves useful to devise a procedure
for testing the significance of the estimated loops (see Faliva and Zoia, 1994). To this end, let us
observe that, once the matrix including all the feedbacks operating in the model

C+¥1 =C+¥=C+(¥+F) F-x(I-n™ (26)

have been properly estimated, a test for the effective functioning of feedback loops can be established,
based on the significance of its non-null entries. Any given equation, say the j-th one, turns out to
be involved in feedback loops with other equations of the model whenever the j—th row of the above
matrix is not a null vector. Should the (j,%)-th entry of this matrix be non-null, then a feedback
between the j-th and the i-th equation would be expected to exist (see A.7 in the Appendix).
Actually, it can be proved (see 2. in Appendix) that, in light of the identity

C+¥+*F)=(C+¥)*xF=TI=xF (27)

a test for the significance of the loops can be based on the exam of the statistical non-nullity of
the elements of matrix I * F which, unlike €, does not require the preliminary split of I into its
components, given the feedback loops C + ¥; and causal links ¥g.

In this context (following Faliva and Zoia, 1994), it can be proved that the j-th row of matrix
I' « F measures both the direct effect of the RHS endogenous variables on the j-th one and the
feedback effect of the latter on the former variables. In fact, the direct effects of the RHS endogenous
variables, collected in vector y,, on variable y; are included in the j-th row of matrix I' (excluding
its j-th element), that is
0E(yjlyo)
Yo
Here, e; is the L-dimensional j-th elementary vector and M; is the (L x (L — 1)) selection matrix
obtained from the identity matrix by deleting its j-th column, that is

= ejTM; (28)

Mj: €] ,...€-1,€j+1,...€[_1 (29)

(L,1) (L,1) (L,1) (L,1)

The feedback effects of the y; variable on its explicative endogenous variables, yo, are included in
the j-th row of matrix F (excluding its j-th element), that is

OB (yoly;)

R = (MFe,) (30)

j

To prove (30), let us focus on the j-th equation and consider this equation as the first of the system,
with the others in sequence, that is

Yyj = ’}';' Yo + a;- z + € (31)
1y (r-nE-1y @Y @

Yo = Ui Yj + o Yo + Ao V1 + €o (32)
(L-1,1) (L—-1,1)(1,1) (L-1LL-1)(L-1,1) (L-1,)(J=11) (L-11)

€ 9355 Ojo
~ N7 (0,%) where r= (33)

€o 0o Lo

Looking at the j-th equation, it is clear that vector 'y;- = e;- I'M; measures the direct effect of the
(RHS) endogenous variables on y;. In order to determine the feedback effect of y; on yo, let us
rewrite (32) as follows

Yo = n(Y;yo +ajz+¢;) + Toyo + Aoz + € (34)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 157

Next, given that, under normality, the following holds
Ooj
€o = € + goQ goij (35)
9353

the set of equations (34) can be conveniently rewritten in the form
(I-G)yo =Dz +dej + o (36)

where
oo
G=n7;+To; D=naj+Ay; d:ma—“’? (37)
JJ

This, in turn (see 3. in Appendix) entails

OE(yhe; OE(yh|e;) O¢; _
Wolej) _ 2B0ol) %G _ 11— gyta) = ¢, = - ejFM, (39)

oy, dej 0yj 0jj

Thus, we can conclude that the presence of non-zero elements in the vector

’ / / ’ 1, ;1
P =7 *@; = (ejl"Mj) * (fejFMj) = ejf(l"* F)M; (39)
933 933

reveals the simultaneous action of both the direct effects of y, on y; and the feedback effects of y;
on yo.

Accordingly, testing the significance of p; means checking whether the j-th endogenous is involved
in feedback loops with other endogenous variables.

Actually, the statistic of the test can be derived from (39), by deleting from 'y;- the elements
that, according to the exclusion constraints postulated by the economic theory, are null. This leads
to move from the former p; vector to the following compressed vector

pi = *¢; = (S;7;) * (Se;) (40)

which has no zero entries. Here S; is a selection matrix selecting from v; and @; the non-null entries.
Accordingly, the reference model (31)-(33) can be restated as

yj = Vjyr + ajzr + ¢ (41)
yr = Kz +@je; +er (42)
Ujj 0’
f(éj €r) ™ NL 0, (43)
0 Q
where
yr =S;yo, 4; =Sra;, zr =S,z (44)

and S, is the matrix selecting the non-null entries from a’. and the sub-set of predetermined variables
playing an explicative role in the j-th equation. Furthermore,

K=S,I-G)7'D, & =8;(I-G) ', Q = E(erey) (45)

Hence, the issue of the nature, unidirectional rather than bidirectional, of the equation at stake can
be unfolded by testing a hypothesis in the given form

Hy:p;=0 (46)
Hyp: ﬁj #0
The Wald test takes the form ,))
W=p;/(3¥ 137 p; (47)

where f)j is the maximum likelihood estimate of g; (see 4. in Appendix), and J, ¥ are, respectively,
the Jacobian matrix .
p;(0)

=28

(48)

0=0

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 158

and the information matrix

N EIC))
v = 49
0000’ 0—d (49)
evaluated in correspondence of the maximum likelihood estimate of the parameter vector
o' = 7}, &5}, vec(K), 0, vech(Q)]' (50)
Under the null hypothesis)

as.

where £ is the dimension of §;.

If the Wald test provides evidence that the j-th equation is involved in a statistically significant
feedback loop with other equations of the model, it is worth singling out the variables that are
primarily responsible for the feedback at hand. They can be identified by checking the significance
of each non-null element of p;. Under the null that the i-th element of p; is non-zero, the Wald
statistic, for testing the significance of the loop bridging the i-th and j-th endogenous, turns out to
be

W = (eip;) [es(TE13) el](pien) ~ i (52)

Detecting and testing causal and interdependent links in a model
with SIRE

Investigating potential feedbacks with SIRE

The analysis developed in the previous sections allows the identification of the potential feedbacks
operating in a model. By assuming the stochastic specification of the model as known, the
investigation can be carried out by using binary matrices I’ and £° without a preliminary estimation
of the model. The causal structure, which emerges from this analysis, is implied by the theory
underlying the model and mirrored by the topological properties of matrices I' and X. It is also
important to point out that the feedback loops thus detected are only potential, because their
effectiveness must find confirmation in empirical evidence. We start by loading the SIRE package.

> install.packages("SIRE")
> library(SIRE)

The function causal_decompose () is devised for decomposing the matrix I'. If the structure of X is
assumed as known by the user, the function takes the following arguments:

e data: not appropriate to simulated context, set to NULL.

e eq.system: the system of equations.

e resid.est: not appropriate to simulated context, set to NULL.

e instruments: not appropriate to simulated context, set to NULL.

e sigma.in: the binary matrix b
and provides the following output:

e eq.system: the system of equations given as input.
e gamma: the binary matrix re.
e sigma: the binary matrix xb given as input.

e C: the binary matrix of the coefficients associated to the endogenous variables involved in
interdependent mechanisms operating at a systematic level.

e Psil: the binary matrix of the coefficients associated to the endogenous variables involved in
interdependent mechanisms induced by error correlation (if Sigma is not diagonal).

e PsiO: the binary matrix of the coefficients associated to the endogenous variables having a
causal role.

o all.graph: the DAG object for the undecomposed path diagram (via the R package igraph;
Amestoy, 2017).
e dec.graph: the DAG object for the decomposed path diagram.
Furthermore, if the error terms are assumed to be spherical, then the SIRE package simply splits T’

in two sub-matrices C? and ‘I’b, reflecting the interdependent and causal relations operating in the
system at a deterministic level.

With regard to the system (13), the corresponding code is

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLES

159

>
+
+
+
+
+
+
+
>
>
>
>

#fictitious Sigma
Sigma <- diag(length(eq.system))
#function call
decompose.A <- causal_decompose(eq.system , sigma.in = Sigma)

eq.system <- list(

eql = y1 ~
eq3 = y3 ~
eqd = y5 ~
eq? = y7 ~
eq9 = y9 ~
eqll = yi11
eql3 = yi13

matrix

y5 + y7, eq2 = y2 ~ z,

y11, eqd = y4 ~ y3,

y10, eq6 = y6 ~ y5 + y9,

y6, eq8 = y8 ~ yi12,

y7, eql0 = y10 ~ yb5,

~ y12, eql2 = y12 ~ y4 + yi1,
~ y2 + y6)

The output is comprised of matrices Cb and ¥° given in (15). The graphical representation of the
system, given in Figure 2, is obtained with the tkplot () function of the R package igraph

> tkplot(decompose.A$dec.graph)

The following example refers to a matrix Z® specified as in (23)

fictitious Sigma matrix
low.tri <- as.matrix(Matrix::sparseMatrix(i = sigma.idx[2,] , j = sigma.idx[1,], x = 1,

dims = rep(length(eq.system),2)))

Sigma <- low.tri + t(low.tri) + diag(length(eq.system))
function call
decompose.B <- causal_decompose(eq.system = eq.system,

> # indexes of non-null elements of Sigma
> sigma.idx <- cbind(

+ rbind(rep(1,5),c(4,5,8,10,12)), #yl

+ rbind(rep(2,4),c(4,6,8,9)), #y2

+ rbind(rep(3,4),c(6,7,11,13)), #y3

+ rbind(rep(4,6),c(5,6,8,9,10,12)), #y4

+ rbind(rep(5,3),c(8,10,12)), #y5

+ rbind(rep(6,5),c(7,8,9,11,13)), #y6

+ rbind(rep(7,2),c(11,13)), #y7

+ rbind(rep(8,3),c(9,10,12)), #y8

+ rbind(rep(10,1),c(12)), #y10
+ rbind(rep(11,1),c(13))) #y11
>

>

+

>

>

>

+

sigma.in = Sigma)

In this case, the package provides as output matrix C? and splits matrix ¥ into sub-matrices ‘I’l{
and ‘I’g, as in (24) and (25). The tkplot () function can still be used to obtain the pictures of the
relations among the variables given in Figure 3.

The next section will show how to perform the decomposition with causal_decompose() if the
structure of X is not known and the goal is to carry out estimation and feedback testing from

observed data.

Finding significant feedbacks with SIRE: an application to Italian macroeconomic

data

As pointed out in the previous section, empirical evidence aside, the results of a decomposition based
on binary matrices I’ and X must be considered as preliminary since they show only the potential
links acting in the system. The effectiveness of these links demands a confirmation based on a
sound empirical-evidence argument. In fact, the lack of significance of one or more of the feedbacks
thus detected can alter the nature of the connections among the endogenous variables found by the
preliminary decomposition, which is based only on the topological properties of matrices I and L.
In order to show how effective feedbacks operating in a model can be detected and tested, we have
applied the functionalities of SIRE to the Klein model (see Klein, 1950, and Greene, 2003). This
model, originally conceived for the US economy, has been recast for the Italian economy. The Italian
macroeconomic variables, mirroring the US counterparts, are available at http://dati.istat.it/.
The given model is composed of n = 60 observations on a quarterly basis and six equations explaining
the following endogenous variables: consumption expenses for Italian families [C], added value [CP],
private wages from dependent employment [WP], gross investment [I], gross capital stock [K], gross

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://dati.istat.it/

CONTRIBUTED RESEARCH ARTICLES

160

domestic product [GDP]. The model is specified as follows

Cy 0 vi2 0 0 75 O Cy
I 0O 0 0O 0 O 72 1
WP, _ 0O 732 0 3¢ 0 O WP,
GDP; =ap + Y41 742 0 0 0 O GDP; + (53)
CPy 0 0 3 0 0 O CP;
K 0 w2 O 0 0 0 K,
ail 0 0 0
az 0 0 0 CPi 1 <
+ 0 0 aszq 0 Kt71 + EeEwPp
0 0 agqa O GDP;_, 66GDP
0 0 0 ass T cp
0 asz 0 0 ¢ €K

where ag is the intercept vector. As equation (53) shows, the set of predetermined variables includes
one exogenous variable, taxes [T¢], and three lagged endogenous variables, that is: the one-lagged
added value [CP;_1], the one-lagged gross capital stock [K;_1], and the one-lagged gross domestic
product [GDP;_;]. We first load the data into the R workspace.

> data(macroIT)

Following Greene, the model equations have been estimated with 3SLS by using the R package
systemfit (Henningsen and Hamann, 2017). The one-lagged capital stock [K¢—1], [Tt], [CP¢—1], and
[GDP¢_1] have been employed as instrumental variables. Matrix X, if the user does not specify its
structure, is estimated by using the covariance matrix of the structural residuals. The function
causal_decompose () can be also employed to estimate both the model via 3SLS and the X matrix,
and yields three matrices: C, ¥1, and ¥g. The first two include the coefficients associated to
variables affected by feedback loops, operating either at a deterministic level or induced by error
terms, the third contains the coefficients associated to variables playing a causal role in the system.

This version of causal_decompose() takes the following arguments:

e data: data frame containing all the variables in the equations.
e eq.system: list containing all the equations, as in systemfit.

e resid.est: denotes the method used to estimate X, on the basis of 3SLS residuals; this
method is specified in systemfit.

e instruments: set of instruments used to estimate the model, introduced either as a list or as
a character vector, as in systemfit.

e sigma.in: not appropriate to empirical context, set to NULL.
The output of this function is a list containing the following objects:

e eq.system: the same list of equations provided as input.

e gamma, C, PsiO, Psil, A, and Sigma: respectively matrices C, Yo, ¥1, A, and Z.
o systemfit: the output of the systemfit () function used to estimate the model.
e all.graph: the DAG object for the undecomposed path diagram.

e dec.graph: the DAG object for the decomposed path diagram.

o path: the data-set containing all the paths/relations among the endogenous variables, along
with their classification (i.e., causal, interdependent). The graph highlights which interdepen-
dent relations work at a systematic level and which are induced by the effect of correlations
among residuals).

The code below performs the decomposition using the macroIT data

#system of equations

eq.system <- list(eql <-C ~ CP + I + CP_1 ,
eq2 <- I ~ K + CP_1,

eq3 <- WP ~ I + GDP + GDP_1,
eq4 <- GDP ~ C + I + GDP_1,
eqb <- CP ~ WP + T,

eq6 <- K ~ I + K_1)

instruments <- ~ T + CP_1 + GDP_1 + K_1
#decomposition

dec.macrolT <- causal_decompose(data = macrolT,
eq.system = eq.system,
resid.est = "noDfCor",

>
>
+
+
+
+
+
> #instruments
>
>
>
+
+
+ instruments = instruments)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=systemfit

CONTRIBUTED RESEARCH ARTICLES

161

Table 1 shows the results of the model estimation. Since some coeflicients are not statistically
significant (such as the coefficient associated to [I] in the equation explaining [C] and the coefficient
associated to [GDP] in the equation explaining [WP]), the model has been re-estimated and the
coefficient matrix associated to the explicative endogenous variables decomposed again.

#system of equations

eq.system <- list(eql <- C ~ CP + CP_1 ,

eq2 <- I ~ K,

eq3 <- WP ~ I + GDP_1,
eq4 <- GDP ~ C + I + GDP_1,
eqb <- CP ~ WP + T,

eq6 <- K ~ I + K_1)

>
>
+
+
+
+
+
> #instruments
> instruments <- ~ T + CP_1 + GDP_1 + K_1
> #decomposition
> dec.macroIT.new <- causal_decompose(data = macrolT,
+ eq.system = eq.system,
+ resid.est = "noDfCor",
+ instruments = instruments)
The results of the last estimation process are shown in Table 2. Looking at the Theil inequality
indexes (Theil, 1961) reported in the last column of the table, we can see that the estimated equations
fit the data very well. In fact, all Theil indexes are close to zero. The estimated covariance matrix
of the structural error terms is given by
10.93
& 1075 504 5231
Y AT (54)

—9.6 4.27 —19.73 6.07 15.08
0.43 —0.68 0.53 —0.09 —0.68 0.81

while matrices C + ¥1 and ¥ turn out to be

-0 0 000 O 0 0 0 01.020
8 8 8880'073 8 1065 8 8 8 8
C+¥1=10 0 000 0 |T|109 03 00 0 0 (55)
0 0 000 O 0 0 0480 0 O
L 0067000 0 0 0 0000
-0 0 0 01.02 0
0 0 0 0 0 073
0 —165 0 0 0 0O
=110903 00 0 0
0 0 0480 0 O
0 067 0 0 0 O
Py=0 (56)

The matrix in Equation (55) embodies all the coefficients associated to variables involved in feedback
loops, while matrix (56) includes those associated to variables playing a causal role. Looking at
(55) we find a direct feedback between variables [I] and [K], while the variables of the pairs [I,
WP], [I, GDP], [C, GDP], [CP, C], and [CP, WP] are directly linked (a black arrow connects the
variables of each pair) as well as explained by equations with correlated errors. Accordingly, the
variables of each pair may be internally connected by feedback loops. The goal of our testing
procedure will be to bring out which of these feedbacks, being significant, are truly effective. Figure
5 depicts the links operating in this model, using the function tkplot() of the igraph package. In
this figure, a unidirectional arrow denotes that a variable is explicative for another. If two variables
are explicative one for the other, a direct feedback loop exists, depicted as two red arrows going
in opposite directions. Instead, a red, dashed, curved, two-headed arrow between two variables
indicates the existence of a feedback induced by error correlation.

> tkplot(dec.macrolIT.new$dec.graph)

Testing for feedback effects

The significance of these loops has been investigated by using the function feedback_ml() which
performs the Wald test given in (52). The 3SLS parameter estimates have been used as preliminary
estimates to obtain the maximum likelihood (ML) estimates of the parameters needed to build
the test statistic. In particular, in order to reach the global maximum of the log-likelihood, the
initial 3SLS parameter estimates have been randomly perturbed a certain number of times. The
optimizer chosen for the scope is included in the Rsolnp package where the function gosolnp is
specially designed for the randomization of starting values. The function feedback_ml() takes the
following arguments:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rsolnp

CONTRIBUTED RESEARCH ARTICLES 162

Figure 5: Path diagram of the macroeconomic model. Unidirectional arrows denote that one
variable is explicative for another. The two red unidirectional arrows denote the
presence of a direct feedback. The red, dashed, curved, double-headed arrows between
pairs of variables denote feedback loops induced by error correlation.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

(920°0) (z11°0) (811°0) (68'8)

¢r00°0 - - sk sk 8C0 - - - - - *k 6£°0 Kk 60T 70'¢ wmﬁ_”w
(¥e1°0) (¥¥¥°0) (28€°92)

¥0€0°0 - - skoksk 6¢'1T - - - - - ***@©ﬁ| - ***NH®®N| wﬁmg
(L20°0) (20z'2)

PIT00 - xx €270 - - - - - - - - #6611 1
(t11°0) (g11°0) (21°6)

9,000 - ***QMO\ B - B sk 0’1 - - - - 90°0T wo

Y.L = =D = 3an L 'l D aon TdM T o) e

T00°0="0 [9A9] & JURIYIUTIS y .
10'0=" [0Ad] e JUROYIUSIS iy,
GO"0=" [9Ad] Y& JUROYIUSIS @y
T°0=" [9A9[& JUROYIUIIS :e
‘uorjenbe [opouw yoes I10J XOpUI [I9], 9} SMOYS UWN[OD IS YT, "STTSE YHM sojewl)se Areurwurjord [[opow OIIOU0IS0IDR]N T S[qe],

(£50°0) (£20°0) (665°1)
£€900°0 KKk 670 - - - - - - - sk sk 89°0 - ***@@@| QVH
(e2£0) (sv0°0) (svso1)
7200°0 - - - KKk ¢9°¢ - - - skk 670 - - ***@ﬂuﬂﬁ._” ﬂn._no
(cL0°0) (181°0) (860°0) (zeLo1)
700°0 - - sk 1€°0 - - - - - * LE°0 Hkk 0’1 aa'y QAMD”U
(192°0) (LL2°0) (esv°0) (L8'82)
88¢0°0 - - sk 70°1 - - - 9¥°0 - ***M®H| - ***NHONM| wm\(/
(¥0°0) (680°0) (L29°L)
STT10°0 - S00°0 - - s 6L°0 - - - - - 8201 T
(660°0) (60°0) (61°0) (L6°1T)
€200°0 - ***@MO‘ - - - sk sk T°0T - - 10— - 0¢'q wo

[PUL = =D =1dan 'L o'l e f0) aan fAM i (o) e

CONTRIBUTED RESEARCH ARTICLES 164

e data: data frame containing all the variables in the equations.

e out.decompose: the output from the previous causal decomposition which is called by using
the command causal_decompose().

e 1b and ub: upper and lower bound of the parameter space (as in gosolnp).

e nrestarts, nsim and seed.in: parameters tuning the number of random initializations (as in
gosolnp).

The output of this function is a list containing the following objects:

e rho.est: a data frame containing the estimated feedback loops for a given equation. The first
column of this data frame, feedback eqn., provides the indexes of the equations involved in
the feedback loop with the equation given in input, while the coefficients associated to the
explicative endogenous for the equation in question are shown in the column rho.est.

e loglik: the estimated log-likelihood of the best model.
o theta.hessian: the estimated Hessian matrix .

o rho.jacobian: the estimated Jacobian matrix J.

e wald: the value of the Wald test statistic W.

As an example, let us assume that the interest is in testing the significance of the feedbacks
affecting the second equation, explaining the endogenous variable [I]. According to the previous
analysis, this variable is connected to [K] by a bidirectional link.

The Wald test for the significance of this feedback is performed by using the function feedback_m1 ()
specified as follows

> test.E2=feedback_ml(data = macroIT,

+ out.decompose = dec.macrolT.new,

+ eq.id = 2,

+ 1b = min(dec.macroIT.new$Sigma) - 10,
+ ub = max(dec.macroIT.new$Sigma) + 10,
+ nrestarts = 10,

+ nsim = 20000,

+ seed.in = 1)

By visualizing the estimate of p and the Wald statistic

> test.E2$rho.tbl
Feedback eqn. rho.est
1 6 0.1641469

> test.E2$wald
[,1]
[1,] 4.115221

we can see that the existence of a feedback loop between [I] and [K] is confirmed.

Table 3 shows the results of the test for all the equations of the model. Looking at the p-values
we conclude that all feedbacks are significant except the ones involving [CP] and [GDP]. For what
concerns [CP], it is explained by [WP] without a feedback effect from the latter to the former.
Regarding [GDP], which is affected by feedback effects, a deeper analysis is required in order to
understand which of its two explicative variables [C] and [I] (if not both) are responsible for it. To
this end, we have applied the Wald statistic given in (52) which leads us to conclude that only [C] is
involved in a feedback loop with [GDP]. In the end, the path diagram fully describing the recurrent
and interdependent relationships in the model is displayed in Figure 6.

Discussion

The set of functions worked out in the paper allows a system of simultaneous equations to be split
into recursive and/or interdependent subsystems. The user can rely on causal_decompose() in two
ways: to assess the presence of interdependent relations with a known structure of correlation among
the error terms, or to estimate the whole model in presence of empirical data.

The significance of the feedback loops operating in the model is tested with a Wald test using
the feedback_ml() function. The 3SLS parameter estimates are used as preliminary estimates to
obtain the maximum likelihood ones, which are needed to build the test.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

165

Equation Feedback Variable Joint W p-value Singular W p-value

C CP 386.6 < .001
I K 4.115 0.042 - -
WP I 25.55 < .001 - -
C 84.315 < 0.0001
GDP 95.368 < 0.0001
I 0.352 0.553
CP WP 0.046 0.831 - -
K I 19.595 <0.0001 - -

Table 3: Macroeconomic model: tests for feedback effects for the final model. Joint W denotes
the Wald statistic used to test the set of feedback loops affecting a given variable (see
(47). Singular W denotes the Wald statistic used to test the feedback effect between
two specific variables (see (52)).

Figure 6: Path diagram of the modified macroeconomic model after testing for feedback effects.
Black arrows denote causal link (¥p), red arrows denote interdependent links (C),
black arrows and red dashed arrows denote interdependent links induced by the
correlation of the error terms (¥1).

As for the rationale of our procedure, which rests on a properly devised test, it is worth taking
into account the considerable concern raised recently in the statistical community about the use of
significance testing (see Wasserstein and Lazar, 2016). In this connection, in order to avoid improper
use of p-values and significance-related results, it may be worth addressing the issue of detecting
feedback mechanisms in a simultaneous equations model with different approaches. Among them,
the construction of confidence intervals and the employment of Bayesian methods look particularly
promising for future investigation.

Moving now on more technical notes:
e The ML estimation is performed by concentrating the likelihood with respect to the 3SLS

estimates of A in Equation (1), to reduce the computation required to otherwise re-estimate
parameters that are unnecessary for the computation of the feedback effect.

e As far as the error covariance matrix X is concerned, in the current formulation of the test its
estimate X is not involved by itself in any testing sub-routine (in fact, all of its elements are

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 166

retained after the 3SLS step), and computing the related matrix of standard errors is therefore
of secondary importance. However, if a matrix normal distribution is hypothesized on E, then
the distribution of £ turns out to be a L-dimensional Wishart with T" degrees of freedom and
scale matrix X. Thus, the variance of its elements can be calculated straightforwardly (see
Gupta and Nagar, 1999).

Bibliography

P. R. Amestoy. Igraph: Network Analysis and Visualization, 2017. URL https://CRAN.R-project.
org/package=igraph. R package version 1.1.2. [p15§]

E. Bellino, S. Nerozzi, and M. G. Zoia. Introduction to luigi pasinetti’s ‘causality and interdependence
... Structural Change and Economic Dynamics, 2018. ISSN 0954-349X. URL https://doi.
org/10.1016/j.strueco.2018.09.007. [pl49]

M. Faliva. Recursiveness vs. interdependence in econometric models: A comprehensive analysis for
the linear case. Journal of the Italian Statistical Society, 1(3):335-357, 1992. [p149, 151, 154]

M. Faliva and M. G. Zoia. Detecting and testing causality in linear econometric models. Journal of
the Italian Statistical Society, 3(1):61-76, 1994. [p149, 156]

M. Fiedler. Special Matrices and Their Applications in Numerical Mathematics: Second Edition.
Dover Books on Mathematics. Dover Publications, 2013. [p152]

M. Gilli. Causal ordering and beyond. International Economic Review, pages 957-971, 1992. URL
https://doi.org/10.2307/2527152. [p149]

C. W. Granger. Testing for causality: a personal viewpoint. Journal of Economic Dynamics and
control, 2:329-352, 1980. URL https://doi.org/10.1016/0165-1889(80)90069-x. [pl49]

W. H. Greene. Econometric Analysis. Pearson Education, 2003. [p159, 160]

A. K. Gupta and D. K. Nagar. Matriz Variate Distributions. Monographs and Surveys in Pure and
Applied Mathematics. Taylor & Francis, 1999. URL https://doi.org/10.1201/9780203749289.

[p166]
A. Henningsen and J. D. Hamann. Systemfit: Estimating Systems of Simultaneous Equations, 2017.
URL https://CRAN.R-project.org/package=systemfit. R package version 1.1-20. [p160]

K. G. Joreskog. Structural analysis of covariance and correlation matrices. Psychometrika, 43(4):
443-477, 1978. [p149]

K. G. Joreskog and H. O. A. Wold. Systems Under Indirect Observation: Causality, Structure,
Prediction. Number 139, pt. 2 in Contributions to Economic Analysis. North-Holland Publishing
Company, 1982. [p152]

L. R. Klein. Economic Fluctuations in the United States, 1921-1941. Monographs of the Cowles
Commission for Research in Economics. John Wiley & Sons, 1950. [p159]

R. B. Marimont. System connectivity and matrix properties. The Bulletin of Mathematical Biophysics,
31(2):255-274, 1969. [p151]

J. Ponstein. Matrices in Graph and Network Theory. Van Gorcum’s natuurwetenschappelijke reeks.
Van Gorcum & Comp., 1966. [p152]

R. H. Strotz and H. O. A. Wold. Recursive vs. nonrecursive systems: An attempt at synthesis (part
I of a triptych on causal chain systems). Econometrica, 28(2):417-427, 1960. [p149, 150]

H. Theil. Economic Forecasts and Policy. Contributions to economic analysis. North-Holland
Publishing Company, 1961. [pl161]

R. L. Wasserstein and N. A. Lazar. The ASA’s statement on p-values: Context, process, and purpose.
The American Statistician, 70(2):129-133, 2016. URL https://doi.org/10.1080/00031305.2016.
1154108. [p165]

H. O. A. Wold. Econometric Model Building: Essays on the Causal Chain Approach. Contributions
to economic analysis. North-Holland Publishing Company, 1964. [p149, 150]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph
https://doi.org/10.1016/j.strueco.2018.09.007
https://doi.org/10.1016/j.strueco.2018.09.007
https://doi.org/10.2307/2527152
https://doi.org/10.1016/0165-1889(80)90069-x
https://doi.org/10.1201/9780203749289
https://CRAN.R-project.org/package=systemfit
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108

CONTRIBUTED RESEARCH ARTICLES 167

Proof of relevant formulas

In this Appendix we provide the proofs of some relevant formulas of the paper.
1. Let £ and R be defined as in Section 2. Then, the proof that (I + R) is the binary matrix
associated to X (I — 1")_1 is based on the following two theorems.

Theorem 1. If two conformable matrices, A and B, are such that

A=A=xH B=B=xK (A1)
then the binary matriz associated to AB is (HK)?. |
Theorem 2. If a non-singular matriz A is such that

A=Ax+H (A.2)
where H is a given binary matriz, then
N-1
(AH=@+ Y HY =A™ (A.3)
n=1
where N is the matriz dimension. |
Now, upon noting that
I-T)=@1-T)x*(I-T?), (A.4)

reference to Theorem 2 leads to conclude that
I-T) ' =1-T) '« (I+R) (A.5)

Next, taking into account that £” and (I + R) are the binary counterparts of the & matrix
and (I —T')~! reference to Theorem 1 entails the following

EI-T)=[Z(I-0)]*[Z°T+R)]. (A.6)
2. The proof that C and F, defined as in Section 3, satisfy the following relationship
C+F=C (A7)

hinges on a preliminary result given in the following theorem.

Theorem 3. The matrices C and I+ R satisfy the following relationship
ct«1+R)=C" (A.8)

Proof
Taking into account that the Hadamard product is both commutative (A * B = B % A) and
idempotent for binary matrices (Ab x AY = Ab), and being I hollow, the following holds

r’«1=0, (A.9)

simple computations yield
ClxI+R)=T’+«R+(I+R)=T’«R*I+T°+R*R =C" (A.10)
|

Now, consider the following theorem (where the symbol A > 0 denotes that all the elements
of matrix A are non negative numbers):

Theorem 4. Let B > 0 and AbBP — AY, If C = 0, then
A« (B+C)’= AP (A.11)

Given this premise, we can now prove (A.7). To this end, let us write Z® as follows
I+A)=x" (A.12)

where A *I = 0 is a hollow matrix, and note that, in light of (A.12) and (A.5), the binary
matrix associated to F is, according to Theorem 1, given by

F’ = [IT+A)I+R)]° (A.13)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

168

Next, use of Theorems 3 and 4, yields the following
Cl+F = Cl«[I+A)I+R)’ =Cl«[I+R)+AI+R)]® =C® (A.14)
as (A(I+ R))? = 0. This, in turn, entails that
Cl+ o) «F = (C'+ 8« FP =T« F® (A.15)

which means that C + ¥ % F and T * F have the same topological structure. |

. Proof of (38) . Formula (38) can be proved as follows. First, note that matrix I'* weighting
the current endogenous explicative variables in the model (31), (32) can be expressed as

' = P,IP, (A.16)

where P; is a permutation matrix obtained from an identity matrix by interchanging its first
row with its j-th row. Then note that

0 o
r = E
7 (I—To)
and that
1+ 'y}Lflq ')/;»Lf1
(I-T%)~" =
L'y L7!
, where
L=1-T,—#5y;=(I-G) (A.17)
Accordingly
%M’I(I—r*)—lze1 =(I-G) 'd =g, (A.18)
23

where e; is the first elementary vector, X, G and d are defined as in (33)and (37) respectively,
and M; is the selection matrix obtained from the identity matrix by deleting its first column.
Now, taking into account that the following holds

(I-T%) =P;(I-T)P; (A.19)
in light of (A.16), and that the following proves true
a-rt*)'=pP,1-1)"'P,, (A.20)

as P; is both symmetric and orthogonal, some computations yield

@ = #M’l (I-T%) " 'Se; = #M’lpj(l ~I)'P;ZP,;Pje; = (A.21)
933 933
— L M1-T)'Se; = - M|Fle,
Py Py
Jj Jj
|
. Derivation of the log-likelihood for the model (41)-(43)
The logarithm of the density in (43) is given by
1 —.- 4 Lo S Lot A.22
nf(gjﬁr)—c—g nojj =g n| |_?jj_§er €r (A.22)
where ¢ is a constant term. Now, upon noting that
o(ei, er)
G SR (A.23)
(5, yr)

and assuming to operate with N observations on the variables of interest, the log-likelihood

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

169

function can be written as

L= ilm,y;) = k- %hwjj - %ln 0] - ";/;I:‘ - %tr(E/Q_lEH) (A.24)
where
o = [1, — fag-sj] (A.25)
2= |95 1+9;7.9,88; K| (A.26)
v = [y, Yo, 2] (A.27)

N
H= (Z vw{) , (A.28)
t=1

and k is a constant term. Formula (A.24) can be obtained by noting that, in light of (41), the
following holds

Yj
~/ ~/ ~/ ~/ !
€ =Y; = Vj¥r — a2y = [1, > —aer] yr| =4V (A.29)
z
and that, according to (42), we have
€r ZYT_KZ_qufj = (A30)
=yr—Kz—9;(y; — §jyr —8;Srz) = (A.31)
Yj
~ [-051+ 05705858, K] |, | == (A.32)
z
This implies that
r—1 Il y— 1= ='—1=, 7
€ e =tr(vEQT Ev) =tr(EQ Evr) (A.33)

Gianmarco Vacca

Department of Economic Policy
Largo Gemelli 1, 20123 Milan, Italy
Ttaly

gianmarco.vacca@unicatt.it

Maria Grazia Zoia

Department of Economic Policy
Largo Gemelli 1, 20123 Milan, Italy
Ttaly

maria.zoia@unicatt.it

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:gianmarco.vacca@unicatt.it
mailto:maria.zoia@unicatt.it

CONTRIBUTED RESEARCH ARTICLES 170

BINCOR: An R package for Estimating
the Correlation between Two Unevenly

Spaced Time Series

by Josue M. Polanco-Martinez, Martin A. Medina-FElizalde, Maria Fernanda Sanchez Goni,
Manfred Mudelsee

Abstract This paper presents a computational program named BINCOR (BINned CORrelation)
for estimating the correlation between two unevenly spaced time series. This program is also
applicable to the situation of two evenly spaced time series not on the same time grid. BINCOR is
based on a novel estimation approach proposed by Mudelsee (2010) for estimating the correlation
between two climate time series with different timescales. The idea is that autocorrelation (e.g. an
ARI process) means that memory enables values obtained on different time points to be correlated.
Binned correlation is performed by resampling the time series under study into time bins on a
regular grid, assigning the mean values of the variable under scrutiny within those bins. We present
two examples of our BINCOR package with real data: instrumental and paleoclimatic time series.
In both applications BINCOR works properly in detecting well-established relationships between
the climate records compared.

Introduction

There are several approaches for quantifying the potential association between two evenly spaced
climate time series, e.g. Pearson’s and Spearman’s correlation or the cross-correlation function
(CCF). However, these methods should not be directly applied when the time series are unevenly
spaced (“irregular”), particularly when two time series under analysis are not sampled at identical
points in time, as is usually the case in climate research, especially in paleoclimate studies (Emile-
Geay, 2016; Mudelsee, 2014; Weedon, 2003). The most common way of tackling this problem is
to interpolate the original unevenly spaced climate time series in the time domain so as to obtain
equidistance and the same times. The series can then be analysed using existing conventional
correlation analysis techniques. However, experience shows that interpolation has its drawbacks:
depending on the features of the method applied, the interpolated time series may show deviations
in terms of variability or noise properties, and additional serial dependence may be introduced
(Horowitz, 1974; Mudelsee, 2014; Olafsdottir and Mudelsee, 2014). Thus, interpolation should be
avoided as far as possible.

Fortunately, there are some algorithms and software available to carry out this task, at least for
unevenly spaced climate time series sampled at identical points in time (Mudelsee, 2003; Olafsdottir
and Mudelsee, 2014). However, there are few statistical techniques for estimating the correlation
between two time series not sampled at identical points in time and their corresponding computational
implementations. One exception is the Gaussian-Kernel-based cross-correlation (gXCF) method
and its associated software named NESTOOLBOX (Rehfeld et al., 2011; Rehfeld and Kurths,
2014; Rehfeld and Bedartha, 2014) and the extended version (Roberts et al., 2017) that includes a
confidence interval obtained by a bootstrapping resampling approach; another exception is binned
correlation as proposed by Mudelsee (2010, 2014). However, the software for this method is not
freely available on the Internet.

Binned correlation is a statistical technique developed to estimate the correlation between
two unevenly spaced time series sampled at different points in time. It is also applicable to two
evenly spaced time series that are not on the same time grid (Mudelsee, 2014). It is performed by
resampling the time series into time bins on a regular grid, and then assigning the mean values of
the variable under scrutiny within those bins. Mudelsee (2010) proposes a novel approach adapting
the binned correlation technique (used mainly with astronomical data) to analyse climate time
series taking into account their memory (or persistence), which is a genuine property of climate
time series. Autocorrelation, persistence, memory or serial dependence is characteristic of weather
and climate fluctuations, and is recorded in climate time series (Wilks, 2011; Mudelsee, 2002). A
simple persistence model used to “represent” climate time series is a first-order autoregressive (AR1)
process where a fluctuation depends only on its own immediate past plus a random component
(Gilman et al., 1963; Mann and Lees, 1996; Mudelsee, 2002). However, paleoclimate time series
are usually unevenly spaced in time, and it is necessary to use an AR1 version for the case of
uneven spacing, such as the method proposed by Robinson (1977). The technique of Mudelsee (2010)
requires the concept of nonzero persistence times, enabling the mixing information (i.e. covariance)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 171

to be recovered, even when the two timescales differ. The BINCOR package presented in this paper
is based on a method that is not applicable when one or both of the time series under examination
have zero persistence. Similarly, this method is not applicable when the time series are sampled with
significantly longer spacing than the persistence time, so that the effectively sampled persistence
time is zero. A fundamental condition for using this method is that the time spacing should not be
much larger than the persistence times. Enough common data points then fall within a time bin,
and knowledge can be acquired on the covariance (Mudelsee, 2010, 2014).

In this paper we present a computational package named BINCOR (BINned CORrelation),
which is based on the approach proposed by Mudelsee (2010, 2014). The BINCOR package contains
(i) a main function named bin_cor, which is used to convert the irregular time series to a binned time
series; (ii) two complementary functions (cor_ts and ccf_ts) for computing the correlation between
the two binned climate time series obtained with the bin_cor function; and (iii) an additional function
(plot_ts) for plotting the “primary” vs. the binned time series. This package is programmed in R
language and is available at the CRAN repository (https://CRAN.R-project.org/package=BINCOR).

This paper is divided into four sections. The first outlines the method and the computational
program. The second presents a Monte Carlo experiment to study the effect of binning size selection.
In the Examples section we apply BINCOR to a couple of unevenly spaced real-world climate data
sets: instrumental and paleoclimate. Finally, the Summary section presents our main conclusions.

The BINCOR . package

The method

In this section we outline the main mathematical ideas behind the binned correlation technique
for unevenly spaced sampled at different points in time, following the methodology introduced by
Mudelsee (2010, 2014). The procedure is described as follows:

1. Input: two unevenly spaced climate time series {X (¢), T'x }Z]\ixl and {Y (3), TY}Z-ALYP where T,
Ty and Ny, Ny are the time domains and the sample sizes of each series, respectively.

2. Compute the average spacing between samples

o dy =[Tx(Nx)—Tx(1)]/(Nx —1)
o dy = [Ty (Nx) — Ty (D)]/(Ny —1)
o CZXY = [Tmax _Tmin]/ NX +NY - 1)

where Tmax = max[Tx (Nx), Ty (Ny)] and Tyin = min[Tx (1), Ty (1)].

—~

3. Estimate the bin-width (7) taking into account the persistence (memory) estimated for each
unevenly spaced climate time series, X and Y denoted as 7x and 7y, respectively. To estimate
the persistence, an AR1 model (Robinson, 1977) is fitted to each unevenly spaced time series
(Mudelsee, 2002). BINCOR includes three rules for estimating the bin-width (the options are
shown in Table 1), but we prefer to use rule number 3 as the default value (FLAGTAU=3)
because in terms of the RMSE (Section Monte Carlo experiments) of this rule Monte Carlo
simulations are superior to the other rules for estimating the bin-width (Mudelsee, 2014).

o Estimate the bias-corrected equivalent autocorrelation coefficients

'y = exp(—dx/?y), dy = exp(—dy/?y) , and d'yy = \/d - @4

« Estimate the bin-width as 7 = —dxy/In(dxy) (Eq. 7.48 in Mudelsee (2002)), the
default option (FLAGTAU=3) in the BINCOR package, other options are:

4. Determine the number of bins: Ny = (Tmax — Tmin)/7
5. Set: limj,¢(n = 1) = Tinin. Then, for n = 1,2, ..., Ny, define (Figure 1):
) limgup(n) = Tin + 1 - 7
) idTx = WHICH [Tx > limj,¢(n) AND Tx < limgup(n)]
(c) idTy = WHICH [Ty = limjp¢(n) AND Ty < limgyp(n)]
) LTx = LENGTH(idTx)
) LTy = LENGTH(idTy)
if (LTx > 0 AND LTy > 0)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=BINCOR
https://CRAN.R-project.org/package=BINCOR

CONTRIBUTED RESEARCH ARTICLES

172

7 rule FLAGTAU option Reference

o + Ty 1 Eq. 7.44 in Mudelsee (2014)

max 7z, Ty) 2 Eq. 7.45 in Mudelsee (2014)
—dxy/In(@y) 3 Eq. 7.48 in Mudelsee (2014)

Table 1: The FLAGTAU options and its corresponding methods (rules) to estimate the bin-width.

o

i. F(n) = mean of X (idT)
ii. G(n) = mean of Y (idTy)
iii. T(n) = [limjpe(n) + limgup(n)] / 2
(1) limiu(n) = limup (1)
6. Output: two binned climate time series {Th,, F(n)}nNi1 and {Th, G(n)}gil, where Ny, is the
number of bins.

7. Estimate the correlation between the two binned time series. This can be done through the
native R functions cor and ccf or by means of the BINCOR functions cor_ts and ccf_ts.

X averaging

oA oA
o I, . \ ! L,
. . I | | . . | | | .
™, ! | ! ! !
| | " Time, Ty (i) ! ! ' Time, T(k)
: : l Y averaging l l :
- ‘ L - \ v
YU \ e . Y(k) \ | .
T | . . * L .
| Lot y | | |
Yy | ! ! ! ! !
‘ ! | Time, Ty(j) ! ! I Time, T(k)
‘ ‘ ! Time binning ! ! ‘
et ot s
A A A = ! I
min[Tx (1), Ty(1)] max[Tx (ny), Ty(ny)] () T2) T(n)
= Thin = Trax Tmin Trnax

Figure 1: Graphical representation for the binned correlation procedure presented in Step 5.
Modified from (Mudelsee, 2010, 2014).

Monte Carlo experiments

We conducted Monte Carlo experiments to study how the specific rules (Table 1) chosen for calculating

the bin-width based on persistence reduce the error compared to arbitrarily choosing a bin-width.

The parameter configuration for the Monte Carlo experiments is presented in Figure 2. To carry out
the Monte Carlo simulations, we used the bivariate Gaussian AR1 process for uneven time spacings
(Mudelsee, 2014), which is given by

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

173

Py,

Y
B 0,1y (1),
t), t=2,..,N,

(B.3.1)

where ax and ay, the autoregressive parameters for X (¢) and Y (t), are defined as (Mudelsee,
2014): ax = exp{—[Tx(t) —Tx(t —1)]/7x} and ay = exp{—[Ty(t) — Ty (t — 1)]/7y}. The correla-
tion (by construction) between X (¢) and Y (¢) is pxy (see Mudelsee, 2014, pp. 307-309 for more
details about the statistical properties of the bivariate AR1 process for unevenly spaced time series).
To generate the uneven timescales for X (7) and Y (j), we follow the methodology proposed by (see
Mudelsee, 2014, pp. 299-304), which consists of producing a number (10 N) of data pairs on an
evenly spaced grid of 1.0, discarding 90% of points and retaining 10% of X and Y (Nz = Ny = N)
points. The time points for X (i) and Y (j) are subject to the following conditions:

1. Control case (equal timescales):
e Condition 1: Nx = Ny
« Condition 2: {Tix (i)};X = {Ty ()}
2. “Well” mixed unequal timescales:
o Condition 1: Tx (¢) # Ty (j) for all ¢ and j
e Condition 2: Tx (1) <Ty (1) <Tx(2) <Ty(2) <Tx(3) <..<Tx(Nx) <Ty(Ny)

3. “Wildly” mixed unequal timescales:

¢ There are not conditions for this case.

0.8+ 0.8 0.8
—.
) \o
0.6 % 0.6 4 \ 0.6 1
0.4+ X 0.4+ \ \ 0.4 \.)
» .
0.2 ‘=l==-|-§=_‘ 0.2 . 0.2 \:\
—~—— -§
_——]
[
0.0 0.0 0.0
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000 10 20 50 100 200 500 1000
0.8+ 0.8 4 087
. :\ —
0.6 1 \ 0.6 1 \ 0.6
$ o \
0.4 \ 0.4 \ 0.4 - \
\ \ — —e——
0.2 =t 0.2 -\.\ 0.2 4
' e @ —
I — ~N §
_l
0.04 0.0 0.0
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000 10 20 50 100 200 500 1000

Figure 2: Monte Carlo experiments to test the impact of the rules (Table 1) used to calculate the
bin-width and their role in the estimation of the binned correlation. The persistence
figures for X and Y are 10 (column 1), 20 (column 2) and 50 (column 3), respectively.
The constraints for the resampling timescales are for well mixed (first row) and wildly
mixed (second row) cases. The horizontal axis indicates the sample sizes (in log10 scale)
and the vertical axis shows the RMSE that is determined via averaging (pxy — p Xy)2
over 5,000 simulations. The blue, green and red curves indicate rules 1 (sum), 2 (max)
and 3 (the default rule option in BINCOR).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 174

The outcome of the Monte Carlo experiments is as follows: 1) For equal timescales (figures
not shown), all three rules behave similarly (as expected) in terms of RMSE, although the RMSE
increases slightly as the persistence increases. 2) The well mixed case shows that for RMSE the
rules take two different “patterns” with the first two rules (sum and max) on one hand and the
third rule (the default rule option) on the other. This difference is most noticeable in the first values
of the samples (from 10 to 100) and is most pronounced with high persistence values (7 and 7y).
The rule that shows the smallest RMSE is rule 3 (the default option), though it is important to
point out that for 7, = 7y = 50 the RMSE figures are practically indistinguishable for sample sizes
from 200 to 1000. 3) Finally, RMSE in the wildly mixed case behaves more or less similarly to the
well mixed case, though rule 3 yields the smallest RMSE for all three persistence values. Bearing
in mind that the wildly mixed case does not impose conditions on generating timescales, and in
practice the unevenly spaced climate time series could contain some degree of randomness in the
sampling times, the best rule in terms of RMSE for estimating bin-width (7) and binned correlation
can be said to be number 3, i.e. the default rule used in BINCOR to estimate the bin-width.

The computer program

The BINCOR package developed in R version 3.1.2! to be run from the command line runs on all
major operating systems and is available from the CRAN repository (http://CRAN.R-project.org/
package=BINCOR). The BINCOR package contains four functions: 1) bin_cor (the main function
for building the binned time series); 2) plot_ts (for plotting and comparing the “primary” and
binned time series); 3) cor_ts (for estimating the correlation between the binned time series); and 4)
ccf_ts (for estimating the cross-correlation between the binned time series). The graphical outputs
can be displayed on the screen or saved as PNG, JPG, or PDF graphics files. BINCOR depends on
the dplR (Bunn et al., 2015) and pracma (Borchers, 2015) packages. The dplR package is used by
the function bin_cor to calculate the persistence for the climate time series under study, whereas
the pracma package is used by the functions cor_ts and ccf_ts to remove the linear trend before
estimating the correlation.

The first (and main) function, bin_cor, estimates the binned time series taking into account the
memory or persistence of the unevenly spaced climate time series to be analysed (Mudelsee, 2002).
It has the following syntax:

R> bin_cor(tsl, ts2, FLAGTAU=3, ofilename),
where

e tsl and ts2 are unevenly spaced time series.

e FLAGTAU defines the method used to estimate the bin-width (7). There are three methods
included in BINCOR for estimating bin-width (Table 1), but we prefer to use (FLAGTAU = 3)
as the default rule because Monte Carlo simulations perform better in terms of RMSE than
the other rules in estimating the bin-width and the binned correlations (Mudelsee, 2014).

o ‘ofilename’ is the name of the output file (in ASCII format) which contains the binned time
series.

bin_cor returns a list object containing the following outputs:

"Binned_time_series", "Auto._cor._coef._tsl", "Persistence_tsl1", "Auto._cor._coef._ts2",
"Persistence_ts2", "bin width", "Number_of_bins", "Average spacing", "VAR. tsl",

"VAR. bin ts1", "VAR. ts2", "VAR. bin ts2", "VAR. tsl - VAR bintsl",

"VAR. ts2 - VAR bints2", "% of VAR. lost tsi1", "% of VAR. lost ts2".

The names of the outputs are self-explanatory, but we wish to highlight that Average spacing is
the mean value of the times for the binned time series; VAR. ts1, VAR. bin tsi1, VAR. ts2 and
VAR. bin ts2 are the variances for ts1 and ts2 for their respective binned time series; the next two
outputs are the differences between the variances of ts1 and ts2 and their corresponding binned
time series; and the last two outputs are the percentages of variance lost for ts1 and ts2 as a result
of the binned process.

The second function, called plot_ts, plots the “primary” (unevenly spaced) time series and the
binned time series. The plot_ts function contains the following elements:

R> plot_ts(tsl, ts2, bintsl, bints2, varnametsl="", varnamets2="",
coltsl=1, colts2=1, colbintsl=2, colbints2=2, ltytsil=1,
ltyts2=1, ltybintsl1=2, ltybints2=2, device="screen", ofilename),

11t was also tested in R 3.4.1.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://CRAN.R-project.org/package=BINCOR
http://CRAN.R-project.org/package=BINCOR
https://CRAN.R-project.org/package=dplR
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=dplR
https://CRAN.R-project.org/package=pracma

CONTRIBUTED RESEARCH ARTICLES 175

where the input arguments ts1 and ts2 are the unevenly spaced time series, bintsl and bints2
are the binned time series, varnamets1 and varnamets2 are the names of the variables under study,
coltsl, colts2 (by default both curves are in black) and colbintsl, colbints2 (by default both
curves are in red) are the colours for the “primary” and binned times series; ltytsl, ltyts2,
1ltybintsl and ltybints2 are the types of line to be plotted for the “primary” and binned times
series, respectively (1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 =
double-dashed); device is the type of output device (“screen” by default, the other options being
“jpg,” “png,” and “pdf”); resfig is the image resolution in “ppi” (by default R does not record a
resolution in the image file, except for BMP; 150 ppi could be a suitable value); ‘ofilename’ is the
output filename; and finally, Hfig, WFig and Hpdf, Wpdf are the height and width of the output for
the JPG/PNG and PDF formats, respectively.

The third function, cor_ts, calculates three types of correlation coefficient: Pearson’s correlation,
Spearman’s and Kendall’s rank correlations. These correlation coefficients are estimated through
the native R function cor.test from the R package Stats. The cor_ts function has an option to
remove the linear trend of the time series under analysis — other pre-processing methods could be
used before the cor_ts function is applied. This function has the following syntax:

R> cor_ts(bintsl, bints2, varnametsi="", varnamets2="",
KoCM, rmltrd="N", device="screen", Hfig, Wfig, Hpdf, Wpdf,
resfig, ofilename)

where KoCM indicates the correlation estimator: pearson for Pearson (the option by default), spearman
for Spearman and kendall for Kendall; rmltrd is the option to remove the linear trend in the time
series under study (by default the linear trend is not removed, but the function can be enabled
via the option “Y” or “y”). The other parameters are described some lines above. cor_ts has as
its output a list object containing the main information for the estimated correlation coefficient
(e.g. a 95% confidence interval for Pearson and a p-value for Spearman and Kendall). The cor_ts
function also provides a scatterplot for the binned time series, which can be plotted on the screen
(by default) or saved in JPG, PNG or PDF formats (the parameter ‘ofilename’ is available to assign

a name to this output).

Finally, the fourth function, ccf_ts, estimates and plots the cross-correlation between two evenly
spaced paleoclimate time series. We use the native R function ccf (R Stats package) to estimate
the cross-correlation in our ccf_ts function. The ccf_ts function has the following syntax:

R> ccf_acf <- ccf_ts(bintsl, bints2, lagmax=NULL, ylima=-1, ylimb=1,
rmltrd="N", RedL=T, device="screen", Hfig, Wfig,
Hpdf, Wpdf, resfig, ofilename)

All these elements are already defined above except the parameters lagmax=NULL, ylima=-1, ylimb=1
and RedL. The first parameter indicates the maximum lag for which the cross-correlation is calculated
(its value depends on the length of the data set), the next two parameters indicate the extremes of
the range in which the CCF will be plotted and the last parameter (the default option is TRUE)
plots a straight red line to highlight the correlation coefficient at lag 0. The ccf_ts function
generates as its output the acf (auto-correlation function; ACF) R object, which is a list with the
following parameters: lag is a three dimensional array containing the lags at which the ACF is
estimated; acf is an array with the same dimensions as lag containing the estimated ACF; type is
the type of correlation (correlation (the default), covariance and partial); n.used is the number
of observations in the time series; and snames provides the names of the time series (bints1 and
bints2).

Examples

Assessing the link between El Nino-Southern Oscillation and Northern Hemi-
sphere sea surface temperature

We first examine two evenly-spaced annually-resolved instrumental climate records that cover the
time interval from 1850 to 2006 (N = 157 points)Q. To test our BINCOR package we created
irregular time series by randomly removing 20% of the data from the evenly spaced time series. We
note that the new “sampling” times are not necessarily the same for both irregular series. The new
irregular time series (“primary” hereafter) consist of 125 data points and have an average temporal
spacing d of 1.24 years. Specifically the two time series used were a record of Northern Hemisphere

2The data sets can be obtained from the following URL http://www.meteo.psu.edu/holocene/public_
html/supplements/MultiproxySpatial09/results/ (NINO3 full and Northern Hemisphere full).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/
http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/

CONTRIBUTED RESEARCH ARTICLES

176

(NH) sea surface temperature (SST) anomalies (HadCRUT3, Brohan et al. (2006)) and a record
of equatorial Pacific SST anomalies from the El Nifio 3 region (2.5°S to 2.5°N, 92.5 to 147.5°W)
(Mann et al., 2009), which is a indicator of El Nifio-Southern Oscillation (ENSO). Both time series,
especially the NH-SST data, show strong autocorrelation (plots not shown) and long-term trends
(inspected by Mann-Kendall test; ENSO, z=6.52 and p-value < 0.001 and NH-SST, z = 10.214
and p-value < 0.001). To generate the sample data, we fit a linear model to each evenly spaced
time series and, after removing the model fitted to the evenly spaced data, we use the residuals (i.e.
the difference between the observed data and the model fitted) to build the irregular time series and

then create the binned time series.

Y Y A Y |
L LML 0000000 DAL DL L0000 AL LU0 L0000 L0000 AL
—— ENSO-Nino3 (primary). N = 125 elements °
- ENSO-Nino3 (binned). N = 44 elements
0.2 4
| o« o ‘e
. 0.1 L [,\ ! P
S o\ J] J
g "o I] -
I \ | \ [% / a
3 4 s ; N
004 4 | .
& IR \ i [
i I 8
h o !
o o ! o
\; ’ o \ e
d o g !
-0.1 o o< .
-0.2
T T T T
1850 1900 1950 2000
B) Year
A Y Y |
R T T T
006 7 SST NH Mean (primary). N = 125 elements
gT NH Mean (blnl’Fd). N = 44 elements
0.04 \
0.02 —
§
3
=
I
Z 0.00 4
s
19
(2]
-0.02 —
-0.04 -

2000

Year

Figure 3:

ENSO-Nino3

ENSO-Nino3

T T e T T T T W T T T}
L L0000 000 LU0 L L0000 AL L0000 L0 LA L L0000 UL
— ENSO-Nino3 (primary). N = 125 elements ° - 0.06
— T NH Mean (prinpry). N = 125 elements
0.2 °
. o ~ 0.04
| le] i
0.1 \ ! \ ol :\ j/\ {‘,\ / l \| oo
q I ° . oo
b AT L
:] " |-] | 1 & L@
P Io H = l oS e| %, - 0.00
o0 4. I | LOI L [: / |
S Gole s e g
\ o & el (I \ p . - -0.02
| o N o \
-0.1 - % o / b < . B
| /’ . o . ° I \
o [/ \I] . w - -0.04
N o |
S] ! ‘,
-0.2 ° o
T T T T
1850 1900 1950 2000
D) Year
T Y Y A N I
R Y I
- ENSO-Nino3 (binngd). N = 44 elements °
-- SST NH Mean (binned). N = 44 elements
o ° " - 0.04
0.1
~ 0.02
00 4 . o000
- -0.02
0.1
- —0.04
T T T T
1850 1900 1950 2000

Year

“Primary” (unevenly spaced) and binned ENSO-Nifio3 (Mann et al., 2009) and NH-

SST (Brohan et al., 2006). The autocorrelation and persistence values for ENSO are
4’ = 0.82 and 7 = 6.25 years, and for NH-SST are & = 0.86 and 7 = 8.05 years. The
horizontal top axes indicate the sampling times for the plotted time series.

The code used to generate Figure 3 is shown below.

Load the package
library (BINCOR)

Load the time series under analysis: Example 1 and Figure 1 (ENSO vs. NHSST)

data(ENSO)
data (NHSST)

Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")

binnedts

The R Journal Vol. 11/1, June 2019

<- bincor.tmp$Binned_time_series

ISSN 2073-4859

SST NH Mean

SST NH Mean

CONTRIBUTED RESEARCH ARTICLES 177

Applying our plot_ts function

"Screen"

plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3",
"SST NH Mean", coltsl=1, colts2=2, colbints1=3, colbints2=4, device="screen")

Figures 3 A and 3 B show the binned time series (ENSO in green and NH-SST in red) obtained
with our bin_cor function. Although we use residuals, they show a relative high autocorrelation
(aNngo = 0.82 and Ggg = 0.86) and their corresponding estimated bias-corrected persistence values
are Tgngo = 6.25 years and 7ggT = 8.05 years. The number of bins and, thus, the number of
elements for each binned time series is 44 and the distance between elements is 3.5 years. We also
plot the “primary” climate time series (in black) to compare them with the binned series. Visually,
the binned time series are roughly similar to the “primary” series. This observation is also supported
by the statistical similarity method (Frentzos et al., 2007) as implemented in the R package TSdist
(Mori et al., 2015, 2016). The dissimilarity metric (DISSIM) has the following interpretation: a
value of zero indicates a perfect relationship such that the closer DISSIM is to zero, the more similar
are the time series. The DISSIM between the binned and “primary” ENSO time series and the
binned and “primary” NH-SST series are 3.70 and 0.84, respectively. This corroborates the similarity
between the “primary” and binned time series observed visually. Figure 3 also shows a comparison
between the “primary” climate time series (Figure 3 C) and the binned series (Figure 3 D). Note
that this plot shows that the number of elements (N = 125) is the same for both “primary” series,
but this is not strictly necessary: our bin_cor function is able to tackle time series with different
numbers of elements.

The second result obtained from our BINCOR package, and more specifically from the cor_ts
function, is shown in Figure 4, which shows the scatterplot between the ENSO (x-axis) and NH-SST
(y-axis) binned time series. This scatterplot shows a moderate increasing trend from left to right,
suggesting a potentially positive relationship between the two binned time series. This pattern
can be confirmed statistically by means of the cor_ts function output, which also provides the
correlation coefficient between two time series under analysis. For this case, the Pearson’s correlation
(with 95% confidence interval) obtained is 7xy = 0.53 [0.28; 0.71] (other estimators can also be used
in cor_ts). This value is close to the Pearson’s correlation estimated for the evenly spaced climate
time series, which is 7xy = 0.58 [0.46; 0.67]. The relatively high correlation obtained between
these two climate records is expected; ENSO-related climate variability is observed in many regions
outside the equatorial Pacific, particularly in the tropical North Atlantic (Enfield and Mayer, 1997;
Garcia-Serrano et al., 2017).

0.04 —
0.02 .

0.00 —

SST NH Mean

-0.02

-0.04 —

T T T T T T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

ENSO-Nino3

Figure 4: Scatterplot for the ENSO-Nifio3 (Mann et al., 2009) and NH-SST (Brohan et al.,
2006) binned time series. The Pearson’s correlation coefficient (with 95% confidence
interval) is 7xy = 0.53 [0.28; 0.71].
The code used to generate Figure 2 is shown below.

Load packages
library (BINCOR)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=TSdist

CONTRIBUTED RESEARCH ARTICLES 178

library(pracma)

Load the time series under analysis: Example 1 and Figure 2 (ENSO vs. NHSST)
data(ENSQ)
data(NHSST)

Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
binnedts <- bincor.tmp$Binned_time_series

Compute the scatterplot by means of our function cor_ts

PDF format (scatterplot) and Pearson

cor_ts(binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", "SST NH Mean",
KoCM="pearson", rmltrd="y", device="pdf", Hpdf=6, Wpdf=9, resfig=300,
ofilename="scatterplot_ENSO_SST")

Abrupt climate changes during the last glacial

We report an analysis of two temporally unevenly-spaced pollen records from two marine sediment
cores (MDO04-2845 and MD95-2039)3 collected on the south-western European margin (Figure 5).
The aim of this case study is to show the use of BINCOR to estimate the correlation between two
unevenly spaced paleoclimate time series by means of the cross-correlation function. The pollen time
series analysed in this example span the interval between 73,000 and 15,000 years before present
(BP), thus covering the last glacial period (LGP). The climate during the LGP was characterised by
millennial variability with “abrupt” transitions between cold stadials and warm interstadials known
as Dansgaard-Oeschger (D-O) cycles (Dansgaard et al., 1993; Wolfl et al., 2012). The D-O cycles
are characterised by rather fast atmospheric warming events over Greenland of up to 16 °C that
occur within a period of approximately 40 years, followed by gradual cooling leading to the cold
stadials (?Wollf et al., 2012).

50 —) -

MDO04-2845_sitelD31x

Latitude

MD95-2039_sitelD32x y
40 & h [~

o >

30 — —

Longitude

Figure 5: Geographical locations for the pollen time series under analysis (7). The labels indicate
the names of the sites where the pollen data were obtained.

3The data sets can be obtained from https://doi.pangaea.de/10.1594/PANGAEA.870867. These time
series come from a global pollen and charcoal database (?) drawn up under the framework of the INQUA
International Focus Group ACER (Abrupt Climate Changes and Environmental Responses).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.pangaea.de/10.1594/PANGAEA.870867

CONTRIBUTED RESEARCH ARTICLES

179

MDO04-2845 (Temp. forest %)

MD95-2039 (Temp. forest %)

Figure 6 illustrates the variations in the pollen percentages of the temperate forest, a type of
vegetation typical of moderate, warm, wet climates. Figure 6 A shows the primary and binned
pollen records from site MD04-2845 (Sanchez Goni et al., 2008; ?). Figure 6 B shows the primary
and binned pollen records from site MD95-2039 (Roucoux et al., 2005; 7). We use the pollen time
series with a harmonised, consistent chronology (?) to carry out a fair comparison. We apply our
bin_cor and plot_ts functions and obtain the binned time series, which have 27 elements, and a
temporal distance between elements of 1220 years. The binned time series show a relatively high level
of autocorrelation, &i\/ID04—2845 = 0.85 and &i\/ID95—2039 = 0.80, and an estimated bias-corrected
persistence values of fypos4—ogsas = 3400 years and Typgs—2039 = 1300 years. It can be observed
from Figures 6 A and 6 B that the binned time series are roughly similar to the “primary” time
series, although binning causes some information loss. This is due to the high degree of irregularity
in the sampling of the “primary” time series, which makes it difficult to resample when the binned
time series are built. In addition, information is lost because the length of the bin is dependent on
the persistence and autocorrelation of the “primary” time series. Finally, Figures 6 C and 6 D show
that the two pollen time series, presented as the primary and binned data, may be significantly
correlated. This is discussed below.

Y Y A A Y A A i 10 10000 O L D Dy
LU L L DO T WL L LU L L DO T WL L
04— MDO04-2845 (Temp. forest %) (primary). N = 7.7 elements 09 — MDO04-2845 (Temp. forest %) (primary). N <77 elements
- MDO04-2845 (Temp. forest %) (binned). N = 27 elements —— MD95-2039 (Temp. forest %) (primary). N =141 elements
- 30
40 40
= 25
a~
% o
30 2 30+ 20
=) o
5 o
s | o © W - 15
20 & 204
1 Lol 3 I
: ; WA .| g . : [
10 | . St oL oo 0" 10) Ao e =l -
k[l Lyl o4 \;“%/:“ N A n°’\j° . S Fs
FOLL. 7 Aoy B \ o ohee AR 7 B L \
AUl I - il AR A
Sl e AR/ S . Bo’fwwi“f B gt bl
0 ° 04 B Fo
T T T T T T T T T T
30000 40000 50000 60000 70000 30000 40000 50000 60000 70000
Years cal B.P. D) Years cal B.P.
Y Y A A I B B B B A Y Y Y B B B B |
1l 10 10000 O L DO D Y Y
—— MD95-2039 (Temp. forest %) (primary). N =°141 elements 35 MDO04-2845 (Temp. forest %) (binned). N = 27 elements - 20
- MD95-2039 (Temp. forest %) (binned). N = 37 elements - MD95-2039 (Temp. forest %) (binned). N = 27 elements
30 o
30
%7 g - 15
3 25
20 e
Al 2
Al E 20 |
15 N ; 9 - 10
HB 3
I N 15
b <
10 PR 8
AR s
%P e Flo TF / -, 10
P °) %
5 O ALy }[l . 2 s
qa clbe ° el 5 - e
0 o o X
T T T T T T T T T T
30000 40000 50000 60000 70000 30000 40000 50000 60000 70000
Years cal B.P. Years cal B.P.

Figure 6: “Primary” (unevenly spaced) and binned pollen time series under analysis (7). The
numbers of elements for both time series are provided in the legend. The autocorrelation
and persistence values for the time series from site MD04-2845 are &' = 0.85 and
= 3400 years, and those from site MD95-2039 are &’ = 0.80 and 7 = 1300 years.
The horizontal top axes indicate the sampling times for the plotted time series.

The code used to generate Figure 6 is as follows.

Load the package
library (BINCOR)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

MD95-2039 (Temp. forest %)

MD95-2039 (Temp. forest %)

CONTRIBUTED RESEARCH ARTICLES 180

library(pracma)

Load the time series under analysis: Example 2 and Figure 6
data(MD04_2845_siteID31)
data(MD95_2039_siteID32)

Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
binnedts <- bincor.tmp$Binned_time_series

To avoid NA values
bin_tsl <- na.omit(bincor.tmp$Binned_time_series[,1:2])
bin_ts2 <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)])

Applying our plot_ts function

PDF format

plot_ts(ID31.dat, ID32.dat, bin_tsl, bin_ts2, "MD04-2845 (Temp. forest)",
"MD95-2039 (Temp. forest)", coltsl=1, colts2=2, colbintsl1=3, colbints2=4,
device="pdf", Hpdf=6, Wpdf=9, resfig=300, ofilename="ts_ACER_ABRUPT")

The cross-correlation (CCF) analysis obtained with our ccf_ts function is shown in Figure 7.
Before applying the ccf_ts function, a linear trend was removed from the binned time series by
enabling the rmltrd option in ccf_ts, and then the residuals were used. The CCF reveals a high
correlation (rzy = 0.53) between the binned time series at lag 0. The high correlation between
the pollen records from sites MD04-2845 and MD95-2039 reflects similar responses by vegetation
to regional climate variability, particularly to changes in precipitation and temperature. However,
the most noticeable result in our CCF analysis is that the maximum correlation (rzy = 0.63) is
obtained at lag 1. At face value, this result suggests that pollen variability at site MD04-2845 leads
that observed at site MD95-2039 by 1220 years. Nevertheless, these sites are located relatively
close to each other and are in the same climate domain today, so it is difficult to envisage such a
time difference in the response of vegetation (pollen) to rapid climatic changes in the past. The
most plausible explanation for this out-of-phase relationship probably lies in the chronological
uncertainties of the age models applied to these records. Despite best-efforts to harmonise the
different time series in the ACER database using radiometric dating (?), the lack of 14¢ dates for
site MD95-2039 forced us to build the age model for this site by tuning the planktic foraminifera
and GRIP ice core oxygen isotopic records (Roucoux et al., 2005). This tuning could affect the
time series from site MD95-2039 and introduce unacknowledged chronological uncertainties (Blaauw,
2012; Hu et al., 2017). To summarise, with the present state of data quality we cannot rule out the
idea that timescale uncertainties —rather than climate impact adaptation — caused the lag observed.

The code used to generate Figure 7 is the following.

Load packages
library (BINCOR)
library(pracma)

Load the time series under analysis: Example 2 and Figure 7 (ID31 vs. ID32)
data(MD04_2845_siteID31)
data(MD95_2039_siteID32)

Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
binnedts <- bincor.tmp$Binned_time_series

To avoid NA values
bin_tsl <- na.omit(bincor.tmp$Binned_time_series[,1:2])
bin_ts2 <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)])

Applying our ccf_ts function

PDF format

ccf_acf <- ccf_ts(bin_tsl, bin_ts2, RedL=TRUE, rmltrd="y", device="pdf", Hpdf=6,
Wpdf=9, resfig=300, ofilename="ccf_ID31_ID32_res")

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 181

1.0 4
0.5
@
g oo 1 | |
e L | T T
_0.57 77
_107
T T T T 1
-10 -5 0 5 10
Lag

Figure 7: Cross-correlation for the residuals of the binned pollen time series from sites MD04-
2845 and MD95-2039 (?). The CCF correlation coefficients at lag 0 and 1 are 0.53
and 0.63, respectively. The red line indicates the correlation coefficient for lag 0. Each
lag is equivalent to 1220 years.

Summary

We present a computational package named BINCOR (BINned CORrelation) that can be used to
estimate the correlation between two unevenly spaced climate time series which are not necessarily
sampled at identical points in time, and between two evenly spaced time series which are not
on the same time grid. BINCOR is based on a novel estimation approach proposed by Mudelsee
(2010). This statistical technique requires the concept of nonzero persistence times, thus enabling
mixing information to be recovered, even when the two timescales examined differ (Mudelsee, 2014).
The package contains four functions (bin_cor, cor_ts, ccf_ts and plot_ts) with a number of
parameters to obtain a high degree of flexibility in the analysis. BINCOR is programmed in R
language and is available from the CRAN repository. The results when BINCOR s applied to real
climate data sets suggest that the R package BINCOR performs and works properly in detecting
relationships between instrumental and paleoclimate records.

Acknowledgements

JMPM was funded by a Basque Government post-doctoral fellowship. MM’s work was supported by
the European Commission via Marie Curie Initial Training Network LINC (project number 289447)
under the Seventh Framework Programme. Thanks to Charo Sanchez for help to use the i2BASQUE
HPC facilities, to the two anonymous reviewers and Editor (Olivia Lau) for their input and comments
that have improved the quality of the manuscript. The authors thank the support of the computing
infrastructure of the i2BASQUE (Basque Government) academic network. The persistence time
estimation software is freely available via http://www.climate-risk-analysis.com/software/.

Bibliography
M. Blaauw. Out of tune: The dangers of aligning proxy archives. Quaternary Science Reviews, 36:

38-49, 2012. URL https://doi.org/10.1016/].quascirev.2010.11.012. [p180]

H. W. Borchers. pracma: Practical Numerical Math Functions, 2015. URL http://CRAN.R-
project.org/package=pracma. R package version 1.8.8. [p174]

P. Brohan, J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones. Uncertainty estimates in regional and
global observed temperature changes: A new data set from 1850. Journal of Geophysical Research:
Atmospheres, 111(D12), 2006. URL http://dx.doi.org/10.1029/2005JD006548. [pl76, 177]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://www.climate-risk-analysis.com/software/
https://doi.org/10.1016/j.quascirev.2010.11.012
http://CRAN.R-project.org/package=pracma
http://CRAN.R-project.org/package=pracma
http://dx.doi.org/10.1029/2005JD006548

CONTRIBUTED RESEARCH ARTICLES 182

A. Bunn, M. Korpela, F. Biondi, F. Campelo, P. Merian, F. Qeadan, C. Zang, A. Buras, J. Cecile,
M. Mudelsee, and M. Schulz. Dendrochronology Program Library in R, 2015. URL http://CRAN.R~
project.org/package=dplR. R package version 1.6.3. [p174]

W. Dansgaard, S. Johnsen, H. Clausen, D. Dahl-Jensen, N. Gundestrup, C. Hammer, C. Hvidberg,
J. Steffensen, A. Sveinbjornsdottir, J. Jouzel, and G. Bond. Evidence for general instability
of past climate from a 250-kyr ice-core record. Nature, 364(6434):218-220, 1993. URL http:
//dx.doi.org/10.1038/364218a0. [p178§]

J. Emile-Geay. Data Analysis in the Earth € Environmental Sciences. Ed. Figshare, 2016. [p170]

D. B. Enfield and D. A. Mayer. Tropical Atlantic sea surface temperature variability and its relation
to El Nino-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1):929-945, 1997.
URL http://dx.doi.org/10.1029/96JC03296. [pl77]

E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory search. In
2007 IEEE 23rd International Conference Data Engineering, pages 816-825, 2007. URL http:
//dx.doi.org/10.1109/ICDE.2007.367927. [pl77]

J. Garcia-Serrano, C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes. Revisiting the
ENSO teleconnection to the Tropical North Atlantic. Journal of Climate, 30(17):6945-6957, 2017.
URL https://doi.org/10.1175/JCLI-D-16-0641.1. [p177]

D. L. Gilman, F. J. Fuglister, and J. M. Mitchell Jr. On the power spectrum of “red noise”.
Journal of the Atmospheric Sciences, 20(2):182-184, 1963. URL https://doi.org/10.1175/1520~
0469(1963)020<0182:0TPSON>2.0.C0;2. [plT()}

L. Horowitz. The effects of spline interpolation on power spectral density. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 22(1):22-27, 1974. URL http://dx.doi.org/10.1109/
TASSP.1974.1162536. [plT(J}

J. Hu, J. Emile-Geay, and J. Partin. Correlation-based interpretations of paleoclimate data—where
statistics meet past climates. Farth and Planetary Science Letters, 459:362-371, 2017. URL
https://doi.org/10.1016/j.eps1.2016.11.048. [p180]

M. E. Mann and J. M. Lees. Robust estimation of background noise and signal detection in climatic
time series. Climatic Change, 33(3):409-445, 1996. URL https://doi.org/10.1007/BF00142586.

[p170]

M. E. Mann, Z. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann,
G. Faluvegi, and F. Ni. Global signatures and dynamical origins of the Little Ice Age and
Medieval Climate Anomaly. Science, 326(5957):1256-1260, 2009. URL https://doi.org/10.
1126/science.1177303. [pl76, 177]

U. Mori, A. Mendiburu, and J. Lozano. TSdist: Distance measures for time series data. R package
version 3.4, 2, 2015. URL http://CRAN.R-project.org/package=TSdist. [pl77]

U. Mori, A. Mendiburu, and J. A. Lozano. Distance measures for time series in R: The TSdist
package. R Journal, 8(2):451-459, 2016. [p177]

M. Mudelsee. TAUEST: A Computer Program for Estimating Persistence in Unevenly Spaced
Weather/Climate Time Series. Computers & Geosciences, 28(1):69-72, 2002. URL https:
//doi.org/10.1016/50098-3004(01)00041-3. [p 170, 171, 17"1]

M. Mudelsee. Estimating Pearson’s correlation coefficient with bootstrap confidence interval
from serially dependent time series. Mathematical Geology, 35(6):651-665, 2003. URL https:
//doi.org/10.1023/B:MATG.0000002982.52104.02. [plT(')}

M. Mudelsee. Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer-
Verlag, 2010. ISBN 9048194814. [p170, 171, 172, 181]

M. Mudelsee. Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer-
Verlag, Second edition, 2014. ISBN 9048194814. [p170, 171, 172, 173, 174, 181]

K. Olafsdottir and M. Mudelsee. More accurate, calibrated bootstrap confidence intervals for
estimating the correlation between two time series. Mathematical Geosciences, 46(4):411-427,
2014. URL https://doi.org/10.1007/s11004-014-9523-4. [plT(,)]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://CRAN.R-project.org/package=dplR
http://CRAN.R-project.org/package=dplR
http://dx.doi.org/10.1038/364218a0
http://dx.doi.org/10.1038/364218a0
http://dx.doi.org/10.1029/96JC03296
http://dx.doi.org/10.1109/ICDE.2007.367927
http://dx.doi.org/10.1109/ICDE.2007.367927
https://doi.org/10.1175/JCLI-D-16-0641.1
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
http://dx.doi.org/10.1109/TASSP.1974.1162536
http://dx.doi.org/10.1109/TASSP.1974.1162536
https://doi.org/10.1016/j.epsl.2016.11.048
https://doi.org/10.1007/BF00142586
https://doi.org/10.1126/science.1177303
https://doi.org/10.1126/science.1177303
http://CRAN.R-project.org/package=TSdist
https://doi.org/10.1016/S0098-3004(01)00041-3
https://doi.org/10.1016/S0098-3004(01)00041-3
https://doi.org/10.1023/B:MATG.0000002982.52104.02
https://doi.org/10.1023/B:MATG.0000002982.52104.02
https://doi.org/10.1007/s11004-014-9523-4

CONTRIBUTED RESEARCH ARTICLES 183

K. Rehfeld and G. Bedartha. NESTOOLBOX - Toolbox for the Analysis of Non-Equidistantly
Sampled Time Series, 2014. URL http://tocsy.pik-potsdam.de/nest.php. Matlab/Octave,
version 1.01. [p170]

K. Rehfeld and J. Kurths. Similarity estimators for irregular and age-uncertain time series. Climate
of the Past, 10(1):107-122, 2014. URL https://doi.org/10.5194/cp-10-107-2014. [p170]

K. Rehfeld, N. Marwan, J. Heitzig, and J. Kurths. Comparison of correlation analysis techniques for
irregularly sampled time series. Nonlinear Processes in Geophysics, 18(3):389-404, 2011. URL
https://doi.org/10.5194/npg-18-389-2011. [pl170]

J. Roberts, M. Curran, S. Poynter, A. Moy, T. van Ommen, T. Vance, C. Tozer, F. S. Graham,
D. A. Young, C. Plummer, J. Pedro, D. Blankenship, and M. Siegert. Correlation confidence
limits for unevenly sampled data. Computers € Geosciences, 104:120-124, 2017. URL https:
//doi.org/10.1016/j.cageo.2016.09.011. [p170]

P. Robinson. Estimation of a time series model from unequally spaced data. Stochastic Processes
and their Applications, 6(1):9-24, 1977. URL https://doi.org/10.1016/0304-4149(77)90013-8.
[p170, 171]

K. Roucoux, L. De Abreu, N. Shackleton, and P. Tzedakis. The response of NW Iberian vegetation
to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews, 24(14):
1637-1653, 2005. URL https://doi.org/10.1016/j.quascirev.2004.08.022. [pl179, 180]

M. F. Sanchez Goni, A. Landais, W. J. Fletcher, F. Naughton, S. Desprat, and J. Duprat. Contrasting
impacts of Dansgaard—Oeschger events over a western European latitudinal transect modulated
by orbital parameters. Quaternary Science Reviews, 27(11):1136-1151, 2008. URL https:
//doi.org/10.1016/j.quascirev.2008.03.003. [pl179]

G. P. Weedon. Time-Series Analysis and Cyclostratigraphy: Fxamining Stratigraphic Records of
Environmental Cycles. Cambridge Univ Press, Cambridge, 2003. [p170]

D. S. Wilks. Statistical Methods in the Atmospheric Sciences, volume 100. Academic press, 2011.
[p170]

E. W. Wolff, S. P. Harrison, R. Knutti, M. F. Sanchez Goni, O. Wild, A.-L. Daniau, V. Masson-
Delmotte, I. C. Prentice, and R. Spahni. How has climate responded to natural perturbations?
In S. E. Cornell, I. C. Prentice, J. I. House, and C. J. Downy, editors, Understanding the Earth
System : Global Change Science for Application, pages 72-101. Cambridge University Press, 2012.
[p175]

Josue M. Polanco-Martinez

Basque Centre for Climate Change - BC3

Sede Building 1, 1st floor - Scientific Campus of the UPV/EHU
48940 Leioa

&

Econometrics Research Group - Institute of Public Economics
University of the Basque Country

48015 Bilbao

SPAIN

josue.m.polanco@gmail.com, josue.polanco@bc3research.org

Martin A. Medina-FElizalde

Dept. of Geosciences, Auburn University

2050 Beard Eaves Coliseum, 36849 Auburn, AL
USA

mam0199Q@auburn. edu

Maria F. Sanchez Goni

Ecole Pratique des Hautes Ftudes (EPHE), PSL University & UMR EPOC CNRS 5805, University
of Bordeaux

Allee Geoffroy St Hilair, 33615 Pessac

FRANCE

maria.sanchez-goni@u-bordeaux.fr

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://tocsy.pik-potsdam.de/nest.php
https://doi.org/10.5194/cp-10-107-2014
https://doi.org/10.5194/npg-18-389-2011
https://doi.org/10.1016/j.cageo.2016.09.011
https://doi.org/10.1016/j.cageo.2016.09.011
https://doi.org/10.1016/0304-4149(77)90013-8
https://doi.org/10.1016/j.quascirev.2004.08.022
https://doi.org/10.1016/j.quascirev.2008.03.003
https://doi.org/10.1016/j.quascirev.2008.03.003
mailto:josue.m.polanco@gmail.com, josue.polanco@bc3research.org
mailto:mam0199@auburn.edu
mailto:maria.sanchez-goni@u-bordeaux.fr

CONTRIBUTED RESEARCH ARTICLES 184

Manfred Mudelsee

Climate Risk Analysis, 37581 Bad Gandersheim

&

Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research
27570 Bremerhaven

GERMANY

mudelsee@climate-risk-analysis.com

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:mudelsee@climate-risk-analysis.com

CONTRIBUTED RESEARCH ARTICLES 185

Optimization Routines for Enforcing
One-to-One Matches in Record
Linkage Problems

by Diego Moretti, Luca Valentino and Tiziana Tuoto

Abstract Record linkage aims at quickly and accurately identifying if two records represent the
same real world entity. In many applications, we are interested in restricting the linkage results to
"1 to 1" links, that is a single record does not appear more than once in the output. This can be
dealt with the transport algorithm. The optimization problem, however, grows quadratically in the
size of the input, quickly becoming untreatable for cases with a few thousand records. This paper
compares different solutions, provided by some R packages for linear programming solvers. The
comparison is done in terms of memory usage and execution time. The aim is to overcome the current
implementation in the toolkit RELAIS, specifically developed for record linkage problems. The
results highlight improvements beyond expectations. In fact the tested solutions allow successfully
executing the "1 to 1" reduction for large size datasets up to the largest sample surveys at National
Statistical Institutes.

Introduction

Record linkage is a process that aims at quickly and accurately identifying if two (or more) records
represent the same real world entity. A record linkage project can be performed for different purposes
and the variety of the uses makes it a powerful instrument to support decisions in large commercial
organizations and government institutions. In official statistics, the field in which this work is
developed, the combined use of statistical survey, administrative data and other new data sources
(the so-called Big Data) is largely widespread and strongly stimulates the investigation of new
methodologies and instruments to deal with record linkage projects.

This work is developed in the field of official statistics: in this area, the combined use of
statistical surveys, administrative data and other new data sources (the so-called Big Data) is largely
widespread and strongly stimulates the investigation of new methodologies and instruments to deal
with record linkage projects.

Since the earliest contributions to modern record linkage (Newcombe et al., 1959; Fellegi and
Sunter, 1969) there has been a proliferation of different approaches, that make use also of techniques
based on data mining, machine learning, soft computing and others. Record linkage can be seen as
a complex process consisting of several distinct phases involving different knowledge areas.

A record linkage process becomes trivial if the input files share a common error-free unit identifier,
but it can be quite complex when common identifiers are error prone or no common identifier exists
at all and one has to rely on shared covariates, as is actually the case with real data (Hernandez
and Stolfo, 1998).

To effectively face the record linkage problem, the Italian National Statistical Institute (Istat)
designed and developed a toolkit, RELAIS, that is the result of many experiences gained performing
several integration processes in different contexts (Cibella et al., 2012). This software is configured as
an open source project with the aim of facing the record linkage complexity by decomposing the whole
problem in its constituting phases and dynamically adopting the most appropriate technique for each
step. It is therefore possible to define the most suitable strategy for each linkage problem depending
on the specific data requirements (Cibella et al., 2007). Software and related documentation can be
downloaded from the Istat website (ISTAT, 2015) and the European website for sharing and reusing
solutions for public administrations (JOINUP, 2015)

The "Selection of unique links" is a step of the record linkage that has not been thoroughly
investigated by the statistical and IT communities. This work focuses on it. Traditionally, Jaro
(1989) suggested to solve it with an optimization procedure, the simplex algorithm. The solution
is constrained by the size of the data processed: the optimization algorithm must solve an input
matrix that grows quadratically in the input files size. In this work, we analyse the solutions already
proposed and implemented and compare them with the alternatives available in the R CRAN. It
is worth noting that our intention is not to provide a comparison of algorithms or optimization
solutions in a general context, our goal is focused on the specific solution of the record linkage phase.

The work aims at presenting alternative algorithms and their implementations for selecting
unique links in record linkage problems as they are faced in official statistics. To ensure accessibility

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 186

and reuse, we consider R as the environment for running the alternative algorithms, although, due
to the algorithm complexity, R often only provides a wrapper for other more efficient programming
languages. The comparison is presented throughout real life examples, derived from long experiences
in data linkage at NSIs. The provided experiments are designed to account for the several features
and characteristics of real world data, in terms of size, accuracy of input data and expected output.
The comparison is motivated by the need for improving the current optimizer so as to process larger
datasets in a short time, without losing the linkage efficacy measured in terms of precision and recall.

The work is organised as follows: in next section we shortly introduce the most common
formalization for record linkage problems (Fellegi and Sunter, 1969), and specifically the optimization
problem we need to solve. We describe the current module for the selection of unique links in
RELAIS. Then we propose a short section about alternative algorithms. We compare the alternatives
throughout several use cases, based on applications of record linkage in NSIs. Once the best
implementation has been identified, further enhancements are highlighted. Finally, in the last
section, we resume results and concluding remarks.

The record linkage and the optimization phase

Formalization of the probabilistic record linkage decision model

Fellegi and Sunter (1969) firstly defined record linkage as a decision problem: given two lists, say A
and B, of size n4 and np, the linkage process can be viewed as a classification problem where the
pairs in the Cartesian product Q = ((a,b),a € A and b € B) have to be assigned into two subsets
M and U, independent and mutually exclusive, such that M is the set of Matches (a = b) while U
is the set of Non-Matches (a # b).

In order to assign the pairs (a,b) either to the set M or U, k common attributes (the matching

variables) are compared. The statistical model for record linkage is built upon the so called
comparison vectors 7y

Y(ab) = (W(ab)b xx a’Y(ab)k>

where, in the simplest setting,

1 Y(ab)j = V(ab); .
V(ab)j = ; J=1... .k

0 Y(ab)j # Y(ab)j

The comparison vectors 7(,p) are usually assumed to be independent and identically distributed
random vectors with distribution given by a mixture of two different (unobserved) distributions: the
former represents the pairs (a,b) which actually are the same unit, the m distribution; the latter
represents the pairs (a,b) which actually belong to different units, the u distribution. The mixture
weight p represents the marginal probability that a random pair of records (a, b) is a true match, i.e.
it may be interpreted as the percentage of overlapping of the two data sets.

The estimation of the mixture weight p and the two distributions m and wu requires the use of
iterative methods, generally the EM algorithm or its generalizations. Also, in the standard setting,
the matching variables are assumed independent of each other. Several extensions of this basic
set-up have been proposed, mainly by introducing potential interactions among key variables, see
for example (Winkler, 1995; Larsen and Rubin, 2001).

Once the two distributions m(7(4p)) and u(7(4p)) are estimated, a given pair should be allocated
to M or U on the basis of the likelihood ratio, also called composite matching weight:
ro an)
@) 0 (yap))

It is also possible to assign the pairs on the basis of a posterior probability that the pair is a match:

D11 (Y(ap))
Px(Y(apy) + (1= D) UV (ap))

*
T(ab) =

In general, we declare as matches the pairs of records with likelihood ratio r - or posterior probability
r* - above a fixed threshold. In practice, the choice of the threshold can be problematic, as illustrated,
for example, in Belin and Rubin (1995). In this context, optimization techniques may be helpful to
solve the multiple matches issue, that is the possibility that a single unit in data set A is linked

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 187

with more than one unit in data set B. This will be discussed in the next subsection.

The optimization problem in record linkage

In several applications, the record linkage aims at recognizing exactly and univocally the same
units and to establish only unique or "1 to 1" links. In other words, the linkage result must satisfy
the constraint that one record on file A can be assigned to one and only one record on file B,
and vice-versa. This kind of applications requires several constraints and is a complex problem of
optimization. For instance, when comparing Population Census with Post Enumeration Survey, one
is interested in "1 to 1" links in order to recognize people caught in the two occasions; moreover
when linking tax register and income survey again "1 to 1" links are the expected output in order to
enrich the available information in the input sources. On the other side, when hospital admissions
forms are linked to a patient list, multiple linkages ("n to 1" links) are admissible. Finally "n to m"
links are expected when linking, for instance, Employees and Employers files.

To achieve "1 to 1" links in the Fellegi-Sunter setting that considers the cross product of possible
pairs, Jaro (1989) suggested to formulate it as a linear programming problem: once the matching
weight r is assigned to each pair, the identification of "1 to 1" links can be solved maximizing the
objective function given by the sum of weights for the link pairs, under the constraints given by the
fact that each unit of A can be linked at most with one unit of B and vice-versa. According to Jaro
(1989), this is a degenerate transportation problem, and the use of such a linear programming model
represents an advance with respect to other ad hoc assignment methods. In order to formulate
the problem, let r,; be the matrix containing the composite weights for all pairs, the maximizing

function is:
naA np

Z = Z Z 7‘ab)(ab
a=1b=1
under the n 4 + np constrains:

na
M Xap<1 b=12...,np
a=1

np
ZXabgl a=1,2,...,n4
b=1

where X is a matrix with entries corresponding to indicator variables, equal to 1 if record a in A
is linked with record b in B .

It is worth noting that the size of the X,; matrix increases quadratically in the size of the input
files, with dramatic effects on the memory usage and computation time. For instance, when both
input files contain 100 records, the X matrix contains 10 thousand cells; when both input files consist
of 1000 records, the matrix becomes 1 million entries. Traditionally, in record linkage problems, the
computation issues related to the input size are managed via the so called blocking procedures (Gu
et al., 2003; Baxter et al., 2003); in the optimization step, the complexity related to the input size is
also managed restricting to the "most likely" pairs. Indeed, the matching weight r represents the
ratio between the likelihood that a pair belongs to the set of Matches and the likelihood that the
pair belongs to the set of Non-Matches. Similarly, 7* represents the posterior probability that a
pair belongs to the set of Matches. It is clear that for most pairs, the matching weights r,;, and
¥, take very small values (close to zero), since considering two input files of 1000 records and the
1 million pairs they generate, at most 1000 pairs will be true matches with expected high values
of r,p and r(’:b. So, a common practice for solving the "1 to 1" links is to reduce the complexity
by eliminating from the optimization analysis the pairs with a value of ry; (similarly, r;"b) below a
certain threshold. A common choice of the threshold for r,;, is 1, meaning that we disregard the
pairs for which the likelihood of belonging to M is lower than the likelihood of belonging to U. For
r:b, the most proper choice seems 0.5, as it is a posterior probability. The role of r,;, and r:b will
be further discussed in the experimental section.

It is worth mentioning that in the Bayesian approach to record linkage, the "1 to 1" constraint is
solved directly in the model rather than in an ex-post adjustment (Tancredi and Liseo, 2013; Stoerts
et al., 2017; Sadinle, 2017); however, to the best of our knowledge, the Bayesian record linkage is
still affected by a certain lack of scalability, so we do not consider it in this analysis.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 188

The Relais toolkit

The abovementioned Relais is a toolkit developed and used in Istat and in other NSIs to face record
linkage problems. It is implemented in two programming languages, Java and R; moreover, the
relational database MySql is used to manage datasets and temporary results. The R language is
used for the key statistical phases of Relais: the estimation of the parameters p, m, and u of the
probabilistic decision model, based on Fellegi-Sunter approach (Fellegi and Sunter, 1969), and the
optimization algorithm to obtain the "1 to 1" linkage results.

The "1 to 1" reduction in Relais

The "1 to 1" reduction in RELAIS uses the linear programming problem approach proposed by
Jaro (1989) and defined in the previous section. The R module uses the LpSolve package. In the
following, the core of the current R source:

pairs is the output of the decision model
colnames(pairs) <- c("a", llbll’ ugammau’ Ilrll’ "I‘*")

commandl: application of a preliminary filter to the input data
filtered=pairs[pairs[,5]>0.5,]

command2: input preprocessing

counting of unique identifiers of records
nA= length(unique(filtered[,1]))

nB= length(unique(filtered[,2]))
A=cbind(a=unique(filtered[,1]),A=1:nA)
B=cbind(b=unique(filtered[,2]),B=1:nB)
filtered =merge(B, filtered)

filtered =merge(A, filtered)
dat=t(filtered)

command3: preparing constraint matrix

constr=array(rep(0, (nA+nB)*ncol(dat)), dim=c(nA+nB,ncol(dat)))

p=rbind(matrix(rep(dat[2,],nA),c(nA,ncol(constr)),byrow=TRUE),
matrix(rep(as.numeric(dat[4,])+nA,nB),c(nB,ncol(constr)) ,byrow=TRUE))

constr [as.numeric(p)==row(constr)]=1

command4: preparing other LP parameters
diseqg=rep('<=',nA+nB)

ones=rep(1,nA+nB)

target function

coeff=dat[6,]

commandb5: LP execution
library("1lpSolve")

ret=1p ("max", coeff, constr, diseq, ones)
preparing the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

The command1 is the preliminary filter useful to reduce the size of the input pairs: each pair is
an entry of the constraint matrix. The filter is r* > 0.5, as explained at the end of the previous
section. Despite this simplification, the method may not work when processing medium/large sized
datasets, i.e. when the input files A and B consist of more than 5000 records. In this case, the Relais
tool offers an alternative algorithm (the greedy one) which, however, does not guarantee an optimal
result. The size of the datasets that are treatable with the procedure depends on several causes.
First of all, it depends on the workstation system 32-bit o 64-bit for Windows platform. Other
relevant parameters are the size of the RAM, the version of the Operating System, the version of R,
others software running on the workstation, the processor, etc. As shown in the next paragraph,
we investigated the limits of this algorithm in two typical PC configurations (32-bit and 64-bit),
furthermore we propose some improvements aimed at increasing its efficiency and performances.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 189

Algorithms and R packages for LP solver

A recent analysis and comparison of different algorithms for linear programming is in Gearhart et al.
(2013). This work is an inspiring starting point for our analysis aimed at investigating the best
freely available open-source implementation in terms of performance and memory usage. Gearhart
et al. (2013) compare four different open-source solvers facing a collection of linear programming
problems; Gearhart et al. (2013) also consider the IBM ILOG CPLEX Optimizer (CPLEX), an
industrial standard.

In this work, we compare linear programming solvers with the specific purpose of optimizing the
identification of "1 to 1" links: to this end, we compare the current implementation available in Relais,
the IpSolve (Berkelaar and others, 2013) R package, with the Rglpk (Theussl and Hornik, 2014) and
ROLplugin.clp (Thicurmel, 2017) R packages. These two R packages are wrappers of C libraries,
corresponding to the two methodologies, GLPK and COIN-OR respectively. The comparison of
these packages in other contexts, with different optimization problems, is out of the scope of this
work. At a very first stage, we also considered the intpoint (del Rio, 2012) R package, that has been
discarded because of the low performance in memory management compared to the previous ones.
We also developed a Java procedure that implements the Hungarian Method Karmarkar (Karmarkar,
1984) but it was discarded because it did not bring improvements.

The comparison of the proposed solvers is influenced by the several configuration parameters of
the personal computers, the specific hand code for the input preparation, and other characteristics
that have been fixed in the experimental settings, described in the following section.

Experiments

In this paragraph, we resume the experiments about the "1 to 1" reduction procedures with the
aim of measuring their execution time and their ability to handle large size data. Moreover, some
upgrades of the code are proposed and described in detail: the upgrades are evaluated by comparing
their performances with the current version. As previously specified, the current Relais procedure
successfully solves optimization problems when the input files are smaller than 5000 records each.
We investigate improvements with the first objective of enlarging these sizes; in the set of solutions
which enable to manage larger datasets, we evaluate the best performances in terms of execution
time. As already mentioned, Relais also proposes another method, the greedy one, but this is
not compared with the optimization algorithms because it follows a different rationale not aimed
at global optimization of the result. In addition, currently in Relais the greedy algorithm is not
implemented as an R module. In short, we have observed that when the greedy algorithm finds links
other than those of the optimal algorithms, these links are not correct; however, this rarely happens,
about 1 in 1000 proposed pairs.

Experiment setup

For the comparison of the algorithms, we used two typical PC configurations, the 32-bit and 64-bit
R respectively. Details on the PC configurations are shown in table 1.

Config. 0OS System Processor RAM R version

32-bit Windows 7 32-bit Pentium Dual-Core 2.7 Ghz 4 Gb 3.4.0

64-bit Windows 7 64-bit Intel 3.5 Ghz 16 Gb 3.4.2

Table 1: Experiment PC configurations

To evaluate the performances in terms of time and memory usage, we used ten different linkage
exercises summarized in table 2. Each exercise is composed by two datasets to integrate, the entities
object of the linkage can be people or companies. The first seven problems are quite standard, i.e.
the size of the two datasets and the number the matches are balanced; on the other hand, the last
three exercises are less common, i.e. the size of datasets are lopsided or there are few matches. In
the first column of table (Exercise), we mark the exercise on the basis of the size of the datasets,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=lpSolve
https://CRAN.R-project.org/package=Rglpk
https://CRAN.R-project.org/package=ROI.plugin.clp
https://CRAN.R-project.org/package=intpoint

CONTRIBUTED RESEARCH ARTICLES 190

with "L" as suffix for lopsided exercises; this mark is also used in the next tables. The datasets
reproduce real data; the linking variables are the true ones either have been artificially generated
mimicking true data, as reported in the second column. The size of datasets and the number of real
matches vary across the exercises, as shown in the last two columns of table 2.

Exercise Linking variables Entity Datasets size True matches
1K Real People 1,165x1,165 1,141
4K Artificial Companies 4,012x3,988 3,187
5K Real People 5,851x5,748 5,543
8K Real People 8,518x7,596 6,893
15K Artificial Companies 14,998x15,003 11,281
25K Real People 25,343x24,613 24,043
40K Artificial Companies 40,048x39,952 36,033

10KL Artificial Companies 9,963x1,018 1,015
20KL Artificial Companies 658x20,052 625
55KL Artificial Companies 55,210x5,083 2,189

Table 2: Experiment datasets

Experiments report

The current procedure encounters two critical phases, in which the memory used risks exceeding
the memory available for the R task, respectively commands 3 (preparing constraint matrix) and 5
(LP execution). In both cases, the issue is represented by the size of the constraint matrix X,;. As
mentioned before, when the sizes of the input files do not allow the execution of the R commands,
currently in Relais the users are suggested to apply greedy techniques.

So, firstly we focused on modifying command 3 to overcome the memory problem. The most
promising solution is to reformulate the constraint matrix as a vector of constraints, where only the
non-zero values of matrix X,; appear. This structure requires much less memory than the previous
solution, especially when the size of the inputs increases. The 1p function of the lpSolve package
admits the dense.const parameter which allows us to use a vector instead of a matrix to express
the constraints for our maximization problems. In this case commands 3 and 5 become as follows:

command3.1: preparing constraint vector
constr.vec <- matrix(c(as.numeric(dat[2,]), as.numeric(dat[4,])+nA,
rep(l:ncol(dat),2), rep(l,(2*ncol(dat)))), ncol=3)

command5.1: LP execution

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 191

library("lpSolve")

ret=1p ("max", coeff, , diseq, ones, dense.const=constr.vec)
preparing the reduced set of pairs

reduc <- t(dat[,ret$solution>0.9])

Table 3 shows the results of the 10 exercises, in the two options. The column ’Matrix’ shows the
execution time of the current R module with constraints expressed by a matrix. The column ’Vector’
shows the execution time of the R module with commands 3.1 and 5.1 in place of commands 3 and
5, i.e. constraints expressed by a vector. The 'KO’ entry means that the execution is aborted due to
memory error.

The results shown by table 3 fully meet our expectations. In fact, the current code can process
only 1K, 4K and lopsided datasets using the 32-bit configuration and reaches up to 15K datasets in
the 64-bit configuration. The new code can process all datasets even in the worst configuration. In
addition, there is also a great improvement in the execution times.

In a second phase, we concentrated our efforts on evaluating the use of the alternative packages
identified and abovementioned, i.e. ROLplugin.clp and Rglpk.

The two solvers accept the constraint parameter as vector, using the structure simple_triplet_matrix
defined in the slam (Hornik et al., 2014) package.

Then, command 3 becomes

command3.2: preparing constraint parameter
constr <- simple_triplet_matrix(c(as.numeric(dat[2,]),as.numeric(dat[4,])+n),
rep(l:ncol(dat),2), rep(l,(2*ncol(dat))), nrow=(n+m), ncol=ncol(dat))

In the case of ROIL.plugin.clp solver, command 5 becomes:

command5.2: LP execution

LP <- ROI::0P(as.numeric(coeff), ROI::L_constraint(L = constr, dir = diseq, rhs = ones),
max = TRUE)

ret <- ROI::ROI_solve(x = LP, solver = "clp")

preparing the reduced set of pairs

reduc <- t(dat[,ret$solution>0.9])

In the case of Rglpk solver, command 5 is:

command5.3: LP execution

ret <- Rglpk_solve_LP(coeff,constrv,diseq,ones,types="I",max=TRUE)
preparing the reduced set of pairs

reduc <- t(dat[,ret$solution>0.9])

Table 4 compares the execution times in seconds, required for the complete execution of the R
module using the three different packages:

From table 4, the first remark underlines that the use of constraints as vectors allows all packages
to manage all the tested datasets even in the worst configuration. Moreover, for this type of problem,
it is quite clear that the ROIL.plugin.clp solver guarantees the best performances, overtaking the other
packages especially with large datasets. The gain with ROLplugin.clp is more evident in the 32-bit
configuration. The second best performer is Rglpk, however it is at least one order of magnitude
slower than the previous one. Finally, lpSolve presents the worst performances, particularly in
the 32-bit configuration, whilst the differences with Rglpk are reduced in the case of the 64-bit
configuration. These results are substantially valid for both balanced data sets and lopsided data
sets. We note that in lopsided cases all solutions seem to perform better. In fact, the complexity of
the problem is mainly due to the number of pairs proposed to the reduction algorithm rather than
to the size of the input data. In typical "1 to 1" record linkage projects, the number of pairs depends
more on the size of the smallest dataset than on the largest one. The Roi.plugin.clp greatly improves
in the case of sparse matrices; the difference with Rglpk is reduced with lopsided data. In our
opinion, a large part of the improvements with Rei.plugin.clp is due to the COIN-OR Optimization
algorithm written in C and the use of a good wrapper for R; there is a part of the code where the R
language communicates with a buffer with a procedure compiled in C language. Rglpk is also based
on an algorithm written in C, but this is probably less powerful in this type of problem. Instead,
IpSolve is written entirely in R, it makes an intensive use of the memory, and it is therefore less
efficient than the other tested packages.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=slam

CONTRIBUTED RESEARCH ARTICLES 192

Further improvements and concluding remarks

The vector representation of the constraints and the adoption of the ROI.plugin.clp package provide
the expected important improvements in the module’s performance, i.e. the size of the managed pairs,
memory usage and the execution speed. The achieved results encourage us to overcome the current
preliminary filter that allows processing only pairs (ab) with posterior probability r:b > 0.5, see
command 1. This filter was included to overcome the previous performance issue in terms of memory
usage, however, from a statistical perspective, it risks compromising the results of the statistical
model by deterministically removing possible matches. Obviously, the more restrictive the filter, the
more likely it is that possible links are missing. So, to partially reduce this drawback, we intend
to apply the filter r,;, > 1 instead of r:';b > 0.5. In fact, rg4 > 1 is less restrictive than r:’;b > 0.5.
The filters 74, > 1 and r:b > 0.5 are "theoretically" justified, as they represent, respectively, the
likelihood ratio and the posterior probability of a pair to be a match.

We resume the 10 exercises proposed in the previous section and apply the "1 to 1" reduction
with the proposed preliminary filters. In each run we measure the execution time and the quality
of the output in terms of recall. The recall is a standard quality measure used in record linkage
that compares the number of true matches identified by the linkage process with the number of true
matches. The closer the value is to 1, the more effective the procedure is. The following table 5
compares the obtained measures. We only report the values obtained from the ROILplugin.clp package
in the 32-bit configuration. As above clarified, our first interest is to evaluate the improvements in
the recall and to verify that memory problems do not recur.

Table 5 firstly shows that, with the filter r,;, > 1, there is always a small improvement in the
recall. Secondly, the algorithm is always successfully executable and the execution time doesn’t
generally increase significantly. The exercise 40K is an exception: the execution time goes from
1.7 to 7.3 seconds. In this case, we have verified that the modification of the preliminary filter
has a significant impact: in fact, the number of considered pairs increases from about 26,000 to
over 100,000, with remarkable effects on the recall. The 40K experiment proves, on one hand, that
this adjustment can have important positive effects for the linkage process and, on the other hand,
ensures that the procedure can be successfully executed also with a large number of input pairs.

commandl: application of a preliminary filter to the input data
filtered=pairs[pairs[,6]>1,]

command2: input preprocessing

counting of unique identifiers of records
n= length(unique(filtered[,1]))

m= length(unique(filtered[,2]))
A=cbind(I=unique(filtered[,1]),A=1:n)
B=cbind (J=unique(filtered[,2]),B=1:m)
filtered =merge(B, filtered)

filtered =merge(A, filtered)
dat=t(filtered)

command3: preparing constraint parameter
constr <- simple_triplet_matrix(c(as.numeric(dat[2,]),as.numeric(dat[4,])+n), rep(l:ncol(dat),2),
rep(1, (2#ncol(dat))), nrow=(n+m), ncol=ncol(dat))

command4: preparing other LP parameters
diseg=rep('<=',m+n)

ones=rep(1,m+n)

coefficients for the target function
coeff=dat[6,]

commandb5: LP execution
LP <- ROI::0P(as.numeric(coeff),
ROI::L_constraint(L = constr, dir = diseq, rhs = ones), max = TRUE)
ret <- ROI::ROI_solve(x = LP, solver = "clp")
prepare the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

To conclude, the main advantages of the proposed improvements relate to the successful execution
of the "1 to 1" reduction for large datasets, as well as the gain in the execution time. The above
reported new code for the implementation of the optimization step will replace the previous one

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 193

in the new release of Relais. We are mostly satisfied with the achieved improvements, as they will
simplify and enhance the future linkage strategies. For instance, with the improvements studied
in this paper, we will be able to easily manage the linkage between statistical registers and social
sample surveys. In particular, we will be able to manage the "1 to 1" optimization step for the
current social surveys involving about 40,000 units, as in the experiment 40K. Moreover, we will
also manage within its main spatial domains, the largest Italian sample survey, the Labour Force
Survey (LFS). In fact, currently, the Italian LFS involves up to 25,000 units, in the NUTS2 domain.

Bibliography

R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking methods for record linkage.
ACM SIGKDD, 3:25-27, 2003. [p187]

T. R. Belin and D. B. Rubin. A method for calibrating false- match rates in record linkage. Journal
of the American Statistical Association, (90):694-707, 1995. [p186]

M. Berkelaar and others. IpSolve: Interface to Lpsolve v. 5.5 to Solve Linear Integer Programs, 2013.
URL http://CRAN.R-project.org/package=1pSolve. R package version 5.6.7. [p189]

N. Cibella, M. Fortini, R. Spina, M. Scannapieco, L. Tosco, and T. Tuoto. Relais: An open source
toolkit for record linkage. Rivista di Statistica Ufficiale, (2-3):55-68, 2007. [p185]

N. Cibella, M. Scannapieco, L. Tosco, T. Tuoto, and L. Valentino. Record linkage with relais:
Experiences and challenges. Estadistica espanola, 54(179):311-328, 2012. [p185]

A. Q. del Rio. Intpoint: Linear Programming Solver by the Interior Point Method and Graphically
(Two Dimensions), 2012. URL http://CRAN.R-project.org/package=intpoint. R package
version 1.0. [p189]

I. Fellegi and A. Sunter. A theory for record linkage. Journal of the American Statistical Association,
(64):1183-1210, 1969. [p185, 136, 18]

J. L. Gearhart, K. L. Adair, J. D. Detry Richard J.and Durfee, K. A. Jones, and N. Martin.
Comparison of open-source linear programming solvers. Sandia National Laboratories Report,
pages 4-62, 2013. [p189]

L. Gu, R. Baxter, D. Vickers, and C. Rainsford. Record linkage: Current practice and future
directions. CSIRO Mathematical and Information Sciences Technical Report, 3(83), 2003. [p187]

M. A. Hernandez and S. J. Stolfo. Real-world data is dirty: Data cleansing and the merge purge
problem. Journal Data Mining and Knowledge Discovery, 2(1):9-37, 1998. [p185]

K. Hornik, D. Meyer, and C. Buchta. Slam: Sparse Lightweight Arrays and Matrices, 2014. URL
http://CRAN.R-project.org/package=slam. R package version 0.1-32. [p191]

ISTAT. Download RELAIS on Istat Website, 2015. URL https://www.istat.it/en/methods-and-

tools/methods-and-it-tools/process/processing-tools/relais. [p185]

M. A. Jaro. Advances in record linkage methodologies as applied to matching the 1985 census of
tampa, florida. Journal of American Statistical Society, 84(84):414-420, 1989. [p185, 187, 188]

JOINUP. Download RELAIS on Joinup Website, 2015. URL https://joinup.ec.europa.eu/

solution/relais-record-linkage-istat. [pl85]

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):
373-395, 1984. [p189]

M. D. Larsen and D. B. Rubin. Iterative automated record linkage using mixture models. Journal
of the American Statistical Association, (79):32—41, 2001. [p180]

H. Newcombe, J. Kennedy, S. Axford, and A. James. Automatic linkage of vital records. Science,
130(130):954-959, 1959. [p185]

M. Sadinle. Bayesian estimation of bipartite matchings for record linkage. Journal of the American
Statistical Association, 112(518):600-612, 2017. [p187]

R. Stoerts, R. Hall, and S. Fienberg. A bayesian approach to graphical record linkage and de-
duplication. Journal of the American Statistical Association, pages 1660-1672, 2017. [p187]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://CRAN.R-project.org/package=lpSolve
http://CRAN.R-project.org/package=intpoint
http://CRAN.R-project.org/package=slam
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/relais
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/relais
https://joinup.ec.europa.eu/solution/relais-record-linkage-istat
https://joinup.ec.europa.eu/solution/relais-record-linkage-istat

CONTRIBUTED RESEARCH ARTICLES

194

A. Tancredi and B. Liseo. A hierarchical bayesian approach to record linkage and population size
problems. The Annals of Applied Statistics, pages 1553-1585, 2013. [p187]

S. Theussl and K. Hornik. Rglpk: R/GNU Linear Programming Kit Interface, 2014. URL http:
//CRAN.R-project.org/package=Rglpk. R package version 0.6-0. [p189]

B. Thieurmel. ROIplugin.clp: 'Clp (Coin-or Linear Programming)’ Plugin for the 'R’ Optimiza-
tion Interface, 2017. URL https://CRAN.R-project.org/package=R0OI.plugin.clp. R package
version 0.4. [p189]

W. E. Winkler. Matching and record linkage. Business Survey Methods (B.G. Coz et al, ed.), pages
355-384, 1995. [pl1806]

Diego Moretti

Istat - Italian National Institute of Statistics
via C. Balbo 16

Ttaly

dimorett@istat.it

Luca Valentino

Istat - Italian National Institute of Statistics
via C. Balbo 16

Ttaly

luvalent@istat.it

Tiziana Tuoto

Istat - Italian National Institute of Statistics
via C. Balbo 16

Ttaly

tuoto@istat.it

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://CRAN.R-project.org/package=Rglpk
http://CRAN.R-project.org/package=Rglpk
https://CRAN.R-project.org/package=ROI.plugin.clp
mailto:dimorett@istat.it
mailto:luvalent@istat.it
mailto:tuoto@istat.it

CONTRIBUTED RESEARCH ARTICLES

195

Config. RAM Exercise Matrix Vector
32-bit 4 Gb 1K 4.3 0.5
32-bit 4 Gb 4K 28.0 2.0
32-bit 4 Gb 5K KO 5.7
32-bit 4 Gb 8K KO 9.0
32-bit 4 Gb 15K KO 32.9
32-bit 4 Gb 25K KO 82.5
32-bit 4 Gb 40K KO 2133
32-bit 4 Gb 10KL 0.7 0.7
32-bit 4 Gb 20KL 1.9 0.8
32-bit 4 Gb 55KL 3.7 1.9
64-bit 16 Gb 1K 2.2 0.3
64-bit 16 Gb 4K 14.6 1.0
64-bit 16 Gb 5K 45.3 2.7
64-bit 16 Gb 8K 69.1 3.8
64-bit 16 Gb 15K 206.2 11.6
64-bit 16 Gb 25K KO 27.6
64-bit 16 Gb 40K KO 7.7
64-bit 16 Gb 10KL 0.2 0.2
64-bit 16 Gb 20KL 0.7 0.4
64-bit 16 Gb 55KL 1.4 0.8

Table 3: Use of the constraint matrix against the constraint vector

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

196

Config. RAM Exerc. IpSolve ROILplugin.clp Rglpk
32-bit 4 Gb 1K 0.5 0.1 0.4
32-bit 4 Gb 4K 2.0 0.2 1.0
32-bit 4 Gb 5K 5.7 0.3 2.7
32-bit 4 Gb 8K 9.0 0.3 3.5
32-bit 4 Gb 15K 32.9 0.6 9.6
32-bit 4 Gb 25K 82.5 0.7 27.7
32-bit 4 Gb 40K 213.3 1.3 73.2
32-bit 4 Gb 10KL 0.7 0.2 0.2
32-bit 4 Gb 20KL 0.8 0.2 0.3
32-bit 4 Gb 55KL 1.9 0.2 0.8
64-bit 16 Gb 1K 0.3 0.2 0.1
64-bit 16 Gb 4K 1.0 0.2 0.4
64-bit 16 Gb 5K 2.7 0.2 1.1
64-bit 16 Gb 8K 3.8 0.2 1.5
64-bit 16 Gb 15K 11.6 0.3 4.1
64-bit 16 Gb 25K 27.6 0.3 9.8
64-bit 16 Gb 40K 7.7 0.4 22.6
64-bit 16 Gb 10KL 0.2 0.1 0.1
64-bit 16 Gb 20KL 0.4 0.1 0.2
64-bit 16 Gb 55KL 0.8 0.2 0.3

Table 4: Reduction procedure using the three different packages
The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

197

Filter ¥ > 0.5

Filter rqp > 1

Exercise

Time Recall Time Recall

1K 0.1 0.985 0.1 0997
4K 0.2 0.943 0.2 0.976
5K 0.3 0.966 0.3 0971
8K 0.3 0.944 0.3 0.950
15K 0.6 0.927 0.7 0.980
25K 0.7 0.698 0.7 0.710
40K 1.3 0.688 7.3 0945
10KL 0.2 0.956 0.3 0.983
20KL 0.2 0.944 0.5 0.958
55KL 0.2 0.888 0.6 0.938

Table 5: Recall measure using different filters

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 198

MDFS: MultiDimensional Feature

Selection in R

by Radostaw Piliszek, Krzysztof Mnich, Szymon Migacz, Pawel Tabaszewski, Andrzej Sulecki,
Aneta Polewko-Klim, and Witold Rudnicki

Abstract Identification of informative variables in an information system is often performed using
simple one-dimensional filtering procedures that discard information about interactions between
variables. Such an approach may result in removing some relevant variables from consideration. Here
we present an R package MDFS (MultiDimensional Feature Selection) that performs identification
of informative variables taking into account synergistic interactions between multiple descriptors
and the decision variable. MDFS is an implementation of an algorithm based on information theory
(Mnich and Rudnicki, 2017). The computational kernel of the package is implemented in C++.
A high-performance version implemented in CUDA C is also available. The application of MDFS
is demonstrated using the well-known Madelon dataset, in which a decision variable is generated
from synergistic interactions between descriptor variables. It is shown that the application of
multidimensional analysis results in better sensitivity and ranking of importance.

Introduction

Identification of variables that are related to the decision variable is often the most important step in
dataset analysis. In particular, it becomes really important when the number of variables describing
the phenomena under scrutiny is large.

Methods of feature selection fall into three main categories (Guyon and Elisseeff, 2003):

o filters, where the identification of informative variables is performed before data modelling
and analysis,

o wrappers, where the identification of informative variables is achieved by analysis of the
models,

o embedded methods, which evaluate utility of variables in the model and select the most useful
variables.

Filters are designed to provide a quick answer and therefore are the fastest. On the other hand,
their simplicity is also the source of their errors. The rigorous univariate methods, such as t-test, do
not detect interactions between variables. Heuristical methods that avoid this trap, such as Relief-f
algorithm (Kononenko, 1994), may be biased towards weak and correlated variables (Robnik-Sikonja
and Kononenko, 2003). Interesting heuristical filter based on decision trees — Monte Carlo Feature
Selection (MCFS) (Draminski et al., 2007; Draminski and Koronacki, 2018) — avoids this pitfall.
However, it may fail to find purely synergistic variables. Several filtering methods are designed to
return only the non-redundant subset of variables (Zhao and Liu, 2007; Peng et al., 2005; Wang
et al., 2013). While such methods may lead to very efficient models, their selection may be far from
the best when one is interested in deeper understanding of the phenomena under scrutiny.

The wrapper algorithms are designed around machine learning algorithms such as SVM (Cortes
and Vapnik, 1995), as in the SVM-RFE algorithm (Guyon et al., 2002), or random forest (Breiman,
2001), as in the Boruta algorithm (Kursa et al., 2010). They can identify variables involved in
non-linear interactions. Unfortunately, for systems with tens of thousands of variables they are slow.
For example, the Boruta algorithm first expands the system with randomised copies of variables and
then requires numerous runs of the random forest algorithm.

The embedded methods are mostly limited to linear approximations and are part of a modelling
approach where the selection is directed towards the utility of the model. Therefore, variables that
are relevant for understanding the phenomena under scrutiny may be omitted and replaced by
variables more suitable for building a particular model.

Here we introduce an R package implementing a filter based on information theory. The algorithm
can identify synergistic relevant variables by performing an exhaustive search of low-dimensional
combinations of variables.

Theory

Kohavi and John proposed that a variable x; € X, where X is a set of all descriptive variables, is
weakly relevant if there exists a subset of variables X ., € X : x; ¢ X, that one can increase

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 199

information on the decision variable y by extending this subset with the variable z; (Kohavi and
John, 1997). Mnich and Rudnicki introduced the notion of k-weak relevance, that restricts the
original definition by Kohavi and John to (k — 1)-element subsets X,; (Mnich and Rudnicki, 2017).

The algorithm implements the definition of k-weak relevance directly by exploring all possible
k-tuples of variables ; U {Zm;,ZTma,.--,Tm,_,} for k-dimensional analysis. For example, in 2
dimensions we explore a set of all possible pairs of variables. For each variable x; we check whether
adding it to another variable x;, adds information to the system. If there exists such xzj, then we
declare z; as 2-weakly relevant.

The maximum decrease in conditional information entropy upon adding z; to description,
normalized to sample size, is used as the measure of x;’s relevance:

IG’I]?I’LCLI (y7 .’131) = Nm”%X (H (y|xm17xm2, R xmk—l) - H (y|217i,33m17i17m2, R xmk—l))) (le)

where H is (conditional) information entropy and N is the number of observations. Difference in
(conditional) information entropy is known as (conditional) mutual information. It is multiplied
by N to obtain the proper null-hypothesis distribution. To name this value we reused the term
information gain (IG) which is commonly used in information-theoretic context to denote different
values related to mutual information.

To declare a variable k-weakly relevant it is required that its I Gfmm (y; ;) is statistically
significant. This can be established via a comparison:

[anaz (y; xi) = IGli'rru (F'2'2)

where Gy, is computed using a procedure of fitting the theoretical distribution to the data.

For a sufficiently large sample, the value of IG for a non-informative variable, with respect
to a single k-tuple, follows a X2 distribution. IGlfnax (y; z;), which is the maximum value of IG
among many trials, follows an extreme value distribution. This distribution has one free parameter
corresponding to the number of independent tests which is generally unknown and smaller than
the total number of tests. The parameter is thus computed empirically by fitting the distribution
to the irrelevant part of the data (Mnich and Rudnicki, 2017). This allows to convert the IGZ%,H
statistic to its p-value and then to establish 1Gy;, as a function of significance level a. Since many
variables are investigated, the p-value should be adjusted using well-known FWER (Holm, 1979)
or FDR (?) control technique. Due to unknown dependencies between tests, for best results we
recommend using Benjamini-Hochberg-Yekutieli method (Benjamini and Yekutieli, 2()()1)l when
performing FDR control.

In one dimension (k = 1) Equation F.2.1 reduces to:
IGag (y;wi) = N (H (y) — H (y]as)) , (F.2.3)

which is a well-known G-test statistic (?).

All variables that are weakly relevant in one-dimensional test should also be discovered in
higher-dimensional tests, nevertheless their relative importance may be significantly influenced by
interactions with other variables. Often the criterium for inclusion to further steps of data analysis
and model building is simply taking the top n variables, therefore the ordering of variables due to
importance matters as well.

Algorithm and implementation

The MDFS package (Piliszek et al., 2018) consists of two main parts. One is an R interface to two
computational engines. These engines utilise either CPU or NVIDIA GPU and are implemented
in standard C++ and in CUDA C, respectively. Either computational engine returns the IGlfmm
distribution for a given dataset plus requested details which may pose an interesting insight into
data. The other part is a toolkit to analyse results. It is written entirely in R. The version of MDFS
used and described here is 1.0.3. The term ‘MDFS’ (MultiDimensional Feature Selection) is used to
denote the analysis, method and algorithm presented in this article as well.

The I Gﬁmz for each variable is computed using a straightforward algorithm based on Equa-
tion F.2.1. Information entropy (H) is computed using discretised descriptive variables. Discretisation
is performed using customisable randomised rank-based approach. To control the discretisation
process we use a concept of range. Range is a real number between 0 and 1 affecting the share each
discretised variable class has in the dataset. Each share is sampled from a uniform distribution on

IMethod "BY" for p.adjust function.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=MDFS

CONTRIBUTED RESEARCH ARTICLES 200

the interval (1 —range, 1 + range). Hence, range = 0 results in an equipotent split, range = 1 equals
a completely random split. Let us assume that there are N objects in the system and we want to
discretise a variable to ¢ classes. To this end, (¢ — 1) distinct integers from the range (2, N) are
obtained using computed shares. Then, the variable is sorted and values at positions indexed by
these integers are used to discretise the variable into separate classes. In most applications of the
algorithm there is no default best discretisation of descriptive variables, hence multiple random
discretisations are performed. The I Gf?,mz is computed for each discretisation, then the maximum
1 anw over all discretizations is returned. Hence, the final returned I anam is a maximum over
both tuples and discretisations.

The problem of selecting the right amount of classes (the right value of ¢) is similar to bias—
variance tradeoff but more subtle. The statistic is better when there are less classes (binary being
the best case) but the shape ought to be better when there are more classes as it improves the
resolution. When the right split is known (as we show later with Madelon), it is best to use it.
Otherwise we recommend to try different numbers of classes and do several random discretizations
for each.

Conditional information entropy is obtained from the experimental probabilities of a decision
class using the following formula:

d d
H (ylzy,..., o) = — 2 Z Z pil,...,ikIOg(pil,...,ik): (F.3.1)

d:0,1i1:1:c ik-:1:C

where pgli,, denotes the conditional probability of class d in a k-dimensional voxel with coordinates

1;. Note that the number of voxels in k£ dimensions is ck , where ¢ is the number of classes of discretised
descriptive variables. To this end, one needs to compute the number of instances of each class in
each voxel. The conditional probability of class d in a voxel is then computed as

d d
B Ny, i 18
= 0 0 I 1’
Npo iy TN, o +B

Pl i (F.3.2)

where Ng,.i.,ik is the count of class d in a k-dimensional voxel with coordinates 7; and Bt is a
pseudocount corresponding to class d:
d
d N
— : F.3.3
p €min (NO N1 ()

where £ > 0 can be supplied by the user. The default value is set to 0.25. It was obtained in an
experimental process to achieve the best fit to X2 distribution. Usual usage should not mandate the
need to change &.

The implementation of the algorithm is currently limited to binary decision variables. The
analysis for information systems that have more than two categories can be performed either by
executing all possible pairwise comparisons or one-vs-rest. Then all variables that are relevant in
the context of a single pairwise comparison should be considered relevant. In the case of continuous
decision variable one must discretise it before performing analysis. In the current implementation all
variables are discretised into an equal number of classes. This constraint is introduced for increased
efficiency of computations, in particular on a GPU.

Another limitation is the maximum number of dimensions set to 5. This is due to several reasons.
Firstly, the computational cost of the algorithm is proportional to number of variables to power
equal the dimension of the analysis, and it becomes prohibitively expensive for powers larger than
5 even for systems described with a hundred of variables. Secondly, analysis in higher dimensions
requires a substantial number of objects to fill the voxels sufficiently for the algorithm to detect real
synergies. Finally, it is also related to the simplicity of efficient implementation of the algorithm in
CUDA.

The most time-consuming part of the algorithm is computing the counters for all voxels.
Fortunately, this part of the computations is relatively easy to parallelise, as the exhaustive search
is very well suited for GPU. Therefore, a GPU version of the algorithm was developed in CUDA C
for NVIDIA GPGPUs and is targeted towards problems with a very large number of features. The
CPU version is also parallelised to utilise all cores available on a single node. The 1D analysis is
available only in the CPU version since there is no benefit in running this kind of analysis on GPU.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 201

Package functions introduction

There are three functions in the package which are to be run directly with the input dataset: MDFS,
ComputeMaxInfoGains, and ComputeInterestingTuples. The first one, MDFS, is our recommended
function for new users, since it hides internal details and provides an easy to use interface for
basic end-to-end analysis for current users of other statistical tests (e.g., t.test) so that the user
can straightforwardly get the statistic values, p-values, and adjusted p-values for variables from
input. The other two functions are interfaces to the IG-calculating lower-level C++ and CUDA
C++ code. ComputeMaxInfoGains returns the max IGs, as described in the theory section. It
can optionally provide information about the tuple in which this max IG was observed. On the
other hand, one might be interested in tuples where certain IG threshold has been achieved. The
ComputeInterestingTuples function performs this type of analysis and reports which variable in
which tuple achieved the corresponding IG value.

The ComputePValue function performs fitting of IGs to respective statistical distributions as
described in the theory section. The goodness of fit is tested using Kolmogorov-Smirnov one-
sample test and a warning is emitted if the threshold is exceeded. ComputePValue returns an object
of the "MDFS" class which contains, in particular, p-values for variables. This class implements
various methods for handling output of statistical analysis. In particular they can plot details of
IG distribution, output p-values of all variables, and output relevant variables. ComputePValue
is implemented in a general way, extending beyond limitations of the current implementation of
ComputeMaxInfoGains. In particular, it can handle multi-class problems and different number of
divisions for each variable.

The AddContrastVariables is an utility function used to construct contrast variables (Stoppiglia
et al., 2003; Kursa et al., 2010). Contrast variables are used solely for improving reliability of the fit
of statistical distribution. In the case of fitting distribution to contrast variables we know exactly
how many irrelevant variables there are in the system. The contrast variables are not tested for
relevance and hence not used when adjusting p-values to not decrease the sensitivity without reason.

Canonical package usage

As mentioned earlier, the recommended way to use the package is to use the MDFS function. It uses
the other packaged functions to achieve its goal in the standard and thoroughly tested way, so it
may be considered the canonical package usage pattern. The MDFS function is general in terms
of contrast variables being optional, hence let us examine a simplified version of it assuming the
contrast variables are actually being used. We also neglect the setting of seed but we recommend it
to be set so that the result is reproducible. The MDFS wrapper does accept a seed and saves it with
the result.

The first step is to build the contrast variables:
contrast <- AddContrastVariables(data, n.contrast)
In the next step, the compute-intensive computation of IGs is executed:

MIG.Result <- ComputeMaxInfoGains(contrast$x, decision,
dimensions = dimensions, divisions = divisions,
discretizations = discretizations, range = range, pseudo.count = pseudo.count)

The first two positional parameters are respectively the feature data (plus contrast variables)
and the decision. The other parameters decide on the type of computed IGs: dimensions con-
trols dimensionality, divisions controls the number of classes in the discretisation (it is equal to
divisions+1), discretizations controls the number of discretisations, range controls how ran-
dom the discretisation splits are, and pseudo.count controls the regularization parameter £ for
pseudocounts.

Finally, the computed IGs are analysed and a statistical result is computed:

fs <- ComputePValue (MIG.Result$IG,
dimensions = dimensions, divisions = divisions,
contrast.mask = contrast$mask,
one.dim.mode = ifelse (discretizations==1, "raw",
ifelse(divisions*discretizations<12, "lin", "exp")))

statistic <- MIG.Result$IG[!contrast$mask]
p.value <- fs$p.value[!contrastPmask]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 202

adjusted.p.value <- p.adjust(p.value, method = p.adjust.method)
relevant.variables <- which(adjusted.p.value < level)

The one.dim.mode parameter controls the expected distribution in 1D. The rule states that as long
as we have 1 discretisation the resulting distribution is chi-squared, otherwise, depending on the
product of discretizations and divisions, the resulting distribution might be closer to a linear
or exponential, as in higher dimensions, function of chi-squared distributions. This is heuristic and
might need to be tuned. Features with adjusted p-values below some set level are considered to be
relevant.

Testing the Madelon dataset

For demonstration of the MDFS package we used the training subset of the well-known Madelon
dataset (Guyon et al., 2007). It is an artificial set with 2000 objects and 500 variables. The decision
was generated using a 5-dimensional random parity function based on variables drawn from normal
distribution. The remaining variables were generated in the following way. Fifteen variables were
obtained as linear combinations of the 5 input variables and remaining 480 variables were drawn
randomly from the normal distribution. The data set can be accessed from the UCI Machine
Learning Repository (Dheeru and Karra Taniskidou, 2017) and it is included in MDFS package as
well.

We conducted the analysis in all possible dimensionalities using both CPU and GPU versions of
the code. Additionally, a standard t-test was performed for reference. We examined computational
efficiency of the algorithm and compared the results obtained by performing analysis in varied
dimensionalities.

In the first attempt we utilised the given information on the properties of the dataset under
scrutiny. We knew in advance that Madelon was constructed as a random parity problem and
that each base variable was constructed from a distinct distribution. Therefore, we could use one
discretisation into 2 equipotent classes. In the second attempt the recommended ‘blind” approach in
2D was followed, which utilises several randomized discretisations.

For brevity, in the following examples the set of Madelon independent variables is named x and
its decision is named y:

x <- madelon$data
y <- madelon$decision

For easier comparison we introduce a helper function to obtain, from MDFS analysis, the relevant
features’ indices in decreasing relevance (increasing p-value) order:

GetOrderedRelevant <- function (result) {
result$relevant.variables [order (result$p.value[result$relevant.variables])]

}

One can now obtain p-values from t-test, adjust them using Holm correction (one of FWER
corrections, the default in the p.adjust function), take relevant with level 0.05, and order them:

tt <- ttests(x, ina = y+1)[,2] # we only use p-values (2nd column)
tt.adjusted <- p.adjust(tt, method = "holm")

tt.relevant <- which(tt.adjusted < 0.05)

tt.relevant.ordered <- tt.relevant[order(tt.adjusted[tt.relevant])]
tt.relevant.ordered

[1] 476 242 337 65 129 106 339 49 379 443 473 454 494

V V. V V V

A FWER correction is used because we expect strong separation between relevant and irrelevant
features in this artificial dataset. We used the ttests function from the Rfast (Papadakis et al.,
2018) package as it is a version of t-test optimized for this purpose.

To achieve the same with MDFS for 1, 2, and 3 dimensions one can use the wrapper MDFS
function:

> dl <- MDFS(x, y, n.contrast = 0, dimensions = 1, divisions = 1, range = 0)
> dl.relevant.ordered <- GetOrderedRelevant(d1l)

> dl.relevant.ordered

[1] 476 242 339 337 65 129 106 49 379 454 494 443 473

> d2 <- MDFS(x, y, n.contrast = O, dimensions = 2, divisions = 1, range = 0)

> d2.relevant.ordered <- GetOrderedRelevant (d2)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rfast

CONTRIBUTED RESEARCH ARTICLES 203

> d2.relevant.ordered
[1] 476 242 49 379 154 282 434 339 494 454 452 29 319 443 129 473 106 337 65

> d3 <- MDFS(x, y, n.contrast = 0, dimensions = 3, divisions = 1, range = 0)

> d3.relevant.ordered <- GetOrderedRelevant (d3)

> d3.relevant.ordered

[1] 154 434 282 49 379 476 242 319 29 452 494 106 454 129 473 443 339 337 65 456

The changes in the relevant variables set can be examined with simple setdiff comparisons:

> setdiff(tt.relevant.ordered, dl.relevant.ordered)

integer(0)
> setdiff(dl.relevant.ordered, tt.relevant.ordered)
integer(0)
> setdiff(dl.relevant.ordered, d2.relevant.ordered)
integer(0)

> setdiff(d2.relevant.ordered, dl.relevant.ordered)
[1] 154 282 434 452 29 319

> setdiff(d2.relevant.ordered, d3.relevant.ordered)
integer(0)

> setdiff(d3.relevant.ordered, d2.relevant.ordered)
[1]1 456

One may notice that ordering by importance leads to different results for these 4 tests.

In the above the knowledge about properties of the Madelon dataset was used: that there are
many random variables, hence no need to add contrast variables, and that the problem is best
resolved by splitting features in half, hence one could use 1 discretisation and set range to zero.

However, one is usually not equipped with such knowledge and then may need to use multiple
random discretisations. Below an example run of ‘blind’ 2D analysis of Madelon is presented:

> d2b <- MDFS(x, y, dimensions = 2, divisions = 1, discretizations = 30, seed = 118912)
> d2b.relevant.ordered <- GetOrderedRelevant (d2b)

> d2b.relevant.ordered

[1] 476 242 379 49 154 434 106 282 473 339 443 452 29 454 494 319 65 337 129

> setdiff(d2b.relevant.ordered, d2.relevant.ordered)

integer(0)

> setdiff(d2.relevant.ordered, d2b.relevant.ordered)

integer(0)

This demonstrates that the same variables are discovered, yet with a different order.

Performance

The performance of the CPU version of the algorithm was measured on a computer with two
Intel Xeon E5-2650 v2 processors, running at 2.6 GHz. Each processor has eight physical cores.
Hyperthreading was disabled.

The GPU version was tested on a computer with a single NVIDIA Tesla K80 accelerator. The
K80 is equipped with two GK210 chips and is therefore visible to the system as two separate
GPGPUs. Both were utilised in the tests.

The Madelon dataset has moderate dimensionality for modern standards, hence it is amenable
to high-dimensional analysis. The CPU version of the code handles analysis up to four dimensions
in a reasonable time, see Table 1.

The performance gap between CPU and GPU versions is much higher than suggested by a
simple comparison of hardware capabilities. This is due to two factors. Firstly, the GPU version has
been highly optimised towards increased efficiency of memory usage. The representation of the data
by bit-vectors and direct exploitation of the data locality allows for much higher data throughput.
What is more, the bit-vector representation allows for using very efficient popcent instruction for
counter updates. On the other hand the CPU version has been written mainly as a reference version
using a straightforward implementation of the algorithm and has not been strongly optimised.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

204

t-test 1D 2D 3D 4D 5D

CPU 0.01s 0.01s 0.44s 42s 1h:58m 249h

GPU - - 023 0.2s 9.8s 59m:37s

Table 1: Execution times for the Madelon dataset.

1D 2D 3D 4D 5D

CPU 0.35s 5.8s 37m:lls 92h -

GPU - 29s 3.3s Tm:36s 42h

Table 2: Execution times for the Madelon dataset with 30 random discretisations.

Figure 1: Correlation plots for relevant variables discovered in 1-, 2-, 3-, and 5-dimensional
analysis of the Madelon dataset with one deterministic discretisation with division in
the middle. The variables are ordered by IG.

Structure of the Madelon dataset revealed by MDFS analysis

The twenty relevant variables in Madelon can be easily identified by analysis of histograms of
variables, their correlation structure and by a priori knowledge of the method of construction of the

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 205

Cluster Members

154 154, 282, 434
29 29, 319, 452
49 49, 379

242 476, 242

456 456

454 454, 494

339 339

443 473, 443

106 106, 129

65 337, 65

Table 3: Discovered variable clusters (as seen in correlation plots) ordered by descending max-
imum relevance (measured with 5D IG), identified by the variable with the lowest
number.

dataset. In particular, base variables, i.e. these variables that are directly connected to a decision
variable, have the unique distribution that has two distinct peaks. All other variables have smooth
unimodal distribution, hence identification of base variables is trivial. What is more, we know that
remaining informative variables are constructed as linear combinations of base variables, hence
they should display significant correlations with base variables. Finally, the nuisance variables are
completely random, hence they should not be correlated neither with base variables nor with their
linear combinations. The analysis of correlations between variables reveals also that there are several
groups of very highly correlated (r > 0.99) variables, see Figure 1. All variables in such a group can
be considered as a single variable, reducing the number of independent variables to ten. The entire
group is further represented by the variable with the lowest number. The clusters are presented in
Table 3.

This clear structure of the dataset creates an opportunity to confront results of the MDFS
analysis with the ground truth and observe how the increasing precision of the analysis helps to
discover this structure without using the a priori knowledge on the structure of the dataset.

One-dimensional analysis reveals 13 really relevant variables (7 independent ones), both by
means of the t-test and using the information gain measure, see Table 4. Three-dimensional and
higher-dimensional analyses find all 20 relevant variables. Additionally, with the exception of
one-dimensional case, in all cases there is a clear separation between IG obtained for relevant and

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

206

o
8
relevant irrelevant
e 1D o 1D
2D 2D
g | e 30 o 3D
© LI o 4D 4D
e 5D o 5D
o
8
oo
)
®eoo0
£ o
& ¥ °
g L]
S °
® L) L
L]
E
S 8 4
£ © °
LI °
L) LY
°
o0 °
o .. L]
& 7 ° °
oo ®® 00
L]
o0
.... °
) .
8 -
) .
.OOOOOO000000000000000000000000
'........ 000000000000 000000000000000O0O0O
o ©®00000000600000000600600808806060600688383838886868608
T T T T T T
0 10 20 30 40 50
Index

Figure 2: Information gain obtained by the MDFS algorithm using 1-, 2-; 3-, 4-, and 5-
dimensional variants of the algorithm for the Madelon dataset with one deterministic
discretisation with division in the middle. Full circles represent variables deemed
relevant. All variables are sorted by IG. Margin between irrelevant and relevant
features grows with dimensionality.

8
~ .
relevant irrelevant
. o
2D 2D
S | . e 3D o 3D
© ° e 4D 4D
e 5D o 5D
o
S °
3 °
°e,
LN
L]
£ o
T o - ° °
o 3 °
c
S b
] .
£ =} ®e .
S n °
2 8 *.,
e ®e
° °
L L)
° . LN)
o Ce
. °
54 ceq, e,
®ee °
e
8 .
- o
. 0000000000000 O0DODOO0OD0OD0O0O0O0O00O00O00O0O0OO O
'000...... 0000000000000 00O0D0D00000000O000O0O0O0
o ®00000000000000000000000600000000066060
T T T T T T
0 10 20 30 40 50
Index

Figure 3: Information gain obtained by the MDFS algorithm using 1-, 2-, 3-, 4-, and 5-
dimensional variants of the algorithm for the Madelon dataset with 30 random
discretisations. Full circles represent variables deemed relevant. All variables are
sorted by IG. The margin between irrelevant and relevant features grows with dimen-

sionality.

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 207

Table 4: Summary of results for the Madelon dataset with one deterministic discretisation with
division in the middle. The variable clusters are ordered by descending IG. The numbers
of base variable clusters are highlighted in boldface. Clusters represented by 65 and
106, displayed in italic font, are deemed highly relevant in 1D analyses and the least
relevant in 5D analysis.

t-test 1D 2D 3D 4D 5D

1. 242 242 242 154 154 154

2. 65 339 49 49 49 29

3. 106 65 154 242 29 49

4. 339 106 339 29 242 242

5. 49 49 454 454 454 456

6. 443 454 29 106 339 454

7. 454 443 443 443 106 339

8. - - 106 339 456 443
9. - - 65 65 443 106
10. - - - 456 65 65

irrelevant variables, see Figure 2. This translates into a significant drop of p-value for the relevant
variables.

Five variables, namely {29,49, 154, 242, 456}, are clearly orthogonal to each other, hence they are
the base variables used to generate the decision variable. Five other variables are correlated with
base variables and with each other, and hence they are linear combinations of base variables. The
one-dimensional analyses, both ¢-test and mutual-information approach, find only two base variables,
see Table 4. What is more, while one of them is regarded as highly important (lowest p-value), the
second one is considered only the 5th most important out of 7. Two-dimensional analysis finds 4 or
5 base variables, depending on the method used. Moreover, the relative ranking of variables is closer
to intuition, with three base variables on top. The relative ranking of importance improves with
increasing dimensionality of the analysis. In 5-dimensional analysis all five base variables are scored
higher than any linear combination. In particular, the variable 456, which is identified by 3D analysis
as the least important, rises to the eighth place in 4D analysis and to the fifth in 5D. Interestingly,
the variable 65, which is the least important in 5D analysis is the second most important variable in
t-test and the third most important variable in 1D.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

208

Table 5: Summary of results for the Madelon dataset with 30 random discretisations. The
variable clusters are ordered by descending IG. The numbers of base variable clusters
are highlighted in boldface. Similar behaviour with 65 and 106 is observed as in the
single discretisation case. Note the irrelevant variable 205 (underlined) discovered in
1D as relevant due to small margin between relevant and irrelevant features.

t-test 1D 2D 3D 4D 5D

1. 242 242 242 154 154 154

2. 65 339 49 49 49 29

3. 106 65 154 242 29 49

4. 339 443 106 29 242 242

5. 49 106 443 106 454 454

6. 443 454 339 454 106 456

7. 454 49 29 443 339 443

8. - 205 454 339 443 339
9. - - 65 65 456 106
10. - - - 456 65 65

Conclusion

We have introduced a new package for identification of informative variables in multidimensional
information systems which takes into account interactions between variables. The implemented
method is significantly more sensitive than the standard t-test when interactions between variables
are present in the system. When applied to the well-known five-dimensional problem—Madelon—the
method not only discovered all relevant variables but also produced the correct estimate of their
relative relevance.

Acknowledgments

The research was partially funded by the Polish National Science Centre, grant 2013/09/B/ST6,/01550.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 209

Bibliography

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. The Annals of Statistics, 29(4):1165-1188, 2001. [p199]

L. Breiman. Random Forests. Machine Learning, 45:5-32, 2001. URL https://doi.org/10.1023/a:
1010933404324. [p198]

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995. URL
https://doi.org/10.1007/b£00994018. [p198]

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml. [p202]

M. Draminski and J. Koronacki. Rmecfs: An r package for monte carlo feature selection and
interdependency discovery. Journal of Statistical Software, Articles, 85(12):1-28, 2018. ISSN
1548-7660. URL https://doi.org/10.18637/jss.v085.112. [p198§]

M. Draminski, A. Rada-Iglesias, S. Enroth, C. Wadelius, J. Koronacki, and J. Komorowski. Monte
carlo feature selection for supervised classification. Bioinformatics, 24(1):110-117, 2007. ISSN
1367-4803. [p198]

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learn-
ing Research, 3(Mar):1157-1182, 2003. URL https://doi.org/10.1162/153244303322753616.
[p198]

1. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support
vector machines. Machine learning, 46(1-3):389-422, 2002. URL https://doi.org/10.1023/a:
1012487302797. [p198]

I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr. Competitive Baseline Methods
Set New Standards for the NIPS 2003 Feature Selection Benchmark. Pattern Recognition Letters,
28(12):1438-1444, 2007. URL https://doi.org/10.1016/j.patrec.2007.02.014. [p202]

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6(2):65-70, 1979. ISSN 03036898, 14679469. URL https://doi.org/10.2307/4615733. [p199]

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273-324,
1997. ISSN 0004-3702. URL https://doi.org/10.1016/s0004-3702(97)00043-x. [p199]

I. Kononenko. Estimating attributes: Analysis and extensions of relief. In Furopean Conference
on Machine Learning, pages 171-182, 1994. URL https://doi.org/10.1007/3-540-57868-4_57.
[p199]

M. B. Kursa, A. Jankowski, and W. R. Rudnicki. Boruta — a system for feature selection. Fundamenta
Informaticae, 101(4):271-285, 2010. URL https://doi.org/10.3233/£i-2010-288. [p198, 201]

K. Mnich and W. R. Rudnicki. All-relevant feature selection using multidimensional filters with
exhaustive search. CoRR, abs/1705.05756, 2017. URL http://arxiv.org/abs/1705.05756. [p198,
199]

M. Papadakis, M. Tsagris, M. Dimitriadis, S. Fafalios, I. Tsamardinos, M. Fasiolo, G. Borboudakis,
J. Burkardt, C. Zou, K. Lakiotaki, and C. Chatzipantsiou. Rfast: A Collection of Efficient
and Extremely Fast R Functions, 2018. URL https://CRAN.R-project.org/package=Rfast. R
package version 1.9.2. [p202]

H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8):1226-1238, 2005. URL https://doi.org/10.1109/tpami.2005.159.
[p198]

R. Piliszek, K. Mnich, P. Tabaszewski, S. Migacz, A. Sutecki, and W. R. Rudnicki. MDFS:
MultiDimensional Feature Selection, 2018. URL https://CRAN.R-project.org/package=MDFS.
R package version 1.0.3. [p199]

M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReli-
efF. Machine Learning, 53(1-2):23-69, 2003. URL https://doi.org/10.1023/a:1025667309714.
[p198]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/bf00994018
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.18637/jss.v085.i12
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1016/j.patrec.2007.02.014
https://doi.org/10.2307/4615733
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1007/3-540-57868-4_57
https://doi.org/10.3233/fi-2010-288
http://arxiv.org/abs/1705.05756
https://CRAN.R-project.org/package=Rfast
https://doi.org/10.1109/tpami.2005.159
https://CRAN.R-project.org/package=MDFS
https://doi.org/10.1023/a:1025667309714

CONTRIBUTED RESEARCH ARTICLES 210

H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable
and feature selection. Journal of Machine Learning Research, 3(7-8):1399-1414, 2003. URL
https://doi.org/10.1162/153244303322753733. [p201]

G. Wang, Q. Song, B. Xu, and Y. Zhou. Selecting feature subset for high dimensional data via the
propositional foil rules. Pattern Recognition, 46(1):199-214, 2013. URL https://doi.org/10.
1016/j.patcog.2012.07.028. [pl9§]

7. Zhao and H. Liu. Searching for interacting features. In IJCAI, volume 7, pages 11561161, 2007.
[p19g]

Radostaw Piliszek

Computational Centre, University of Bialystok
Konstantego Ciolkowskiego 1M, 15-245 Bialystok
Poland

0000-0003-0729-9167

r.piliszek@uwb.edu.pl

Krzysztof Mnich

Computational Centre, University of Bialystok
Konstantego Ciolkowskiego 1M, 15-245 Bialystok
Poland

0000-0002-6226-981X

k.mnich@uwb.edu.pl

Szymon Migacz

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Pawiniskiego 5A, 02-106 Warsaw

Poland

Pawel Tabaszewsks

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Pawinskiego 5A, 02-106 Warsaw

Poland

Andrzej Sulecki

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Pawinskiego 5A, 02-106 Warsaw

Poland

Aneta Polewko-Klim

Institute of Informatics, University of Bialystok
Konstantego Ciolkowskiego 1M, 15-245 Bialystok
Poland

0000-0003-1987-737/

anetapol@uwb.edu.pl

Witold Rudnicksi

Institute of Informatics, University of Bialystok

Konstantego Ciolkowskiego 1M, 15-245 Bialystok

Poland

and

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
Pawiniskiego 5A, 02-106 Warsaw

Poland

0000-0002-7928-4944

w.rudnicki@uwb.edu.pl

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1162/153244303322753733
https://doi.org/10.1016/j.patcog.2012.07.028
https://doi.org/10.1016/j.patcog.2012.07.028
mailto:r.piliszek@uwb.edu.pl
mailto:k.mnich@uwb.edu.pl
mailto:anetapol@uwb.edu.pl
mailto:w.rudnicki@uwb.edu.pl

CONTRIBUTED RESEARCH ARTICLES 211

fclust: An R Package for Fuzzy
Clustering

by Maria Brigida Ferraro, Paolo Giordani and Alessio Serafini

Abstract Fuzzy clustering methods discover fuzzy partitions where observations can be softly
assigned to more than one cluster. The package fclust is a toolbox for fuzzy clustering in the R
programming language. It not only implements the widely used fuzzy k-means (FkM) algorithm,
but also many FkM variants. Fuzzy cluster similarity measures, cluster validity indices and cluster
visualization tools are also offered. In the current version, all the functions are rewritten in the C++
language allowing their application in large-size problems. Moreover, new fuzzy relational clustering
algorithms for partitioning qualitative/mixed data are provided together with an improved version
of the so-called Gustafson-Kessel algorithm to avoid singularity in the cluster covariance matrices.
Finally, it is now possible to automatically select the number of clusters by means of the available
fuzzy cluster validity indices.

Introduction

Standard clustering algorithms assign a set of observations to a limited number of clusters such that
observations belonging to the same cluster are more similar to each other than to those in other
groups. Generally speaking, such algorithms usually produce a hard partition of the observations, i.
e. every observation is assigned to one and only one cluster. This may often be too strict leading to
unfeasible partitions. The well-known Butterfly dataset (Ruspini, 1970) helps to clarify the problem.
It is available in the matrix butterfly of the package fclust, provided that the first and the last
rows of the matrix are removed.

data("butterfly", package = "fclust")

butterfly <- butterfly[-c(1,17),]

rownames (butterfly) <- as.character(rep(l:nrow(butterfly)))

plot(butterfly, type = "n", xlab = "Var. 1", ylab="Var. 2")

text (butterfly[,1], butterfly[,2], labels = rownames(butterfly), cex = 0.7, lwd = 2)

V V. V V VvV

N — 3 15
— - 6 12
N
= o — 2 5 7 8 9 11 14
)
>
‘T‘] 4 10
N+ 1 13
I I I I I I I
-3 -2 -1 0 1 2 3
Var. 1

Figure 1: Scatterplot of the Butterfly data.

The Butterfly data refer to 15 observations and 2 variables. Two clusters corresponding to
the left and right wings (observations n.1-n.7 and n.9-n.15, respectively) of the butterfly can be
graphically depicted without any need of clustering tools. The assignment of observation n.8 (the
body of the butterfly) is a much more complex issue because it is at the halfway between the two
clusters. Standard algorithms fail to assign properly such an observation. For instance, let us
consider the (hard) k-means (kM) algorithm (Hartigan and Wong, 1979), the most known clustering
algorithm. We run the kM algorithm (using the function kmeans) a large number of times (nt).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=fclust

CONTRIBUTED RESEARCH ARTICLES 212

set.seed(12)
nt <- 1000
ca8 <- rep(NA,nt)
1fv <- rep(NA,nt)
for (n in 1: nt){
km.butterfly <- kmeans(butterfly, centers = 2, iter.max = 1000, nstart = 10)
1fv[n] <- km.butterfly[[5]]
if (km.butterfly$cluster[8] == km.butterfly$cluster[1]){
ca8[n] <- 1
Yelseq{
ca8[n] <- 2
}
}

+ 4+ 4+ + 4+ ++ +VVVVYV

> summary (1fv)

Min. 1st Qu. Median Mean 3rd Qu. Max.
31.43 31.43 31.43 31.43 31.43 31.43

> table(ca8)

ca8
1 2
560 440

We find (details not reported) that the same two clusters are always obtained (the one formed by
observations n-1-n.7, labelled Cluster 1, and the other one by observations n-9-n.15, labelled Cluster
2), whilst observation n.8 is assigned to one of the two clusters (ca8) by chance without affecting
the loss function value (1£fv), i. e. the total within sum of squares.

The difficulty in the assignment of observation n.8 depends on the fact that it shares the features
of both the groups. This situation frequently occurs in real life applications. In general, it may
exist observations without clear assignments to the clusters. In such cases, it would be desirable to
assign them to the clusters to a certain extent. For instance, in the butterfly problem, observation
n.8 should be assigned to the two clusters with the same degree. This goal can be achieved by the
fuzzy approach to clustering where observations belong to clusters with the so-called membership
degrees in [0,1] and, for each observation, the sum of the membership degrees must be equal to 1.
Therefore, in fuzzy clustering, the observations are not strictly assigned to one and only one cluster,
but can share their memberships to more than one cluster. To differentiate the fuzzy approach from
the standard hard one, it may also be referred to as soft clustering.

The most known fuzzy clustering algorithm is the fuzzy k-means (FkM), proposed by Bezdek
(1981), which is the fuzzy counterpart of kM. It has been implemented in several functions in
different R packages: we mention cluster (Maechler et al., 2017), clue (Hornik, 2005), e1071 (Meyer
et al., 2017), skmeans (Hornik et al., 2012), vegclust (De Caceres et al., 2010), ppclust (Cebeci
et al., 2018) and felust (Ferraro and Giordani, 2015). Among them, fclust offers a general toolbox
for partitioning data using fuzzy clustering algorithms, computing cluster validity indices and
visualizing clustering results. The current version (version 2.1.1) of the package has been deeply
improved with respect to the previous ones. It contains several new routines and performance
improvements. As a first improvement, all the functions have been rewritten in the C++ language
using Repp (Eddelbuettel, 2013) and ReppArmadillo (Eddelbuettel and Sanderson, 2014) to enhance
their computational efficiency. In addition, all the clustering algorithms can automatically select
the optimal number of clusters using the cluster validity indexes available in the package. All the
functions usually require data organized by quantitative variables and observations (object data). To
increase the usability of the package, another relevant improvement is the implementation of fuzzy
clustering algorithms for relational data (Davé and Sen, 2002). Relational data come from measures
of dissimilarity between observations. Two clustering methods proposed by Davé and Sen (2002) have
been considered. They do not require any assumption about the adopted measure of dissimilarity.
Thus, such algorithms can be applied to a wide range of data. Specifically, whilst all the functions
for object data require quantitative variables, those for relational data can handle all kinds of data
(quantitative, qualitative or mixed) provided that a suitable measure of dissimilarity/distance is
selected, e. g. the Gower distance (Gower, 1971) specifying the option metric="gower" of the
function daisy in the package cluster. Finally, new functions to compare two partitions in a fuzzy
environment have been implemented. Namely, the fuzzy versions of the Rand index (RI; Rand,
1971), the adjusted Rand index (ARI; Hubert and Arabie, 1985), and the Jaccard index (Jaccard,
1901; Halkidi et al., 2001) have been developed by Campello (2007). The standard indexes are

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=clue
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=skmeans
https://CRAN.R-project.org/package=vegclust
https://CRAN.R-project.org/package=ppclust
https://CRAN.R-project.org/package=fclust
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo

CONTRIBUTED RESEARCH ARTICLES 213

implemented in different packages (see, for instance, Scrucca et al., 2016; Chung et al., 2018). The
fuzzy vartiants are now available in fclust.

In this paper, after reviewing the most relevant fuzzy clustering methods, we recall some of the
original functions to present the new improvements and we introduce the new functions by examples.
We assume that the latest version of fclust available on CRAN is already installed with

> install.packages("fclust")
and loaded into the R session using

> library(fclust)

Fuzzy clustering

In this section, we recall the fuzzy k-means algorithm (Bezdek, 1981) and its extension suggested
by Gustafson and Kessel (1979). Whilst the former detects spherical clusters, the latter allows for
clusters with ellipsoidal shape. Then, a fuzzy clustering algorithm for relational data is described
(Davé and Sen, 2002)

Fuzzy k-means algorithm

The most known and used fuzzy clustering algorithm is the fuzzy k-means (FkM) (Bezdek, 1981).
The FEM algorithm aims at discovering the best fuzzy partition of n observations into k clusters by
solving the following minimization problem:

n k
min Jppm = > Y ujpd? (xi,hy),
vH i=lg=l (H.2.1)

k
st uig € [0,1], > uig =1,
g=1

where d (x;,hg) is the Euclidean distance. In (H.2.1), u;q4 is the generic element of the membership
degree matrix U of order (n x k), taking values in the interval [0,1] and representing the membership
degree of observation i to cluster g. The row-wise sums of U are equal to 1. The propotypes
(centroids) hy = [hg1,hg2, -~ ,hgp] (g = 1,--- , k) are stored in the matrix H of order (k x p), being
p the number of variables. Finally, the parameter m tunes the fuzziness of the obtained solution.

Gustafson-Kessel extensions of the FEM algorithm

The FEM algorithm, as the standard k-Means, can determine only spherical shaped clusters. This
depends on the use of the Euclidean distance to measure the dissimilarity between observations. This
limits its applicability when non-spherical clusters are expected. In order to overcome this drawback,
Gustafson and Kessel (1979) extend the FEM algorithm by replacing the Euclidean distance with a
cluster-specific Mahalanobis distance:

3y (xi,hg) = (x; — hg) My (x; — hy), (H.2.2)

where My is a symmetric and positive-definite matrix of order p. When My = I, (H.2.2) is equvalent
to the Euclidean distance. The Gustafson-Kessel FkM (briefly, GK-FkM) consists in solving the
following minimizatin problem

n k
min Jok-Fem = Y X ujndyy (xi,hy),
U,H,M;,....M,, P B ’ (H2.3)

k
8.t uig € [0,1], 3] uig =1, [Mg| = py.
g=1

The constraints in (H.2.3) are similar to those in (H.2.1) except for the new ones on My (|[Mgy| =
pg > 0, with pgy fixed for each g), added to avoid a trivial solution with My = 0, that would be
obtained since Jgi FrMm is linear in My.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 214

For the generic g-th cluster, the iterative solution of My is [pg|Vg|]%V;17 where V4 is the
fuzzy covariance matrix for cluster g, defined as

’

Z?:l uiy (xi —hg)(x; — hg)
Vg = . ;o 9=1..k (H.2.4)
22;1 UZ]L

The eigenvalues and eigenvectors of Vg4 describe the shape and orientation of the g-th cluster.
When an eigenvalue is equal to 0 or when the condition number of V (i. e. the ratio between its
maximum and minimum eigenvalue) is very large, the matrix is nearly singular, hence V;l cannot
be calculated. The condition |V4| = pg cannot overcome this drawback, as the determinant becomes
0. Babuska et al. (2002) propose to avoid these numerical problems by constraining the condition
number of V4 to be smaller than a predefined threshold. Since this might lead to overfit the data,
the update of V4 can be regularized by considering the covariance matrix of the whole dataset. See,
for more details, Babuska et al. (2002).

Fuzzy clustering algorithms for relational data

In practical applications it may occur that only relational data are available. Relational data consist
in the pairwise relations (similarities or dissimilarities) between observations, stored in a square
matrix, say D, not necessarily based on object data. In fact, D can be built either by computing
the dissimilarity (or similarity) between all the pairs of observations on which a set of variables
are collected (indirect relational data) or according to subjective expert knowledge, e. g. a teacher
expresses her/his subjective degrees of dissimilarity for all the pair of pupils in her/his classroom
(direct relational data). In the latter case, fuzzy clustering algorithms for object data can no longer
be applied. In the former case, fuzzy clustering algorithms for object data should be preferred
to those for relational data due to their computational efficiency. Nonetheless, fuzzy clustering
algorithms usually assume to deal with quantitative variables preventing their applicability in case
of qualitative/mixed variables. In such a case, fuzzy clustering methods for relational data can be
fruitfully applied provided that a suitable dissimilarity measure for qualitative/mixed variables is
used.

In the literature, there exist several proposals of fuzzy clustering algorithms for relational data.
Among them, a valuable choice is represented by the class of algorithms proposed by Davé and
Sen (2002), which are suitable for all kinds of dissimilarity. We assume that D is a dissimilarity
matrix. If it contains similarities, these should be converted into dissimilarities. For this purpose,
e. g. the function sim2diss of the package smacof (de Leecuw and Mair, 2009) can be used. The
non-Euclidean fuzzy relational data clustering algorithm (NEFRC) consists in solving the following
minimization problem:

n n
k 2 X ujguigd(xix;)
. i=1j=1
min JNEFRC = X =
g=1 2y uiy
t=1

I

k
st uig € [0,1], > wig = 1.
g=1

Notice that the NEFRC algorithm differs from the famous FANNY algorithm proposed by Kaufman
and Rousseeuw (1990) since a general fuzzifier m is used and it is suitable for all kinds of dissimilarity.

The package also offers a robust variant of NEFRC involving the concept of noise cluster. It
is an additional cluster such that the outliers are assigned to it with high membership degrees. It
is not a cluster in a strict sense because the outliers are not necessarily similar to each other. Its
role is that the membership degrees of the outliers to the standard clusters tend to be low without
affecting the obtained partition. The robust version of NEFRC has been implemented in the current
version of fclust and represents the relational counterpart of the FkM algorithm with noise cluster,
already available in the package.

The package

In this section we present the main features of the package fclust with particular emphasis on the
more recent updates. The list of algorithms with the corresponding functions is reported in Table
1. Apart from some peculiarities, all the available functions in the package require the same input
arguments, involving the set-up of the clustering algorithms, i. e. number of starts, convergence
criterion, data standardization. The user is not requested to specify such arguments because default
options are specified. Obviously, the dataset to be clustered must be given.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=smacof

CONTRIBUTED RESEARCH ARTICLES 215

Differently from the previous versions, the number of groups k is no longer required. Of course,
the user can select the integer value of k, otherwise the optimal number of clusters is automatically
chosen by maximizing or minimizing one of the available fuzzy cluster validity indices (see Table 2)
to be specified in the option index (default "SIL.F"). By default the possible number of clusters is
in the vector k=2:6, unless a different integer vector is selected by the user.

A fast way to apply one of the available algorithms is represented by the function Fclust:
> Fclust (X, k, type, ent, noise, stand, distance)

In Fclust to choose a given algorithm, the options type, ent, noise and distance should be set.
type is a character string specifying the type of algorithm to be used. The currently available
options are "standard" (the default option for FKM-type algorithms, provided that distance =
FALSE), "polynomial", "gk", "gkb", "medoids". ent (default FALSE) and noise (default FALSE)
are logical values indicating, respectively, whether the entropy regularization and the noise cluster
should be used. Morever, distance (default FALSE) is another logical value indicating whether
the data in X are distances/dissimilarities. When distance = TRUE, type is constrained to be
"standard" and NEFRC-type algorithms are run. Finally, stand is used for standardization (default:
no standardization) and k indicates the desired number of clusters (only for this function, the default
value is 2). For instance, the researcher interested in applying the FEM algorithm with noise cluster
with £ = 3 clusters to X can digit:

> Fclust (X = X, k = 3, type = "standard", noise = TRUE)

In the following we are going to present the main features and improvements of the package by
considering the standard FkM algorithm (function FKM), the Gustafson—Kessel extension of FkM
according to the Babuska et al. (2002) variant (function FKM.gkb), and the clustering algorithm for
relational data (function NEFRC).

Fuzzy k-means (FKM)

The FKM function is applied to the NBA dataset available in fclust. The dataset contains some
statistics on 30 NBA teams for the regular season 2017-2018 (source: https://stats.nba.com/
teams/traditional/): number of wins (W), field goals made (FGM), field goals attempted (FGA),
field goal percentage (FGP), 3 point field goals made (3PM), 3 point field goals attempted (3PA4), 3
point field goals percentage (3PP), free throws made (FTM), free throws attempted (FTA), free throw
percentage (FTP), offensive rebounds (OREB), defensive rebounds (DREB), assists (AST), turnovers
(TOV), steals (STL), blocks (BLK), blocked field goal attempts (BLKA), personal fouls (PF), personal
fouls drawn (PFD) and points (PTS). In addition, two more variables are available indicating the
conference (Conference) and the playoff appearance (playoff). Both the variables are objects of
class factor with two levels.

The dataset can be loaded as following:
> data("NBA")

A subset of variables is considered for clustering purposes. The raw values of field goals, point field
goals and free throws are removed (only the percentage values are considered), as well as the wins
and the personal fouls.

> X.NBA <- NBA[,c(4,7,10,11,12,13,14,15,16,17,20)]

We apply the function FKM to the obtained dataset. The parameter of fuzziness m is set tom = 1.2
(the default value m = 2 was too high producing an extremely fuzzy partition with membership
degrees not far from 0.5) and the number of starts is fixed to 50 (RS = 50) to avoid local optima.
The number of clusters is automatically selected using the fuzzy silhouette index (index = "SIL.F").
Notice that the fuzzy silhouette index represents a fuzzy extension of the well-known silhouette
(Kaufman and Rousseeuw, 1990) involving the use of the membership degree information (for further
details, refer to Campello, 2007). Finally, we set stand = 1 in order to standardize the data before
running FKM:

> fkm.NBA <- FKM(X = X.NBA, m = 1.2, RS = 50, stand = 1, index = "SIL.F")
The summary method returns the most relevant information:

> summary (fkm.NBA)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://stats.nba.com/teams/traditional/
https://stats.nba.com/teams/traditional/

CONTRIBUTED RESEARCH ARTICLES

Fuzzy clustering object of class 'fclust'

Number of objects:
30

Number of clusters:
2

Cluster sizes:

Clus 1 Clus 2
18 12

Clustering index values:

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.2994904 0.2508281 0.2558217 0.2586680 0.2700120

Closest hard clustering partition:

Houston Rockets

Toronto Raptors

Golden State Warriors

2 2 2

Boston Celtics Philadelphia 76ers Cleveland Cavaliers

1 2 2

Portland Trail Blazers Indiana Pacers New Orleans Pelicans
1 2 2

Oklahoma City Thunder Utah Jazz Minnesota Timberwolves
1 2 2

San Antonio Spurs Denver Nuggets Miami Heat

1 2 1

Milwaukee Bucks Washington Wizards LA Clippers

2 2 1

Detroit Pistons Charlotte Hornets Los Angeles Lakers

1 1 1

New York Knicks Brooklyn Nets Chicago Bulls

1 1 1

Sacramento Kings Orlando Magic Atlanta Hawks

1 1 1

Dallas Mavericks Memphis Grizzlies Phoenix Suns

1 1 1

Cluster memberships:

Clus 1
[1] "Boston Celtics" "Portland Trail Blazers"
[3] "Oklahoma City Thunder" "San Antonio Spurs"
[6] "Miami Heat" "LA Clippers"
[7] "Detroit Pistons" "Charlotte Hornets"
[9] "Los Angeles Lakers" "New York Knicks"
[11] "Brooklyn Nets" "Chicago Bulls"
[13] "Sacramento Kings" "Orlando Magic"
[15] "Atlanta Hawks" "Dallas Mavericks"
[17] "Memphis Grizzlies" "Phoenix Suns"
Clus 2
[1] "Houston Rockets" "Toronto Raptors"
[3] "Golden State Warriors" "Philadelphia 76ers"
[6] "Cleveland Cavaliers" "Indiana Pacers"
[7] "New Orleans Pelicans" "Utah Jazz"
[9] "Minnesota Timberwolves" "Denver Nuggets"
[11] "Milwaukee Bucks" "Washington Wizards"

Number of objects with unclear assignment (maximal membership degree <0.5):
0

Membership degree matrix (rounded):

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 217

Clus 1 Clus 2
Houston Rockets 0.02 0.98

Toronto Raptors 0.01 0.99
Golden State Warriors 0.02 0.98
Boston Celtics 0.92 0.08
Philadelphia 76ers 0.11 0.89
Cleveland Cavaliers 0.05 0.95
Portland Trail Blazers 0.95 0.05
Indiana Pacers 0.34 0.66
New Orleans Pelicans 0.00 1.00
Oklahoma City Thunder 0.78 0.22
Utah Jazz 0.14 0.86
Minnesota Timberwolves 0.12 0.88
San Antonio Spurs 0.77 0.23
Denver Nuggets 0.03 0.97
Miami Heat 1.00 0.00
Milwaukee Bucks 0.03 0.97
Washington Wizards 0.03 0.97
LA Clippers 0.96 0.04
Detroit Pistomns 1.00 0.00
Charlotte Hornets 0.98 0.02
Los Angeles Lakers 0.93 0.07
New York Knicks 0.96 0.04
Brooklyn Nets 0.99 0.01
Chicago Bulls 1.00 0.00
Sacramento Kings 0.98 0.02
Orlando Magic 1.00 0.00
Atlanta Hawks 0.98 0.02
Dallas Mavericks 0.97 0.03
Memphis Grizzlies 0.99 0.01
Phoenix Suns 0.99 0.01

Cluster summary:
Cl.size Min.memb.deg. Max.memb.deg. Av.memb.deg. N.uncl.assignm.
Clus 1 18 0.77 1 0.95 0
Clus 2 12 0.66 1 0.92 0

Euclidean distance matrix for the prototypes (rounded):
Clus 1
Clus 2 2.91

Available components:

[1] ng" ngn ngn "clus" "medoid"
[6] "value" "criterion" "iter" "k" "m"
[11] "ent" npn "VP" "delta" "stand"
[16] "Yca" nyn npn "call"

According to SIL.F, we select the solution with & = 2 clusters. The obtained clusters can be plotted
on the plane spanned by the first two principal components. This can be done by using the method
plot associated to an fclust object specifying the option pca = TRUE.

We can see that the first component is able to distinguish the two clusters. Teams with high first

component scores belong to Cluster 2 and those with low scores to Cluster 1. The first component
loadings are (the script is omitted):

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA
0.455 0.305 0.278 -0.157 0.158 0.395 0.071 0.160 0.370 -0.338
PTS
0.369

Hence, it appears that the clusters are mainly distinguish in terms of FGP, AST, BLK, PTS, BLKA, 3PP
and FTP, i. e. the variables with the highest first component loadings in absolute value.

In order to interpret the clusters, we inspect the prototypes. To this purpose, we apply the
function Hraw to visualize the prototypes by using the original units of measurement.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 218

> plot(fkm.NBA, pca = TRUE)

°
N7 °
(qV]
- o
2 ® $
g o 4 Jo
g L °
© < []
g °
S °
£ o
a °
q’ _]
°
I I I I |
-2 0 2 4 6

Principal Component 1
Explained variance by these two components: 34.58%

Figure 2: Scatterplot of the NBA teams on the plane spanned by the first two principal compo-
nents. Points are marked according to the obtained partition (Cluster 1: red, Cluster
2: cyan).

> round(Hraw(X = X.NBA, H = fkm.NBA$H), 3)

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA

Clus 1 0.451 0.358 0.759 9.830 33.757 22.483 14.252 7.446 4.581 4.996

Clus 2 0.474 0.367 0.780 9.513 33.891 24.425 14.305 8.096 5.145 4.548
PTS
Clus 1 104.362
Clus 2 109.357

We can see that Cluster 2 recognizes the best teams. In fact, the values of the prototype of Cluster
2 are better than the corresponding ones of Cluster 1, except for a few variables such as OREB
and BLKA. To further characterize the obtained clusters, we consider the variables Conference and
Playoff. In particular, we aim at discovering whether the two clusters can be interpreted in terms
of the geographical location and/or the playoff appearance. From a statistical point of view, this
consists in comparing the fuzzy partition resulting from FKM with the hard ones corresponding to
the classification variables Conference or Playoff. For this purpose, the fuzzy cluster similarity
measures available in the package are considered. Such measures, proposed by Campello (2007), are
summarized in Table 3.

To report the values of the three measures, the function Fclust.compare can be used. The input
required by Fclust.compare (and similarly for RI.F, ARI.F and JACCARD.F) is a fuzzy membership
degree matrix (U) and a vector of class labels (VC).

> Fclust.compare(VC = NBA$Playoff, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
0.3077549 0.6537339 0.4825140

> Fclust.compare(VC = NBA$Conference, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
-0.02547957 0.48701485 0.31724090

It is clear that the clusters cannot be interpreted from a geographical point of view, whilst, to some
extent, they are related to the playoff appearance. Such a comment holds especially for Cluster 2.
In fact, 11 out of 12 teams belonging to Cluster 2 reached the playoff stage. The only exception is
Denver Nuggets, which was one of the best teams in terms of number of wins (W) but not qualified
to the playoff stage, because the number of wins was not sufficient to reach the playoff stage in the
Western conference.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 219

Gustafson-Kessel extensions of the FKM algorithm (FKM.gk and FKM.gkb)

The Gustafson-Kessel extension of the FkM algorithm is implemented in the functions FKM. gk and
FKM.gkb. The former implements the GK-F£M algorithm in the original proposal, whilst the latter,
recently added to the package, considers the computational improvement suggested by Babuska
et al. (2002). A simulated dataset similar to the one in Babuska et al. (2002) is used to show the
differences between the two functions. Three different clusters with different size (100, 80, and 60)
in two-dimensional space are generated as follows:

6 —2.0x with z ~ U(1,3) for Cluster 1,
y= { =5+ 1.5z with z ~ U(3.2,6) for Cluster 2, (H.3.1)

3z with ¢ ~ U(—1,1) for Cluster 3.

Data can be found in fclust and loaded with the following command:
> data(synt.data2)

Figure 3 shows the scatterplot of the simulated data. In this case the cluster covariance matrices are
singular because the two variables are perfectly collinear in all the clusters.

q-_

Figure 3: Scatterplot of the synt.data2 dataset.

By employing the standard function FKM.gk numerical problems occur. By settingm = 2,k = 3
and RS = 1, we have:

> fkm.gk.synt <- FKM.gk(X = synt.data2, k = 3, RS = 1)
The following warning message appears:

Warning message:

In FKM.gk(X = synt.data2, k = 3, RS = 1)
When k=3, at least one cluster covariance matrix seems to be singular.
Increase the number of starts RS or use FKM.gkb

Thus, we can see that the algorithm stops because at least one cluster covariance matrix is singular.
In this case, the function returns the standard object of class fclust containing the sub-optimal
solution at the previous iteration, i. e. the one with no singular cluster covariance matrices. By
studying the number of iterations and the loss function value of such a local optimum solution, we
get:

> fkm.gk.synt$iter

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 220

Start 1
13

> fkm.gk.synt$value

Start 1
0.06044555

For comparative purpose, we run the recommended function FKM.gkb using the same start:

> fkm.gkb.synt <- FKM.gkb(X = synt.data2, k = 3, RS = 1, seed = 123)

> fkm.gkb.synt$iter

Start 1
16

> fkm.gkb.synt$value

Start 1
1.482029e-05

The method required two more iterations for convergence. The obtained solution is characterized by
a lower loss function value and is not affected by singularity problems.

Fuzzy clustering for indirect relational data (dichotomous variables)

The NEFRC algorithm can be applied using the function NEFRC. Differently from the other functions
for clustering object data, it requires distances/dissimilarities as input argument. Consistently
with the other functions, the available clustering indices (except for the Xie and Beni one) can be
used to select the optimal number of clusters k. In particular, the silhouette index (SIL) and its
fuzzy extension (SIL.F) have been rearranged for relational data. Specifically, the input of NEFRC
is employed to compute the silhouette and the fuzzy silhouette indices. This is the default option
when SIL.F is called by NEFRC. In order to use the distance/dissimilarity matrix for computing the
fuzzy silhouette index, the option distance = TRUE in SIL.F should be set. Generally speaking, the
fuzzy silhouette index can be applied for any kind of data (quantitative or qualitative or mixed)
provided that a suitable distance/dissimilarity matrix is used as input.

The function NEFRC is presented by considering the congressional voting records data (Schlimmer,
1987) available in fclust. The data collect 1984 United Stated voting records for 475 U.S. House
of Representative congressmen on 16 key votes identified by the Congressional Quartely Almanac
(CQA). The congressmen are split into Democrats and Republicans (variable class). The 16 key
votes are objects of class factor with three levels according to the CQA scheme: y refers to the
types of votes “voted for”, “paired for” and “announced for”; n to “voted against”, “paired against”
and “announced against”; yn to “voted present”, “voted present to avoid conflict of interest” and

“did not vote or otherwise make a position known”.

The dataset can be loaded as follows:
> data("houseVotes")
It contains the following variables:

> colnames (houseVotes)

[1] "class" "handicapped-infants"

[3] "water-project-cost-sharing" "adoption-of-the-budget-resolution"
[6] "physician-fee-freeze" "el-salvador-aid"

[7] "religious-groups-in-schools" "anti-satellite-test-ban"

[9] "aid-to-nicaraguan-contras" "mx-missile"

[11] "immigration" "synfuels-corporation-cutback"

[13] "education-spending" "superfund-right-to-sue"

[15] "crime" "duty-free-exports"

[17] "export-administration-act-south-africa"

Since the level yn might indicate unknown preferences for some key votes, these values are considered
as missing and, therefore, the rows with at least one yn value are removed:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 221

> level.drop <- droplevels(houseVotes, exclude = "yn")
> houseVotesComplete <- level.drop[complete.cases(level.drop),]

The research interest relies in discovering whether a two-cluster structure exists and a relationship
between the political position and the system of voting emerges. Even if the dataset is not relational,
NEFRC is the only one R routine for getting a fuzzy partition based on qualitative variables. For this
purpose, the Gower distance, implemented in the function daisy of the package cluster, is used to
generate the dissimilarity matrix:

> X.houseVotesComplete <- houseVotesComplete[,-1]
> library(cluster)
> D.houseVotes <- daisy(x = X.houseVotesComplete, metric = "gower")

The standard algorithm for relational data is employed by running the function NEFRC setting m =
1.5 and k = 2 in order to assess whether the clusters are related to the parties (class).

> nefrc.houseVotes <- NEFRC(D = D.houseVotes, k = 2, m = 1.5, index = "SIL.F")

The summary method is similar to that of FKM and hence not reported. The two clusters can be
interpreted in terms of the parties. In fact, we get the following cluster similarity measures:

> Fclust.compare(VC = houseVotesComplete$class, U = nefrc.houseVotes$U)

ARI.F RI.F JACCARD.F
0.4871095 0.7435544 0.5914710

Morevover, we have:

> table(nefrc.houseVotes$clus[,1], houseVotesComplete$class)

democrat republican
1 19 101
105 7

Therefore, Cluster 1 and Cluster 2 refer to the Republicans and Democrats, respectively. In Figure
4 the clusters are plotted in the low dimensional space spanned by the first two components. Note
that the plot method for relational data is based on non-metric multidimensional scaling (Kruskal,
1964) by calling the function isoMDS of the package MASS (Venables and Ripley, 2002).

> plot(nefrc.houseVotes)

. o
“ 4
® o
N © ® (] ’s
o) ® o o O.. Y J
g 2 - ¢ ° °
3 ° ° o :0)
o
] ° ‘. % o
o~ [] e o
S \ ® o 8 o
] [)
o O
I I I I I
-0.4 -0.2 0.0 0.2 0.4

Component 1

Figure 4: Scatterplot of relational data with plot method. Points are marked according to the
obtained classification (Cluster 1: red, Cluster 2: cyan).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=MASS

CONTRIBUTED RESEARCH ARTICLES 222

To further interpret the clusters, Figure 5 displays the barplots of the 16 key votes for the two
clusters (by considering the closest hard clustering partition). We can observe that the votes are
highly connected with the Congressmen political positions. This holds for almost all the 16 key
votes with particular reference to, e. g. "adoption-of-the-budget", "education-spending" and
"anti-satellite-test-ban".

handicapped-infants water—project—-cost adoption—of-the-budget physician—fee-freeze
1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50
0.25 0.25 0.25 0.25
0.00 - - 0.00 - - 0.00 - - 0.00 - -
Clus1 Clus 2 Clus1l Clus2 Clus1 Clus2 Clus1l Clus2
el-salvador-aid religious—groups anti-satellite-test—ban aid-to—-nicaraguan
1.004 1.004 1.004 1.004
0.751 0.754 0.751 0.751
0.50 1 0.50 1 0.501 0.50 1
0.251 0.254 0.254 0.251
0.00 { - 0.004 - - 0.00 { . - 0.00 | E— .
Clus1 Clus 2 Clus1l Clus2 Clus1l Clus2 Clus1l Clus2
mx-missile immigration synfuels—corporation education-spending
1.004 — 1.004 1.004 1.004
0.751 0.754 0.751 0.751
0.50 1 0.50 1 0.501 0.50 1
0.251 0.254 0.254 0.251
0.00 - - 0.00 4 - - 0.00 4 - - 0.00 - -
Clus1 Clus 2 Clus1l Clus2 Clus1 Clus2 Clus1l Clus2
superfund-right crime duty-free—exports export-administration
1.004 1.004 1.004 1.004
0.75 0.754 0.75 0.75
0.50 1 0.501 0.50 1 0.50 1
0.254 0.254 0.251 0.251
0.00 - 0.00 4 0.00 - 0.00 -

Clus1 Clus 2 Clus1 Clus?2 Clus1 Clus2 Clus1 Clus?2

-

Figure 5: Barplot of the 16 key votes for the two clusters (n: green, y: blue).

Fuzzy clustering for indirect relational data (ordinal variables)

In this section, a dataset with ordinal data is analyzed by using NEFRC. The data refer to the
Math Anxiety Scale Survey administered to 20 students in a statistics course (Bai et al., 2009). In
the survey, each student answers 14 questions by using a Likert scale with five levels ("Strongly
Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"). First, we load the dataset:

> library(likert)
> data("mass")

Then, we compute the dissimilarity matrix by using the Gower distance. When applied to ordinal
variables, such a distance is based on ranks. Note that the first variable of mass is Gender, not useful
for clustering purposes and, thus, omitted in the computation of the dissimilarity matrix. We have:

> library(cluster)
> D.mass <- daisy(x = mass[,-1], metric = "gower")

Finally, we run the function NEFRC automatically selecting the number of clusters by means of SIL.F:
> nefrc.mass <- NEFRC(D = D.mass, index = "SIL.F")
The fuzzy silhouette values, employed to select the number of clusters, are:

> nefrc.mass$criterion

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 223

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5330319 0.4623684 0.4039311 0.4428360 0.4685703

Hence, k = 2 clusters are suggested. Since the default options are used, the solution could also be
obtained by considering the function Fclust:

> nefrc.mass <- Fclust(X = D.mass, k = 2, noise = FALSE, distance = TRUE)

The clusters can be interpreted according to the observed qualitative variables. For this purpose, we
calculate the p-values resulting from the X2 tests by which we study the independence between the
closest hard clustering partition and every observed variables. The p-values are stored in the vector
PV:

> PV <- rep(NA,ncol(mass))
> for (j in 1l:ncol(mass)) PV[j] <- chisq.test(nefrc.mass$clus[,1], mass[,j]l)$p.value

At the significance level a = 0.05, we are interested in those variables such that the corresponding
p-value is lower than a:

> alpha <- 0.05
> names (mass) [PV < alpha]

[1] "I find math interesting."

[2] "I get uptight during math tests."

[3] "Mind goes blank and I am unable to think clearly when doing my math test."
[4] "I worry about my ability to solve math problems."

[6] "I get a sinking feeling when I try to do math problems."
[6] "I find math challenging."

[7] "Mathematics makes me feel nervous."

[8] "Mathematics makes me feel uneasy."

[9] "Math is one of my favorite subjects."

[10] "I enjoy learning with mathematics."

[11] "Mathematics makes me feel confused."

We inspect the contingency tables (not reported here) between such a subset of observed variables
and the closest hard clustering partition and we find that Cluster 1 is characterized by large fre-
quencies for the modalities "Strongly Disagree" and "Disagree" with respect to the variables "I
find math interesting.", "Math is one of my favorite subjects." and "I enjoy learning
with mathematics." and large frequencies for the modalities "Agree" and "Strongly Agree"
with respect to the variables "I get uptight during math tests.", "Mind goes blank and I am

unable to think clearly when doing my math test.", "I worry about my ability to solve
math problems.","I get a sinking feeling when I try to do math problems.","I find math
challenging.", "Mathematics makes me feel nervous.", "Mathematics makes me feel uneasy."

and "Mathematics makes me feel confused.". Of course, the opposite comment holds for Cluster
2. Therefore, the partition distinguishes the students liking math (assigned to Cluster 2) from those
who experience feelings of stress when faced with math (assigned to Cluster 1).

Fuzzy clustering for direct relational data

In the previous two subsections, NEFRC is applied in order to discover homogeneous clusters of
observations on which qualitative variables are collected. In these cases, suitable dissimilarity
matrices are built before running NEFRC. In the current subsection, we consider the case where
variables are not available and the only information about the observations is expressed in terms of
their dissimilarities or distances. The data are stored in the following object of class dist:

> library(smacof)
> data("FaceExp")

FaceExp contains the dissimilarities between pairs of 13 facial expressions related to particular
stimuli:

> labels(FaceExp)

[1] "Grief at death of mother" "Savoring a Coke"

[3] "Very pleasant surprise" "Maternal love-baby in arms"
[6] "Physical exhaustion" "Something wrong with plane"
[7] "Anger at seeing dog beaten" "Pulling hard on seat of chair"

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 224

[9] "Unexpectedly meets old boyfriend" "Revulsion"
[11] "Extreme pain" "Knows plane will crash"
[13] "Light sleep"

The dissimilarities have been calculated in a psychological experiment where a set of subjects were
invited to judge how much two pictures of emotional expressions differ. Thus, all the possible pairs
of emotional expressions were compared by the subjects and the dissimilarities were derived. See,
for further details, Abelson and Sermat (1962) .

By means of NEFRC the aim is to discover whether similar facial expressions are perceived by the
subjects in connection with similar emotions intended by the stimuli. In this case, we do not know
the number of clusters and, therefore, we determine it according to SIL.F.

> nefrc.FaceExp <- NEFRC(D = FaceExp, index = "SIL.F")
We find that k = 3 should be set:
> nefrc.FaceExp$criterion

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5298465 0.5929045 0.5470887 0.5436513 0.4003177

The interpretation of the clusters can be done by seeking a common feature for the facial expressions,
i. e. the stimuli, assigned to the same cluster. We have:

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 1), 2], 2)

Savoring a Coke Very pleasant surprise Maternal love-baby in arms

0.64 0.85 0.75
Pulling hard on seat Unexpectedly meets old boyfriend
0.59 0.94

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 2), 2], 2)

Grief at death of mother Physical exhaustion Revulsion
0.79 0.81 0.69
Extreme pain Light sleep
0.56 0.64

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 3), 2], 2)

Something wrong with plane Anger at seeing dog beaten Knows plane will crash
0.52 0.93 0.78

Cluster 1 groups pleasant stimuli with the only exception of "Pulling hard on seat of chair"
for which the membership degree is however the lowest one (0.59). The facial expressions showing
pain belong to Cluster 2. "Light sleep" is also assigned to the cluster. It follows that the subjects
tend to associate such an expression with suffering. Finally, anxiety characterizes Cluster 3.

Conclusion

In this paper we have described the main features of the package fclust. fclust represents a toolbox
for fuzzy cluster analysis. The functions in the package offer a wide range of fuzzy clustering
algorithms, fuzzy cluster validity indices, measures of similarity for comparing hard and fuzzy
partitions and visualization tools for fuzzy clustering results. Particular attention has been paid
to the new improvements and implementations available in the current version of the package
(version 2.1.1). First of all, the functions have been updated by using the C++ language, with
a remarkable reduction in computation time. Furthermore, the package now includes some fuzzy
clustering algorithms for relational data, allowing the user to perform a fuzzy clustering analysis
when the variables are qualitative or mixed. In such cases, a dissimilarity matrix can be built
by using the existing R functions (e. g. dist or daisy in the package cluster) and the available
functions for relational data (NEFRC and NEFRC.noise) can then be applied. As far as we know,
NEFRC and NEFRC.noise represent the first available R functions for fuzzy clustering of qualitative or
mixed variables. All the functions have been revised in such a way that the number of clusters can
be automatically selected. This might increase the computation time, but it is crucial in order to
spread the use of fuzzy clustering methods especially for non-expert users. In this connection, the
function Fclust for running the available algorithms using the default options and specifying the
desired number of clusters is also offered.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 225

Bibliography

R. P. Abelson and V. Sermat. Multidimensional scaling of facial expressions. Journal of Experimental
Psychology, 63(6):546-554, 1962. URL http://dx.doi.org/10.1037/h0042280. [p224]

R. Babuska, P. J. Van der Veen, and U. Kaymak. Improved covariance estimation for gustafson-kessel
clustering. In Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, page
1081-1085, 2002. URL https://doi.org/10.1109/FUZZ.2002.1006654. [p214, 215, 219, 228]

H. Bai, L. Wang, W. Pan, and M. Frey. Measuring mathematics anxiety: Psychometric analysis of
a bidimensional affective scale. Journal of Instructional Psychology, 36(3):185-193, 2009. URL
https://eric.ed.gov/?1d=EJ952267. [p222]

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New
York, 1981. [p212, 213, 228]

R. J. Campello. A fuzzy extension of the Rand index and other related indexes for clustering
and classification assessment. Pattern Recognition Letters, 28(7):833-841, 2007. URL https:
//dx.doi.org/10.1016/j.patrec.2006.11.010. [p212, 215, 218]

Z. Cebeci, F. Yildiz, A. T. Kavlak, C. Cebeci, and H. Onder. ppclust: Probabilistic and Possibilistic
Cluster Analysis, 2018. URL https://CRAN.R-project.org/package=ppclust. R package version
0.1.1. [p212]

N. C. Chung, B. Miasojedow, M. Startek, and A. Gambin. Jaccard: Test Similarity Between Binary
Data Using Jaccard/Tanimoto Coefficients, 2018. URL https://CRAN.R-project.org/package=
jaccard. R package version 0.1.0. [p213]

R. N. Davé. Characterization and detection of noise in clustering. Pattern Recognition Letters, 12
(11):657-664, 1991. URL https://doi.org/10.1016/0167-8655(91)90002-4. [p228]

R. N. Davé and S. Sen. Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy
Systems, 10(6):713-727, 2002. URL https://dx.doi.org/10.1109/TFUZZ.2002.805899. [p212,
213, 214, 228]

M. De Caceres, X. Font, and F. Oliva. The management of vegetation classifications with fuzzy
clustering. Journal of Vegetation Science, 21:1138-1151, 2010. URL https://doi.org/10.1111/
j.1654-1103.2010.01211.x. [p212]

J. de Leeuw and P. Mair. Multidimensional scaling using majorization: SMACOF in R. Journal of
Statistical Software, 31(3):1-30, 2009. URL http://www.jstatsoft.org/v31/i03/. [p214]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer-Verlag, New York, 2013.
URL https://doi.org/10.1007/978-1-4614-6868-4. [p104, 212]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating r with high-performance c++
linear algebra. Computational Statistics & Data Analysis, 71:1054-1063, 2014. URL https:
//dx.doi.org/10.1016/j.csda.2013.02.005. [p212]

M. B. Ferraro and P. Giordani. A new fuzzy clustering algorithm with entropy regularization. In
Proceedings of the 9th Scientific Meeting of the Classification and Data Analysis Group (CLADAG
2013), 2013. ISBN 9788867871179. [p228)]

M. B. Ferraro and P. Giordani. A toolbox for fuzzy clustering using the r programming language.
Fuzzy Sets and Systems, 279:1-16, 2015. URL https://dx.doi.org/10.1016/j.fss.2015.05.001.
(p212]

J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27(4):857-871,

1971. URL https://doi.org/10.2307/2528823. [p212]

D. E. Gustafson and W. C. Kessel. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings
of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive
Processes, page 761-766, 1979. URL https://doi.org/10.1109/CDC.1978.268028. [p213, 228]

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. Journal
of Intelligent Information Systems, 17(2-3):107-145, 2001. URL https://doi.org/10.1023/A:
1012801612483. [p212}

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://dx.doi.org/10.1037/h0042280
https://doi.org/10.1109/FUZZ.2002.1006654
https://eric.ed.gov/?id=EJ952267
https://dx.doi.org/10.1016/j.patrec.2006.11.010
https://dx.doi.org/10.1016/j.patrec.2006.11.010
https://CRAN.R-project.org/package=ppclust
https://CRAN.R-project.org/package=jaccard
https://CRAN.R-project.org/package=jaccard
https://doi.org/10.1016/0167-8655(91)90002-4
https://dx.doi.org/10.1109/TFUZZ.2002.805899
https://doi.org/10.1111/j.1654-1103.2010.01211.x
https://doi.org/10.1111/j.1654-1103.2010.01211.x
http://www.jstatsoft.org/v31/i03/
https://doi.org/10.1007/978-1-4614-6868-4
https://dx.doi.org/10.1016/j.csda.2013.02.005
https://dx.doi.org/10.1016/j.csda.2013.02.005
https://dx.doi.org/10.1016/j.fss.2015.05.001
https://doi.org/10.2307/2528823
https://doi.org/10.1109/CDC.1978.268028
https://doi.org/10.1023/A:1012801612483
https://doi.org/10.1023/A:1012801612483

CONTRIBUTED RESEARCH ARTICLES 226

J. A. Hartigan and M. A. Wong. Algorithm as 136: A K-means clustering algorithm. Journal
of the Royal Statistical Society. Series C' (Applied Statistics), 28(1):100-108, 1979. URL https:
//doi.org/10.2307/2346830. [p211]

K. Hornik. A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12):1-25, 2005.
URL https://doi.org/10.18637/jss.v014.112. [p37, 212]

K. Hornik, I. Feinerer, M. Kober, and C. Buchta. Spherical k-means clustering. Journal of Statistical
Software, 50(10):1-22, 2012. URL https://doi.org/10.18637/jss.v050.110. [p212

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193-218, 1985. URL
https://dx.doi.org/10.1007/BF01908075. [p212

P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes et des jura.
Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547-579, 1901. [p212]

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley & Sons, New York, 1990. URL https://doi.org/10.2307/2532178. [p214, 215]

R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low-complexity fuzzy relational clustering
algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9(4):595-607, 2001. URL
https://doi.org/10.1109/91.940971. [p228§]

J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):
115-129, 1964. URL https://doi.org/10.1007/BF02289694. [p221]

R.-P. Li and M. Mukaidono. A maximum-entropy approach to fuzzy clustering. In Proceedings
of 1995 IEEE International Conference on Fuzzy Systems, page 2227—2232, 1995. URL https:
//doi.org/10.1109/FUZZY.1995.409989. [p228]

R.-P. Li and M. Mukaidono. Gaussian clustering method based on maximum-fuzzy-entropy interpre-
tation. Fuzzy Sets and Systems, 102(2):253-258, 1999. URL https://doi.org/10.1016/S0165~
0114(97)00126-7. [p228]

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. Cluster: Cluster Analysis Basics
and Extensions, 2017. URL https://cran.r-project.org/web/packages/cluster. R package
version 2.0.6. [p212]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. E1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2017. URL
https://CRAN.R-project.org/package=e1071. R package version 1.6-8. [p212]

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(33):846-850, 1971. URL https://dx.doi.org/10.2307/2284239. [p212]

E. H. Ruspini. Numerical methods for fuzzy clustering. Information Sciences, 2(3):319-350, 1970.
URL https://doi.org/10.1016/S0020-0255(70)80056-1. [p‘Z'l I]

J. C. Schlimmer. Concept Acquisition through Representational Adjustment. Department of Informa-
tion and Computer Science, University of California, Irvine, 1987. [p220]

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, Classification and
Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1):289-317, 2016.
URL https://journal.r-project.org/archive/2016/RJ-2016-021/index.html. [p213

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York,
2002. URL https://doi.org/10.1007/978-0-387-21706-2. [p221]

R. Winkler, F. Klawonn, F. Héppner, and R. Kruse. Fuzzy cluster analysis of larger data sets. In
Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, page 302-331.
IGI Global, Hershey, 2009. URL https://doi.org/10.4018/978-1-60566-858-1.ch012. [p228]

R. Winkler, F. Klawonn, and R. Kruse. Fuzzy clustering with polynomial fuzzifier function in
connection with m-estimators. Applied and Computational Mathematics, 10(1):146-163, 2011.
[p228]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.2307/2346830
https://doi.org/10.2307/2346830
https://doi.org/10.18637/jss.v014.i12
https://doi.org/10.18637/jss.v050.i10
https://dx.doi.org/10.1007/BF01908075
https://doi.org/10.2307/2532178
https://doi.org/10.1109/91.940971
https://doi.org/10.1007/BF02289694
https://doi.org/10.1109/FUZZY.1995.409989
https://doi.org/10.1109/FUZZY.1995.409989
https://doi.org/10.1016/S0165-0114(97)00126-7
https://doi.org/10.1016/S0165-0114(97)00126-7
https://cran.r-project.org/web/packages/cluster
https://CRAN.R-project.org/package=e1071
https://dx.doi.org/10.2307/2284239
https://doi.org/10.1016/S0020-0255(70)80056-1
https://journal.r-project.org/archive/2016/RJ-2016-021/index.html
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.4018/978-1-60566-858-1.ch012

CONTRIBUTED RESEARCH ARTICLES 227

Maria Brigida Ferraro

Department of Statistical Sciences, Sapienza University of Rome
P.le Aldo Moro 5, 00185 Rome, Italy

ORC'iD: 0000-0002-7686-5938

mariabrigida.ferraro@uniromal.it

Paolo Giordani

Department of Statistical Sciences, Sapienza University of Rome
P.le Aldo Moro 5, 00185 Rome, Italy

ORCiD: 0000-0003-4091-3165

paolo.giordaniQuniromal.it

Alessio Serafini

Department of Statistical Sciences, Sapienza University of Rome
P.le Aldo Moro 5, 00185 Rome, Italy

ORCiD: 0000-0002-8579-5695

alessio.serafini@uniromal.it

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:mariabrigida.ferraro@uniroma1.it
mailto:paolo.giordani@uniroma1.it
mailto:alessio.serafini@uniroma1.it

CONTRIBUTED RESEARCH ARTICLES

228

Function Algorithm
FKM standard FkM algorithm
(Bezdek, 1981)
FKM.ent FEM with entropy regularization
(Li and Mukaidono, 1995, 1999)
FKM.noise FkM with noise cluster
(Davé, 1991)
FKM.ent.noise FEM with entropy regularization and noise
cluster
(Li and Mukaidono, 1999; Davé, 1991)
FKM. gk Gustafson and Kessel extension of FkM
(Gustafson and Kessel, 1979)
FKM.gk.ent Gustafson and Kessel extension of FKM with
entropy regularization
(Ferraro and Giordani, 2013)
FKM.gk.noise Gustafson and Kessel extension of FEM with
noise cluster
(Gustafson and Kessel, 1979; Davé, 1991)
FKM.gk.ent.noise Gustafson and Kessel extension of FkM with

FKM.

FKM.

gkb

g

kb.ent
The R Journal Vol. 11/1, June 2019

entropy regularization and noise cluster
(Ferraro and Giordani, 2013; Davé, 1991)

Gustafson, Kessel and Babuska extension
of FEM

(Babuska et al., 2002; Gustafson and Kessel,
1979)

Gustafson, Kessel and Babuska extension
of FkM with entropy regulaﬁgﬂ\l}oﬁom“l%g

CONTRIBUTED RESEARCH ARTICLES

229

Function Index

PC partition coefficient

MPC modified partition coefficient
PE partition entropy

XB partition entropy

SIL (crisp) silhouette

SIL.F fuzzy silhouette

Table 2: List of fuzzy cluster validity indices available in the package fclust.

Function Index
RI.F Fuzzy version of Rand index
ARI.F Fuzzy version of adjusted Rand index

JACCARD.F Fuzzy version of Jaccard index

Table 3: List of fuzzy cluster similarity measures available in the package fclust.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 230

Nowcasting: An R Package for
Predicting Economic Variables Using
Dynamic Factor Models

by Serge de Valk, Daiane de Mattos and Pedro Ferreira

Abstract The nowcasting package provides the tools to make forecasts of monthly or quarterly
economic variables using dynamic factor models. The objective is to help the user at each step of the
forecasting process, starting with the construction of a database, all the way to the interpretation
of the forecasts. The dynamic factor model adopted in this package is based on the articles from
Giannone et al. (2008) and Banbura et al. (2011). Although there exist several other dynamic factor
model packages available for R, ours provides an environment to easily forecast economic variables
and interpret results.

Introduction

Important economic decisions are made based on current and future conditions. Oftentimes, the
variables used to measure such conditions are not available even for the recent past. This is, for
instance, the case with US GDP that is published 45 days after the end of the quarter. Similarly,
Brazilian GDP is published with a 60-day lag. There is therefore a need for forecasting the current
value of given variables. To this end, Giannone et al. (2008) proposed a statistical model that allows
quarterly variables, such as US GDP, to be forecast using a large set of monthly variables released
with different lags. GDP forecasts for the current quarter are, furthermore, updated whenever
new information is available. Different central banks have shown interest in this methodology,
among them the European Central Bank (Angelini et al., 2008; Banbura and Riinstler, 2011; Van
Nieuwenhuyze et al., 2008), and the central banks of Ireland (D’Agostino et al., 2008), New Zealand
(Matheson, 2010) and Norway (Aastveit and Trovik, 2012).

Factor models are designed to summarize the variation contained in a large dataset into only a
few variables (Stock and Watson, 2006). In Giannone et al. (2008), the authors show how to reduce
the information contained in dozens of monthly time series into only two dynamic factors. These
two estimated factors, which are initially monthly, are then transformed into quarterly factors and
used in a regression against GDP. Various other authors, such as Chauvet (2001); Marcellino et al.
(2003); Forni et al. (2004); Boivin and Ng (2006); D’Agostino et al. (2006); Banbura et al. (2011);
Dahlhaus et al. (2015); Stock and Watson (2016), have explored Dynamic Factor Models (DFMs) in
time series forecasting and found promising results.

Given the publication lag of many variables, such as GDP, we can either forecast past, current
or future values. In order to differentiate between those types of forecasts we adopt the terminology
used in Giannone et al. (2008) and Banbura et al. (2011). Backcasting refers to forecasting the value
of a yet unpublished variable for a past period, while nowcasting will be with respect to the current
period. By way of illustration, suppose we want to forecast the GDP for the ond quarter of 2018. If
the exercise is made during the gnd quarter of 2018, then the forecast is classified as nowcasting.
However, if the current date is before the ond quarter of 2018, then the term used is forecasting.
Finally, if the date is after the ond quarter of 2018 and the GDP has not yet been released, then the
forecast is classified as backcasting.

The aim of the package nowcasting is to offer the tools for the R user to implement dynamic
factor models. The different steps in the forecasting process and the associated functions within the
package are based on the literature. We have chosen to divide the process into 4 main steps: 1)
constructing a dataset; 2) defining the model’s initiation parameters; 3) forecasting; 4) presenting
results. This particular division will be maintained in most sections.

This brings us to the article’s sections that are organized as follows: 1) the theoretical framework
is introduced; 2) the functions of our package are presented; 3) working examples of how to nowcast
Brazilian GDP and of the New York FED nowcasting are given; 4) and finally the last section
concludes with some considerations.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=nowcasting

CONTRIBUTED RESEARCH ARTICLES 231

Methodology

Dynamic Factor Model

Let zp = (1,1, %2,t, s xNJ)/ be the vector representing N monthly time series transformed to satisfy
the weak stationarity assumption. The general specification of the dynamic factor model is given by:

re=p+ Afe +e (J.2.1)
p

ft = Z A;fi—i + Bug, up ~ Z’ldN(O,Iq) (J.2.2)
i=1

In equation (J.2.1), the variables z; are expressed as a function of an intercept x and r unobserved
common factors f;. Since all variables x will later be demeaned, one may drop the unconditional
means p. The variables z; will be loaded into the unobserved factors f; through A. Equation (J.2.2)
imposes the structure of a VAR(p) process on the factors fi. Both &; and u; are normal, allowing
the use of the Kalman Filter. Furthermore, the vector of idiosyncratic component ¢ is unrelated to
ut at all lags, i.e., E[eu;_,] = 0 for any k. An interesting feature of equation (J.2.2) is that the
number of shocks ¢ to the factors need not be equal to the number of factors r. Structural breaks or
lead/lag relationships of the r factors with ¢ common shocks may motivate such a modeling choice
(see Stock and Watson (2016) for more information).

In the so-called ezact dynamic factor model, the error components from equation (J.2.1) are
assumed to be mutually uncorrelated at all lags, i.e., E[e; ;&5 5] = 0 for i # j. However, following
Banbura et al. (2011), the error term could be modeled as an AR(p’) process:

/

p
€it = Z Qg j€it—j t+eit, €t~ i.i.d.N(O, 0’22) (J.2.3)
j=1
where Ele; tej s] = 0 for i # j.

Following is an example, in matrix form, of equation (J.2.2) of the model for orders r =2, p = 2

and g = 2.
fi ajjaigaiyais| | fria b1,1 b1,2
fo,t a1 ag9 a3 a3g | | fae-1 bo 1 boa | | U1,
- + (J.2.4)
f1t—1 10 0 0 fit—2 0 0 ugt
fo -1 0 1 0 0 fa—2 0 0
Ay Ag
Fiy = Fi—1+ Bug (J.2.5)
Ir 0

Quarterly and monthly variables

In order to predict a quarterly variable using monthly data, we construct a partially observed
monthly counterpart of the quarterly variable as proposed in Mariano and Murasawa (2003). This
allows, for instance, quarterly GDP to be explained by monthly variables. Continuing with this
example, let YtM be the level of the unobservable monthly GDP level and YtQ the quarterly value of
GDP for the partially observable monthly series. As is usual in the literature, we let quarterly GDP

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 232

be observable in the third month of the quarter.

(3.2.6)

vo_ JYMevMiev r=36,..
t unobserved otherwise

The above accounting rule states that the quarterlg GDP flow is equal to the sum of the monthly
flows. Looking at the quarterly change, y? = YtQ -Y,%, L it is easy to show that it can be expressed

as a function of the differences of the monthly variable, y: = YtM — Yt]\fl, by using equation (J.2.6):

Q _ yQ Q
Y =Y =Y
_ @ Q Q Q Q Q
R ONUS AT AETUS A SRR (J.2.7)
=yt +2yt—1 +3yt—2 + 2yt—3 + yt—4, t=26,9,...

Suppose that the variable of interest is a quarterly rate of change, a:tQ , defined as:

29 =log(V?) —log(V%,) (J.2.8)

Stating the approximation between the arithmetic and geometric means we have:

1
SV Y]~ MY M Y, (J.2.9)

Combining equations (J.2.8) and (J.2.9) we obtain the approximation from Mariano and Mura-
sawa (2003) that expresses the quarterly growth rate of GDP as a function of the unobservable
monthly growth rates mgM :

1
:c? ~ 3 [m{w + 210%1 + Sm,{v_lg + 21%3 + x%;;] (J.2.10)
Suppose that the unobserved monthly growth rate xfw also admits the same factor representation

as in equation (J.2.1) with loadings Aq, then the quarterly GDP growth rate, m?, can be expressed
as a function of monthly factors.

/

22 = Ao [f{ f{,4] + [1 232 1] [a{” 5%4] (J.2.11)

where E = [Ag 2Aq 3Ag 2Ag Ag] is a restricted matrix of loadings on the factors and their
lags. Note that the errors are normal in the exact dynamic factor model or have an AR(1) structure
as in Banbura et al. (2011).

Determining the number of factors and shocks to the factors

We follow the papers by Bai and Ng (2002) and Bai and Ng (2007) to respectively define 1) the
number r of factors in equation (J.2.1) and 2) the number of shocks g to the factors in equation
(J.2.2).

Let V(T,F ") be the sum of squared residuals when r factors are estimated using principal
components. The the information criteria can then be written as follows:

161 (r) = (v)+ o (B Jin((07) (12.12)
IC,o(r) = In(V(r, F")) + 1 < NN+TT>zn(min{N, T}) (J.2.13)
ICralr) = tn(V (r, 7))+ (2L TN) (1214)

IThe aggregation scheme, and ensuing weights used for aggregating the monthly series, may differ according
to the order of the difference taken. In the paper of Mariano and Murasawa (2003), the example is of a first
difference of quarterly log GDP, which corresponds to a quarterly growth rate. In the case of an annual
growth rate, Alglog(YtQ) = log(YtQ) — log(an), the aggregation weights would be different. Such cases
are not considered here.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 233

The chosen number of factors r* will then correspond to argmin, IC;(r), for i € {1,2,3}.
Equations (J.2.12), (J.2.13), and (J.2.14) are asymptotically equivalent, but may nevertheless give
significantly dlfferent results for finite samples. To this effect, observe that the penalty in equation
(J.2.13) is highest when considering finite samples.

The number of shocks q can be lower than the number of factors r. Once the number of factors
is determined, we use an information criterion from Bai and Ng (2007) to estimate the number of
shocks ¢ in equation (J.2.2). Let Ft be the r factors estimated using principal components and let
u¢ be the residuals from the VAR A(l)f‘t = 1. The idea is to check whether the eigenvalues of
the variance-covariance matrix iu are different from 0. Numerically, we will therefore want to test
whether a given eigenvalue is below a predefined tolerance level.To this end, define the eigenvalues
c1>cp=...=2c =0o0f iu and define the k! normalization of the k—l—lth eigenvalue

~ c? 1/2
Dy = (97*1)2) (J.2.15)
2j=16

Then for some 0 < m < o0 and 0 < § < 1/2 that set the tolerance level, define the vector K

K = {k: Dy <m/min[N'/270 7/2=%y (J.2.16)

where the estimated number of shocks to the factors will be § = min{k € K}. This estimator will
converge in probability towards the real number of shocks given that r is the real number of factors.

Estimation

We will describe two methodologies for estimating dynamic factors: Two-Stage and Ezxpectation-
Mazimization.

1. Two-Stage: This approach is described in Giannone et al. (2008) and refers to the exact
DFM. In the first stage, the parameters of the matrices A and f; are estimated by Principal
Components Analysis (PCA) using a standardized, balanced panel (X;), in which there are
no missing values and outliers. Standardization is important as PCA is not scale invariant.
The estimators A and ft can be obtained by solving the following optimization problem:

T
—1 A/
.)n{l;lT’A NT g (Xt —Af) (Xt —Afr) st. NANA=I (J.2.17)

The estimator for the variance and covariance matrix for e; is then given by

T
Y= diag<; DX —Af) (X — Aft)’> (J.2.18)
t=1

According to Stock and Watson (2011), the solution to (J.2.17) is to set A equal to
the eigenvectors of the variance and covariance matrix of X associated with the r largest
eigenvalues, from which it follows that the vector f; is the = first principal components of X;.
The coefficients of the matrix A;, i = 1,2, ..., p, from equation (J.2.2), are estimated by OLS
regression of f; on fi_1,..., fi—p. Finally, BB’ is estimated as the covariance matrix of the
residuals of this regression.

In the second stage, Kalman smoothing (Durbin and Koopman, 2012) is used to re-estimate
the factors for the unbalanced panel x; considering the parameters obtained in the previous
step. There are some R packages that implemented the Kalman smoothing (Tusell, 2011).
However, for convenience, in the nowcasting package, we used the routine provided by Giannone
et al. (2008). Furthermore, two options are provided when estimating the factors:

e No aggregation: No bridge equation, to obtain (J.2.19), is needed if both the dependent
and the explanatory variables are monthly indicators. Hence, the aggregation procedure
as set out in Mariano and Murasawa (2003) is not required. Similarly, if the explanatory
variables have been transformed to represent quarterly quantities, the same aggregation
procedure does not need to be implemented again on the factors.

o With aggregation: This option is relevant when having a dependent variable y of lower
frequency than the explanatory variables. Factors are estimated using the monthly
explanatory variables x, after which the transformation from Mariano and Murasawa
(2003) is applied in order to obtain factors representing quarterly quantities. Those will
be used to forecast the dependent variable in the bridge equation (J.2.19).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 234

yt = Bo + B fr + et (J.2.19)

The parameters of equation (J.2.19) are estimated by OLS, and the forecast for y;,, is
given by

Gewn = Bo+ B frrn (3.2.20)

2. Expectation-Maximization: This estimation method is able to deal with arbitrary patterns
of missing values as shown in Banbura and Modugno (2014). It is therefore less restrictive
than the Two-Stage method with regards to the frequencies of the variables and allows for a
mixed frequency database. Following Banbura et al. (2011), factors can be defined for different
subgroups of variables and no longer all need to be global as in the Two-Stage estimation
method. Below, we illustrate a case where three factors are partitioned into three groups
(global, real and nominal) as in Banbura et al. (2011). Rewriting equation (J.2.1) accordingly
gives equation (J.2.21). As opposed to the Two-Stage estimation method that builds on an
exact dynamic factor model, the error term is defined as an AR(1) process. A more restrictive
assumption than the Two-Stage method is that the number of shocks to the factors q is set
equal to the number of factors r.

s
AngAnnN O
Tt =W+ thN + et (J.2.21)
Ara 0 Apr
#
where
AncAnnNn O
=A (3.2.22)
Arc 0 Aggr
i
PR (1.2.23)
i

The global factor is estimated considering all the explanatory variables, while the estimates
of the nominal and real factors only consider variable classified, respectively, as nominal and
real. The parameter p is a vector of constants of dimension N. As previously mentioned,
the alternative proposed by Banbura et al. (2011) to the exact DFM, allows for serial
autocorrelation among the error of equation (J.2.1) along an AR(1) process:

it =icii1+eis, eip~iidN(0,o07) (J.2.24)
where Ele; tej 5] = 0 for i # j.
In this model, the parameters, the unobserved common factors and the missing values are

estimated through the Ezpectation-Maximization algorithm, which uses the following recursive
structure:

e E-step: The conditional expectation of the likelihood function is calculated using the
estimates of the static parameters (#) from the previous iteration, 6;;
e M-step: The new parameters, ;1 are estimated by maximizing the likelihood function

from the previous step with respect to 6.

Convergence is achieved when the absolute change in the value of the log-likelihood function
is less than 10_4, the tolerance level used for this algorithm. The recursive process starts with
the PCA estimates given in Giannone et al. (2008) (first stage of the Two-Stage method).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 235

The R package

Working on the dataset

The first step in the nowcasting process is to prepare the data in a way that is compatible with the
proposed models and estimation methods. One of the motivations of the presented models is the
forecasting improvements that can be achieved by using higher frequency variables. More specifically,
the gains that can be obtained in using monthly variables to forecast quarterly series. Hence, all
functions require monthly mts objects. In practice, the quarterly variables are usually represented as
monthly variables for which the last month of the quarter is observed. As illustrated in the working
examples, such straightforward transformations from one frequency representation to another can
be achieved by using the functions qtr2month() or month2qtr().

With regards to the estimation methods, different inputs may have to be provided. As a matter
of fact, the Two-Stage method is more restrictive on the format of the variables as it depends on
principal components in the first stage. This requires a strategy to deal with missing values, which
are not part of the jagged edge, beforehand. Giannone et al. (2008) propose to replace such missing
values with the median of the series that are then smoothed with a moving average. Since such a
strategy assigns a value that is independent of the information contained in other contemporaneous
variables, it is advisable to exclude series with many missing values. The EM algorithm, however,
is able to deal with missing values in a way that uses the information contained in other variables
and might therefore not require discarding such variables. Finally, independently of the estimation
method, stationary series are required. The usual transformations for making time series stationary
and the different strategies to deal with missing values have been included in the function Bpanel ()
that prepares the database for the nowcasting function. Since these choices require careful attention,
the function Bpanel() is explained in further detail.

Bpanel(base, trans, NA.replace = TRUE, aggregate = FALSE, k.ma = 3, na.prop = 1/3, h = 12)
trans is a vector indicating the transformations to be applied to the variables. For most cases,
the available transformations are sufficient to make economic variables stationary. The
transformation must be specified by using one of the following values for the argument trans:

trans = 0: the observed series is preserved;

Tit — Tit—1

trans = 1: monthly rate of change: —————;
Tit—1
trans = 2: monthly difference: z; s — ;4—1;

trans = 3: monthly difference in year-over-year rate of change:

Tit — Tq,t—12 Lit—1 — Lit—13
-)

Tjit—12 Tit—13
trans = 4: monthly difference in year-over-year difference:
(4,6 — i p—12) — (T4, 0—1 — T4,t—13)-
trans = 5: year difference:
(it — Tit—12)
trans = 6: year-over-year rate of change:

Tt — Tqt—12
Tit—12
trans = 7: quarterly rate of change
Tit — Xjt—3
Tit—3
NA.replace is a boolean to determine whether missing values should be replaced (NA.replace =
TRUE) or not (NA.replace = FALSE).

aggregate is a boolean to indicate whether to aggregate the monthly variables to represent quarterly
quantities. If TRUE the aggregation is made following the approximation of Mariano and
Murasawa (2003).

k.ma is a numeric representing the degree of the moving average correction if NA.replace = TRUE.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 236

na.prop is a number between 0 and 1 indicating the ratio of missing observations to the total
number of observations beyond which series will be discarded. The default is 1/3, meaning
that if more than 1/3 of the observations are missing the series will be discarded from the
database.

h indicates how many periods should be added to the database. Default is 12. Those missing values
will be predicted with the function nowcast ().

Determining the number of factors and shocks to the factors

As explained in the section on parameter estimation, the package offers different functions to estimate
the number of factors r and of idiosyncratic shocks g of equations (J.2.1) and (J.2.2) respectively.

1. Function ICfactors() estimates the number of factors r* according to an information criterion.
The argument x is a balanced panel and rmax is an integer representing the maximum number
of factors for which the information criterion should be calculated. The default value is
20. type indicates which of the information criterion from Bai and Ng (2002) to use. type
€ {1,2,3} with the default being 2 as explained in the methodological section. If x is not a
balanced panel, the function will delete rows with missing values in order to use principal
components.

ICfactors(x, rmax = 20, type = 2)

2. Function ICshocks() estimates the number of idiosyncratic shocks given a number r of factors
according to the information criterion introduced in the previous section. The argument x is
a balanced panel. delta and m are parameters of the information criterion, where 0 < m < o
and 0 < § < 1/2. The default values are those from Bai and Ng (2007): m =1 and § = 0.1.
If the number of factors r is not specified it will be defined according to ICfactors(x,rmax
= 20,type = 2). p is the number of lags in the VAR of equation (J.2.2). If not specified,
the default is the lowest most occurring value from the information criteria used within the
function VARselect () from the package vars.

ICshocks(x, r = NULL, p = NULL, delta = 0.1, m = 1)

Forecasts

An important feature of factor models is the dimensionality reduction of (many) original variables
into a few common factors. Hence, the target variable y will be expressed as a function of a few factors
extracted from the explanatory variables. This motivated the choice of the inputs for the nowcast ()
function. The formula format, which is well known to R users, captures this idea as formula = y~.
can be understood as the projection of y on the information contained in the dataset. The model’s
parameters are estimated according to the selected method (2s, 2s_agg and EM, which correspond,
respectively, to “two-stage”, “two-stage with factor aggregation” and “Expectation-Maximization
algorithm”) described in the section on estimation. The number r of dynamic factors, the number q
of shocks to the factors, and the lag order p of the factors are determined beforehand as shown in
the previous subsection. The argument blocks can be used with the EM method to estimate factors
for different subgroups of variables. Finally, the argument frequency is necessary for all methods in
order to identify the frequency of the variables.

nowcast (formula, data, q = NULL, r = NULL, p = NULL, method = 'EM', blocks = NULL,
frequency = NULL)

In the first two methods (2s and 2s_agg), the factors are calculated based on the monthly
variables, on which the dependent variable y will be regressed. The difference between 2s and
2s_agg is that for the latter the monthly factors are transformed into quarterly quantities while in
the former no such aggregation is used. A linear regression (bridge equation if y is quarterly) of y on
the factors allows the former to be forecast.

In the third method (EM) no bridge equation is needed, as opposed to the Two-Stage method. In
practice, the algorithm will estimate all the missing values respecting the restrictions imposed by
equation (J.2.11). The forecasts of quarterly time series are defined as the estimated values of the
third month of the out of sample quarters. As opposed to the Two-Stage method, the number of
common shocks q can not be specified and is assumed to be equal to r, the number of factors in
each block.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 237

Analyzing the results
The function nowcast.plot() allows to plot several outputs from the function nowcast().
nowcast.plot(out, type = "fcst")

The argument out is the output from the function nowcast (). The argument type can be chosen

from the list {"fcst","factors","eigenvalues","eigenvectors"}:
)) 7

e "fcst": shows the y variable and its forecasts in sample and out of sample.
e "factors": shows all the estimated factors.

e "eigenvalues": indicates how much of the variability in the dataset is explained by each
factor.

e "eigenvectors": shows the importance of each variable in the first factor.

A working example of the Two-Stage method:
nowcasting Brazilian GDP

Constructing the dataset

In this example we showcase how to nowcast Brazilian GDP using the Two-Stage estimation method.
Most of the variables of interest can be downloaded from the Brazilian central bank using the
function BETSget () from the package BETS. The variables and the associated codes can be found
on the Brazilian central bank’s website *. For the sake of simplicity we have included the database,
and all relevant information within the package”’.

> library(nowcasting)
> data(BRGDP)

For this example we will construct a pseudo real-time dataset, using the function PRTDB(). Some
variables, such as GDP, suffer revisions over time. Since we do not take revisions into account, we
refer to such datasets as pseudo real-time (as opposed to vintages). The (approximate) delays in
days are included in the BRGDP object and will be used to define if observations were available at a
specific moment in time. The dataset is then treated for outliers and missing values that are not
part of the jagged edges of the data, i.e., that are not due to the different publication lags of the
variables. This is achieved through the function Bpanel(). Unless otherwise specified by the user,
the function will also discard series with over 1/3 missing values.

> vintage <- PRTDB(mts = BRGDP$base, delay = BRGDP$delay, vintage = "2015-06-01")
> base <- window(vintage, start = c(2005,06), frequency = 12)
> x <- Bpanel(base = base, trans = BRGDP$trans)

The function month2qtr () transforms monthly time series into quarterly ones. In this case we
want to use the value of the third month as the quarterly value.

> GDP <- base[,which(colnames(base) == "PIB")]
> window(GDP, start = c(2015,1))

Jan Feb Mar Apr May Jun
2015 NA NA 170.68 NA NA NA

> GDP_qtr <- month2qtr(x = GDP, reference_month = 3)
> window(GDP_qtr, start = c(2015,1))

Qtril Qtr2
2015 170.68 NA

The quarterly GDP indicator, in this example, is an index representing the seasonal quarterly
product. A4Y: deals with seasonality, while AA4Y; is necessary to obtain a stationary time series.
To test the latter, one could look at tests for unit roots or serial auto correlation that are included
in many R packages.

> y <- diff(diff(GDP_qtr,4))
> y <~ qtr2month(y)
2

see http://wwwd.bcb.gov.br/pec/series/port/aviso.asp
3The database is a random sample of 100 variables from our own database

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 238

Determining the number of factors and shocks
The dataset x, which now only posses jagged edges, is well suited for the information criteria
that make use of principal components. The estimated number of factors is given by the function

ICfactors(). As explained in the previous section, the information criteria might give different
results for finite samples.

> ICR1 <- ICfactors(x = x, type = 1)

ICR1

03
\

02
I

Index
0.1
[s]

0.0

Number of fators

> ICR2 <- ICfactors(x = x, type = 2)

ICR2

Index
D2 03 04 05
[s]

00 041
o

Number of fators

Finally, given the chosen number of factors for our model, we can use an information criterion
for determining the number of shocks to the factors.

> ICQ1 <- ICshocks(x = x, r =2, p = 2)
> ICQ1$q_star
[11 2

Forecasts

Let the object data be a monthly mts object where the first column is a partially observable
stationary GDP series (y) and the remaining columns a balanced panel of stationary time series (x).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

239

The frequency vector will be determined by the quarterly GDP series and the remaining monthly
series. In this example the factors will be aggregated to obtain quarterly quantities by setting method
= "2s_agg".

> data <- cbind(y,x)
> frequency <- c(4,rep(12,ncol(x)))

> now <- nowcast(formula = y~., data = data, r =2, q =2 , p = 2, method = "2s_agg",

frequency = frequency)
> summary (now$reg)

Call:
stats::lm(formula = Y ~ ., data = Balanced_panel)
Residuals:

Min 1Q Median 3Q Max

-3.0248 -0.5679 0.1094 0.5835 1.8912

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.19526 0.16940 -1.153 0.258

Factorl 0.22610 0.01456 15.528 < 2e-16 ***
Factor2 0.06135 0.01174 5.228 1.02e-05 **x
Signif. codes: O ‘**x’ 0.001 ‘**x’> 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 1.002 on 32 degrees of freedom
Multiple R-squared: 0.8995,Adjusted R-squared: 0.8932
F-statistic: 143.1 on 2 and 32 DF, p-value: < 2.2e-16

Results

The function nowcast.plot() enables the user to visualize some of the results. Say, for instance,
that we want to look at fitted values and out-of-sample forecasts. This can be achieved by setting the
type to "fcst". We might also want to look at the eigenvalues of the normalized variance-covariance
matrix of our balanced panel or at how variables enter the first factor.

> nowcast.plot(now, type = "fcst")
Forecasting — vyhat
-— fest
o
w -
:‘é‘
2 o A+ s
= ’
I.I:;) .

1 [[[1 1 1
2006-07 2009-07 2012-07 2015-07

Time

> nowcast.plot(now, type = "eigenvalues")

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

240

eigenvalues: percentage variance

%
g8 10 12 14
| J

6
|

e

123 45672829 1 13 15 17 19

eigenvalues

> nowcast.plot(now, type = "eigenvectors")

Variable Percentage Weight in Factor 1

signal weights:
positive
o 4 negative

weight (%)

o

o~

: L
o ‘ diinh |‘|I..|I|. ||||HI||I|||.||‘ |.L....|I..‘.|.|HH

QUi
1 7 14 22 30 38 46 54 62 70 78 86

variable

Up until now, we have been forecasting GDP after transforming it into a stationary variable.

We might want to transform the former back into a level variable in order to forecast the actual
growth rate. Remember that we transformed GDP according to

dif f(dif f(GDP;,4)) = (GDP, — GDP;_4) — (GDP;_1 — GDP;_5)

(3.4.1)
=GDP; + GDP;_5 —GDP;_1 —GDP;_4

that can be rewritten as

GDP; = dif f(dif f(GDP;,4)) — GDP;_5 + GDP,_1 + GDP,_,4 (J.4.2)

Equation (J.4.2) gives us the forecast of the new quarter GDP level. The variable BRGDP$GDP is
the non-stationary GDP.

> level_forecast <- na.omit(now$yfcst[,3])[1] - tail(na.omit(GDP_qtr),5)[1] +
+ + tail(na.omit(GDP_qtr),5)[5] + tail(na.omit(GDP_qtr),5) [2]

> level_forecast

[1] 170.4783

> position_q2_2015 <- which(time (BRGDP$GDP) == 2015.25)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

241

> BRGDP$GDP [position_qg2_2015]
[1] 169.24

A working example of the EM method:

The NY FED nowcast

Constructing the dataset

In this example we work with the data the Federal Reserve of New York made available to reproduce
its weekly nowcasting report'. The explanatory variables are mixed frequencies including both

monthly and quarterly series.

> library(nowcasting)
> data(NYFED)
> NYFED$legend$SeriesName
[1] "Payroll Employment"
[3] "Consumer Price Index"
[6] "Retail Sales"
[7] "Housing Starts"
[9] "Personal Income"
[11] "Imports"
[13] "Import Price Index"
[15] "Core PCE Price Index"
[17] "Building Permits"
[19] "Business Inventories"
[21] "Export Price Index"
[23] "Philadelphia Fed Mfg Index"

"Job Openings"

"Durable Goods Orders"
"Unemployment Rate"
"Industrial Production"
"Exports"

"Construction Spending"
"Core Consumer Price Index"
"PCE Price Index"

"Capacity Utilization Rate"
"Unit Labor Cost"

"Empire State Mfg Index"
"Real Consumption Spending"

[25] "Real Gross Domestic Product"

Similarly to the previous working example, the object NYFED contains all the necessary information
to run the nowcast () function. The time series, the block structure, the transformations to make
the variables stationary and the variables’ frequencies can be loaded as illustrated below.

> base <- NYFED$base

blocks <- NYFED$blocks$blocks

trans <- NYFED$legend$Transformation
frequency <- NYFED$legend$Frequency
delay <- NYFED$legend$delay

vV V Vv VvV

The dataset data can be prepared by using the function Bpanel(). Using the EM algorithm,
there is no need to replace missing values that are not part of the jagged edges, as was the case with
the Two-Stage method. This can be achieved by setting NA.replace to FALSE. In this case we do
not want to discard series based on a particular ratio of missing values to total observations as was
the case in the Two-Stage method. This is done by setting na.prop = 1, where 1 indicates that
only series with more than 100% missing values will be discarded.

> data <- Bpanel(base = base, trans = trans, NA.replace = FALSE, na.prop = 1)

Forecasts

The model’s specifications are the same as those used by the NY FED. We therefore limit the
number of factors, r, per block to one and define the factor process as a VAR(1), i.e., p = 1. The
convergence of the log-likelihood function is displayed every 5 iterations.

> nowEM <- nowcast(formula = GDPCl1~., data = data, r = 1, p = 1, method = "EM",
blocks = blocks, frequency = frequency)

5th iteration:

The loglikelihood went from -2418.5983 to -2406.1482

65th iteration:
The loglikelihood went from -2354.084 to -2353.8435

4https://www.newyorkfed.org/research/policy/nowcast

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://www.newyorkfed.org/research/policy/nowcast

CONTRIBUTED RESEARCH ARTICLES 242

Results

Combining the functions nowcast () and PRTB() within a loop, we illustrate how a pseudo out-of-
sample end-of-quarter nowcast can be made. The vector fcst_dates defines the last month of the
quarters for which quarterly GDP growth will be nowcast. The vector delay contains approximate
delays, in days, with which variables are published. This enables us to construct a pseudo real-time
dataset for a given day.

> fcst_dates <- seq.Date(from = as.Date("2013-03-01"),to = as.Date("2017-12-01"),
by = "quarter")

> fcst_results <- NULL

> for(date in fcst_dates)q{

+

vintage <- PRTDB(data, delay = delay, vintage = date)

nowEM <- nowcast(formula = GDPC1~., data = vintage, r = 1, p = 1, method = "EM",

blocks = blocks, frequency = frequency)
+ fcst_results <- c(fcst_results,tail (nowEM$yfest[,3]1,1))
+

+ }

+
+

The results of this out-of-sample nowcast example, as well as the results of an out-of-sample
ARIMA, are displayed below.

Out-of-sample results

o _|

@

[=)]

C

& v |

[&] (=] —

g

d

E_'Q
(= — Observed
° - - DFM

ARIMA

The root mean square prediction error can easily be calculated for the 2013-2016 period. For
this given example, when compared to one-period-ahead projections given by an ARIMA model, a
Theil’s U statistic of 0.70 is obtained, signaling a 30% improvement over the benchmark.

Summary

The package nowcasting was developed in order to facilitate the use of dynamic factor models for
large datasets as set out in Giannone et al. (2008) and Banbura et al. (2011). The package offers
functions at each step of the forecasting process to help the user treat data, choose and estimate the
value of parameters, as well as interpret results. We provided a working example for nowcasting
Brazilian GDP, illustrating each step and showing how to implement the various functions available.
We also used the New York FED nowcasting exercise to illustrate the EM algorithm. We will, in
the future, work on adding new tools for the user to better leverage the EM method by identifying
the source of forecast revisions. As shown by the New York FED nowcasting report, this is an
interesting policy instrument that helps contextualizing forecast updates.

Acknowledgements

We thank Daniel Mesquita for revising some of the codes and our colleagues from FGV-IBRE
for helpful inputs. We also thank an anonymous referee and the R journal editor Olivia Lau for

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 243

constructive comments. The authors are responsible for any errors in this paper. This study was
financed in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001.

Bibliography

K. A. Aastveit and T. Trovik. Nowcasting norwegian gdp: The role of asset prices in a small open
economy. Empirical Economics, 42(1):95-119, 2012. ISSN 1435-8921. URL https://doi.org/10.
1007/500181—010—0429—9.[p23m

E. Angelini, G. Camba-Mendez, D. Giannone, L. Reichlin, and G. Riinstler. Short-Term Forecasts of
Euro Area GDP Growth. Working Papers ECARES ECARES 2008-035, ULB — Universite Libre
de Bruxelles, 2008. URL https://ideas.repec.org/p/eca/wpaper/2008_035.html. [p230]

J. Bai and S. Ng. Determining the number of factors in approximate factor models. Econometrica,
70(1):191-221, 2002. URL https://doi.org/10.1111/1468-0262.00273. [p232, 230]

J. Bai and S. Ng. Determining the number of primitive shocks in factor models. Journal of Business
& Economic Statistics, 25(1):52-60, 2007. URL https://doi.org/10.1198/073500106000000413.
[p232, 233, 236]

M. Banbura, D. Giannone, and L. Reichlin. Nowcasting. Ozford Handbook on Economic Forecasting,
2011. [p230, 231, 232, 234, 242]

M. Banbura and M. Modugno. Maximum likelihood estimation of factor models on datasets with
arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1):133-160, 2014. URL
https://doi.org/10.1002/jae.2306. [p234]

M. Banbura and G. Riinstler. A look into the factor model black box: Publication lags and the
role of hard and soft data in forecasting gdp. International Journal of Forecasting, 27(2):333-346,
2011. URL https://doi.org/10.1016/j.ijforecast.2010.01.011. [p230]

J. Boivin and S. Ng. Are more data always better for factor analysis? Journal of Econometrics, 132
(1):169-194, 2006. URL https://doi.org/10.1016/j.jeconom.2005.01.027. [p230]

M. Chauvet. A monthly indicator of brazilian gdp. Brazilian Review of Econometrics, 21(1):1-47,
2001. URL https://doi.org/10.12660/bre.v21n12001.3191. [p230)]

A. D’Agostino, G. Domenico, and P. Surico. (Un)Predictability and Macroeconomic Stability.
Research Technical Papers 5/RT /06, Central Bank of Ireland, 2006. URL https://ideas.repec.
org/p/cbi/wpaper/5-rt-06.html. [p230]

A. D’Agostino, K. McQuinn, and D. O’Brien. Now-casting irish gdp. Research Technical Papers
9/RT/08, Central Bank of Ireland, 2008. URL https://doi.org/10.1787/19952899. [p230]

T. Dahlhaus, J.-D. Guenette, and G. Vasishtha. Nowcasting bric+m in real time. Staff working
papers, Bank of Canada, 2015. URL https://doi.org/10.1016/j.ijforecast.2017.05.002.
[p230]

J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford University
Press, 2 edition, 2012. URL https://EconPapers.repec.org/RePEc:oxp:obooks:9780199641178.
[p233]

M. Forni, M. Hallin, M. Lippi, and L. Reichlin. The generalized dynamic factor model consistency and
rates. Journal of Econometrics, 119(2):231-255, 2004. URL https://doi.org/10.1016/s0304~
4076(03)00196-9. [p230]

D. Giannone, L. Reichlin, and D. Small. Nowcasting: The real-time informational content of
macroeconomic data. Journal of Monetary Economics, 55(4):665-676, 2008. URL https://doi.
org/10.1016/3. jmoneco.2008.05.010. [p230, 233, 234, 235, 242]

M. Marcellino, J. Stock, and M. Watson. Macroeconomic forecasting in the euro area: Country
specific versus area-wide information. FEuropean Economic Review, 47(1):1-18, 2003. URL
https://doi.org/10.1016/s0014-2921(02)00206-4. [p230]

R. S. Mariano and Y. Murasawa. A new coincident index of business cycles based on monthly and
quarterly series. Journal of applied Econometrics, 18(4):427-443, 2003. URL https://doi.org/
10.1002/jae.695. [p231, 232, 233, 235

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1007/s00181-010-0429-9
https://doi.org/10.1007/s00181-010-0429-9
https://ideas.repec.org/p/eca/wpaper/2008_035.html
https://doi.org/10.1111/1468-0262.00273
https://doi.org/10.1198/073500106000000413
https://doi.org/10.1002/jae.2306
https://doi.org/10.1016/j.ijforecast.2010.01.011
https://doi.org/10.1016/j.jeconom.2005.01.027
https://doi.org/10.12660/bre.v21n12001.3191
https://ideas.repec.org/p/cbi/wpaper/5-rt-06.html
https://ideas.repec.org/p/cbi/wpaper/5-rt-06.html
https://doi.org/10.1787/19952899
https://doi.org/10.1016/j.ijforecast.2017.05.002
https://EconPapers.repec.org/RePEc:oxp:obooks:9780199641178
https://doi.org/10.1016/s0304-4076(03)00196-9
https://doi.org/10.1016/s0304-4076(03)00196-9
https://doi.org/10.1016/j.jmoneco.2008.05.010
https://doi.org/10.1016/j.jmoneco.2008.05.010
https://doi.org/10.1016/s0014-2921(02)00206-4
https://doi.org/10.1002/jae.695
https://doi.org/10.1002/jae.695

CONTRIBUTED RESEARCH ARTICLES 244

T. D. Matheson. An Analysis of the Informational Content of New Zealand Data Releases: The
Importance of Business Opinion Surveys. FEconomic Modelling, 27(1):304-314, 2010. URL
https://doi.org/10.1016/j.econmod.2009.09.010. [p230]

J. H. Stock and M. Watson. Dynamic factor models. Ozford Handbook on Economic Forecasting,
2011. [p233]

J. H. Stock and M. W. Watson. Forecasting with many predictors. Handbook of economic forecasting,
1:515-554, 2006. URL https://doi.org/10.1016/s1574-0706(05)01010-4. [p230]

J. H. Stock and M. W. Watson. Dynamic Factor Models, Factor-Augmented Vector Autoregressions,
and Structural Vector Autoregressions in Macroeconomics, volume 2. FElsevier, 2016. URL
https://doi.org/10.1016/bs.hesmac.2016.04.002. [p230, 231]

F. Tusell. Kalman filtering in r. Journal of Statistical Software, Articles, 39(2):1-27, 2011. ISSN
1548-7660. URL https://doi.org/10.18637/jss.v039.102. [p233]

C. Van Nieuwenhuyze, K. Ruth, A. Rua, P. Jelonek, A. Jakaitiene, A. Den Reijer, R. Cristadoro,
G. Riinstler, S. Benk, and K. Barhoumi. Short-term forecasting of gdp using large monthly
datasets: a pseudo real-time forecast evaluation exercise. Occasional Paper Series 84, European
Central Bank, 2008. URL https://doi.org/10.1002/for.1105. [p230]

Serge de Valk

EPGE Brazilian School of Economics and Finance (FGV EPGE)
60 Bardo de Itambi, Botafogo, Rio de Janeiro - RJ

Brazil

serge.valk@fgv.br

Daiane Marcolino de Mattos

FGV-IBRE

60 Bardo de Itambi, Botafogo, Rio de Janeiro - RJ
Brazil

daiane.mattos@fgv.br

Pedro Guilherme Costa Ferreira

FGV-IBRE

60 Bardo de Itambi, Botafogo, Rio de Janeiro - RJ
Brazil

pedro.guilherme@fgv.br

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1016/j.econmod.2009.09.010
https://doi.org/10.1016/s1574-0706(05)01010-4
https://doi.org/10.1016/bs.hesmac.2016.04.002
https://doi.org/10.18637/jss.v039.i02
https://doi.org/10.1002/for.1105
mailto:serge.valk@fgv.br
mailto:daiane.mattos@fgv.br
mailto:pedro.guilherme@fgv.br

CONTRIBUTED RESEARCH ARTICLES 245

Connecting R with D3 for dynamic
graphics, to explore multivariate data

with tours
by Michael Kipp, Ursula Laa, Dianne Cook

Abstract The tourr package in R has several algorithms and displays for showing multivariate
data as a sequence of low-dimensional projections. It can display as a movie but has no capacity
for interaction, such as stop/go, change tour type, drop/add variables. The tourrGui package
provides these sorts of controls, but the interface is programmed with the dated RGtk2 package.
This work explores using custom messages to pass data from R to D3 for viewing, using the Shiny
framework. This is an approach that can be generally used for creating all sorts of interactive graphics.

Introduction

Did you know you can run any javascript you like in a Shiny application and you can pass whatever
you want including JSON back and forth? This massively widens the scope of what you can do with
Shiny, and generating a tour of multivariate data with this approach is a really good example of
what is possible.

The tour algorithm (Asimov, 1985) is a way of systematically generating and displaying projections
of high-dimensional spaces in order for the viewer to examine the multivariate distribution of data. It
can do this either randomly, or by picking projections judged interesting according to some criterion
or index function. The tourr package (Wickham et al., 2011) provides the computing and display in
R to make several types of tours: grand, guided, little and local. The projection dimension can be
chosen between one and the number of variables in the data. The display, though, has no capacity
for interaction. The viewer can watch the tour like a movie, but not pause it and restart, or change
tour type, or number of variables.

These interactive controls were provided with the tourrGui package (Huang et al., 2012), with
was programmed with the RGtk2 package (Lawrence and Temple Lang, 2010). This is not the
toolkit of choice today, and has been superceded with primarily web-capable tools, like Shiny (Chang
et al., 2017). To display dynamic graphics though, is not straight-forward. This paper explains how
to use D3 (Bostock et al., 2011) as the display engine in a Shiny graphical user interface (GUI),
using custom message passing between server and client.

Creating a tour, with the tourr package

The tourr package (Wickham et al., 2011) is an R implementation of the tour algorithms discussed
in Cook et al. (2007). It includes methods for geodesic interpolation and basis generation, as well as
an implementation of the simulated annealing algorithm to optimise projection pursuit indices for
the guided tour. The tour can be displayed directly in the R graphics device, for example, the code
below generates a 1D density tour. Figure 1 shows snapshots.

library(tourr)

quartz() # to display on a Mac; X11() # For windows; The Rstudio graphics
device is not advised

animate_dist(fleal[, 1:6], center = TRUE)

A tour path is a smooth sequence of projection matrices, p x d, that when combined with a
matrix of n data points, n x p, and a rendering method, produces a steady stream of d-dimensional
views of the data. Each tour is initialised with the new_tour () method, which instantiates a tour
object and takes as arguments the data X, the tour method, e.g. guided_tour (), and the starting
basis. Once initialised, a new target plane is chosen, and a series of steps along a geodesic path from
starting to target plane are generated by interpolation.

This requires a series of calls to the tour object producing the series of projections. The steps
are discrete, of size given by w/A, where w denotes the angular velocity of the geodesic interpolation,
and A is a parameter denoting frames per second, reflecting the rendering speed of the device in use.
The A parameter can be thought of as the frames per second, while w affects the speed at which the
tour moves through the projection space. For our purposes, A, £ps in the code, is set at 25, while
the w can be adjusted by the user.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=tourr
https://CRAN.R-project.org/package=tourrGui
https://CRAN.R-project.org/package=RGtk2
https://CRAN.R-project.org/package=tourr
https://CRAN.R-project.org/package=tourrGui
https://CRAN.R-project.org/package=RGtk2
https://CRAN.R-project.org/package=tourr

CONTRIBUTED RESEARCH ARTICLES 246

al — al

Data Projection Data Projection Data Projection

Figure 1: Three projections from a 1D tour of 6D data, displayed as a density. Full video can
be seen at https://vimeo.com/255466661.

Connecting the tour projections to D3 display using sendCustomMessage

D3.js (Data-Driven Documents) (Bostock et al., 2011) is a JavaScript library for manipulating
documents based on data. The advantages of D3 are similar to those provided by Shiny: namely,
an industry standard with rich array of powerful, easy to use methods and widgets that can be
displayed on a wide variety of devices, with a large user base. D3 works on data objects in the
JavaScript Object Notation (JSON) format, which are then parsed and used to display customisable
data visualisations.

The new implementation of the tour interface uses D3 to render each projection step returned
by R, focusing on 2D projections as a test case. It does this by drawing and re-drawing a scatterplot
with dots (or circles in D3 language) and providing SVG objects for the web browser to render.
Figure 2 shows the new GUIL

The Shiny functions session$sendCustomMessage() and Shiny.addCustomMessageHandler ()
are provided to transport data between R and JavaScript. Whenever the former is executed in
R, the latter function will execute a code block in JS. There are many examples of such functions
being used to pass arbitrary data from an R app to a JS front-end, few examples exist of this basic
functionality to update a D3 animation in real-time.

To set up the interface for the app, we need to load the relevant scripts into the Shiny app and
assign a section for the resulting plots. This is done when setting up the user interface. We import
D3 and our plotting code via the tags$script (for web links) and includeScript (for reading from
a full path). We use tags$div to assign an id for the output section that can be accessed in the D3
code.

tags$script(src = "https://d3js.org/d3.v4.min. js"),
includeScript(system.file("js/d3anim. js", package = "tourrGUID3")),
tags$div(id = "d3_output")

On the D3 side we can access the id defined in Shiny, and for example assign it to a scalable
vector graphics (svg) object to be filled in D3 and rendered onto the Shiny app.

var svg = d3.select("#d3_output")
.append("svg")
.attr("width", w)
.attr("height", h);

The data format expected by D3 is in JSON format, which combines two basic programming
paradigms: a collection of name/value pairs, and an ordered list of values. R’s preferred data formats
include data frames, vectors and matrices. Every time a new projection has been calculated with the
tour path, the resulting matrix needs to be converted to JSON and sent to D3. Using a named list
we can send multiple JSON datasets to D3, e.g. to draw both the data points (stored in dataframe
d) and the projection axes (stored in dataframe a). Converting dataframes will pass the column
names to JSON. The code to send the D3 data looks like this:

session$sendCustomMessage(type = "data", message = list(d = toJSON(d), a = toJSON(a)))

This code is from the observe environment from the server.R file. It converts the matrix of
projected data points to JSON format, and sends it to JavaScript with the id data. The list entries of

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 247

(X X J ~/Monash.business/Honors/Michael/TourrGuiD3 - Shiny
http://127.0.0.1:6626 = 1 | Open in Browser] <5, Republish ~

Welcome to the TourR Shiny app powered by D3.js

Changed tour type to Grand
Select tour type MUS .

Guided sel [l
Little
© Grand

Density Plots 3 o
On
O off

Select Example Dataset
Gaussian
Geozoo

© Cognostics

Tour speed

0 [1] 5

Restart tour with random basis

Select class variable to colour
the points

type v

Choose variables for the 2D tour

lumpiness

¢ entropy
ACF1
9 Ishift

¥ vchange

cpoints

fspots
e —

Figure 2: Shiny GUI for the tour, with D3 as the display engine. GUI provides controls to select
tour type, change speed, restart, and select variables to include.

the “message” can parsed in D3 by its data() method, e.g. data(message.d) to access the projected
data points, and we can access each column through the column names assigned in the original
dataframe, and loop over all rows for rendering. All of the code required to render the scatterplots
and legends, along with colours, is JavaScript code in the file d3anim. js. In particular, the data
from R is handled with the following code:

Shiny.addCustomMessageHandler("data",
function(message) {

/* D3 scatterplot is drawn and re-drawn using the
data sent from the server. */

Every time the message is sent (25 times per second), the code-block is run.

Getting projections

The observeEvent Shiny method defines a code block to be run whenever some input value changes.
The following code snippet restarts a tour using a random basis:

observeEvent (input$restart_random,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 248

{

p < length(input$variables)

b <- matrix(runif(2*p), p, 2)

rv§tour <-

new_tour (as.matrix(rv$d[input$variables]),
choose_tour (input$type,
input$guidedIndex,
c(rv$class[[1]11)), b)
b

The projections are calculated using the tour object in an observe() environment, which re-
executes the code whenever it is invalidated. The invalidation is either by a change in reactive value
inside the code block, or we can schedule a re-execution by explicitly invalidating the observer after
a selected interval using invalidateLater(). The projections are calculated using the following

code block:
observe ({
if (length(rv$mat[1l, 1) < 3) {
session$sendCustomMessage(type = "debug",
message = "Error: Need >2 variables.")
}

aps <- rv$aps
tour <- rv$tour
step <- rv$tour(aps / fps)
invalidateLater (1000 / fps)
j <- center(rv$mat %*/, step$proj)
j <= cbind(j, class = rv$class)
colnames(j) <- NULL
session$sendCustomMessage (type = "data",
message = list(d = toJSON(data.frame(pL=rv$plLabell,1], x=j[,2],
y=j[,11, c=5[,31)),
a = toJSON(data.frame(n=rv$vars, y=step$projl[,1],
x=step$proj[,21))))
»

Try it
You can try the app yourself using this code:

devtools: :install_github("uschilaa/tourrGUID3")
library(tourrGUID3)
launchApp(system.file("extdata", '"geozoo.csv", package = "tourrGUID3"))

Troubleshooting

Fixing bugs in the JavaScript code can be cumbersome, as R and Shiny will not report any errors.
Tracing JavaScript errors can be done when using the JavaScript console in the web browser. For
example, in Google Chrome the console can be accessed via the “Developer Tools” option found
under “Moore Tools” in the control menu. Typical errors that we encountered were version dependent
syntax in D3, e.g. for axis definitions or scaling.

Pros and cons

The D3 canvas makes for smooth drawing and re-drawing of the data projections. Adding a GUI
around the display is straightforward with the Shiny package, e.g. control elements such as stop/go,
increase/decrease speed, change tour type, add/remove variables from the mix.

The main disadvantage is that the speed is inconsistent, as server and client play tag to keep
up with each other, and the display cannot handle many observations. Noticeable slow down was
oberved with 2000 points, the main reason being the rendering time required for the large number
of SVG circle elements. The situation can be improved when using a single HTML5 canvas element
to draw the scatter points, significantly reducing the rendering time.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 249

Another disadvantage is that the displays needs to be coded anew. D3 provides mostly primitives,
and example code, to make scatterplots, and contours, but the data displays all need to be coded
again.

Summary

The custom message tools from Shiny provide a way to share a tour path with the D3 renderer,
and embed it in a Shiny GUI providing controls such as stop/go, increase/decrease speed, change
tour type, add/remove variables. However, the approach doesn’t provide the smooth motion that is
needed for easy display of projections, and is slow for large numbers of observations.

Code

The code is available at https://github.com/uschilaa/tourrGUID3, and the source material for
this paper is available at https://github.com/dicook/paper-tourrd3.

Acknowledgements

Thanks to Yihui Xie for pointing out the custom message tools.

Bibliography

D. Asimov. The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal of Scientific
and Statistical Computing, 6(1):128-143, 1985. URL https://doi.org/10.1137/0906011. [p245]

M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2301-2309, 2011. URL https://doi.org/10.1109/
TVCG.2011.185. [p245, 246]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. Shiny: Web Application Framework for
R, 2017. URL https://CRAN.R-project.org/package=shiny. R package version 1.0.5. [p245]

D. Cook, A. Buja, E. K. Lee, and H. Wickham. Grand Tours, Projection Pursuit Guided Tours and
Manual Controls. Springer-Verlag, Berlin, Heidelberg, 2007. URL https://doi.org/10.1007/978-
3-540-33037-0_13. [p245]

B. Huang, D. Cook, and H. Wickham. tourrGui: A gWidgets GUI for the Tour to Explore High-
Dimensional Data Using Low-Dimensional Projections. Journal of Statistical Software, 49(6):1-12,
2012. URL https://doi.org/10.18637/jss.v049.106. [p245]

M. Lawrence and D. Temple Lang. RGtk2: A Graphical User Interface Toolkit for R. Journal of
Statistical Software, 37(8):1-52, 2010. URL https://doi.org/10.18637/jss.v037.108. [p245]

H. Wickham, D. Cook, H. Hofmann, and A. Buja. tourr: An R Package for Exploring Multivariate
Data with Projections. Journal of Statistical Software, 40(2):1-18, 2011. URL https://doi.org/
10.18637/jss.v040.102. [p245]

Michael Kipp

Monash University

Department of Econometrics and Business Statistics
mkipp271@gmail.com

Ursula Laa

Monash University

School of Physics and Astronomy
ursula.laa@monash.edu

Dianne Cook

Monash University

Department of Econometrics and Business Statistics
dicook@monash.edu

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://github.com/uschiLaa/tourrGUID3
https://github.com/dicook/paper-tourrd3
https://doi.org/10.1137/0906011
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1007/978-3-540-33037-0_13
https://doi.org/10.1007/978-3-540-33037-0_13
https://doi.org/10.18637/jss.v049.i06
https://doi.org/10.18637/jss.v037.i08
https://doi.org/10.18637/jss.v040.i02
https://doi.org/10.18637/jss.v040.i02
mailto:mkipp271@gmail.com
mailto:ursula.laa@monash.edu
mailto:dicook@monash.edu

CONTRIBUTED RESEARCH ARTICLES 250

SimCorrMix: Simulation of Correlated
Data with Multiple Variable Types
Including Continuous and Count
Mixture Distributions

by Allison Fialkowski and Hemant Tiwari

Abstract The SimCorrMix package generates correlated continuous (normal, non-normal, and
mixture), binary, ordinal, and count (regular and zero-inflated, Poisson and Negative Binomial)
variables that mimic real-world data sets. Continuous variables are simulated using either Fleishman’s
third-order or Headrick’s fifth-order power method transformation. Simulation occurs at the
component level for continuous mixture distributions, and the target correlation matrix is specified
in terms of correlations with components. However, the package contains functions to approximate
expected correlations with continuous mixture variables. There are two simulation pathways
which calculate intermediate correlations involving count variables differently, increasing accuracy
under a wide range of parameters. The package also provides functions to calculate cumulants of
continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries,
and summarize and plot simulated variables. SimCorrMix is an important addition to existing R
simulation packages because it is the first to include continuous mixture and zero-inflated count
variables in correlated data sets.

Introduction

Finite mixture distributions have a wide range of applications in clinical and genetic studies. They
provide a useful way to describe heterogeneity in a population, e.g., when the population consists of
several subpopulations or when an outcome is a composite response from multiple sources. In survival
analysis, survival times in competing risk models have been described by mixtures of exponential,
Weibull, or Gompertz densities (Larson and Dinse, 1985; Lau et al.; 2009, 2011). In medical research,
finite mixture models may be used to detect clusters of subjects (cluster analysis) that share certain
characteristics, e.g., concomitant diseases, intellectual ability, or history of physical or emotional
abuse (McLachlan, 1992; Newcomer et al., 2011; Pamulaparty et al., 2016). In schizophrenia research,
Gaussian mixture distributions have frequently described the earlier age of onset in men than in
women and the vast phenotypic heterogeneity in the disorder spectrum (Everitt, 1996; Lewine, 1981;
Sham et al., 1994; Welham et al., 2000).

Count mixture distributions, particularly zero-inflated Poisson and Negative Binomial, are
required to model count data with an excess number of zeros and/or overdispersion. These
distributions play an important role in a wide array of studies, modeling health insurance claim
count data (Ismail and Zamani, 2013), the number of manufacturing defects (Lambert, 1992), the
efficacy of pesticides (Hall, 2000), and prognostic factors of Hepatitis C (Baghban et al., 2013).
Human microbiome studies, which seek to develop new diagnostic tests and therapeutic agents, use
RNA-sequencing (RNA-seq) data to assess differential composition of bacterial communities. The
operational taxonomic unit (OTU) count data may exhibit overdispersion and an excess number of
zeros, necessitating zero-inflated Negative Binomial models (Zhang et al., 2016). Differential gene
expression analysis utilizes RNA-seq data to search for genes that exhibit differences in expression
level across conditions (e.g., drug treatments) (Soneson and Delorenzi, 2013; Solomon, 2014). Zero-
inflated count models have also been used to characterize the molecular basis of phenotypic variation
in diseases, including next-generation sequencing of breast cancer data (Zhou et al., 2017).

The main challenge in applying mixture distributions is estimating the parameters for the
component densities. This is usually done with the EM algorithm, and the best model is chosen by
the lowest Akaike or Bayesian information criterion (AIC or BIC). Current packages that provide
Gaussian mixture models include: AdaptGauss, which uses Pareto density estimation (Thrun et al.,
2017); DPP, which uses a Dirichlet process prior (Avila et al., 2017); bgmm, which employs two
partially supervised mixture modeling methods (Biecek and Szczurek, 2017); and ClusterR, mclust,
and mixture, which conduct cluster analysis (Mouselimis, 2017; Fraley et al., 2017; Browne et al.,
2015). Although Gaussian distributions are the most common, the mixture may contain any
combination of component distributions. Packages that provide alternatives include: AdMit, which
fits an adaptive mixture of Student-t distributions (Ardia, 2017); bimixt, which uses case-control
data (Winerip et al., 2015); bmixture, which conducts Bayesian estimation for finite mixtures of

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=AdaptGauss
https://CRAN.R-project.org/package=DPP
https://CRAN.R-project.org/package=bgmm
https://CRAN.R-project.org/package=ClusterR
https://CRAN.R-project.org/package=mclust
https://CRAN.R-project.org/package=mixture
https://CRAN.R-project.org/package=AdMit
https://CRAN.R-project.org/package=bimixt
https://CRAN.R-project.org/package=bmixture

CONTRIBUTED RESEARCH ARTICLES 251

Gamma, Normal and t-distributions (Mohammadi, 2017); CAMAN, which provides tools for the
analysis of finite semiparametric mixtures in univariate and bivariate data (Schlattmann et al.,
2016); flexmix, which implements mixtures of standard linear models, generalized linear models and
model-based clustering (Gruen and Leisch, 2017); mixdist, which applies to grouped or conditional
data (MacDonald and with contributions from Juan Du, 2012); mixtools and nspmix, which analyze
a variety of parametric and semiparametric models (Young et al., 2017; Wang, 2017); Mixturelnf,
which conducts model inference (Li et al., 2016); and Rmixmod, which provides an interface to the
MIXMOD software and permits Gaussian or multinomial mixtures (Langrognet et al., 2016). With
regards to count mixtures, the BhGLM, hurdlr, and zic packages model zero-inflated distributions
with Bayesian methods (Yi, 2017; Balderama and Trippe, 2017; Jochmann, 2017).

Given component parameters, there are existing R packages which simulate mixture distributions.
The mixpack package generates univariate random Gaussian mixtures (Comas-Cuff et al., 2017).
The distr package produces univariate mixtures with components specified by name from stats
distributions (Kohl, 2017; R Core Team, 2017). The rebmix package simulates univariate or
multivariate random datasets for mixtures of conditionally independent Normal, Lognormal, Weibull,
Gamma, Binomial, Poisson, Dirac, Uniform, or von Mises component densities. It also simulates
multivariate random datasets for Gaussian mixtures with unrestricted variance-covariance matrices
(Nagode, 2017).

Existing simulation packages are limited by: 1) the variety of available component distributions
and 2) the inability to produce correlated data sets with multiple variable types. Clinical and
genetic studies which involve variables with mixture distributions frequently incorporate influential
covariates, such as gender, race, drug treatment, and age. These covariates are correlated with the
mixture variables and maintaining this correlation structure is necessary when simulating data based
on real data sets (plasmodes, as in Vaughan et al., 2009). The simulated data sets can then be used
to accurately perform hypothesis testing and power calculations with the desired type-I or type-11
error.

SimCorrMix is an important addition to existing R simulation packages because it is the first to
include continuous mixture and zero-inflated count variables in correlated data sets. Therefore, the
package can be used to simulate data sets that mimic real-world clinical or genetic data. SimCorrMix
generates continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count
(regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix
via the functions corrvar and corrvar2. The user may also generate one continuous mixture variable
with the contmixvarl function. The methods extend those found in the SimMultiCorrData package
(version > 0.2.1, Fialkowski, 2017; Fialkowski and Tiwari, 2017). Standard normal variables with
an imposed intermediate correlation matrix are transformed to generate the desired distributions.
Continuous variables are simulated using either Fleishman (1978)’s third-order or Headrick (2002)’s
fifth-order polynomial transformation method (the power method transformation, PMT). The
fifth-order PMT accurately reproduces non-normal data up to the sixth moment, produces more
random variables with valid PDF’s, and generates data with a wider range of standardized kurtoses.
Simulation occurs at the component-level for continuous mixture distributions. These components
are transformed into the desired mixture variables using random multinomial variables based
on the mixing probabilities. The target correlation matrix is specified in terms of correlations
with components of continuous mixture variables. However, SimCorrMix provides functions to
approximate expected correlations with continuous mixture variables given target correlations with
the components. Binary and ordinal variables are simulated using a modification of GenOrd’s
ordsample function (Barbiero and Ferrari, 2015b). Count variables are simulated using the inverse
cumulative density function (CDF) method with distribution functions imported from VGAM (Yee,
2017).

Two simulation pathways (correlation method 1 and correlation method 2) within SimCorrMix
provide two different techniques for calculating intermediate correlations involving count variables.
Each pathway is associated with functions to calculate feasible correlation boundaries and/or validate
a target correlation matrix rho, calculate intermediate correlations (during simulation), and generate
correlated variables. Correlation method 1 uses validcorr, intercorr, and corrvar. Correlation
method 2 uses validcorr2, intercorr2, and corrvar2. The order of the variables in rho must be 1%¢
ordinal (r = 2 categories), 2" continuous non-mixture, 3rd components of continuous mixture, 4th
regular Poisson, 5" zero-inflated Poisson, 6" regular Negative Binomial (NB), and 7" zero-inflated
NB. This ordering is integral for the simulation process. Each simulation pathway shows greater
accuracy under different parameter ranges and Calculation of intermediate correlations for count
variables details the differences in the methods. The optional error loop can improve the accuracy of
the final correlation matrix in most situations.

The simulation functions do not contain parameter checks or variable summaries in order
to decrease simulation time. All parameters should be checked first with validpar in order to
prevent errors. The function summary_var generates summaries by variable type and calculates the

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=CAMAN
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=mixdist
https://CRAN.R-project.org/package=mixtools
https://CRAN.R-project.org/package=nspmix
https://CRAN.R-project.org/package=MixtureInf
https://CRAN.R-project.org/package=Rmixmod
http://www.ssg.uab.edu/bhglm/
https://CRAN.R-project.org/package=hurdlr
https://CRAN.R-project.org/package=zic
https://CRAN.R-project.org/package=mixpack
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=stats
https://CRAN.R-project.org/package=rebmix
https://CRAN.R-project.org/package=SimCorrMix
https://CRAN.R-project.org/package=SimMultiCorrData
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=VGAM

CONTRIBUTED RESEARCH ARTICLES 252

final correlation matrix and maximum correlation error. The package also provides the functions
calc_mixmoments to calculate the standardized cumulants of continuous mixture distributions,
plot_simpdf_theory to plot simulated PDF’s, and plot_simtheory to plot simulated data values.
The plotting functions work for continuous or count variables and overlay target distributions, which
are specified by name (39 distributions currently available) or PDF function £x. The fx input is useful
when plotting continuous mixture variables since there are no distribution functions available in R.
There are five vignettes in the package documentation to help the user understand the simulation and
analysis methods. The stable version of the package is available via the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=SimCorrMix, and the development
version may be found on GitHub at https://github.com/AFialkowski/SimCorrMix. The results
given in this paper are reproducible (for R version > 3.4.1, SimCorrMix version > 0.1.0).

Overview of mixture distributions

Mixture distributions describe continuous or discrete random variables that are drawn from more
than one component distribution. For a random variable Y from a finite mixture distribution with &
components, the probability density function (PDF) or probability mass function (PMF) is:

k k

hy ()= Vit), Ym=1 (N.2.1)

i=1 i=1

The 7; are mixing parameters which determine the weight of each component distribution fy, (y) in
the overall probability distribution. As long as each component has a valid probability distribution,
the overall distribution hy (y) has a valid probability distribution. The main assumption is statistical
independence between the process of randomly selecting the component distribution and the
distributions themselves. Assume there is a random selection process that first generates the
numbers 1, ..., k with probabilities 71, ..., mg. After selecting number i, where 1 < ¢ < k, a random
variable y; is drawn from component distribution fy, (y) (Davenport et al., 1988; Everitt, 1996).

Continuous mixture distributions

Continuous mixture distributions are used in genetic research to model the effect of underlying
genetic factors (e.g., genotypes, alleles, or mutations at chromosomal loci) on continuous traits.
Consider a single locus with two alleles A and a, producing three genotypes AA, Aa, and aa with
population frequencies pgA,PAaa, and pae. Figure la shows a codominant mixture in which each
genotype exhibits a different phenotype; Figure 1b shows a dominant mixture in which individuals
with at least one A allele possess the same phenotype (Schork et al., 1996).

< <
S o 7
© o
[SI o 7|
2 2
£ B
S o & ° 7]
a aa a
5 5 -
e | ; e
e T T T T T T T e T T T T T T
6 4 2 0 2 4 6 6 4 2 0 2 4
Phenotype y Phenotype y
(a) Codominant mixture. (b) Dominant mixture.

Figure 1: Examples of commingled distributions in genetics.

For a continuous phenotype y, the normal mixture density function describing a commingled
distribution is given by:

2 2 2
! (ylpAA, HAA, OAA; PAar MAas OAa; Paas faa, Uaa) = (N.3.1)

2 2 2
PAASD (yluAA, UAA) +Ppaad (?J|MAa7 UAa) + Paa (y\uaa, aaa) ,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=SimCorrMix
https://github.com/AFialkowski/SimCorrMix

CONTRIBUTED RESEARCH ARTICLES 253

where ¢ (y|u, 02) is the normal density function with mean p and variance o2. Commingling

analysis may also study traits that are polygenic (result from the additive effects of several genes) or
multifactorial (polygenic traits with environmental factors, see Elston et al., 2002). For example,
mixture models explain the heterogeneity observed in gene-mapping studies of complex human
diseases, including cancer, chronic fatigue syndrome, bipolar disorder, coronary artery disease, and
diabetes (Fridley et al., 2010; Bahcall, 2015; Bhattacharjee et al., 2015; 7). Segregation analysis
extends commingling analysis to individuals within a pedigree. Mixed models evaluate whether a
genetic locus is affecting a particular quantitative trait and incorporate additional influential factors.
Finally, linkage analysis discovers the location of genetic loci using recombination rates, and the
regression likelihood equation may be written as a mixture distribution (Schork et al., 1996).

Generation of continuous distributions in SimCorrMix

Continuous variables, including components of mixture variables, are created using either leishman
(1978)’s third-order (method = "Fleishman") or Headrick (2002)’s fifth-order (method ="Polynomial")
PMT applied to standard normal variables. The transformation is expressed as follows:

Y =p(Z)=co+ca1Z+caZ® +c3Z% + a2t + 525, Z ~ N(0,1), (N.3.2)

where ¢4 = ¢5 = 0 for Fleishman’s method. The real constants are calculated by SimMultiCorrData’s
find_constants, which solves the system of non-linear equations given in poly or fleish. The
simulation functions corrvar and corrvar2 contain checks to see if any distributions are repeated
for non-mixture or components of mixture variables. If so, these are noted so the constants are
only calculated once, decreasing simulation time. Mixture variables are generated from their
components based on random multinomial variables described by their mixing probabilities (using
stat’s rmultinom).

The fifth-order PMT allows additional control over the fifth and sixth moments of the generated
distribution. In addition, the range of feasible standardized kurtosis (7y2) values, given skew (1)
and standardized fifth (y3) and sixth (74) cumulants, is larger than with the third-order PMT.
For example, Fleishman’s method can not be used to generate a non-normal distribution with a
ratio of v7/y2 > 9/14. This eliminates the x° family of distributions, which has a constant ratio
of ¥ /vo = 2/3 (Headrick and Kowalchuk, 2007). The fifth-order method also generates more
distributions with valid PDFs. However, if the fifth and sixth cumulants do not exist, the Fleishman
approximation should be used. This would be the case for t-distributions with degrees of freedom
below 7.

For some sets of cumulants, it is either not possible to find power method constants (indicated
by a stop error) or the calculated constants do not generate valid PDF’s (indicated in the simulation
function results). For the fifth-order PMT, adding a value to the sixth cumulant may provide
solutions. This can be done for non-mixture variables in Six or components of mixture variables
in mix_Six, and find_constants will use the smallest correction that yields a valid PDF. Another
possible reason for function failure is that the standardized kurtosis for a distribution is below the
lower boundary of values which can be generated using the third or fifth-order PMT. This boundary
can be found with SimMultiCorrData’s calc_lower_skurt using skew (for method = "Fleishman")
and standardized fifth and sixth cumulants (for method = "Polynomial").

Expected cumulants of continuous mixture variables

The PMT simulates continuous variables by matching standardized cumulants derived from central
moments. Using standardized cumulants decreases the complexity involved in calculations when a
distribution has large central moments. In view of this, let Y be a real-valued random variable with
cumulative distribution function F'. Define the central moments, pur, of Y as:

+00
pr = (V) =Byl = | [y ul"dF o). (N.3.3)
)
The standardized cumulants are found by dividing the first six cumulants k1 - kg by 4/k2” =

/2
(02 = o", where o2 is the variance of Y and r is the order of the cumulant (Kendall and Stuart,
1977):

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 254

0=—L A N.3.4 Ny = —a Mg N.3.7
1 4
L B (N.35) 3= —=— =510y (N.3.8)
=B B N8 = — S 5, 1092 - 15,
,4-/23 0'3 ,{;26 0'6

(N.3.9)

The values 1, ¥2, 73, and 74 correspond to skew, standardized kurtosis (so that the normal
distribution has a value of 0, subsequently referred to as skurtosis), and standardized fifth and sixth
cumulants. The corresponding sample values for the above can be obtained by replacing u, by
mr =351 (w5 —ma)"/n (Headrick, 2002).

The standardized cumulants for a continuous mixture variable can be derived in terms of the
standardized cumulants of its component distributions. Suppose the goal is to simulate a continuous
mixture variable Y with PDF hy (y) that contains two component distributions Y, and Y; with
mixing parameters 7, and mp:

hy (y) = mafy, (¥) + mgy, (v), vy € Y, ma € (0, 1), mp € (0, 1), ma+m =1. (N.3.10)
Here,
Yo =0aZa+pa; Yo~ fy, W), y € Ya and Yy, =0y Zp+up, Yy ~ gy, (), y € ¥ (N.3.11)

so that Y, and Y} have expected values pq and pp, and variances o2 and O'g. Assume the variables
Z4, and Z{) are generated with zero mean and unit variance using Headrick’s fifth-order PMT given
the specified values for skew (71,, 71,), skurtosis (75, 75,), and standardized fifth (y3,, 73,) and
sixth (’yfla’, 7:117) cumulants:

Zl = co, + 1, Za + co, 22+ c3, 25 + ca, Za + 5, Zo, Za ~ N (0, 1)

, 9 3 4 5 (N.3.12)
Zy =co, +c1,Zp + 2, Zp +¢3, 2y + cay Zy + 5,2y, Zpy ~ N (0, 1).
The constants cg,, ..., ¢5, and cg,, ..., c5, are the solutions to the system of equations given
in SimMultiCorrData’s poly function and calculated by find_constants. Similar results hold for
Fleishman’s third-order PMT, where the constants cg,, ..., c3, and cg,, ..., c3, are the solutions to
the system of equations given in fleish (¢4, = ¢5, = ¢4, = ¢5, = 0).
The " expected value of Y can be expressed as:
]EYT:JT"LY d:TrJ-ry d+ﬂ'bfry d
Y] = |y "hy () dy = 7a | y" fv, (v) dy Y 9y, (v) dy (N.3.13)

=7Ta]E[YaT] +7rbIE[YbT].

Equation N.3.13 can be used to derive expressions for the mean, variance, skew, skurtosis, and
standardized fifth and sixth cumulants of Y in terms of the r* expected values of Y, and Y}. See
Derivation of expected cumulants of continuous mixture variables in the Appendix for the expressions
and proofs.

Extension to more than two component distributions
If the desired mixture distribution Y contains more than two component distributions, the expected

values of Y are again expressed as sums of the expected values of the component distributions, with
weights equal to the associated mixing parameters. For example, assume Y contains k component

distributions Y7, ..., Y3 with mixing parameters given by n1, ..., ™, where Zle m; = 1. The
component distributions are described by the following parameters: means ui, ..., g, variances
a%, . (T]%, skews fyil, . 'yik, skurtoses 'yél, ey 7’2k, fifth cumulants 7{),1, ey yék, and sixth
cumulants 7} 1o W/Lk' Then the r*" expected value of Y can be expressed as:
k k
E[Y"] = Jyrhy W) dy = > m fyrfyi () dy = > mEy, [Y]]. (N.3.14)
i=1 =1

Therefore, a method similar to that above can be used to derive the system of equations defining the
mean, variance, skew, skurtosis, and standardized fifth and sixth cumulants of Y. These equations

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 255

are used within the function calc_mixmoments to determine the values for a mixture variable.
The summary_var function executes calc_mixmoments to provide target distributions for simulated
continuous mixture variables.

Example with Normal and Beta mixture variables

Let Y7 be a mixture of Normal(-5, 2), Normal(1, 3), and Normal(7, 4) distributions with mixing
parameters 0.36,0.48, and 0.16. This variable could represent a continuous trait with a codominant
mixture distribution, as in Figure la, where p4 = 0.6 and pq = 0.4. Let Y2 be a mixture of Beta(13,
11) and Beta(13, 4) distributions with mixing parameters 0.3 and 0.7. Beta-mixture models are
widely used in bioinformatics to represent correlation coefficients. These could arise from pathway
analysis of a relevant gene to study if gene-expression levels are correlated with those of other
genes. The correlations could also describe the expression levels of the same gene measured in
different studies, as in meta-analyses of multiple gene-expression experiments. Since expression varies
greatly across genes, the correlations may come from different probability distributions within one
mixture distribution. Each component distribution represents groups of genes with similar behavior.
Ji et al. (2005) proposed a Beta-mixture model for correlation coefficients. Laurila et al. (2011)
extended this model to methylation microarray data in order to reduce dimensionality and detect
fluctuations in methylation status between various samples and tissues. Other extensions include
cluster analysis (Dai et al., 2009), single nucleotide polymorphism (SNP) analysis (Fu et al., 2011),
pattern recognition and image processing (Bouguila et al., 2006; Ma and Leijon, 2011), and quantile
normalization to correct probe design bias (Teschendorff et al., 2013). Since these methods assume
independence among components, Dai and Charnigo (2015) developed a compound hierarchical
correlated Beta-mixture model to permit correlations among components, applying it to cluster
mouse transcription factor DNA binding data.

The standardized cumulants for the Normal and Beta mixtures using the fifth-order PMT are
found as follows:

library("SimCorrMix")

Bl <- calc_theory("Beta", c(13, 11))

B2 <- calc_theory("Beta", c(13, 4))

mix_pis <- list(c(0.36, 0.48, 0.16), c(0.3, 0.7))

mix_mus <- list(c(-5, 1, 7), c(B1[1], B2[1]))

mix_sigmas <- list(c(sqrt(2), sqrt(3), sqrt(4)), c(Bi[2], B2[2]))

mix_skews <- 1list(c(0, 0, 0), c(B1[3], B2[3]1))

mix_skurts <- list(c(0, 0, 0), c(B1[4], B2[4]))

mix_fifths <- list(c(0, 0, 0), c(B1[5], B2[5]))

mix_sixths <- 1list(c(0, 0, 0), c(B1[6], B2[6]))

Nstcum <- calc_mixmoments(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]])

Nstcum

mean sd skew kurtosis fifth sixth

-0.2000000 4.4810713 0.3264729 -0.6238472 -1.0244454 1.4939902

Bstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])

Bstcum

mean sd skew kurtosis fifth sixth

0.6977941 0.1429099 -0.4563146 -0.5409080 1.7219898 0.5584577

SimMultiCorrData’s calc_theory was used first to obtain the standardized cumulants for each of
the Beta distributions.

Calculation of intermediate correlations for continuous variables

The target correlation matrix rho in the simulation functions corrvar and corrvar? is specified in
terms of the correlations with components of continuous mixture variables. This allows the user
to set the correlation between components of the same mixture variable to any desired value. If
this correlation is small (i.e., 0-0.2), the intermediate correlation matrix Sigma may need to be
converted to the nearest positive-definite (PD) matrix. This is done within the simulation functions
by specifying use.nearPD = TRUE, and Higham (2002)’s algorithm is executed with the Matrix
package’s nearPD function (Bates and Maechler, 2017). Otherwise, negative eigenvalues are replaced
with 0.

The function intercorr_cont calculates the intermediate correlations for the standard normal
variables used in Equation N.3.2. This is necessary because the transformation decreases the absolute

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLES 256

value of the final correlations. The function uses Equation 7b derived by Headrick and Sawilowsky
(1999, p. 28) for the third-order PMT and Equation 26 derived by Headrick (2002, p. 694) for the
fiftth-order PMT.

Approximate correlations for continuous mixture variables:

Even though the correlations for the continuous mixture variables are set at the component level,
we can approximate the resulting correlations for the mixture variables. Assume Y7 and Ys are two
continuous mixture variables. Let Y7 have k1 components with mixing probabilities a1, ..., o, and
standard deviations o1, ..., Oly, - Let Y5 have kg components with mixing probabilities 1, ..., B,
and standard deviations o2, ..., 02,

Correlation between continuous mixture variables Y7 and Y

The correlation between the mixture variables Y; and Y3 is given by:

E[v1Ys] - E[Vi]E[Y,
priy, = B2 Jm[JE[Ya] (N.3.15)

where a% is the variance of Y7 and a% is the variance of Y. Equation N.3.15 requires the expected
value of the product of Y7 and Y2. Since Y7 and Y2 may contain any number of components and
these components may have any continuous distribution, there is no general way to determine this
expected value. Therefore, it is approximated by expressing Y7 and Y2 as sums of their component

variables:
kl k}z kl k2
E [(Zi:1 O‘iqu') (Zj:l 5jY2j)] —E [Zizl O‘iquz] E [Zj:1 BjYZ]‘]
VY, = , (N.3.16)
0102
where
k1 ko
E <Z aiY1i> Z ,BjYQj =1 |:a1Y11/81Y21 + a1Y11ﬂ2Y22 + ...+ O‘k1Y1k1 /Bk2Y2k2]
i=1 j=1
= a1 E[Y1, Yo, |+ a182 E[Y1,Y2,] + ... + ap, Bk, IE [Y1k1 Yka] .
(N.3.17)
Using the general correlation equation, for 1 <¢ < k1 and 1 < j < kg:
E[Y1,Yy,] = 01,02,pv;, v, + B[V1,]E[Yy,], (N.3.18)
so that we can rewrite py,y, as:
o181 (011021PY11Y21 +]E[Y11]1E[Y21])
PY1Y> =
0109
o, B, (Ulkl 021, PY1, Y2y, TIE [Ylkl] E [Y2’“2D
+ .+
7102 (N.3.19)
1L E [V, 1 E [V,] + . + a, By, B Vi, | B[Ya, |
a 0102
k1 kg
ity @io1; 2521 Bj02,0v:, e,
N 0109 ’
Extending the example from Extension to more than two component distributions, assume there are

now three variables: Y7 (the Normal mixture), Y5 (the Beta mixture), and Y3 (a zero-inflated Poisson
variable with mean 5 and probability of a structural zero set at 0.1). Let the target correlations
among the components of Y7, the components of Y2, and Y3 be 0.4. The components of Y7 have a
weak correlation of 0.1 and the components of Y2 are independent. The resulting correlation between
Y7 and Y3 is approximated as:

rho <- matrix(0.4, 6, 6)

rho[1:3, 1:3] <- matrix(0.1, 3, 3)
rho[4:5, 4:5] <- matrix(0, 2, 2)
diag(rho) <- 1

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 257

rho_M1M2(mix_pis, mix_mus, mix_sigmas, rho[1:3, 4:5])
[1] 0.103596

Note that rho has 6 columns because k1 = 3, ko = 2, and k1 + ko +1 = 6.

Correlation between continuous mixture variable Y; and other random variable
Y3

Here Y3 can be an ordinal, a continuous non-mixture, or a regular or zero-inflated Poisson or Negative
Binomial variable. The correlation between the mixture variable Y7 and Y3 is given by:
E[V1Y3] - E[Y]E[Ys]

pY1Y3 = 0_10_3 ’ (N320)

where U§ is the variance of Y3. Equation N.3.20 requires the expected value of the product of Y;
and Y3, which is again approximated by expressing Y7 as a sum of its component variables:

E [(Fa al-Yli) Yg] _E [25;1 aiYh} E V3]

pY1Y3 = 0_10_3 ’ (N321)

where

k1
E [(Z aZ-Y1L> Yg} =1IE [OqYllYg + O¢2Y12Y3 + ...+ ak1Y1k1 Y3]
1=1

(N.3.22)
— o B[V}, V3] + as B[V1,Y3] + ... + ap, I [Ylkl Y3] .
Using the general correlation equation, for 1 < i < ky:
E[Y1,Ys] = 01,03Py,,Y, + 1B [Y1,]E[Y3], (N.3.23)

so that we can rewrite PY Y, as:

a1 (01103/?1/111/3 +E[Y,]E [Y3]) +o o <01k103pylk_1y3 +IE [Ylkl] & [Y3])
0103

a1 B[V}, | E[Ys] + ... + ay, B [Ylkl] IE [Y3]

PY1Ys =

0103
Ekl Q; 0 P
=1 Yh Yn)%

o1

(N.3.24)

Continuing with the example, the correlations between Y] and Y3 and between Y and Y3 are
approximated as:

rho_M1Y(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]], rho[1:3, 6])
[1] 0.1482236
rho_M1Y(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]], rho[4:5, 6])
[1] 0.2795669

The accuracy of these approximations can be determined through simulation:

means <- c(Nstcum[1], Bstcum[1])

vars <- c(Nstcum[2] "2, Bstcum[2]~2)

seed <- 184

Siml <- corrvar(n = 100000, k_mix = 2, k_pois = 1, method = "Polynomial",
means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, lam = 5, p_zip = 0.1,
rho = rho, seed = seed, use.nearPD = FALSE)

Total Simulation time: 0.065 minutes

names (Sim1)

[1] "constants" "Y_cont" "Y_comp" "sixth_correction"
[5] "valid.pdf" "Y_mix" "Y_pois" "Sigma"
[9] "Error_Time" "Time" "niter"

Suml <- summary_var(Y_comp = Siml$Y_comp, Y_mix = Simi$Y_mix,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 258

Y_pois = Sim1$Y_pois, means = means, vars = vars, mix_pis = mix_pis,
mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skeuws,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
lam = 5, p_zip = 0.1, rho = rho)

names (Sum1)

[1] "cont_sum" "target_sum" "mix_sum" "target_mix" "rho_mix" "pois_sum"
[7] "rho_calc" "maxerr"

Sumi$rho_mix

[,1] [,2] [,3]

[1,]1 1.0000000 0.1012219 0.1475749
[2,] 0.1012219 1.0000000 0.2776299
[3,] 0.1475749 0.2776299 1.0000000

The results show that Equation N.3.19 and Equation N.3.24 provided good approximations to
the simulated correlations. Examples comparing the two simulation pathways also compares
approximated expected correlations for continuous mixture variables with simulated correlations.

Figure 2 displays the PDF of the Normal mixture variable and the simulated values of the zero-
inflated Poisson (ZIP) variable obtained using SimCorrMix’s graphing functions. These functions
are written with ggplot2 functions and the results are ggplot objects that can be saved or further
modified (Wickham and Chang, 2016). As demonstrated below, the target distribution, specified by
distribution name and parameters (39 distributions currently available by name) or PDF function
fx, can be overlayed on the plot for continuous or count variables.

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 1], title = "", sim_size = 2,
target_size = 2, fx = function(x) mix_pis[[1]][1] =*
dnorm(x, mix_mus[[1]][1], mix_sigmas[[1]]1[1]) + mix_pis[[1]][2] =*
dnorm(x, mix_mus[[1]][2], mix_sigmas[[1]][2]) + mix_pis[[1]]1[3] =*
dnorm(x, mix_mus[[1]][3], mix_sigmas[[1]1]1[3]), lower = -10, upper = 10,

legend.position = "none", axis.text.size = 30, axis.title.size = 30)
plot_simtheory(sim_y = Simi1$Y_pois[, 1], title = "", cont_var = FALSE,

binwidth = 0.5, Dist = "Poisson", params = c(5, 0.1),

legend.position = "none", axis.text.size = 30, axis.title.size = 30)

1500-
0.09-
2z 1000
50.06: =
g 3
[} o
o
0.03 500 I
-10 5 0 5 10 0 5 10 15
y y
(a) PDF of Normal mixture variable. (b) Simulated values of ZIP variable.

Figure 2: Graphs of variables (simulated = blue, target = green).

The Continuous Mixture Distributions vignette explains how to compare simulated to theo-
retical distributions of continuous mixture variables, as demonstrated here for the Beta mixture
variable Y3 (adapted from Headrick and Kowalchuk, 2007):

1. Obtain the standardized cumulants for the target mixture variable Y5" and its components:
these were found above using calc_mixmoments and calc_theory.

2. Obtain the PMT constants for the components of Y2*: these are returned in the simulation
result Simi$constants.

3. Determine whether these constants produce valid PDF’s for the components of Y2 (and therefore
for Y2): this is indicated for all continuous variables in the simulation result Sim1$valid.pdf.

[1] "TRUE" "TRUE" "TRUE" "TRUE" "TRUE"

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 259

4. Select a critical value from the distribution of Y5*, i.e. 3 such that Pr[Y5" > y5 | = a, for the
desired significance level a: Let a = 0.05. Since there are no quantile functions for mixture
distributions, determine where the cumulative probability equals 1 — a = 0.95.

beta_fx <- function(x) mix_pis[[2]][1] * dbeta(x, 13, 11) +
mix_pis[[2]][2] * dbeta(x, 13, 4)

beta_cfx <- function(x, alpha, fx = beta_fx) {
integrate(function(x, FUN = fx) FUN(x), -Inf, x, subdivisions = 1000,

stop.on.error = FALSE)$value - (1 - alpha)

}

y2_star <- uniroot(beta_cfx, c(0, 1), tol = 0.001, alpha = 0.05)$root

y2_star

[1] 0.8985136

5. Calculate the cumulative probability for the simulated mixture variable Y up to yi and
compare to 1 — a: The function sim_cdf_prob from SimMultiCorrData calculates cumulative
probabilities.

sim_cdf_prob(sim_y = Simi1$Y_mix[, 2], delta = y2_star)$cumulative_prob
[1] 0.9534

This is approximately equal to the 1 — « value of 0.95, indicating that the simulation provides
a good approximation to the theoretical distribution.

6. Plot a graph of Y5 and Ya: Figure 3 shows the PDF and empirical CDF obtained as follows
(plot_sim_cdf is in SimMultiCorrData):

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 2], title = "", sim_size = 2,
target_size = 2, fx = beta_fx, lower = O, upper = 1,
legend.position = c(0.4, 0.85), legend.text.size = 30,
axis.text.size = 30, axis.title.size = 30)
plot_sim_cdf(sim_y = Sim1$Y_mix[, 2], title = "", calc_cprob = TRUE,
delta = y2_star, text.size = 30, axis.text.size = 30, axis.title.size = 30)

1.00 Cumulative probability =0.9534, y = 0.8985 -
E_Sl_imulated Variable

arget 20.75
2 3
2
2 o
e} o

% e 0.50
o K|
1 :

00.25

0.00

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
y y
(a) PDF. (b) CDF.

Figure 3: Graphs of the Beta mixture variable.

Count mixture distributions

SimCorrMix extends the methods in SimMultiCorrData for regular Poisson and Negative Binomial
(NB) variables to zero-inflated Poisson and NB variables. All count variables are generated using
the inverse CDF method with distribution functions imported from VGAM. The CDF of a standard
normal variable has a uniform distribution. The appropriate quantile function Fy. Lig applied to this

uniform variable with the designated parameters to generate the count variable: Y = Fy L@ (2)).
The order within all parameters for count variables should be 1% regular and 27 zero-inflated.

A zero-inflated random variable Yz is a mixture of a degenerate distribution having the point
mass at 0 and another distribution Y that contributes both zero and non-zero values. If the mixing
probability is ¢, then:

Pr[Yz; =0]=¢+(1—¢)Pr[Y =0], 0<¢< L. (N.4.1)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 260

Therefore, ¢ is the probability of a structural zero, and setting ¢ = 0 reduces Yz to the variable Y.
In SimCorrMix, Y can have either a Poisson (Yp) or a Negative Binomial (Yy) distribution.

Zero-inflated Poisson (ZIP) distribution
The model for Yzrp ~ ZIP (A, ¢), A>0, 0< ¢ < 1is:
Pr[Yzip =0]=¢+(1—¢)exp(—A)

\Y (N.4.2)
Pr(Yzip =yl = (1—¢)exp (=) PR L2,..
The mean of Yz p is (1 — ¢) A, and the variance is A + A2¢/ (1 — ¢) (Lambert, 1992). The parameters
A (mean of the regular Poisson component) and ¢ are specified in SimCorrMix through the inputs
lam and p_zip. Setting p_zip = 0 (the default setting) generates a regular Poisson variable.

The zero-deflated Poisson distribution is obtained by setting ¢ € (—1/(exp (A\) — 1), 0), so that
the probability of a zero count is less than the nominal Poisson value. In this case, ¢ no longer
represents a probability. When ¢ = —1/ (exp (A) — 1), the random variable has a positive-Poisson
distribution. The probability of a zero response is 0, and the other probabilities are scaled to sum to
1.

Zero-inflated Negative Binomial (ZINB) distribution

A major limitation of the Poisson distribution is that the mean and variance are equal. In practice,
population heterogeneity creates extra variability (overdispersion), e.g., if Y represents the number
of events which occur in a given time interval and the length of the observation period varies across
subjects. If the length of these periods are available for each subject, an offset term may be used.
Otherwise, the length can be considered a latent variable and the mean of the Poisson distribution
for each subject is a random variable. If these means are described by a Gamma distribution, then
Y has a NB distribution, which has an extra parameter to account for overdispersion. However, an
excessive number of zeros requires using a zero-inflated distribution. These extra (structural) zeros
may arise from a subpopulation of subjects who are not at risk for the event during the study period.
These subjects are still important to the analysis because they may possess different characteristics
from the at-risk subjects (He et al., 2014).

The model for Yyyng ~ ZINB(n, p, ¢), n>0,0<p<1, 0<¢<lis:
Pr[Yzing =0l = ¢+ (1-¢)p"

o F(y+n) » noo
Pr(Yzing =yl =(1-9) Ty " (1=p)", y=12..
In this formulation, the Negative Binomial component Yy g represents the number of failures that
occur in a sequence of independent Bernoulli trials before a target number of successes (1) is reached.
The probability of success in each trial is p. Y p may also be parameterized by the mean p (of
the regular NB component) and dispersion parameter n so that p = n/(n+p) or p =n(1—p) /p.
The mean of Yzrnp is (1 — ¢) u, and the variance is (1 — ¢) u (1 + p (¢ +1/n)) (Ismail and Zamani,
2013; Zhang et al., 2016). The parameters 7, p, u, and ¢ are specified through the inputs size,
prob, mu, and p_zinb. Either prob or mu should be given for all NB and ZINB variables. Setting
p_zinb = 0 (the default setting) generates a regular NB variable.

The zero-deflated NB distribution may be obtained by setting ¢ € (—p"/ (1 —p"), 0), so that
the probability of a zero count is less than the nominal NB value. In this case, ¢ no longer represents
a probability. The positive-NB distribution results when ¢ = —p"/(1 — p"). The probability of a
zero response is 0, and the other probabilities are scaled to sum to 1.

(N.4.3)

Calculation of intermediate correlations for count variables

The two simulation pathways differ by the technique used for count variables. The intermediate
correlations used in correlation method 1 are simulation based and accuracy increases with sample
size and number of repetitions. The intermediate correlations used in correlation method 2 involve
correction loops which make iterative adjustments until a maximum error has been reached (if
possible). Correlation method 1 is described below:

1. Count variable pairs: Based on Yahav and Shmueli (2012)’s method, the intermediate
correlation between the standard normal variables Z; and Zs is calculated using a logarithmic
transformation of the target correlation. First, the upper and lower Fréchet-Hoeffding bounds

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 261

(mincor, maxcor) on py,y, are simulated (see Calculation of correlation boundaries; Fréchet,
1957; Hoeffding, 1994). Then the intermediate correlation pyz, z, is found as follows:

1 PYIY, — C
lezz = g log (%)) (N44)
where .
maxcor % mincor maxcor + a
q@=———F b=log(7), c=—a
maxcor + mincor a

The functions intercorr_pois, intercorr_nb, and intercorr_pois_nb calculate these cor-
relations.

2. Ordinal-count variable pairs: Extending Amatya and Demirtas (2015)’s method, the interme-
diate correlations are the ratio of the target correlations to correction factors. The correction
factor is the product of the upper Fréchet-Hoeffding bound on the correlation between the
count variable and the normal variable used to generate it and a simulated upper bound on
the correlation between an ordinal variable and the normal variable used to generate it. This
upper bound is Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) upper
bound (see Calculation of correlation boundaries). The functions intercorr_cat_pois and
intercorr_cat_nb calculate these correlations.

3. Continuous-count variable pairs: Extending Amatya and Demirtas (2015)’s and Demirtas
and Hedeker (2011)’s methods, the correlation correction factor is the product of the upper
Fréchet-Hoeffding bound on the correlation between the count variable and the normal
variable used to generate it and the power method correlation between the continuous
variable and the normal variable used to generate it. This power method correlation is
given by p,zyz = c¢1 + 3c3 + 15¢5, where ¢3 = 0 for Fleishman’s method (IHeadrick and
Kowalchuk, 2007). The functions intercorr_cont_pois and intercorr_cont_nb calculate
these correlations.

Fialkowski and Tiwari (2017) showed that this method is less accurate for positive correlations with
small count variable means (i.e., less than 1) or high negative correlations with large count variable
means.

In correlation method 2, count variables are treated as "ordinal" variables, based on the methods
of Barbiero and Ferrari (Ferrari and Barbiero, 2012; Barbiero and Ferrari, 2015a). The Poisson or NB
support is made finite by removing a small user-specified value (specified by pois_eps and nb_eps)
from the total cumulative probability. This truncation factor may differ for each count variable, but
the default value is 0.0001 (suggested by Barbiero and Ferrari, 2015a). For example, pois_eps =
0.0001 means that the support values removed have a total probability of 0.0001 of occurring in the
distribution of that variable. The effect is to remove improbable values, which may be of concern if
the user wishes to replicate a distribution with outliers. The function maxcount_support creates
these new supports and associated marginal distributions.

1. Count variable or ordinal-count variable pairs: The intermediate correlations are calculated
using the correction loop of ord_norm (see Simulation of ordinal variables).

2. Continuous-count variable pairs: Extending Demirtas et al. (2012)’s method, the intermediate
correlations are the ratio of the target correlations to correction factors. The correction factor
is the product of the power method correlation between the continuous variable and the normal
variable used to generate it and the point-polyserial correlation between the ordinalized count
variable and the normal variable used to generate it (Olsson et al., 1982). The functions
intercorr_cont_pois2 and intercorr_cont_nb2 calculate these correlations.

This method performs best under the same circumstances as ordinal variables, i.e., when there are
few categories and the probability of any given category is not very small. This occurs when the
count variable has a small mean. Therefore, method 2 performs well in situations when method 1 has
poor accuracy. In contrast, large means for the count variables would result in longer computational
times. Examples comparing the two simulation pathways compares the accuracy of correlation
methods 1 and 2 under different scenarios.

Simulation of ordinal variables

Ordinal variables (r > 2 categories) are generated by discretizing standard normal variables at the
quantiles determined from the cumulative probabilities specified in marginal. Each element of this
list is a vector of length » — 1 (the rtP value is 1). If the support is not provided, the default is to use
{1, 2, ..., v} (Ferrari and Barbiero, 2012). The tetrachoric correlation is used for the intermediate
correlation of binary pairs (Emrich and Piedmonte, 1991; Demirtas et al., 2012). The assumptions

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 262

are that the binary variables arise from latent normal variables and the actual trait is continuous
and not discrete. For Y7 and Y2, with success probabilities p; and p2, the intermediate correlation
pz, 7, is the solution to the following equation:

@[z(p1), 2(P2), pz,2,) = Pyive/p1 (1 —p1)p2 (1 —p2) + p1p2, (N.5.1)

where z (p) indicates the pth quantile of the standard normal distribution.

If at least one ordinal variable has more than 2 categories, ord_norm is called. Based on
SimMultiCorrData’s ordnorm and GenOrd’s ordcont and contord, the algorithm to simulate k_cat
ordinal random variables with target correlation matrix rho0 is as follows:

1. Create the default support if necessary.

2. Use norm_ord to calculate the initial correlation of the ordinal variables (rhoordold) generated
by discretizing k_cat random normal variates with correlation matrix set equal to rhoO, using
marginal and the corresponding normal quantiles. These correlations are calculated using
means and variances found from multivariate normal probabilities determined by mvtnorm’s
pmvnorm (Genz et al., 2017; Genz and Bretz, 2009).

3. Let rho be the intermediate normal correlation updated in each iteration, rhoord be the
ordinal correlation calculated in each iteration, rhoold be the intermediate correlation from
the previous iteration (initialized at rhoordold), it be the iteration number, and maxit and
epsilon be the user-specified maximum number of iterations and pairwise correlation error.
For each variable pair, execute the following:

(a) If rhoO = 0, set rho = 0.

(b) While the absolute error between rhoord and rhoO is greater than epsilon and it is
less than maxit:

i. If rhoO * (rhoO/rhoord) <= -1:
rho = rhoold * (1 + 0.1 * (1 -rhoold) * -sign(rhoO -rhoord)).
ii. If rhoO * (rhoO/rhoord) >= 1:
rho = rhoold * (1 + 0.1 * (1 -rhoold) * sign(rho0 -rhoord)).
iii. Else, rho = rhoold * (rho0O/rhoord).
iv. If rho >1, set rho = 1. If rho <-1, set rho = -1.
v. Calculate rhoord using norm_ord and the 2 x 2 correlation matrix formed by rho.

vi. Set rhoold = rho and increase it by 1.

(c) Store the number of iterations in the matrix niter.

4. Return the final intermediate correlation matrix SigmaC = rho for the random normal variables.
Discretize these to produce ordinal variables with the desired correlation matrix.

Calculation of correlation boundaries

For binary variable pairs, the correlation bounds are calculated as by Demirtas et al. (2012). The
joint distribution is determined using the moments of a multivariate normal distribution (Emrich
and Piedmonte, 1991). For Y7 and Y3, with success probabilities p; and p2, the boundaries are

approximated by:
{max (_ [pip2 /CI1Q2> . min ([praz /q1p2) } 7 (N.6.1)
q1492 p1p2 q1p2 P1q2

where g1 = 1 —p; and g2 = 1 — pa. If one of an ordinal variable pair has more than 2 categories,
randomly generated variables with the given marginal distributions and support values are used
in Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) algorithm. A large number
(default 100, 000) of independent random samples from the desired distributions are generated. The
lower bound is the sample correlation of the two variables sorted in opposite directions (i.e., one
increasing and one decreasing). The upper bound is the sample correlation of the two variables
sorted in the same direction.

The GSC algorithm is also used for continuous, continuous-ordinal, ordinal-count, and continuous-
count variable pairs. Since count variables are treated as "ordinal" in correlation method 2, the
correlation bounds for count variable pairs is found with the GSC algorithm after creating finite
supports with associated marginal distributions (with maxcount_support). The correlation bounds
for count variable pairs in correlation method 1 are the Fréchet-Hoeffding bounds (Fréchet, 1957;

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mvtnorm

CONTRIBUTED RESEARCH ARTICLES 263

Hoeffding, 1994). For two random variables Y7 and Ys with CDF’s F; and Fb, the correlation
bounds are approximated by:

{Cor (Ffl), Fy (1 - U)) , Cor (Ffl), Fy (U))} 7 (N.6.2)

where U is a Uniform(0, 1) random variable of default length 100, 000.

Example with multiple variable types

Consider the Normal and Beta mixture variables from Continuous mixture distributions. Additional
variables are an ordinal variable with three equally-weighted categories (e.g., drug treatment), two
zero-inflated Poisson variables with means 0.5 and 1 (for the regular Poisson components) and
structural zero probabilities 0.1 and 0.2, and two zero-inflated NB variables with means 0.5 and 1
(for the regular NB components), success probabilities 0.8 and 0.6, and structural zero probabilities
0.1 and 0.2. The target pairwise correlation is set at —0.5. The components of the Normal mixture
variable again have weak correlation of 0.1 and those for the Beta mixture variable are uncorrelated.
The parameter inputs are first checked with validpar.

marginal <- list(c(1/3, 2/3))

support <- 1list(c(0, 1, 2))

lam <- c(0.5, 1)

p_zip <- c(0.1, 0.2)

mu <- c(0.5, 1)

prob <- c(0.8, 0.6)

size <- prob * mu/(1 - prob)

p_zinb <- c(0.1, 0.2)

rho <- matrix(-0.5, 10, 10)

rho[2:4, 2:4] <- matrix(0.1, 3, 3)

rho[5:6, 5:6] <- matrix(0, 2, 2)

diag(rho) <- 1

validpar(k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2, method = "Polynomial",
means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, marginal = marginal,
support = support, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho)

Default of pois_eps = 0.0001 will be used for Poisson variables

if using correlation method 2.

Default of nb_eps = 0.0001 will be used for NB variables

if using correlation method 2.

Target correlation matrix is not positive definite.

[1] TRUE

validl <- validcorr(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,
method = "Polynomial", means = means, vars = vars, mix_pis = mix_pis,

mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

Range error! Corr[7 , 9] must be between -0.388605 and 0.944974

Range error! Corr[7 , 10] must be between -0.432762 and 0.925402

Range error! Corr[8 , 9] must be between -0.481863 and 0.877668

Range error! Corr[9 , 10] must be between -0.386399 and 0.937699

names (validl)

[1] "rho" "L_rho" "U_rho" "constants"

[5] "sixth_correction" "valid.pdf" "valid.rho"

valid2 <- validcorr2(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,
method = "Polynomial", means = means, vars = vars, mix_pis = mix_pis,

mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

Range error! Corr[7 , 9] must be between -0.385727 and 0.947462

Range error! Corr[7 , 10] must be between -0.428145 and 0.921001

Range error! Corr[8 , 9] must be between -0.477963 and 0.879439

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 264

Range error! Corr[9 , 10] must be between -0.384557 and 0.939524

The validpar function indicates that all parameter inputs have the correct format and the default
cumulative probability truncation value of 0.0001 will be used in correlation method 2 for pois_eps
and nb_eps. Since rho is not PD, the intermediate correlation matrix Sigma will probably also be
non-PD. The user has three choices: 1) convert rho to the nearest PD matrix before simulation,
2) set use.nearPD = TRUE (default) in the simulation functions to convert Sigma to the nearest
PD matrix during simulation, or 3) set use.nearPD = FALSE in the simulation functions to replace
negative eigenvalues with 0. Using use.nearPD = TRUE in validcorr or validcorr2 converts rho to
the nearest PD matrix before checking if all pairwise correlations fall within the feasible boundaries,
whereas use.nearPD = FALSE checks the initial matrix rho. Setting quiet = TRUE keeps the non-PD
message from being reprinted.

Range violations occur with the count variables. The lower and upper correlation bounds are
given in the list components L_rho and U_rho. Note that these are pairwise correlation bounds.
Although valid.rho will return TRUE if all elements of rho are within these bounds, this does not
guarantee that the overall target correlation matrix rho can be obtained in simulation.

Overall workflow for generation of correlated data

The vignette Overall Workflow for Generation of Correlated Data provides a detailed step-
by-step guideline for correlated data simulation with examples for corrvar and corrvar2. These
steps are briefly reviewed here.

1. Obtain the distributional parameters for the desired variables.

(a) Continuous variables: For non-mixture and components of mixture variables, these are
skew, skurtosis, plus standardized fifth and sixth cumulants (for method = "Polynomial")
and sixth cumulant corrections (if desired). The inputs are skews, skurts, fifths,
sixths, and Six for non-mixture variables; mix_skews, mix_skurts, mix_fifths, mix_sixths,
and mix_Six for components of mixture variables. If the goal is to simulate a theoretical
distribution, SimMultiCorrData’s calc_theory will return these values given a distri-
bution’s name and parameters (39 distributions currently available by name) or PDF
function fx. If the goal is to mimic a real data set, SimMultiCorrData’s calc_moments
uses the method of moments or calc_fisherk uses Fisher (1929)’s k-statistics given
a vector of data. For mixture variables, the mixing parameters (mix_pis), component
means (mix_mus), and component standard deviations (mix_sigmas) are also required.
The means and variances of non-mixture and mixture variables are specified in means
and vars and these can be found using calc_mixmoments for mixture variables.

(b) Ordinal variables: The cumulative marginal probabilities in marginal and support values
in support as described in Simulation of ordinal variables.

(c) Poisson variables: The mean values in lam and probabilities of structural zeros in p_zip
(default of 0 to yield regular Poisson distributions). The mean refers to the mean of
the Poisson component of the distribution. For correlation method 2, also cumulative
probability truncation values in pois_eps.

(d) NB variables: The target number of successes in size, probabilities of structural zeros
in p_zinb (default of 0 to yield regular NB distributions), plus means in mu or success
probabilities in prob. The mean refers to the mean of the NB component of the
distribution. For correlation method 2, also cumulative probability truncation values in
nb_eps.

2. Check that all parameter inputs have the correct format using validpar. Incorrect parameter
specification is the most likely cause of function failure.

3. If continuous variables are desired, verify that the skurtoses are greater than the lower
skurtoses bounds using SimMultiCorrData’s calc_lower_skurt. The function permits a
skurtosis correction vector to aid in discovering a lower bound associated with PMT constants
that yield a valid PDF. Since this step can take considerable time, the user may wish to do
this at the end if any of the variables have invalid PDF’s. The sixth cumulant value should be
the actual sixth cumulant used in simulation, i.e., the distribution’s sixth cumulant plus any
necessary correction (if method = "Polynomial").

4. Check if the target correlation matrix rho falls within the feasible correlation boundaries. The
variables in rho must be ordered correctly (see Introduction).

5. Generate the variables using either corrvar or corrvar2, with or without the error loop.

6. Summarize the results numerically with summary_var or graphically with plot_simpdf_theory,
plot_simtheory, or any of the plotting functions in SimMultiCorrData.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 265

Examples comparing the two simulation pathways

Correlation methods 1 and 2 were compared to demonstrate situations when each has greater
simulation accuracy. In scenario A, the ordinal (O1), Normal mixture (Nmix with components N1,
N2, and N3), Beta mixture (Bmix with components Bl and B2), two zero-inflated Poisson (P1
and P2), and two zero-inflated NB (NB1 and NB2) variables from the Calculation of correlation
boundaries example were simulated. All count variables in this case had small means (less than 1).
In scenario B, the two Poisson variables were replaced with two zero-inflated NB (NB3 and NB4)
variables with means 50 and 100 (for the regular NB components), success probabilities 0.4 and 0.2,
and structural zero probabilities 0.1 and 0.2. This yielded two count variables with small means
and two with large means. The simulations were done with n = 10,000 sample size and r = 1,000
repetitions using three different positive correlations as given in Table 1 (chosen based on the upper
correlation bounds). The correlation among N1, N2, N3 was set at 0.1; the correlation between Bl
and B2 was set at 0. The default total cumulative probability truncation value of 0.0001 was used
for each count variable in corrvar2.

In scenarios A and B, the simulated correlations among the count variables were compared to the
target values using boxplots generated with ggplot2’s geom_boxplot. In scenario A, the simulated
correlations with the continuous mixture variables were compared to the expected correlations
approximated by rho_M1M2 and rho_M1Y, with O1 as the non-mixture variable. Simulation times
included simulation of the variables only with corrvar or corrvar2. Medians and interquartile
ranges (IQR) were computed for the summary tables. Variable summaries are given for Nmix,
Bmix, and NB1-NB4 in scenario B. This example was run on R version 3.4.1 with SimCorrMix
version 0.1.0 using CentOS. The complete code is in the supplementary file for this article.

Results

Table 1 gives the three different correlations and total simulation times (1,000 repetitions) for
correlation method 1 using corrvar (Time M;) and correlation method 2 using corrvar2 (Time
Ms). The strong correlation was different between NB variables with small means (NB1, NB2) and
NB variables with large means (NB3, NB4) because the upper bounds were lower for these variable
pairs.

Scenario A: Poisson and NB B: NB

Correlation Type p p* Time M; Time My Time M; Time My

Strong 0.7 0.6 2.55 2.03 2.00 9.30
Moderate 0.5 0.5 1.65 0.92 1.98 8.01
Weak 0.3 0.3 1.39 0.90 1.95 5.78

Table 1: Six comparisons and total simulation times for method 1 (M;) and method 2 (Mz2) in
hours. Correlation p* applied to the NB1-NB3, NB1-NB4, NB2-NB3, and NB2-NB4
variable pairs.

The strong correlations required the most time for each correlation method. Although method 2
was faster when all count variables had small means (scenario A), it was notably slower when two
of the count variables had large means (scenario B). The reason is that method 2 treats all count
variables as "ordinal," which requires creating finite supports and associated marginal distributions,
as described in Calculation of intermediate correlations for count variables. When a count variable
has a large mean, there are several support values with very small probabilities, making simulation
more difficult.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 266

Scenario A: Ordinal, Normal and Beta mixtures, Poisson, and NB variables

Figure 4 contains boxplots of the simulated correlations for the continuous mixture variables. Method
1 is in red; method 2 is in green. The middle line is the median (50th percentile); the lower and
upper hinges correspond to the first and third quartiles (the 25" and 75" percentiles). The upper
whisker extends from the hinge to the largest value up to 1.5 * IQR from the hinge. The lower
whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data beyond
the end of the whiskers are considered "outliers." The black horizontal lines show the approximate
expected values obtained with the functions rho_M1M2 and rho_M1Y (also given in Table 2).

Correlation Type P PNmix,Bmix PNmix,01 PBmix,01

Strong 0.7 0.1813 0.2594 0.4892
Moderate 0.5 0.1295 0.1853 0.3495
Weak 0.3 0.0777 0.1112 0.2097

Table 2: Approximate expected correlations with the continuous mixture variables.

Notice in Table 2 that the expected correlations are much smaller than the pairwise correlations,
demonstrating an important consideration when setting the correlations for mixture components.
Even though the strong correlation between the components of Nmix and the components of Bmix
was set at 0.7, the expected correlation between Nmix and Bmix was only 0.1813. Combining
continuous components into one continuous mixture variable always decreases the absolute correlation
between the mixture variable and other variables.

Figure 4 shows that, as expected, the results with correlation methods 1 and 2 were similar,
since the methods differ according to count variable correlations. The simulated correlations were
farthest from the approximate expected values with the strong correlation and closest for the weak
correlation. In the simulations with strong or moderate correlations, the intermediate correlation
matrix Sigma was not PD due to the weak correlation (0.1) between N1, N2, and N3 and independence
(zero correlation) of B1 and B2. During simulation, after Sigma is calculated with intercorr or
intercorr2, eigenvalue decomposition is done on Sigma. The square roots of the eigenvalues form a
diagonal matrix. The product of the eigenvectors, diagonal matrix, and transposed standard normal
variables produces normal variables with the desired intermediate correlations. If Sigma is not PD
and use.nearPD is set to FALSE in the simulation functions, negative eigenvalues are replaced with 0
before forming the diagonal matrix of eigenvalue square roots. If use.nearPD is set to TRUE (default),
Sigma is replaced with the nearest PD matrix using (IHigham, 2002)’s algorithm and Matrix’s
nearPD function. KEither method increases correlation errors because the resulting intermediate
correlations are different from those found in Sigma. As the maximum absolute correlation in the
target matrix rho increases, these differences increase. In this example, the Sigma matrix had
two negative eigenvalues in the strong correlation simulations and one negative eigenvalue in the
moderate correlation simulations. This is why the correlation errors were largest for the strong
correlation setting.

Figure 5 shows boxplots of the simulated correlations for the count variables. The horizontal
lines show the target values. These correlations were also affected by the adjusted eigenvalues and
the errors for the strong correlations were again the largest. Correlation method 2 performed better
in each case except when generating pp; nB1 in the strong correlation case. Barbiero and Ferrari
(2015a)’s method of treating count variables as "ordinal" is expected to exhibit better accuracy
than Yahav and Shmueli (2012)’s equation when the count variables have small means (less than
1). Tables 6-8 in the Appendix provide median (IQR) correlation errors for all variables and each
correlation type.

Scenario B: Ordinal, Normal and Beta mixtures, and NB variables

Tables 3 and 4 describe the target and simulated distributions for Nmix, Bmix, and NB1-NB4
in the weak correlation case. In all instances, the simulated distributions are close to the target

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 267

Strong Moderate Weak
: . . : !
H
0.18 - 0.15- 0.10-
kS
&
£ 0.16- 0.13~ 0.08-
£
z
aQ
0.14- 0117 0.06 -
. 3 . 5 $]
Strong Moderate Weak
0.22- . 0-15 .

0.13-

Lx3
¢
com
wee o
.
oo

0.20-

0.11-

0.18-
0.09 -
0.16- * .
0.22- i § !
¢ . . 0.07- 5
Moderate Weak
. : :
0.38- . . 0.23-
0.22-
0.36 -
0.21 -
0.20-
0.34-
0.19-
0.46 - : o

Figure 4: Boxplots of simulated correlations for continuous mixture variables (scenario A).
Method 1 is in red; method 2 is in green. The horizontal lines show the approximate
expected values.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

268

0.74-

0.73-

0.72-

PP1,P2

i el |
0 | 050 —=

0.70

0.75-

0.74-

0.73-

PP1,NB2

0.72-

0.71-

0.70

0.73-

0.72-

0.71-

PP2,NB2

Strong

.
H
.

Strong

Strong

0.70

Moderate
054 F

0.52- .

Moderate

0.54-

0.52-

0.50

048-

Moderate

0.53-

0.52-

0.50

049- -

048-

Weak
0.34-

0.32- o

10—

0.28- X

Weak
0.35-
0.33-

—
0.31-
—

0.29- :

Weak

0.28- .

PP1,NB1

PP2,NB1

PNB1,NB2

0.54- . :

0.70 —+——— 0.49-
Strong
075- |
0.74- 054-
073 -
i 052
0.72-
0.71-
050
0.70 I
Strong
0.76- 0.56-
0.74- '
, 052-
0.72-
050
:
0.70 048-

Moderate Weak

.

i 0.34-

8 0.28-
§
Moderate Weak
0.33-
0.31-
029-
Moderate Weak
0.34-

0.32-
. 0.30—!—.—

0.28-

. .

Figure 5: Boxplots of simulated correlations for P1, P2, NB1, and NB2 (scenario A). Method 1
is in red; method 2 is in green. The horizontal lines show the target values.

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 269

distributions.
Nmix Bmix
Mean -0.20 -0.20 (-0.20,-0.20) 0.70 0.70 (0.70, 0.70)
SD 448 4.48 (4.48, 4.48) 0.14 0.14 (0.14, 0.14)
Skew 0.33 0.33 (0.32, 0.33) -0.46 -0.46 (-0.47, -0.45)

Skurtosis -0.62 -0.62 (-0.64, -0.61) -0.54 -0.54 (-0.56, -0.52)

Fifth -1.02 -1.03 (-1.07,-0.98) 172 1.73 (1.68, 1.77)

Sixth 1.49 1.50 (1.36,1.62) 0.56 0.54 (0.37, 0.72)

Table 3: Target and median (IQR) simulated distributions of continuous mixture variables.

e[Y = 0] E(:[Y = 0]) Mean IE[Mean]
NB1 0.68 (0.67, 0.68) 0.68 0.45 (0.45, 0.45) 0.45
NB2 0.57 (0.57, 0.57) 0.57 0.80 (0.80, 0.80) 0.80
NB3 0.10 (0.10, 0.10) 0.10 45.00 (44.96, 45.03) 45.00
NB4 0.20 (0.20, 0.20) 0.20 80.00 (79.90, 80.10) 80.00

Var IE[Var] Median Max

NB1 0.58 (0.58, 0.59) 0.58 0 (0, 0) 7(6,7)
NB2 1.49 (1.48, 1.51) 1.49 0 (0, 0) 11 (10, 12)
NB3 337.76 (335.43, 339.67) 337.50 48 (48, 48) 101 (98, 105)
NB4 2000.09 (1990.21, 2010.18) 2000.00 92 (91, 92) 204 (199, 212)

Table 4: Target and median (IQR) simulated distributions of zero-inflated NB variables.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 270

Figure 6 shows boxplots of the simulated correlations for the count variables. The horizontal
lines show the target values. Method 1 performed better for all strong correlation cases except
between the two NB variables with small means (NB1 and NB2). Although method 2 had smaller
errors overall, it did require considerably longer simulation times. Therefore, the user should consider
using correlation method 1 when the data set contains count variables with large means. Tables 911
in the Appendix provide median (IQR) correlation errors for all variables and each correlation type.

Summary

The package SimCorrMix generates correlated continuous (normal, non-normal, and mixture), ordinal
(r = 2 categories), and count (regular or zero-inflated, Poisson or Negative Binomial) variables. It is a
significant contribution to existing R simulation packages because it is the first to include continuous
and count mixture variables in correlated data sets. Since SimCorrMix simulates variables which
mimic real-world data sets and provides great flexibility, the package has a wide range of applications
in clinical trial and genetic studies. The simulated data sets could be used to compare statistical
methods, conduct hypothesis tests, perform bootstrapping, or calculate power. The two simulation
pathways, excecuted by the functions corrvar and corrvar2, permit the user to accurately reproduce
desired correlation matrices for different parameter ranges. Correlation method 1 should be used
when the target distributions include count variables with large means, and correlation method
2 is preferable in opposite situations. The package also provides helper functions to calculate
standardized cumulants of continuous mixture variables, approximate expected correlations with
continuous mixture variables, validate parameter inputs, determine feasible correlation boundaries,
and summarize simulation results numerically and graphically. Future extensions of the package
include adding more variable types (e.g., zero-inflated Binomial, Gaussian, and Gamma).

Supplementary Material

The article’s supplementary file contains replication code for the examples in the paper and Examples
comparing the two simulation pathways.

Acknowledgments

This research serves as part of Allison Fialkowski’s dissertation, which was made possible by grant
T32HL079888 from the National Heart, Lung, and Blood Institute of the National Institute of
Health, USA and Dr. Hemant K. Tiwari’s William "Student" Sealy Gosset Professorship Endowment.
I would like to thank my dissertation mentor, Hemant K. Tiwari, PhD; and committee members
T. Mark Beasley, PhD; Charles R. Katholi, PhD; Nita A. Limdi, PhD; M. Ryan Irvin, PhD; and
Nengjun Yi, PhD.

Bibliography

A. Amatya and H. Demirtas. Simultaneous generation of multivariate mixed data with Poisson and
normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-3139, 2015.
URL https://doi.org/10.1080/00949655.2014.953534. [p261]

D. Ardia. AdMit: Adaptive Mizture of Student-t Distributions, 2017. URL https://CRAN.R-
project.org/package=AdMit. R package version 2.1.3. [p250]

L. M. Avila, M. R. May, and J. Ross-Ibarra. DPP: Inference of Parameters of Normal Distributions
from a Mizture of Normals, 2017. URL https://CRAN.R-project.org/package=DPP. R package
version 0.1.1. [p250]

A. A. Baghban, A. Pourhoseingholi, F. Zayeri, A. A. Jafari, and S. M. Alavian. Application
of zero-inflated Poisson mixed models in prognostic factors of Hepatitis C. BioMed Research
International, 2013. URL https://doi.org/10.1155/2013/403151. [p250]

O. G. Bahcall. Complex traits: Genetic discovery, heritability and prediction. Nature Reviews
Genetics, 16(257), 2015. URL https://doi.org/10.1038/nrg3947. [p253]

E. Balderama and T. Trippe. Hurdlr: Zero-Inflated and Hurdle Modelling Using Bayesian Inference,
2017. URL https://CRAN.R-project.org/package=hurdlr. R package version 0.1. [p251]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1080/00949655.2014.953534
https://CRAN.R-project.org/package=AdMit
https://CRAN.R-project.org/package=AdMit
https://CRAN.R-project.org/package=DPP
https://doi.org/10.1155/2013/403151
https://doi.org/10.1038/nrg3947
https://CRAN.R-project.org/package=hurdlr

CONTRIBUTED RESEARCH ARTICLES

271

Strong Moderate Weak
) 0.56-)
076- !
0.350-
. 054-
o 0.74- H
@ 0.325- :
z i 0.52-
m
Z]
a :
050 0.300
070 0.48- 02751
Strong Moderate Weak
4 +
0.600 — 052-
0.32-

0.595 - . . .

2 . R y o 031-

Z (590-

o

: AR |

0.5851 : 050 ' !

0,580 ; 0.29-

0575 © 049 :

Strong Moderate Weak
0.52- 0.32-

0.60 :
< . 051 031- .
m
z
N
2 059 :
g0% 050 —: o.3o—i

058 0.49- ; 0.29-

PNB1,NB3

PNB2,NB3

Strong
0.60
0.510-
050 v 0505
0.500
058- 0.495-
0.490-
]
Strong
0,600 —
0595 - . 0511
0.590- .
0.50 —
0.585- .
L}
0.580- 0.49-
Strong
—
' 0.51-
0.71-
0.50
0.70
0.49-
069- !
: 0.48-

Moderate

Moderate

Moderate

.

Weak

0.31-

029- |
Weak
i
:
031-
029-
Weak
032-
I
031-
0.30-~
029-
028~

Figure 6: Boxplots of simulated correlations for NB1, NB2, NB3, and NB4 (scenario B). Method
1 is in red; method 2 is in green. The horizontal lines show the target values.

The R Journal Vol. 11/1, June 2019

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 272

A. Barbiero and P. A. Ferrari. Simulation of correlated Poisson variables. Applied Stochastic Models
in Business and Industry, 31:669-680, 2015a. URL https://doi.org/10.1002/asmb.2072. [p261,
266]

A. Barbiero and P. A. Ferrari. GenOrd: Simulation of Discrete Random Variables with Given
Correlation Matriz and Marginal Distributions, 2015b. URL https://CRAN.R-project.org/
package=GenOrd. R package version 1.4.0. [p251]

D. Bates and M. Maechler. Matrixz: Sparse and Dense Matriz Classes and Methods, 2017. URL
https://CRAN.R-project.org/package=Matrix. R package version 1.2-12. [p255]

M. Bhattacharjee, M. S. Rajeevan, and M. J. Sillanpdd. Prediction of complex human diseases from
pathway-focused candidate markers by joint estimation of marker effects: Case of chronic fatigue
syndrome. Human Genomics, 9(1):8, 2015. URL https://doi.org/10.1186/s40246-015-0030-6.

[p253]

P. Biecek and E. Szczurek. Bgmm: Gaussian Mixture Modeling Algorithms and the Belief-Based
Mixture Modeling, 2017. URL https://CRAN.R-project.org/package=bgmm. R package version
1.8.3. [p250]

N. Bouguila, D. Ziou, and E. Monga. Practical Bayesian estimation of a finite beta mixture
through Gibbs sampling and its applications. Statistics and Computing, 16:215-225, 2006. URL
https://doi.org/10.1007/s11222-006-8451-7. [p255]

R. P. Browne, A. ElSherbiny, and P. D. McNicholas. Mizture: Mixture Models for Clustering and
Classification, 2015. URL https://CRAN.R-project.org/package=mixture. R package version
1.4. [p250]

M. Comas-Cufi, J. A. Martin-Ferndndez, and G. Mateu-Figueras. Mizpack: Tools to Work with
Mizture Components, 2017. URL https://CRAN.R-project.org/package=mixpack. R package
version 0.3.6. [p251]

H. Dai and R. Charnigo. Compound hierarchical correlated beta mixture with an application to
cluster mouse transcription factor DNA binding data. Biostatistics (Ozford, England), 16(4):
641-654, 2015. URL http://doi.org/10.1093/biostatistics/kxv016. [p255]

X. Dai, T. Erkkild, O. Yli-Harja, and H. Liahdesmé&ki. A joint finite mixture model for clustering
genes from independent Gaussian and beta distributed data. BMC' Bioinformatics, 10(1):165,
2009. URL https://doi.org/10.1186/1471-2105-10-165. [p255]

J. Davenport, J. Bezder, and R. Hathaway. Parameter estimation for finite mixture distributions.
Computers & Mathematics with Applications, 15(10):819-828, 1988. [p252]

H. Demirtas and D. Hedeker. A practical way for computing approximate lower and upper correlation
bounds. The American Statistician, 65(2):104-109, 2011. URL https://doi.org/10.1198/tast.
2011.10090. [p261, 262]

H. Demirtas, D. Hedeker, and R. J. Mermelstein. Simulation of massive public health data by power
polynomials. Statistics in Medicine, 31(27):3337-3346, 2012. URL https://doi.org/10.1002/
sim.5362. [p261, 262]

R. C. Elston, J. M. Olson, and L. Palmer. Biostatistical Genetics and Genetic Epidemiology. John
Wiley & Sons, Hoboken, New Jersey, 2002. [p253]

L. J. Emrich and M. R. Piedmonte. A method for generating high-dimensional multivariate binary
variates. The American Statistician, 45:302-304, 1991. URL https://doi.org/10.1080/00031305.
1991.10475828. [p261, 262]

B. S. Everitt. An introduction to finite mixture distributions. Statistical Methods in Medical Research,
5(2):107-127, 1996. URL https://doi.org/10.1177/096228029600500202. [p250, 252]

P. A. Ferrari and A. Barbiero. Simulating ordinal data. Multivariate Behavioral Research, 47(4):
566-589, 2012. URL https://doi.org/10.1080/00273171.2012.692630. [pZ(il]

A. C. Fialkowski. SimMultiCorrData: Simulation of Correlated Data with Multiple Variable Types,
2017. URL https://CRAN.R-project.org/package=SimMultiCorrData. R package version 0.2.1.

[p251]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1002/asmb.2072
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1186/s40246-015-0030-6
https://CRAN.R-project.org/package=bgmm
https://doi.org/10.1007/s11222-006-8451-7
https://CRAN.R-project.org/package=mixture
https://CRAN.R-project.org/package=mixpack
http://doi.org/10.1093/biostatistics/kxv016
https://doi.org/10.1186/1471-2105-10-165
https://doi.org/10.1198/tast.2011.10090
https://doi.org/10.1198/tast.2011.10090
https://doi.org/10.1002/sim.5362
https://doi.org/10.1002/sim.5362
https://doi.org/10.1080/00031305.1991.10475828
https://doi.org/10.1080/00031305.1991.10475828
https://doi.org/10.1177/096228029600500202
https://doi.org/10.1080/00273171.2012.692630
https://CRAN.R-project.org/package=SimMultiCorrData

CONTRIBUTED RESEARCH ARTICLES 273

A. C. Fialkowski and H. K. Tiwari. SimMultiCorrData: An R package for simulation of correlated
non-normal or normal, binary, ordinal, poisson, and negative binomial variables. Manuscript
submitted for publication, 2017. [p251, 261]

R. A. Fisher. Moments and product moments of sampling distributions. Proceedings of the London
Mathematical Society Series 2, 30:199-238, 1929. [p264]

A. I. Fleishman. A method for simulating non-normal distributions. Psychometrika, 43:521-532,
1978. URL https://doi.org/10.1007/BF02293811. [p251, 253]

C. Fraley, A. E. Raftery, and L. Scrucca. Mclust: Gaussian Mixture Modelling for Model-Based
Clustering, Classification, and Density Estimation, 2017. URL https://CRAN.R-project.org/
package=mclust. R package version 5.4. [p250]

B. L. Fridley, D. Serie, G. Jenkins, K. White, W. Bamlet, J. D. Potter, and E. L. Goode. Bayesian
mixture models for the incorporation of prior knowledge to inform genetic association studies.
Genetic Epidemiology, 34(5):418-426, 2010. URL https://doi.org/10.1002/gepi.20494. [p253]

M. Fréchet. Les tableaux de corrélation et les programmes linéaires. Revue de L’Institut International
de Statistique / Review of the International Statistical Institute, 25(1/3):23-40, 1957. URL
https://doi.org/10.2307/1401672. [p261, 262

R. Fu, D. K. Dey, and K. E. Holsinger. A beta-mixture model for assessing genetic population
structure. Biometrics, 67(3):1073-1082, 2011. URL http://www.jstor.org/stable/41242556.

[p255]

A. Genz and F. Bretz. Computation of Multivariate Normal and t Probabilities, volume 195 of Lecture
Notes in Statistics. Springer-Verlag, Heidelberg, 2009. URL https://doi.org/10.1007/978-3~
642-01689-9. [p262]

A. Gengz, F. Bretz, T. Miwa, X. Mi, and T. Hothorn. Muvtnorm: Multivariate Normal and t
Distributions, 2017. URL https://CRAN.R-project.org/package=mvtnorm. R package version
1.0-6. [p262]

B. Gruen and F. Leisch. Flexmiz: Flexible Mixture Modeling, 2017. URL https://CRAN.R-project.
org/package=flexmix. R package version 2.3-14. [p251]

D. B. Hall. Zero-inflated Poisson and binomial regression with random effects: A case study.
Biometrics, 56(4):1030-1039, 2000. URL https://doi.org/10.1111/3.0006-341X.2000.01030. x.
[p250]

H. He, W. Tang, W. Wang, and P. Crits-Christoph. Structural zeroes and zero-inflated models.
Shanghai Archives of Psychiatry, 26(4):236-242, 2014. URL https://doi.org/10.3969/j.issn.
1002-0829.2014.04.008. [p2(i()}

T. C. Headrick. Fast fifth-order polynomial transforms for generating univariate and multivariate
non-normal distributions. Computational Statistics €& Data Analysis, 40(4):685-711, 2002. URL
https://doi.org/10.1016/S0167-9473(02)00072-5. [p251, 253, 254, 256

T. C. Headrick and R. K. Kowalchuk. The power method transformation: Its probability density
function, distribution function, and its further use for fitting data. Journal of Statistical Compu-
tation and Stmulation, 77:229-249, 2007. URL https://doi.org/10.1080/10629360600605065.
[p253, 258, 261]

T. C. Headrick and S. S. Sawilowsky. Simulating correlated non-normal distributions: Extending
the Fleishman power method. Psychometrika, 64:25-35, 1999. URL https://doi.org/10.1007/
BF02294317. [p25(')']

N. Higham. Computing the nearest correlation matrix - a problem from finance. IMA Journal
of Numerical Analysis, 22(3):329-343, 2002. URL https://doi.org/10.1093/imanum/22.3.329.
[p255, 266]

W. Hoeffding. Scale-invariant correlation theory. In N. I. Fisher and P. K. Sen, editors, The Collected
Works of Wassily Hoeffding, Springer Series in Statistics (Perspectives in Statistics), pages 57-107.
Springer-Verlag, New York, 1994. URL https://doi.org/10.1007/978-1-4612-0865-5_4. [p2061,
263

N. Ismail and H. Zamani. Estimation of claim count data using negative binomial, generalized
Poisson, zero-inflated negative binomial and zero-inflated generalized Poisson regression models.
Casualty Actuarial Society E-Forum, 41(20):1-28, 2013. [p250, 260]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1007/BF02293811
https://CRAN.R-project.org/package=mclust
https://CRAN.R-project.org/package=mclust
https://doi.org/10.1002/gepi.20494
https://doi.org/10.2307/1401672
http://www.jstor.org/stable/41242556
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/978-3-642-01689-9
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=flexmix
https://doi.org/10.1111/j.0006-341X.2000.01030.x
https://doi.org/10.3969/j.issn.1002-0829.2014.04.008
https://doi.org/10.3969/j.issn.1002-0829.2014.04.008
https://doi.org/10.1016/S0167-9473(02)00072-5
https://doi.org/10.1080/10629360600605065
https://doi.org/10.1007/BF02294317
https://doi.org/10.1007/BF02294317
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1007/978-1-4612-0865-5_4

CONTRIBUTED RESEARCH ARTICLES

274

Y. Ji, C. Wu, P. Liu, J. Wang, and K. R. Coombes. Applications of beta-mixture models in
bioinformatics. Bioinformatics, 21(9):2118-2122, 2005. URL http://dx.doi.org/10.1093/
bioinformatics/bti318. [p255]

M. Jochmann. Zic: Bayesian Inference for Zero-Inflated Count Models, 2017. URL https://CRAN.R-
project.org/package=zic. R package version 0.9.1. [p251]

M. Kendall and A. Stuart. The Advanced Theory of Statistics. Macmillan, New York, 4th edition,
1977. [p253]

M. Kohl. Distr: Object Oriented Implementation of Distributions, 2017. URL https://CRAN.R-
project.org/package=distr. R package version 2.6.2. [p251]

D. Lambert. Zero-inflated Poisson regression, with an application to defects in manufacturing.
Technometrics, 34(1):1-14, 1992. [p250, 260]

F. Langrognet, R. Lebret, C. Poli, and S. Iovleff. Rmixmod: Supervised, Unsupervised, Semi-
Supervised Classification with MIXture MODelling (Interface of MIXMOD Software), 2016. URL
https://CRAN.R-project.org/package=Rmixmod. R package version 2.1.1. [p251]

M. G. Larson and G. E. Dinse. A mixture model for the regression analysis of competing risks data.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 34(3):201-211, 1985. URL
http://www.jstor.org/stable/2347464. [p250]

B. Lau, S. R. Cole, and S. J. Gange. Competing risk regression models for epidemiologic data.
American Journal of Epidemiology, 170(2):244-256, 2009. URL http://dx.doi.org/10.1093/
aje/kwpl07. [p250]

B. Lau, S. R. Cole, and S. J. Gange. Parametric mixture models to evaluate and summarize hazard
ratios in the presence of competing risks with time-dependent hazards and delayed entry. Statistics
in Medicine, 30(6):654—665, 2011. URL http://dx.doi.org/10.1002/sim.4123. [p250]

K. Laurila, B. Oster, C. L. Andersen, P. Lamy, T. Orntoft, O. Yli-Harja, and C. Wiuf. A beta-mixture
model for dimensionality reduction, sample classification and analysis. BMC Bioinformatics, 12
(1):215, 2011. URL https://doi.org/10.1186/1471-2105-12-215. [p255]

R. R. J. Lewine. Sex differences in schizophrenia: Timing or subtypes? Psychological Bulletin, 90:
432-444, 1981. [p250]

S. Li, J. Chen, and P. Li. Mizturelnf: Inference for Finite Mixture Models, 2016. URL https:
//CRAN.R-project.org/package=MixtureInf. R package version 1.1. [p251]

Z. Ma and A. Leijon. Bayesian estimation of beta mixture models with variational inference. IEEE
Trans Pattern Anal Mach Intell, 33(11):2160-2173, 2011. URL https://doi.org/10.1109/TPAMI.
2011.63. [p255]

P. MacDonald and with contributions from Juan Du. Mixzdist: Finite Mizture Distribution Models,
2012. URL https://CRAN.R-project.org/package=mixdist. R package version 0.5-4. [p251]

G. J. McLachlan. Cluster analysis and related techniques in medical research. Statistical Methods
in Medical Research, 1(1):27-48, 1992. URL https://doi.org/10.1177/096228029200100103.
[p250]

A. Mohammadi. Bmizture: Bayesian Estimation for Finite Mixture of Distributions, 2017. URL
https://CRAN.R-project.org/package=bmixture. R package version 0.5. [p251]

L. Mouselimis. ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans and K-Medoids
Clustering, 2017. URL https://CRAN.R-project.org/package=ClusterR. R package version
1.0.9. [p250]

M. Nagode. Rebmiz: Finite Mixture Modeling, Clustering € Classification, 2017. URL https:
//CRAN.R-project.org/package=rebmix. R package version 2.9.3. [p251]

S. R. Newcomer, J. F. Steiner, and E. A. Bayliss. Identifying subgroups of complex patients with
cluster analysis. The American Journal of Managed Care, 17(8):e324-32, 2011. [p250)]

U. Olsson, F. Drasgow, and N. J. Dorans. The polyserial correlation coefficient. Psychometrika, 47
(3):337-347, 1982. URL https://doi.org/10.1007/BF02294164. [p261]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://dx.doi.org/10.1093/bioinformatics/bti318
http://dx.doi.org/10.1093/bioinformatics/bti318
https://CRAN.R-project.org/package=zic
https://CRAN.R-project.org/package=zic
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=Rmixmod
http://www.jstor.org/stable/2347464
http://dx.doi.org/10.1093/aje/kwp107
http://dx.doi.org/10.1093/aje/kwp107
http://dx.doi.org/10.1002/sim.4123
https://doi.org/10.1186/1471-2105-12-215
https://CRAN.R-project.org/package=MixtureInf
https://CRAN.R-project.org/package=MixtureInf
https://doi.org/10.1109/TPAMI.2011.63
https://doi.org/10.1109/TPAMI.2011.63
https://CRAN.R-project.org/package=mixdist
https://doi.org/10.1177/096228029200100103
https://CRAN.R-project.org/package=bmixture
https://CRAN.R-project.org/package=ClusterR
https://CRAN.R-project.org/package=rebmix
https://CRAN.R-project.org/package=rebmix
https://doi.org/10.1007/BF02294164

CONTRIBUTED RESEARCH ARTICLES 275

L. Pamulaparty, C. V. G. Rao, and M. S. Rao. Cluster analysis of medical research data using R.
Global Journal of Computer Science and Technology, 16(1):1-6, 2016. [p250]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/. [p251]

P. Schlattmann, J. Hoehne, and M. Verba. CAMAN: Finite Mizture Models and Meta-Analysis Tools
- Based on C.A.MAN, 2016. URL https://CRAN.R-project.org/package=CAMAN. R package
version 0.74. [p251]

N. J. Schork, D. B. Allison, and B. Thiel. Mixture distributions in human genetics research.
Statistical Methods in Medical Research, 5:155-178, 1996. URL https://doi.org/10.1177/
096228029600500204. [p25'2, 253]

P. C. Sham, C. J. MacLean, and K. S. Kendler. A typological model of schizophrenia based on age
at onset, sex and familial morbidity. Acta Psychiatrica Scandinavica, 89(2):135-141, 1994. URL
http://dx.doi.org/10.1111/3.1600-0447.1994.tb01501.x. [p25()}

D. L. Solomon. Using RNA-seq data to detect differentially expressed genes. In S. Datta and
D. Nettleton, editors, Statistical Analysis of Next Generation Sequencing Data, chapter 2, pages
25-49. Springer-Verlag, 2014. [p250]

C. Soneson and M. Delorenzi. A comparison of methods for differential expression analysis of RNA-
seq data. BMC Bioinformatics, 14:91, 2013. URL https://doi.org/10.1186/1471-2105-14-91.
[p250]

A. E. Teschendorff, F. Marabita, M. Lechner, T. Bartlett, J. Tegner, D. Gomez-Cabrero, and
S. Beck. A beta-mixture quantile normalization method for correcting probe design bias in
Iumina Infinium 450 k DNA methylation data. Bioinformatics, 29(2):189-196, 2013. URL
https://doi.org/10.1093/bioinformatics/bts680. [p255]

M. Thrun, O. Hansen-Goos, R. Griese, C. Lippmann, F. Lerch, J. Lotsch, and A. Ultsch. Adapt-
Gauss: Gaussian Mizture Models (GMM), 2017. URL https://CRAN.R-project.org/package=
AdaptGauss. R package version 1.3.3. [p250]

L. K. Vaughan, J. Divers, M. Padilla, D. T. Redden, H. K. Tiwari, D. Pomp, and D. B. Allison.
The use of plasmodes as a supplement to simulations: A simple example evaluating individual
admixture estimation methodologies. Computational Statistics € Data Analysis, 53(5):1755-1766,
2009. URL https://doi.org/10.1016/j.csda.2008.02.032. [p251]

Y. Wang. Nspmiz: Nonparametric and Semiparametric Mizture Estimation, 2017. URL https:
//CRAN.R-project.org/package=nspmix. R package version 1.4-0. [p251]

J. Welham, G. Mclachlan, G. Davies, and J. McGrath. Heterogeneity in schizophrenia; mixture
modelling of age-at-first-admission, gender and diagnosis. Acta Psychiatrica Scandinavica, 101(4):
312-317, 2000. URL http://dx.doi.org/10.1034/7.1600-0447.2000.101004312.x. [p25()]

H. Wickham and W. Chang. Ggplot2: Create Elegant Data Visualisations Using the Grammar of
Graphics, 2016. URL https://CRAN.R-project.org/package=ggplot2. R package version 2.2.1.

[p258]
M. Winerip, G. Wallstrom, and J. LaBaer. Bimizt: Estimates Mizture Models for Case-Control
Data, 2015. URL https://CRAN.R-project.org/package=bimixt. R package version 1.0. [p250]

I. Yahav and G. Shmueli. On generating multivariate Poisson data in management science applications.
Applied Stochastic Models in Business and Industry, 28(1):91-102, 2012. URL https://doi.org/
10.1002/asmb.901. [p260, 266]

T. W. Yee. VGAM: Vector Generalized Linear and Additive Models, 2017. URL https://CRAN.R-
project.org/package=VGAM. R package version 1.0-4. [p251]

N. Yi. BhGLM: Bayesian Hierarchical GLMs and Survival Models, with Application to Genetics and
Epidemiology, 2017. URL http://www.ssg.uab.edu/bhgln/. R package version 1.1.0. [p251]

D. Young, T. Benaglia, D. Chauveau, and D. Hunter. Miztools: Tools for Analyzing Finite Mizture
Models, 2017. URL https://CRAN.R-project.org/package=mixtools. R package version 1.1.0.

[p251]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://www.R-project.org/
https://CRAN.R-project.org/package=CAMAN
https://doi.org/10.1177/096228029600500204
https://doi.org/10.1177/096228029600500204
http://dx.doi.org/10.1111/j.1600-0447.1994.tb01501.x
https://doi.org/10.1186/1471-2105-14-91
https://doi.org/10.1093/bioinformatics/bts680
https://CRAN.R-project.org/package=AdaptGauss
https://CRAN.R-project.org/package=AdaptGauss
https://doi.org/10.1016/j.csda.2008.02.032
https://CRAN.R-project.org/package=nspmix
https://CRAN.R-project.org/package=nspmix
http://dx.doi.org/10.1034/j.1600-0447.2000.101004312.x
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=bimixt
https://doi.org/10.1002/asmb.901
https://doi.org/10.1002/asmb.901
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=VGAM
http://www.ssg.uab.edu/bhglm/
https://CRAN.R-project.org/package=mixtools

CONTRIBUTED RESEARCH ARTICLES 276

X. Zhang, H. Mallick, and N. Yi. Zero-inflated negative binomial regression for differential abundance
testing in microbiome studies. Journal of Bioinformatics and Genomics, 2(2):1-9, 2016. URL
https://doi.org/10.18454/jbg.2016.2.2.1. [p250, 260]

Y. Zhou, X. Wan, B. Zhang, and T. Tong. Classifying next-generation sequencing data using a
zero-inflated poisson model. Bioinformatics, page btx768, 2017. URL https://doi.org/10.1093/
bioinformatics/btx768. [p250]

Allison Fialkowsksi

Department of Biostatistics

School of Public Health

University of Alabama at Birmingham
RPHB 327

1720 2nd Ave S

Birmingham, AL 35294-0022

allijazz@uab.edu

Hemant Tiwari

Department of Biostatistics

School of Public Health

University of Alabama at Birmingham
RPHB 420C

1720 2nd Ave S

Birmingham, AL 35294-0022

htiwariQuab.edu

Appendix

Derivation of expected cumulants of continuous mixture variables

Suppose the goal is to simulate a continuous mixture variable Y with PDF hy (y) that contains two
component distributions Y, and Y; with mixing parameters 7, and m:

hY (y) =7rafya (y)+7rngb (y)7 y € Y7 Taq € (07 1)7 T € (07 1)7 Ta + Tp = 1. (Nlll)
Here,
Yo =0aZg+pia; Ya~ fy, ¥), v € Ya and Yy =0 Zp+pmp, Yo~ 9y, (), vy € ¥ (N.11.2)

so that Y, and Y; have expected values pq and pp and variances o2 and 054 Assume the variables
Z}, and Zj are generated with zero mean and unit variance using Headrick’s fifth-order PMT given
the specified values for skew ('yia, Wib), skurtosis (véa, 'yéb), and standardized fifth (wga, 'yéb) and

sixth (74’1&, 'yflb) cumulants. The r*? expected value of Y can be expressed as:

E[Y"] = Jyrhy (y)dy = ma Jz/"fya, (y)dy +mp Jyrgyb (y)dy

:WaIE[Yar] +7rbIE[YbT].

(N.11.3)

Equation N.11.3 can be used to derive expressions for the mean, variance, skew, skurtosis, and
standardized fifth and sixth cumulants of Y in terms of the rt" expected values of Y, and Y.

1. Mean: Using r = 1 in Equation N.11.3 yields p:

E[Y] = 70 E [Ya] + 7 E[Y}] = 7 [E [aazg + ua] +m, B [abz{, n m,]

(N.11.4)
= Tq (O‘a E [Z(Il] + ua) + 7 (abIE [Z{,] + Mb) .
Since IE [Z(/L] =1E [Zg] = 0, this becomes:
E[Y] = mapa + Tpip- (N.11.5)

2. Variance: The variance of Y can be expressed by the relation Var [Y] = IE [Y2] — (E[Y])?.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.18454/jbg.2016.2.2.1
https://doi.org/10.1093/bioinformatics/btx768
https://doi.org/10.1093/bioinformatics/btx768
mailto:allijazz@uab.edu
mailto:htiwari@uab.edu

CONTRIBUTED RESEARCH ARTICLES

277

Using 7 = 2 in Equation N.11.3 yields pa:
2 2 2 y 2 / 2
E [Y]) [Ya] +mIE [Yb] — B (gaza +ua) +mE (abe +m,)
2 2
=7 1B [J?LZQ + 2pa0aZy + MZ] +mp IE [052{; + 2up04 Zp, + Mzﬂ
2
= mq (Gg E [Z; } + 2uqoq IE [Z(;] + ,ui)

2
+ (a,? E [Z{,] + 20 IE [Z{,] + u?) .
(N.11.6)

Applying the variance relation to Z,, and Z{) gives:
’2 / 11\ 2
E|2,°] = var|ze] + (| 2.])

JE[ZgQ] — Var [Z;)] N (IE [Z,Q])Q. (N.11.7)

Since I8 [Z4] = B[Z§] = 0 and Var[2}] = Var[Z}] = 1, T [2,?] and I [2] both equal 1.

Therefore, Equation N.11.6 simplifies to:
E [YQ] = Tq (aﬁ + ug) + (af + ,ug) , (N.11.8)
and the variance of Y is given by:
2 2 2 2 2
Var [V] = 7o (o2 + i3) +m (5 + b) = [rapta + moim]”. (N.11.9)
3. Skew: Using r = 3 in Equation N.11.3 yields us:
3 3 3 / 3 / 3
E [Y] — 1 E [Ya] +mE [Yb] — 1 E (aaZa +ua) +mE (Jbe +ub)
3 2
) [aizg 4302002l + 30apZl + uﬁ]
+mp IE [USZ{,S + 3a§ubZlI,2 + 3abugZ{, + ug]
3 2
— <a;§ E [Z; } + 3020 E [Z;] +30au2 [Z{l} n ui)
3 2
+m (af E [Z{,] + 302 IE [Z,;] + 30,2 E [Z,Q] + ;;2) .
(N.11.10)
Then [E [Z{lg] = /,Ll3a and [E [Zés} = ,ugb are given by:
3/2
Bz’ = (Var[Z0]) " 4, =,

32,

(N.11.11)
E [Zés} = (Var [Z{,]) Y, = yib.

Combining these with IE [Z['L] =1 [Z,’]] =0and E [Z(’Lz] =1 [le)z] =1, Equation N.11.10
simplifies to:

E[Y*| = 7o (o8t + 8000 + 12) +m (0, + 30 + 4t) - (N.11.12)
From Equation N.3.6, the skew of Y is given by:

Ta (Uivia + 304 pa + ui) + (02‘71,, +3oppp + u?)

"= (N.11.13)

3/2
(7ra (02 +p2) +mp (UZ + ,uz) — [mapa + Wbub]z)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

278

Using r = 4 in Equation N.11.3 yields p4:

4 4 / 4 / 4
o E [Ya] +mE [Yb] — 1B (aaZa + ua) v IE (abzb n m,)

4,04 3 13 2 2,02 3,/ 4
malE|0aZq +40qpaZa +60apaZa +40atiaZa + pha

4 3 2
+mIE [U?Z{j + 4ag’,ubZ;/, + GUgugZ{, + 4ab,u§Z{7 + ug]
4 3 2

Ta (03 E [Z;] + 4031, B [Z; } Y6022 TR [Z;] Aoaid B [Z;] n ui)

4 3 2
+ my (ag E [Z{,] + 4Ug’,ub]E [Z{,] + Gag,ug E [Z{) } + 40bﬂ2 IE [Z{)} + uﬁ)

4. Skurtosis:

Ey’]

(N.11.14)
Then IE [Z&Zl] = /1:1(1 and IE [Z{)ﬂ = ,uﬁlb are given by:
147 'INZ [o
E|2"] = (Var[Zi])" (45, +3) =5, +3
(N.11.15)
14 /N2 (s /
E|[z"| = (Var|[2])" (45, +3) =45, +3.
Since [E [Z{l] =1E [Z{)] =0and E [Z&ﬂ =1E [Z{)ﬂ =1, Equation N.11.14 simplifies to:
E [Y4] = T [03 (7'20 + 3) +dogpati, +60aua + uﬁ]
4 (1 3 / 2 2 4 (N.11.16)
+ 7 [Jb (7% + 3) + 4oy pupm, + 60 1y + Hb] .
From Equation N.3.7, the skurtosis of Y is given by:
Ta [03 (v, +3) +4oipa”;, + 60apa + uﬁ]
"2 = 3
(TI'a (03 +IL3) + 7y (O'g +/LI2)) - [7TalLa + 7Tb,ub]2)
(N.11.17)

. [g;} (b, +3) + 40Pyl + 6oRp2 + ug}

2
(7ra (02 + p2) +mp (Ug + ,ug) — [mapa + Wbub]z)
5. Standardized fifth cumulant: Using r = 5 in Equation N.11.3 yields ps:
5 5 5 / 5 / 5
IE[Y] 0 [Ya] +7rbIE[Yb]) (aazaﬂba) 4+ E (o—bzb+m,)
5 4 3 2
= E [a;’;zg + 50t 2l + 100342287 + 100213 27 + 5oapi Z, + ui]
5 4 3 2
+m B0} 2 + 5o 2 + 1003 21 + 10034 21 + 5oy Zy + |
=g (02 E [ZQS} + 503;@ E [Z;4] + 100’2;;(21 E [Z;g]
2
+ 10023 B [Z{l] +50a Ut [Z;] + ui)
5 4 3
o <aE E [Z{, } + 50k E [Z{, } 10032 B [z{, }
2
10023 E [Z{,] F 5ot E [Z{,] + u?).
(N.11.18)

Then IE [Z(’ls] = ,u'5a and IE [Z{)S} = ,ugb are given by:

e [ng’] _ (Var [ZQDW (wéa + 10%@) =3, +1071, (N.11.19)

E[2] = (Var [Zl',])5/2 (44, +1091,) = 4, + 104,.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

279

Since [E [Zé] =1 [Zl,:] =0and E Z&z} = [Zgz] = 1, Equation N.11.18 simplifies to:

B [Y°| = 7o [0f (45, + 1091,) + 5odua (25, +3) + 10050271, + 100243 + 4

+
5 4 3 2 2 3 5
+m [Ub (véb + 10%1,) + 50y 1y (’Yéb + 3) + 1007, 4y 71, + 1007 i, + Mb] :

(N.11.20)
From Equation N.3.8, the standardized fifth cumulant of Y is given by:
7o [0 (44, +1071,) + 50ipa (14, +3) + 10036301, + 10024 + i
L 2 2 2 2 2)%/2
(Wa (03 +) + b (0f + 1) — [Tapia + Top])
- [ag (4%, +104%,) + 5ot (vh, +3) + 1003 u2~, + 100203 + u;’;]
+ ; ; ; ;) 572 —1077.
(ﬂ'a (02 +na) +m (07 + 1i) — [Tapta + wop))

(N.11.21)

6. Standardized sixth cumulant: Using r = 6 in Equation N.11.3 yields ug:
6 6 6 / 6 / 6
IE[Y] - waIE[Ya] +7rbIE[Yb]) (aaza+ua) +mE (Jbe+,ub>
_ 6,6 5 15 4 214 3 3,13
=mqE 042y +60qpuaZg + 150gua2s + 200512
2 5
+ 150210 Zh + 60aul Zy + Mg]
6 5 4 3
+m IE [UEZ{, + GUgubZ[/) + 1502‘;@2@ + QOUSMZ’Z{,

2
+ 15031y 2y, + 6oy Zp + ug}

= (02 E [Z{f] + 600410 1B [Z,ﬂ +15032 [Z,’f} +2003 3 [Z,’f’]
+ 1562 [Z{f] 460l TE [Z{I} n uﬁ)
6 16 5 /5 4 2 14 3 3 /3 (N.11.22)
+ Trb(ob E [Zb] + 600 IE [Zb] + 150112 B [Zb] + 200313 IE [zb]
2
+ 15024t B [Z{,] + 6oyl IE [Z{,] + m?).
Then IE [Z(/L6] = ,u,%a and IE [Z{)G} = ,u'6b are given by:

. N3 (L / ;2 o / r 2
E [Za] - (Var [Za]) (m + 1595, + 109, + 15) — 4, 41595, 41071, 7 +15

3
E (2| = (Var|23))" (vh, +159%, +1091,” +15) =44, + 1595, + 1073, + 15.
(N.11.23)

Since [E [Z(/L] =1E [Z{,] =0and [E [Zflﬂ =1E [21'72} = 1, Equation N.11.22 simplifies to:
6 6 (1 / ;7 2 5 / ’

E [Y] = g [aa (m 41595 +107), 0 + 15) + 60314 (yga n 10%)

+ 1504, (7’20 + 3) + 2005 o1, + 1504 g + ug]

o/ / s - / (N.11.24)

+m [ob (m + 154, +1094,° + 15) + 607 ('ygb + 10%)

+ 150?,1#% (755 + 3) + 200§’ug’wib + 150?,@,L + ug],

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

280

From Equation N.3.9, the standardized sixth cumulant of Y is given by:

Ta [02 (vﬁla + 1574, + 1074, 2 + 15) +605pa (14, +107],)

Y4 = 3
(ma (03 + 423) +m, (07 + 7) = [matta + mpm]?)

+150gpa (V5, +3) + 200031, + 1508 g + ug]

3
(m (08 + pa) +m (o + 13) — [Fapa + Wbﬂb]Q)

w0 (7, + 157, + 107, +15) + Gofum, (45, +1044,) (N.11.25)

J’_
3
(7Ta (02 +u2) + 7 (0 + 1) — [Tapta + ﬂ'bﬂb]Q)

+1507 113 (v4, + 3) + 20075 pgt, + 1502 g + ug]

3
(7a (07 + 12) + 7y (o7 + 1) — [matta + moin]?)

— 15+ — 10712 — 15.

Results from examples comparing correlation methods 1 and 2

Scenario

Correlation Type A: Poisson and NB B: NB

Strong 6 9
Moderate 7 10
Weak 8 11

Table 5: Table numbers for matrices of correlation errors.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

281

(8800 ‘2€0°0) G£0°0 (910°0 ‘600°0) €10°0 (1€0°0 ‘¢20°0) 620°0 0 (g81°0- ‘69T°0-) 9ST°0- 1d

(GCT°0- ‘9T°07) 26T°0- (T21°0- ‘22T°07) $LT°0- (8TT°0- ‘€2T°0-) 1210~ (FST'0- ‘6ST°0-) 9GT°0- 0 cd

(8TT°0- ‘¥21°0-) 121°0- (TET°0- ‘8€1°0-) C€T°0- (160°0- ‘960°0-) €60°0- (Z1°0- ‘921°0~) €ZT°0- (GGT°0 ‘eCT'0) ¥ST°0 14

(GT°0- ‘96T°0-) €¢1°0- (€9T°0- ‘LT°0-) 99T°0- (9210~ ‘TE€T°0-) 8ZT°0- (€GT°0- ‘6ST°0-) 9ST°0- (S9T°0- ‘L9T°0-) 99T°0- €N

(GT°0- ‘96T°0-) €¢1°0- (€9T°0- ‘LT°0-) 99T°0- (9210~ ‘TE€T°0-) 8ZT°0- (€GT°0- ‘8SGT°0-) 9GT°0- (S9T°0- ‘L9T°0-) 99T°0- &N

(GT°0- ‘96T°0-) €¢1°0- (£91°0- ‘691°0-) 99T°0- (9210~ ‘TET°0-) 8ZT°0- (€GT°0- ‘6ST°0-) 9ST°0- (S9T°0- ‘L9T°0-) 99T°0- 1IN

(¥0°0- ‘9%0°0~) €70°0- (S0°0- ‘950°0-) €50°0- (00°0 ‘0) €000 (20°0- ‘620°0-) €20°0- (¢€0°0- ‘F0°0-) 8€0°0- TO

¢dN TN ¢d 1d ¢d

CONTRIBUTED RESEARCH ARTICLES

(Te1°0- ‘821°0-) G1°0- (€ST°0- ‘6G1°0-) 99T°0- (€ST°0- ‘6S1°0-) 9ST°0- (€ST°0- ‘9T°0-) 9ST°0- (5200~ ‘1£0°0-) 8200~ AN

(FET°0- F1°0-) L£1°0- (991°0- ‘TLT°0-) 89T°0- (G910~ ‘TLT°0-) 89T°0- (G9T°0- ‘GLT°0-) 891°0- (LF0°0- ‘€50°0-) G0°0- TAN

(860°0- ‘T°0-) L60°0- (€1°0- ‘GET°0-) €1°0- (£1°0- ‘GET°0-) €1°0- (£1°0- ‘G€1°0-) €€1°0- (GT0°0- ‘20°0-) 810°0- &d

(21°0- ‘G21°0-) €210~ (£S1°0- “‘6G1°0-) 9GT°0- (€810~ ‘6ST1°0-) 9GT°0- (£51°0- ‘9T°0-) L8T°0- (£0°0- ‘9€0°0-) €€0°0- 1d

(9¢T°0 ‘FST°0) GST°0 (C9T°0- ‘991°0-) 99T°0- (G9T°0- ‘99T1°0-) 991°0- (S9T°0- ‘99T°0-) G910~ (££0°0- ‘2L£0°0-) €€0°0- T4

0 (¥9T°0- ¥91°0-) ¥91°0- (FOT°0- ‘¥91°0-) #¥91°0- (F91°0- ‘¥91°0-) ¥91°0- (1€0°0- ‘920°0-) ¥€0'0- T4

(¥91°0- ‘¥91°0-) #91°0- 0 (€CT°0 ‘€GT°0) €ST°0 (€e1'0 ‘ec1°0) €51°0 (920°0- ‘180°0-) 8L0°0- €N

(F9T°0- ‘¥91°0-) ¥91°0- (€610 ‘2GT°0) €ST°0 0 (€6T°0 ‘€S1°0) €10 (920°0- ‘80°0-) 8L0°0- N

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

282

CONTRIBUTED RESEARCH ARTICLES

(€€0°0 ‘€20°0) 8200 (610°0 ‘800°0) ¥10°0 (520°0 ‘910°0) 200 0 (82070~ ‘€€0°0-) €0°0- 1d
(L2070~ ‘1€0°0-) 620°0- (£0°0- ‘G€0°0-) €€0°0- (LT0°0- ‘20°0-) 610°0- (¥20°0- ‘620°0) L2800~ 0 od
(200°0- ‘800°0-) G000~ (€00°0- ‘T0°0-) 900°0- (0 °900°0-) €00°0- (€00°0- ‘800°0-) S00°0- (¥10°0 ‘T10°0) €100 14

(7€0°0- ‘70°0-) 260°0- (L£0°0- ‘F#0°0-) TPO'0- (820°0- ‘F#€0°0-) T€0°0- (S€0°0- ‘TF0°0-) 8€0°0- (P€0°0- ‘9€0°0-) €00~ €N
(€€0°0- ‘70°0-) 260°0- (LEO'O- FF0°0-) ¥O'0- (620°0- ‘F#€0°0-) T€0°0- (S€0°0- ‘TF0°0-) 8€0°0- (¥€0°0- ‘9€0°0-) €00~ &N
(7€0°0- ‘70°0-) 260°0- (LEO'0- ‘€70°0-) ¥O'0- (820°0- ‘F#€0°0-) T€0°0- (S€0°0- ‘TF0°0-) 8€0°0- (P€0°0- ‘9€0°0-) S€0°0- 1IN
(¥00°0- ‘110°0-) 000~ (900°0- ‘€T0°0-) 600°0- (8000 ‘T00°0) S00°0 (#00°0 ¥00°0-) 0 (€00°0 ‘00°0-) T00'0 1O
¢dN TN ed Id od
(L00°0- '210°0-) T0°0- (8€0°0- ‘F¥0°0-) T70°0- (L£0°0- ‘FF0°0-) TO'0- (LE£0°0- F¥0'0-) T¥0°0- (0 900°0-) €00°0- AN
(800°0- ‘¥10°0-) TT0°0- (I¥0°0- ‘8%0°0-) ¥¥0°0- (I¥0°0- ‘8¥0°0-) G¥0'0- (I¥0°0- ‘8%0°0-) ¥#0°0- (0 °200°0-) ¥00°0- T€N
(€00°0- ‘600°0-) 900°0- (€00~ “L£0°0-) #€0°0- (2€0°0- “LE0°0-) #€0°0- (2€0°0- 2€0°0-) ¥€0°0- (2000 ‘G00°0-) 100°0- &d
(900°0- ‘210°0-) 600°0- (8€0°0- ‘¥#0°0-) T#O'0- (8€0°0- ‘¥#0°0-) T#O'0- (8€0°0- ‘G¥0°0-) T#O'0- (100°0 ‘G00°0-) 000~ Td
(L10°0 ‘GT0°0) 9T0°0 (£€0°0- “€0°0-) #€0°0- (£€0°0- ‘G€0°0-) ¥€0°0- (€€0°0- “¢€0°0-) ¥€0°0- (200°0 ‘€00°0-) T00°0- &4
0 (£€0°0- ‘7€0°0-) ¥€0°0- (€€0°0- ‘7€0°0-) ¥€0°0- (¥€0°0- ‘¥€0°0-) #€0°0- (200°0 ‘€00°0-) 100°0- 1€
(6€0°0- ‘G£0°0-) S€0°0- 0 (1500 ‘190°0) TG00 (TG0°0 ‘TS0°0) TS0°0 (LT0°0- ‘220°07) 6T0°0- €N
(6€0°0- ‘¢€0°0-) C€0°0- (¢0°0 ‘6¥0°0) 6¥0°0 0 (19070 ‘190°0) 1S0°0 (9T0°0- ‘220°0-) 610°0- &N

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

283

CONTRIBUTED RESEARCH ARTICLES

(L20°0 ‘9T0°0) 1200 (220°0 ‘10°0) 9T0°0 (8T0°0 ‘800°0) ¥10°0 0 (9000~ ‘210°0-) 600°0- 1d
(900°0- ‘€T0°0-) 10°0- (800°0- ‘F10°0-) TT0°0- (£00°0- ‘600°0-) 900°0- (900°0- ‘ZT0°0-) 600°0- 0 cd
(200°0 ‘¢00°0-) 1000~ (200°0 ‘€00°0-) T00°0- (200°0 ‘¥00°0-) T00°0- (£00°0 ‘¥00°0-) T00°0- (100°0 ‘100°0-) 0 14

(£00°0 ¥00°07) 0 (#00°0 ¥00°0-) 0 (£00°0 ‘€00°0~) 0 (#00°0 ‘¥00°0-) 0 (T00°0 ‘100°0-) 0 €N
(#00°0 ‘€00°0-) 0 (000 ‘F00°0-) 0 (£00°0 ‘€00°0-) 0 (#00°0 ‘€00°0~) 0 (1000 ‘100°0-) 0 &N
(#00°0 ¥00°0-) 0 (#00°0 ‘¥00°0-) 0 (£00°0 ‘€00°0~) 0 (#00°0 ‘¥00°0-) 0 (100°0 ‘100°0-) 0 IN
(200°0 “¢00°0-) 000~ (200°0 ‘900°0-) 2000~ (#00°0 ‘F00°0-) 0 (#00°0 ‘F00°0-) 0 (€00°0 ‘€00°0-) 0 1O
ZdN TN ed Id ed
(200°0 ‘500°0-) 2000~ (£00°0 700°0-) 0 (£00°0 “€00°0-) 0 (€00°0 700°0-) 0 (€00°0 ‘G00°0-) TO0'0- AN
(200°0 “¢00°0-) 100°0- (#00°0 ‘F00°0-) 0 (#00°0 ‘700°0-) 0 (#00°0 ‘700°0-) 0 (£00°0 ‘G00°0-) T00°0- T€N
(£00°0 ‘€00°0~) 0 (£00°0 ‘€00°0~) 0 (£00°0 ‘€00°0~) 0 (£00°0 ‘€00°0~) 0 (700°0 700°0-) 0 &d
(200°0 “¥00°0-) 100°0- (000 ‘F00°0-) 0 (£00°0 ‘F00°0-) 0 (000 ‘F00°0-) 0 (¥00°0 ¥00°0-) 0 1d
(T00°0 ‘100°0~) 0 (100°0 ‘T00°0~) 0 (T00°0 ‘T00°0-) 0 (100°0 ‘T00°0~) 0 (700°0 “€00°0-) 0 &4
0 (0°0) 0 (0°0) 0 (0°0) 0 (€00°0 ‘€00°0-) 0 T4
(0°0) 0 0 (0°0) 0 (0°0) 0 (£00°0 “€00°0-) 0 €N
(0°0) 0 (0°0) 0 0 (0°0) 0 (€000 ‘€00°0-) 0 &N

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

284

CONTRIBUTED RESEARCH ARTICLES

(900°0- ‘600°0-) 800°0-

(2¥0°0- L¥0°0-) S¥0°0-

(S0°0- ‘€50°0-) 160°0-

(£60°0- 260°0-) S60°0-

(€60°0- 260°0-) S60°0-

(£60°0- 260°0-) S60°0-

(%200 ‘20°0) €20°0

(€10°0- ‘£10°0-) ST0°0-

(6£0°0- ‘F¥0°0-) TF0'0-

(€0°0- ‘¥50°0-) 2S0°0-

(260°0- ‘960°0-) ¥60°0-

(260°0- ‘960°0-) 760°0-

(260°0- ‘960°0-) 760°0-

(600°0- ‘€10°0-) T10°0-

(€0°0 ‘€70°0) L¥0°0

(6¥T°0- ‘FST°0-) TST'0-

(211°0- ‘8TT°0-) SIT°0-

(SF1°0- ‘1ST°0-) 8FT°0-

(GPT°0- ‘16T°0-) S¥T°0-

(SF1°0- ‘1ST°0-) 8FT°0-

(LE00- “€70°0-) 70°0-

(€9T°0- ‘691°0-) 99T°0-

(¥21°0- ‘631°0-) 921°0-

(GeT°0- ‘291°0-) 8GT'0-

(ge1°0- ‘19T°0-) 8GT°0-

(6eT°0- ‘T9T°0-) 8GT'0-

(L¥0°0- ‘€50°0-) G0'0-

(G91°0- ‘TL1°0-) 89T°0-

(TFT°0 ‘8€T°0) ¥T°0

(TLT°0- FLT0-) €LT°0-

(TLT°0- ‘FLT°0-) €L1°0-

(TLT°0- FLT0-) €LT°0-

(8%0°0- ‘2S0°0-) S0°0-

TN

¢d

1d

EN

N

IN

10

VAN

€AN

¢dN

TN

¢d

(72070~ ‘2G0°0-) 9G0°0-

(160°0- ‘¥S0°0-) TG00~

(GTT°0- ‘12T°0-) 8IT°0-

(921°0- ‘2€1°0-) 621°0-

(TF1°0 ‘6€1°0) ¥1°0

(TLT°0- ‘2L1°0-) TLT0-

(1L1°0- ‘2L1°0-) TLT'0-

(860°0- ‘20T°0~) T°0-

(260°0- ‘960°0-) 760°0-

(8PT°0- ‘#GT°0-) 1ST 0-

(8¢T°0- ‘F9T°0-) T9T°0-

(TLT°0- ‘FLT°0-) €L1°0-

(TL1°0- ‘2L1°0-) TLT°0-

0

(IF1°0 ‘TFT°0) TFT0

(L60°0- ‘TOT'0-) T°0-

(260°0- ‘960°0-) 760°0-

(8VT°0- ‘#ST°0-) 1ST°0-

(LST°0- ‘P9T°0-) 9T°0-

(TLT°0- FLI0-) €LT°0-

(1L1°0- ‘2LT1°0-) TLT'0-

(IPT°0 ‘TPT°0) TFT°0

0

(860°0- ‘TOT"0-) 660°0-

(260°0- ‘960°0-) 760°0-

(8FT°0- ‘#GT°0-) 1ST 0-

(8¢T°0- ‘F9T°0-) T9T°0-

(TLT°0- ‘FLT°0-) €L1°0-

(TL1°0- ‘2LT°0-) TLT°0-

(IFT°0 ‘TFT°0) TFT0

(TF1°0 ‘TFT°0) TFT0

(€00°0 ‘200°0-) T00°0

(0 ‘€00°0~) 100°0~

(£0°0- ‘9€0°0-) €€0°0-

(€50°0- ‘650°0-) 9G0°0-

(L¥0°0- ‘190°0-) 6%0°0-

(9%0°0- ‘50°0-) 8F0°0-

(260°0- ‘960°0-) ¥60°0-

(260°0- ‘960°0-) 760°0-

VAN

€dN

¢dN

TN

¢d

1d

EN

N

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

285

CONTRIBUTED RESEARCH ARTICLES

(L10°0 2T0°0) ¥10°0

(900°0 ‘100°0) €£00°0

(200°0 ‘€00°0-) T00°0-

(210°0- LT0°0-) ST0°0-

(210°0- 210°0-) #10°0-

(210°0- LT0°0-) ST0°0-

(1T0°0 ‘¥00°0) 8000

(€00°0 ‘0) 200°0

(800°0 ‘€00°0) G000

(100°0 ‘€00°0-) T00°0-

(€10°0- ‘210°0-) GT0°0-

(€10°0- 210°0-) S10°0-

(€10°0- ‘210°0-) G100~

(100°0 ‘¢00°0-) 200°0-

(¥0°0 ‘620°0) ¥€0°0

(220°0- ‘L20°0-) G20°0-

(200°0 ‘F00°0-) T00°0-

(€20°0- “620°0-) 920°0-

(220°0- ‘630°0-) G200~

(220°0- ‘620°0-) 920°0-

(€00°0- ‘600°0-) 900°0-

(#20°0- ‘1€0°0-) 820°0-

(€000 ‘V00°0-) 0O

(¥20°0- ‘1£0°07) L300~

(¥20°0- ‘1€0°0-) L20°0-

(¥20°0- ‘1£0°07) L300~

(¥00°0- ‘1T0°0-) 800°0-

(620°0- ‘1€0°0-) L20°0-

(6T0°0 ‘LT0°0) 8T0°0

(2¥0°0- FF0°0-) €70°0-

(2¥0°0- ‘FF0°0-) €70°0-

(2¥0°0- F¥0°0-) €70°0-

(€00°0 ‘T00°0-) 2000

TN

¢d

1d

EN

N

IN

10

VAN

€AN

¢dN

TN

¢d

(200°0 ‘200°0-) 0

(100°0 ‘€00°0-) T00°0-

(200°0 ‘700°0-) T00°0-

(€00°0 ‘F00°0-) T00°0-

(810°0 ‘9T0°0) L10°0

(2¥0°0- ‘€70°0-) €70°0-

(2¥0°0- ‘€70°0-) €70°0-

(¥10°0- ‘810°0-) 910°0-

(€10°0- ‘210°0-) ST0°0-

(€200~ ‘€0°0-) LT0°0-

(920°0- ‘2€£0°0-) 620°0-

(170°0- ‘€70°0-) 2F0°0-

(2¥0°0- ‘270°0-) TV0'0-

0

(860°0 ‘8€0°0) 8€0°0

(¥10°0- ‘810°0-) 910°0-

(€10°0- ‘£10°0-) ST0°0-

(¥20°0- ‘€0°0-) L20°0-

(920°0- ‘€€0°0-) 620°0-

(170°0- ‘€%0°0-) TV0'0-

(2¥0°0- ‘270°0-) TV0'0-

(6£0°0 ‘6£0°0) 6£0°0

0

(¥10°0- ‘810°0-) 910°0-

(€10°0- ‘210°0-) ST0°0-

(F20°0- ‘1£0°0~) 8500~

(6200~ ‘€€0°0-) 620°0-

(170°0- ‘€70°0-) 2F0°0-

(2¥0°0- ‘270°0-) TV0'0-

(6£0°0 ‘6£0°0) 6£0°0

(6£0°0 ‘6£0°0) 6£0°0

(£00°0 “€00°0-) 0

(£00°0 “€00°0-) 0

(£00°0 “€00°0-) 0

(£00°0 “¥00°0-) 0

(¥00°0 ‘T00°0-) 000

(¥00°0 ‘T00°0-) T00°0

(L10°0- ‘220°0~) 610°0-

(LT0°0- 220°0-) 20°0-

VAN

€dN

¢dN

TN

¢d

1d

EN

N

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

286

CONTRIBUTED RESEARCH ARTICLES

(S10°0 ‘600°0) ZT0°0 (9000 ‘0) €000 (¥€0°0 ‘T20°0) 8200 0 (2000~ ‘710°0-) T10°0- TAN
(€00°0 ‘100°07) 2000 (600°0 ‘0) ©00°0 (L0070~ ‘210°0-) T0°0- (2000~ ¥10°0-) T10°0- 0 cd
(£00°0 ‘200°07) 0 (200°0 ‘200°0-) 0 (200°0 ‘G00°0-) 000~ (2000 ‘G00°0-) €000 (1000 ‘100°0-) 0 14
(200°0 ‘200°0~) 0 (200°0 ‘200°0~) 0 (£00°0 ¥00°0-) 0 (700°0 ¥00°0-) 0 (100°0 ‘100°0-) 0 €N
(200°0 ‘200°0-) 0 (200°0 ‘200°07) 0 (£00°0 ‘F00°0-) 0 (700°0 ‘700°0-) 0 (1000 ‘100°0-) 0 &N
(20070 ‘200°0~) 0 (20070 ‘200°0~) 0 (£00°0 “€00°0-) 0 (70070 ‘€00°0~) 0 (1000 ‘T00°0-) 0 IN
(€00°0 ‘200°0-) 100°0 (€000 ‘700°0-) 0 (€00°0 ‘G00°0-) 000~ (2000 ‘900°0-) €000 (€00°0 ‘€00°0-) 0 1O
PaN edN ZAN TN ed
(£00°0 200°07) 100°0 (200°0 ‘200°0-) 0 (£00°0 ‘200°0~) 0 (200°0 ‘200°0-) 0 (F00°0 ‘€00°0-) TO0'0 AN
(£00°0 ‘200°07) 0 (200°0 ‘200°07) 0 (300°0 ‘200°0-) 0 (200°0 ‘200°07) 0 (€000 ‘700°0-) 0 €dN
(20070 ‘S00°0-) 200°0- (£00°0 ‘700°0-) 0 (€00°0 ‘€00°0~) 0O (€00°0 ‘700°0-) 0 (£00°0 ‘G00°0-) 100°0- AN
(200°0 “¢00°0-) 200°0- (700°0 ‘700°07) 0 (7000 ‘F00°0-) 0 (#00°0 ¥00°0-) 0 (€£00°0 ‘G00°0-) T00°0- TEN
(100°0 ‘100°0~) 0 (100°0 ‘100°0~) 0 (100°0 ‘100°07) 0 (100°0 ‘100°0~) 0 (£00°0 “€00°0-) 0 &4
0 (0°0) 0 (0°0) 0 (0°0) 0 (€000 ‘€00°0-) 0 14
(0°0) 0 0 (0°0) 0 (0000 (€000 ‘€00°0-) T00°0- €N
(0°0) 0 (0°0) 0 0 (000 (£00°0 ‘€00°0-) 0 TN

ISSN 2073-4859

The R Journal Vol. 11/1, June 2019

CONTRIBUTED RESEARCH ARTICLES 287

shadow: R Package for Geometric
Shadow Calculations in an Urban

Environment
by Michael Dorman, Evyatar Erell, Adi Vulkan, Itai Kloog

Abstract This paper introduces the shadow package for R. The package provides functions for
shadow-related calculations in the urban environment, namely shadow height, shadow footprint
and Sky View Factor (SVF) calculations, as well as a wrapper function to estimate solar radiation
while taking shadow effects into account. All functions operate on a layer of polygons with a height
attribute, also known as “extruded polygons” or 2.5D vector data. Such data are associated with
accuracy limitations in representing urban environments. However, unlike 3D models, polygonal
layers of building outlines along with their height are abundantly available and their processing does
not require specialized closed-source 3D software. The present package thus brings spatio-temporal
shadow, SVF and solar radiation calculation capabilities to the open-source spatial analysis workflow
in R. Package functionality is demonstrated using small reproducible examples for each function.
Wider potential use cases include urban environment applications such as evaluation of micro-climatic
influence for urban planning, studying urban climatic comfort and estimating photovoltaic energy
production potential.

Introduction

Spatial analysis of the urban environment (Biljecki et al., 2015) frequently requires estimating
whether a given point is shaded or not, given a representation of spatial obstacles (e.g. buildings)
and a time-stamp with its associated solar position. For example, we may be interested in -

e Calculating the amount of time a given roof or facade is shaded, to determine the utility of
installing photovoltaic cells for electricity production (e.g. Redweik et al., 2013).

e Calculating shadow footprint on vegetated areas, to determine the expected influence of a tall
new building on the surrounding microclimate (e.g. Bourbia and Boucheriba, 2010).

Such calculations are usually carried out using GIS-based models (Freitas et al., 2015), in either
vector-based 3D or raster-based 2.5D settings. Both approaches have their advantages and
limitations, as discussed in the following paragraphs.

Shadow calculations on vector-based 3D models of the urban environment are mostly restricted to
proprietary closed-source software such as ArcGIS (ESRI, 2017) or SketchUp (Google, 2017), though
recently some open-source models such as SURFSUN3D have been developed (Liang et al., 2015).
One of the drawbacks of using closed-source software in this context is the difficulty of adjusting the
software for specific needs and uncommon scenarios. This problem is especially acute in research
settings, where flexibility and extensibility are essential for exploring new computational approaches.
The other difficulty with using 3D software in urban spatial analysis concerns interoperability of file
formats. Since ordinary vector spatial data formats, such as the ESRI Shapefile, cannot represent
three-dimensional surfaces, 3D software is associated with specialized file formats. The latter cannot
be readily imported to a general-purpose geocomputational environment such as R or Python (Van
Rossum and Drake, 2011), thus fragmenting the analysis workflow. Moreover, most 3D software, such
as those mentioned above, are design-oriented, thus providing advanced visualization capabilities but
limited quantitative tools (calculating areas, angles, coordinates, etc.). Finally, true-3D databases of
large urban areas are difficult to obtain, while vector-based 2.5D databases (building outline and
height, see below) are almost universal. The advantages of true-3D software are “wasted” when
the input data are 2.5D, while the disadvantages, such as lack of quantitative procedures and data
interoperability difficulties, still remain.

Raster-based 2.5D solutions, operating on a Digital Elevation Model (DEM) raster, are much
simpler and have thus been more widely implemented in various software for several decades (IKumar
et al., 1997; Ratti and Richens, 2004). For example, raster-based shadow calculations are available in
open-source software such as the r.sun command (Hofierka and Suri, 2002) in GRASS GIS (GRASS
Development Team, 2017), the UMEP plugin (Lindberg et al., 2018) for QGIS (QGIS Development
Team, 2017) and package insol (Corripio, 2014) in R. In the proprietary ArcGIS software, raster-
based shadow calculations are provided through the Solar Analyst extension (F'u and Rich, 1999).
Thanks to this variety of tools, raster-based shadow modelling can be easily incorporated within a

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=insol

CONTRIBUTED RESEARCH ARTICLES 288

general spatial analysis workflow. However, raster-based models are more suitable for large-scale
analysis of natural terrain, rather than fine-scale urban environments, for the following reasons -

o A raster representing surface elevation, known as a DEM, at sufficiently high resolution for
the urban context, may not be available and is expensive to produce, e.g. using airborne Light
Detection And Ranging (LiDAR) surveys (e.g. Redweik et al., 2013). Much more commonly,
municipalities and other sources such as OpenStreetMap (Haklay and Weber, 2008) offer 2.5D
vector-based data on cities, i.e. polygonal layers of building outlines associated with height
attributes.

« Rasters are composed of pixels, which have no natural association to specific urban elements,
such as an individual building, thus making it more difficult to associate analysis results with
the corresponding urban elements.

e Vertical surfaces, such as building facades, are rare in natural terrain yet very common in
urban environments. Raster-based representation of facades is problematic since the latter
correspond to (vertical) discontinuities in the 2.5D digital elevation model, requiring unintuitive
workarounds (Redweik et al., 2013).

It should be noted that more specialized approaches have been recently developed to address
some of the above-mentioned difficulties, but they are usually not available as software packages
(e.g. Redweik et al., 2013; Hofierka and Zlocha, 2012).

The shadow package (Dorman, 2019) aims at addressing these limitations by introducing a simple
2.5D vector-based algorithm for calculating shadows, Sky View Factor (SVF) and solar radiation
estimates in the urban environment. The algorithms operate on a polygonal layer extruded to 2.5D,
also known as Levels-of-Detail (LoD) 1 in the terminology of the CityGML standard (Groger and
Pliimer, 2012). On the one hand, the advantages of individual urban element representation (over
raster-based approach) and input data availability (over both raster-based and full 3D approaches) are
maintained. On the other hand, the drawbacks of closed-source software and difficult interoperability
(as opposed to full 3D environment) are avoided.

As demonstrated below, functions in the shadow package operate on a vector layer of obsta-
cle outlines (e.g. buildings) along with their heights, passed as a "SpatialPolygonsDataFrame"
object defined in package sp (Bivand et al., 2013; Pebesma and Bivand, 2005). The latter makes
incorporating shadow calculations in Spatial analysis workflow in R straightforward. Functions to
calculate shadow height, shadow ground footprint, Sky View Factor (SVF) and solar radiation are
implemented in the package.

Theory

Shadow height

All functions currently included in package shadow are based on trigonometric relations in the
triangle defined by the sun’s rays, the ground - or a plane parallel to the ground - and an obstacle.

For example, shadow height at any given ground point can be calculated based on (1) sun
elevation, (2) the height of the building(s) that stand in the way of sun rays and (3) the distance(s)
between the queried point and the building(s) along the sun rays projection on the ground. Figure 1
depicts a scenario where shadow is being cast by building A onto the facade of building B, given the
solar position defined by its elevation angle a,j.,, and azimuth angle . Once the intersection point
is identified (marked with x in Figure 1), shadow height (hspadow) at the queried point (viewer)
can be calculated based on (1) sun elevation (apjey), (2) the height of building A (hyyq) and (3)
the distance (dist;) between the viewer and intersection point x (Equation P.2.1).

hshadow = hbuild — disty - tan(aelev) (P'Q'l)

The latter approach can be extended to the general case of shadow height calculation at any
ground location and given any configuration of obstacles. For example, if there is more than one
obstacle potentially casting shadow on the queried location, we can calculate hgpqdow for each
obstacle and then take the maximum value.

Logical shadow flag
Once the shadow height is determined, we may evaluate whether any given 3D point is in shadow or

not. This is done simply by comparing the Z-coordinate (i.e. height) of the queried point with the
calculated shadow height at the same X-Y (i.e. ground) location.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=shadow
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/view=Spatial

CONTRIBUTED RESEARCH ARTICLES 289

view from above
B
North

viewer T\ shadow
uaaz

obstacle
N A view from side
N
sun
sun / §
Q obstacle Q
B B \ A
shadow ,
shadad SRR A\elev ,,,,,,, Douita
V|eWer hshadow
o \\\\ .
dist;
dist,

Figure 1: Shadow height calculation

Shadow footprint

Instead of calculating shadow height at a pre-specified point (e.g. the viewer in Figure 1), we can
set hspadow tO zero and calculate the distance (dist2) where the shadow intersects ground level
(Equation P.2.2).

disty — —build__ (P.2.2)
tan(aeley)

Shifting the obstacle outline by the resulting distance (dista) in a direction opposite to sun
azimuth (aaz) yields a shadow footprint outline (Weisthal, 2014). Shadow footprints are useful
to calculate the exact ground area that is shaded at specific time. For example, Figure 2 shows the
shadow footprints produced by a single building at different times of a given day.

12:30
13:30

Figure 2: Shadow footprints cast by a building on a horizontal ground surface at hourly intervals
on 2004-06-24. The building, indicated by the gray shaded area, is located at 31.97°N
34.78°E, and is 21.38 meters tall

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 290

view from above
viewer

@ O

obstacle—>

view from side
obstacle

viewer | -

\\s

Figure 3: Sky View factor calculation

Figure 4: Angular cross sections for calculating the Sky View Factor (SVF)

Sky View Factor (SVF)

The Sky View Factor (Beckers, 2013; Erell et al., 2011; Grimmond et al., 2001) is the extent of
sky observed from a point as a proportion of the entire sky hemisphere. The SVF can be calculated
based on the maximal angles (8) formed in triangles defined by the queried location and the obstacles
(Figure 3), evaluated in multiple circular cross-sections surrounding the queried location. Once the
maximal angle (3; is determined for a given angular section i, SV F; for that particular section is
defined (Géal and Unger, 2014) in Equation P.2.3.

SVF; =1—sin®(53) (P.2.3)

For example, in case (3; = 45°), as depicted in Figure 3, SV F} is equal to -

SVF; =1—sin?(45°) = 0.5

Averaging SV F; values for all i = 1,2, ..., n circular cross-sections gives the final SV F' estimate
for the queried location (Equation P.2.4).

n .
SVF = M (P.2.4)
n

The number of evaluated cross sections depends on the chosen angular resolution. For example,
an angular resolution of 5° means the number of cross sections is n = 360°/5° = 72 (Figure 4).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 291

Solar radiation
Components

Frequently, evaluating whether a given location is shaded, and when, is just a first step towards
evaluating the amount of solar radiation for a given period of time. The annual insolation at a given
point is naturally affected by the degree of shading throughout the year, but shading is not the only
factor.

The three components of the solar radiation are the direct, diffuse and reflected radiation -

e Direct radiation refers to solar radiation traveling on a straight line from the sun to the
surface of the earth. Direct radiation can be estimated by taking into account: (1) shading,
(2) surface orientation relatively to the sun, and (3) meteorological measurements of direct
radiation on a horizontal plane or on a plane normal to the beam of sunlight.

o Diffuse radiation refers to solar radiation reaching the Earth’s surface after having been
scattered from the direct solar beam by molecules or particulates in the atmosphere. Dif-
fuse radiation can be estimated by taking into account: (1) SVF, and (2) meteorological
measurements of diffuse radiation at an exposed location.

¢ Reflected radiation refers to the sunlight that has been reflected off non-atmospheric obstacles
such as ground surface cover or buildings. Most urban surfaces have a low albedo: asphalt
reflects only 5-10 percent of incident solar radiation, brick and masonry 20-30 percent, and
vegetation about 20 percent. Because a dense urban neighborhood will typically experience
multiple reflections, an iterative process is required for a complete analysis. Calculating
reflected radiation requires taking into account reflective properties of the various surfaces,
their geometrical arrangement (Givoni, 1998) and their view factors from the receiving surface,
which is beyond the scope of the shadow package.

The diffuse radiation component is the dominant one on overcast days, when most radiation is
scattered, while the direct radiation component is dominant under clear sky conditions when direct
radiation reaches the earth’s surface.

Direct Normal Irradiance

Equation P.2.5 specifies the Coefficient of Direct Normal Irradiance for a vertical facade surface, as
function of solar position given by the difference between facade azimuth and sun azimuth angles,
and sun elevation angle, at time t.

efacade,t = Cos(aaz,t - a;z) : Cos(aelev,t) (P.2.5)

In Equation P.2.5, O4cade,t is the Coefficient of Direct Normal Irradiance on a facade at time ¢,
Qtaz,¢ is the sun azimuth angle at time ¢ (see Figure 1), o, is the facade azimuth angle, i.e. the
direction where the facade is facing, and ajey ¢ is sun elevation angle at time ¢ (see Figure 1). Note
that all of latter variables, with the exception of facade azimuth angle o, are specific for the time
interval ¢t due to the variation in solar position.

Horizontal roof surfaces, unlike facades, are not tilted towards any particular azimuth'. Equation
P.2.5 thus simplifies to Equation P.2.6 when referring to a roof, rather than a facade, surface.

Oroof,t = c05(90° — areleq,t) (P.2.6)

Figure 5 demonstrates the relation given in Equations P.2.5 and P.2.6 for the entire relevant
range of solar positions relative to facade or roof orientation. Again, note that for roof surfaces, the
Oro0f ¢ coefficient is only dependent on sun elevation angle aejey ¢+ (Equation P.2.6) as illustrated on
the right panel of Figure 5. (The code for producing Figure 5 can be found in the help page of
function coefDirect from shadow).

For example, the left panel in Figure 5 shows that maximal proportion of incoming solar radiation
(i-e. Ofqcade,s = 1) on a facade surface is attained when facade azimuth is equal to sun azimuth and
sun elevation is 0 (Cejev,t = 0°, i.e. facade directly facing the sun). Similarly, the right panel shows
that maximal proportion of solar radiation on a roof surface (i.e. 6,405, = 1) is attained when the
sun is at the zenith (e, ¢ = 90°, i.e. sun directly above the roof).

Once the Coefficient of Direct Normal Irradiance 0 f4cqde,t OF Oroof,¢ is determined, the Direct
Normal Irradiance meteorological measurement radgrect,¢ referring to the same time interval ¢,

11t should be noted that roof surfaces may be pitched rather than horizontal; however 2.5D models, which
shadow supports, can only represent horizontal roofs

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 292

Facade Roof

o o

() [«
g 81 5§ 8
IS ©
> =
Q Q
o o | o O
c ™ c ™
> >
a (]

o o

T T T T T T T
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Facade azimuth — Sun azimuth (°) Facade azimuth — Sun azimuth (°)

Figure 5: Coefficient of Direct Normal Irradiance, as function of solar position, expressed as the
difference between facade and sun azimuths (X-axis) and sun elevation (Y-axis). The
left panel refers to a facade, the right panel refers to a roof. Note that a horizontal
roof has no azimuth, thus the X-axis is irrelevant for the right panel and only shown
for uniformity

usually on an hourly time step, is multiplied by the coefficient at a point on the building surface
to give the local irradiation at that point (Equation P.2.7). The result Tad/direct,t is the corrected
Direct Irradiance the surface receives given its orientation relative to the solar position.

Tad:iirect,t =0;- raddi’rect,t (P.2.7)

Both radgirect,t and Tad:iirect,t’ as well as radg; f fuse,ts radéliffuse,t (Equation P.2.8) and

rad},;,; (Equation P.g.!)) (see below), are given for each time interval ¢ in units of power per unit
area, such as kWh/m*.

Diffuse Horizontal Irradiance

Moving on to discussing the second component in the radiation balance, the diffuse irradiance.
Diffuse irradiance is given by the meteorological measurement of Diffuse Horizontal Irradiance
radg;f fuse,t» Which needs to be corrected for the specific proportion of viewed sky given surrounding
obstacles expressed by SV F. Assuming isotropic contribution (Freitas et al., 2015), md:ﬁ Fluset 18
the corrected diffuse irradiance the surface receives (Equation P.2.8). Note that SV F' is unrelated
to solar position; it is a function of the given configuration of the queried location and surrounding
obstacles, and is thus invariable for all time intervals ¢.

rady;fpuset = SVE - radgif fuse,t (P.2.8)

Total irradiance

Finally, the direct and diffuse radiation estimates are summed for all time intervals ¢ to obtain the
total (e.g. annual) insolation for the given surface rad;,;,; (Equation P.2.9). The sum refers to
n intervals ¢ = 1,2, ...,n, commonly n = 24 x 365 = 8,760 when referring to an annual radiation
estimate using an hourly time step.

n n
/ / /
radiora) = Z raddirect,t + Z raddiffuse,t (P29)
=1 t=1

Package structure

The shadow package contains four “low-level” functions, one “high-level” function, and several
“helper functions”.

The “low-level” functions calculate distinct aspects of shading, and the SVF -

o shadowHeight - Calculates shadow height

e inShadow - Determines a logical shadow flag (in shadow or not)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 293

Function Location Obstacles | Sun Pos. Output
shadowHeight Points (2D) / Raster Polygons Matrix Numeric matrix / Raster
inShadow Points (2D/3D) / Raster | Polygons Matrix Logical matrix / Raster
shadowFootprint - Polygons Matrix Polygons
SVF Points (2D/3D) / Raster | Polygons - Numeric vector / Raster

Table 1: Inputs and outputs for main functions in package shadow

o shadowFootprint - Calculates shadow footprint

e SVF - Calculates the SVF

Table 1 gives a summary of the (main) input and output object types for each of the “low-level”
functions. The following list clarifies the exact object classes referenced in the table -

e The queried locations points (e.g. the viewer point in Figure 1) can be specified in several
ways. Points ("SpatialPoints*") can be either 2D, specifying ground locations, or 3D? -
specifying any location on the ground or above ground. Alternatively, a raster ("Rasterx*")
can be used to specify a regular grid of ground locations. Note that the shadow height
calculation only makes sense for ground locations, as height above ground is what the function
calculates, so it is not applicable for 3D points

e The obstacle polygons are specified as a "SpatialPolygonsDataFrame" object having a
height attribute ("extrusion" height) given in the same units as the layer Coordinate Reference
System (CRS), usually meters. Geographic coordinates (long/lat) are not allowed because
these units are meaningless for specifying height

e Solar position matrix is given as a "matrix" object, where the first column specifies sun
azimuth angle and the second column specifies sun elevation angle. Both angles should be
given in decimal degrees, where -

— sun azimuth (e.g. aq: in Figure 1) is measured clockwise relative to North, i.e North
= 0°, Bast = 90°, South = 180°, West = 270°

— sun elevation (e.g. age, in Figure 1) is measured relatively to a horizontal surface, i.e.
sun on the horizon = 0°, sun at its zenith = 90°

e The output of shadowHeight and inShadow is a numeric or logical "matrix", respectively,
where rows represent locations and columns represent solar positions. The output of
shadowFootprint is a polygonal layer of footprints. The output of SVF is a numeric vector
where values correspond to locations. All functions that can accept a raster of ground locations
return a corresponding raster of computed values

The “high-level” function radiation is a wrapper around inShadow and SVF for calculating direct
and diffuse solar radiation on the obstacle surface area (i.e. building roofs and facades). In addition
to the geometric layers and solar positions, this function also requires meteorological measurements
of direct and diffuse radiation at an unobstructed weather station. The shadow package provides a
sample Typical Meteorological Year (TMY) dataset tmy to illustrate the usage of the radiation
function (see below). Similar TMY datasets were generated for many areas (e.g. Pusat et al., 2015)
and are generally available from meteorological agencies, or from databases for building energy
simulation such as EnergyPlus (7).

Finally, the shadow package provides several “helper functions” which are used internally by
“low-level” and “high-level” functions, but can also be used independently -

2The third dimension of 3D points has to be specified using three-dimensional coordinates, rather than a
"height" attribute in a 2D point layer (see Examples section)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 294

e classifyAz - Determines the azimuth where the perpendicular of a line segment is facing;
used internally to classify facade azimuth

o coefDirect - Calculates the Coefficient of Direct Normal Irradiance reduction (Equations
P.2.5 and P.2.6)

e plotGrid - Makes an interactive plot of 3D spatial points. This is a wrapper around
scatterplot3js from package threejs (Lewis, 2017)

e ray - Creates a spatial line between two given points

e shiftAz - Shifts spatial features by azimuth and distance

e surfaceGrid - Creates a 3D point layer with a grid which covers the facades and roofs of
obstacles

e toSeg - Splits polygons or lines to segments

The following section provides a manual for using these functions through a simple example with
four buildings.

Examples

In this section we demonstrate the main functionality of shadow, namely calculating -

o Shadow height (function shadowHeight)

o Logical shadow flag (function inShadow)

o Shadow footprint (function shadowFootprint)
o Sky View Factor (function SVF)

 Solar radiation (function radiation)

Before going into the examples, we load the shadow package. Package sp is loaded automatically
along with shadow. Packages raster (Hijmans, 2017) and rgeos (Bivand and Rundel, 2017) are used
throughout the following code examples for preparing the inputs and presenting the results, so they
are loaded as well.

> library(shadow)
> library(raster)
> library(rgeos)

In the examples, we will use a small real-life dataset representing four buildings in Rishon-Le-Zion,
Israel (Figure 6), provided with package shadow and named build.

The following code section also creates a hypothetical circular green park located 20 meters to
the north and 8 meters to the west from the buildings layer centroid (hereby named park).

> location = gCentroid(build)
> park_location = shift(location, y = 20, x = -8)
> park = gBuffer(park_location, width = 12)

The following expressions visualize the build and park layers as shown in Figure 6. Note that
the build layer has an attribute named BLDG_HT specifying the height of each building (in meters),
as shown using text labels on top of each building outline.

> plot(build, col = "lightgrey")
> text(gCentroid(build, byid = TRUE), build$BLDG_HT)
> plot(park, col = "lightgreen", add = TRUE)

Shadow height

The shadowHeight function calculates shadow height(s) at the specified point location(s), given a
layer of obstacles and solar position(s). The shadowHeight function, as well as other functions that
require a solar position argument such as inShadow, shadowFootprint and radiation (see below),
alternatively accept a time argument instead of the solar position. In case a time (time) argument is
passed instead of solar position (solar_pos), the function internally calculates solar position using
the lon/lat of the location layer centroid and the specified time, using function solarpos from
package maptools (Bivand and Lewin-Koh, 2017).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=threejs
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=maptools

CONTRIBUTED RESEARCH ARTICLES 295

Figure 6: Sample data: a buildings layer and a green park layer. Text labels express building
height in meters.

In the following example, we would like to calculate shadow height at the centroid of the buildings
layer (build) on 2004-12-24 at 13:30:00. First we create the queried points layer (location), in this
case consisting of a single point: the build layer centroid. This is our layer of locations where we
would like to calculate shadow height.

> location = gCentroid(build)

Next we need to specify the solar position, i.e. sun elevation and azimuth, at the particular time
and location (31.967°N 34.777°E), or let the function calculate it automatically based on the time.
Using the former option, we can figure out solar position using function solarpos from package
maptools. To do that, we first define a "POSIXct" object specifying the time we are interested in -

> time = as.P0SIXct(

+ x = "2004-12-24 13:30:00",
+ tz = "Asia/Jerusalem"

+

Second, we find the longitude and latitude of the point by reprojecting it to a geographic CRS”.

> location_geo = spTransform(

+ x = location,

+ CRSobj = "+proj=longlat +datum=WGS84"
+)

Finally, we use the solarpos function to find solar position, given longitude, latitude and time -

> library(maptools)

> solar_pos = solarpos(
+ crds = location_geo,
+ dateTime = time

+

We now know the sun azimuth (208.7°) and elevation (28.8°) -

> solar_pos

#> [,1] [,2]
#> [1,] 208.7333 28.79944

Given the solar position along with the layer of obstacles build, shadow height in location can
be calculated using the shadowHeight function, as follows -

3Note that calculating solar position is the only example where lon/lat coordinates are needed when
working with shadow. All other spatial inputs are required to be passed in a projected CRS, due to the fact
that obstacles height is meaningless to specify in lon/lat degree units

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=maptools

CONTRIBUTED RESEARCH ARTICLES 296

19.86

Figure 7: Shadow height (m) at a single point (indicated by black + symbol)

> h = shadowHeight(

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos

+

)

The resulting object contains the shadow height value of 19.86 meters -
>h

#> [,1]
#> [1,] 19.86451

The second (shorter) approach is letting the function calculate solar position for us, in which
case we can pass just the spatial layers and the time, without needing to calculate solar position
ourselves -

> shadowHeight (

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",
+ time = time

+

)

#> [,1]
#> [1,] 19.86451

The results of both approaches are identical. The first approach, where solar position is manually
defined, takes more work and thus may appear unnecessary. However, it is useful for situations
when we want to use specific solar positions from an external data source, or to evaluate arbitrary
solar positions that cannot be observed in the queried location in real life.

Either way, the resulting object h is a "matrix", though in this case it only has a single row and
a single column. The shadowHeight function accepts location layers with more than one point, in
which case the resulting "matrix" will have additional rows. It also accepts more than one solar
position or time value (see below), in which case the resulting "matrix" will have additional columns.
It is thus possible to obtain a matrix of shadow height values for a set of locations in a set of times.

Figure 7 illustrates how the shadow height calculation was carried out. First, a line of sight
is drawn between the point of interest and the sun direction based on sun azimuth (shown as a
yellow line). Next, potential intersections are detected (marked with + symbols). Finally, shadow
height induced by each intersection is calculated based on the distance towards intersection, sun
elevation and intersected building height (see Figure 1). The final result is the maximum of the
per-intersection heights.

The procedure can be readily expanded to calculate a continuous surface of shadow heights, as
the shadowHeight function also accepts "Raster*" objects (package raster). The raster serves as

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 297

20

15

10

Figure 8: Shadow height (m) surface, and an individual shadow height value (indicated by black
+ symbol at the center of the image)

a template, defining the grid where shadow height values will be calculated. For example, in the
following code section we create such a template raster covering the examined area plus a 50-meter
buffer on all sides, with a spatial resolution of 2 meters -

> ext = as(extent(build) + 50, "SpatialPolygons")
> r = raster(ext, res = 2)
> proj4string(r) = projé4string(build)

Now we can calculate a shadow height raster by simply replacing the location argument with
the raster r -

> height_surface = shadowHeight (

+ location = r,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos,

+ parallel =5

+)

The result (height_surface), in this case, is not a matrix - it is a shadow height surface (a
"RasterLayer" object) of the same spatial dimensions as the input template r. Note that unshaded
pixels get an NA shadow height value, thus plotted in white (Figure 8). Also note the partial shadow
on the roof of the north-eastern building (top-right) caused by the neighboring building to the
south-west.

The additional parallel=5 argument splits the calculation of raster cells among 5 processor
cores, thus making it faster. A different number can be specified, depending the number of available
cores. Behind the scenes, parallel processing relies on the parallel package (R Core Team, 2018).

Shadow (logical)

Function shadowHeight, introduced in the previous section, calculates shadow height for a given
ground location. In practice, the metric of interest is very often whether a given 3D location is in
shade or not. Such a logical flag can be determined by comparing the Z-coordinate (i.e. the height)
of the queried point with the calculated shadow height at the same X-Y location. The inShadow
function is a wrapper around shadowHeight for doing that.

The inShadow function gives the logical shadow/non-shadow classification for a set of 3D points.
The function basically calculates shadow height for a given unique ground location (X-Y), then
compares it with the elevation (Z) of all points in that location. The points which are positioned
“above” the shadow are considered non-shaded (receiving the value of FALSE), while the points which
are positioned “below” the shadow are considered shaded (receiving the value of TRUE).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=parallel

CONTRIBUTED RESEARCH ARTICLES

298

The 3D points we are interested in when doing urban analysis are usually located on the surface
of elements such as buildings. The surfaceGrid helper function can be used to automatically
generate a grid of such surface points. The inputs for this function include the obstacle layer for
which to generate a surface grid and the required grid resolution. The returned object is a 3D point
layer.

For example, the following expression calculates a 3D point layer named grid covering the build
surface at a resolution of 2 meters -

> grid = surfaceGrid(
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ res = 2
+

The resulting grid points are associated with all attributes of the original obstacles each surface
point corresponds to, as well as six new attributes -

e obs_id - Unique consecutive ID for each feature in obstacles

e type - Either "facade" or "roof"

e seg_id - Unique consecutive ID for each facade segment (only for “facade” points)

e xy_id - Unique consecutive ID for each ground location (only for “facade” points)

o facade_az - The azimuth of the corresponding facade, in decimal degrees (only for “facade”
points)

In this case, the resulting 3D point grid has 2,693 features, starting with "roof" points -
> head(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az

#> 1 722 22.49 3 roof NA NA NA
#> 2 722 22.49 3 roof NA NA NA
#> 3 722 22.49 3 roof NA NA NA
#> 4 722 22.49 3 roof NA NA NA
#> 5 722 22.49 3 roof NA NA NA
#> 6 722 22.49 3 roof NA NA NA

Then going through the "facade" points -

> tail(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az
#> 19610 831 19.07 4 facade 74 44 100.2650
#> 19710 831 19.07 4 facade 75 45 123.6695
#> 19810 831 19.07 4 facade 75 46 123.6695
#> 19910 831 19.07 4 facade 75 47 123.6695
#> 20010 831 19.07 4 facade 75 48 123.6695
#> 20110 831 19.07 4 facade 75 49 123.6695

Printing the coordinates confirms that, indeed, grid is a 3D point layer having three-dimensional
coordinates where the third dimension h represents height above ground -

> head(coordinates(grid))

#> x1 x2 h
#> 1 667882.9 3538086 22.5
#> 2 667884.9 3538086 22.5
#> 3 667886.9 3538086 22.5
#> 4 667888.9 3538086 22.5
#> 5 667890.9 3538086 22.5
#> 6 667892.9 3538086 22.5

Once the 3D grid is available, we can evaluate whether each point is in shadow or not, at the
specified solar position(s), using the inShadow wrapper function -

> s = inShadow(
+ location = grid,
+ obstacles = build,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 299

+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos

+)

The resulting object s is a "logical" matrix with rows corresponding to the grid features and
columns corresponding to the solar positions. In this particular case a single solar position was
evaluated, thus the matrix has just one column -

> dim(s)
#> [1] 2693 1

The scatter3D function from package plot3D (Soetaert, 2017) is useful for visualizing the result.
In the following code section, we use two separate scatter3D function calls to plot the grid with
both variably colored filled circles (yellow or grey) and constantly colored (black) outlines.

> library(plot3D)

> scatter3D(

+ x = coordinates(grid) [, 11,
y = coordinates(grid) [, 2],
z = coordinates(grid) [, 3],
theta = 55,
colvar = s[, 1],
col = c("yellow", "grey"),
pch = 16,
scale = FALSE,
colkey = FALSE,
cex = 1.1

)

scatter3D(
x = coordinates(grid) [, 11,
y = coordinates(grid) [, 2],
z = coordinates(grid) [, 3],
theta = b5,
col = "black",
pch =1,
lwd 0.1,
scale = FALSE,
colkey = FALSE,
cex = 1.1,
add = TRUE

R T Tk T T S S S S S S S S O S R S

The output is shown in Figure 9. It shows the 3D grid points, along with the inShadow
classification encoded as point color: grey for shaded surfaces, yellow for sun-exposed surfaces.

Shadow footprint

The shadowFootprint function calculates the geometry of shadow projection on the ground. The
resulting footprint layer can be used for various applications. For example, a shadow footprint layer
can be used to calculate the proportion of shaded surface in a defined area, or to examine which
obstacles are responsible for shading a given urban element.

In the following example, the shadowFootprint function is used to determine the extent of
shading on the hypothetical green park (Figure 6) at different times of day. First, let us consider a
single time instance of 2004-06-24 09:30:00. At this particular time and geographical location, the
solar position is at an azimuth of 88.8° and at an elevation of 46.7° -

time2 = as.P0SIXct(
x = "2004-06-24 09:30:00",
tz = "Asia/Jerusalem"

)

solar_pos2 = solarpos(
crds = location_geo,
dateTime = time2

)

solar_pos2

V o+ + +V o+ o+ o+ V

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=plot3D

CONTRIBUTED RESEARCH ARTICLES 300

Figure 9: Buildings surface points in shadow (grey) and in direct sunlight (yellow) on 2004-12-24
13:30:00

#> [,1] [,2]
#> [1,] 88.83113 46.724

The following expression calculates the shadow footprint for this particular solar position.

> footprint = shadowFootprint(

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos2
+

)

The resulting object footprint is a polygonal layer ("SpatialPolygonsDataFrame" object)
which can be readily used in other spatial calculations. For example, the footprint and park polygons
can be intersected to calculate the proportion of shaded park area within total park area, as follows.

> park_shadow = gIntersection(park, footprint)
> shade_prop = gArea(park_shadow) / gArea(park)
> shade_prop

#> [1] 0.3447709

The numeric result shade_prop gives the proportion of shaded park area, 0.34 in this case (Figure
10).

The shadow footprint calculation can also be repeated for a sequence of times, rather than a
single one, to monitor the daily (monthly, annual, etc.) course of shaded park area proportion. To
do that, we first need to prepare the set of solar positions in the evaluated dates/times. Again,
this can be done using function solarpos. For example, the following code creates a matrix named
solar_pos_seq containing solar positions over the 2004-06-24 at hourly intervals -

time_seq = seq(

from = as.P0SIXct("2004-06-24 03:30:00", tz = "Asia/Jerusalem"),
to = as.P0OSIXct("2004-06-24 22:30:00", tz = "Asia/Jerusalem"),
by = "1 hour"

solar_pos_seq = solarpos(

crds = location_geo,

>
+
+
+
+)
>
+
+ dateTime = time_seq
+

)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 301

Figure 10: Shaded park proportion on 2004-06-24 09:30:00

Note that the choice of an hourly interval is arbitrary. Shorter intervals (e.g. 30 mins) can be
used for increased accuracy.

To calculate the shaded park proportion at each time step we can loop over the solar_pos_seq
matrix, each time -

o Calculating shadow footprint
e Intersecting the shadow footprint with the park outline

e Calculating the ratio of intersection and total park area
The code of such a for loop is given below.

> shadow_props = rep(NA, nrow(solar_pos_seq))
> for(i in 1l:nrow(solar_pos_seq)) {

+ if(solar_pos_seql[i, 2] < 0) shadow_props[i] = 1 else {
+ footprint =

+ shadowFootprint (

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos_seql[i, , drop = FALSE]

+)

+ park_shadow = glntersection(park, footprint)

+ if (is.null(park_shadow))

+ shadow_props[i] = 0

+ else

+ shadow_props[i] = gArea(park_shadow) / gArea(park)
+ }

+}

The loop creates a numeric vector named shadow_props. This vector contains shaded proportions
for the park in agreement with the times we specified in time_seq. Note that two conditional
statements are being used to deal with special cases -

o Shadow proportion is set to 1 (i.e. maximal) when sun is below the horizon
o Shadow proportion is set to 0 (i.e. minimal) when no intersections are detected between the
park and the shadow footprint

Plotting shadow_props as function of time_seq (Figure 11) summarizes the daily course of
shaded park proportion on the 2004-06-24. The individual value of 0.34 which we have calculated
for 09:30 in the previous example (Figure 10) is highlighted in red.

Sky View Factor

The SVF function can be used to estimate the SVF at any 3D point location. For example, the
following expression calculates the SVF on the ground” at the centroid of the build layer (Figure 4).

4Recall (Table 1) that the inShadow and SVF functions accept either 2D or 3D points, whereas 2D points
are treated as ground locations

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 302

o-0-0 0-0-0
c
g o |
= < o \034
& o | N\
S ~0-0-0-0-2"0-0-0-0
T T T T
06:00 11:00 16:00 21:00
Time

Figure 11: Shaded park proportion at each hourly time step on 2004-06-24

> s = SVF(

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT"
+

The resulting SVF is 0.396, meaning that about 39.6% of the sky area are visible (Figure 12)
from this particular location.

> s
#> [1] 0.3959721

Note that the SVF function has a tuning parameter named res_angle which can be used to
modify angular resolution (default is 5°, as shown in Figure 4). A smaller res_angle value will give
more accurate SVF but slower calculation.

Given a “template” grid, the latter calculation can be repeated to generate a continuous surface
of SVF estimates for a grid of ground locations. In the following code section we calculate an SVF
surface using the same raster template with a resolution of 2 meters from the shadow height example
(see above).

> svf_surface = SVF(

+ location = r,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",
+ parallel = 5

+)

Note that the parallel=5 option is used once again to make the calculation run simultaneously
on 5 cores. The resulting SVF surface is shown in Figure 12. As could be expected, SVF values are
lowest in the vicinity of buildings due to their obstruction of the sky.

Solar radiation

Shadow height, shadow footprint and SVF can be considered as low-level geometric calculations.
Frequently, the ultimate aim of an analysis is the estimation of insolation, which is dependent on
shadow and SVF but also on surface orientation and meteorological solar radiation conditions. Thus,
the low-level geometric calculations are frequently combined and wrapped with meteorological solar
radiation estimates to take the geometry into account when evaluating insolation over a given time
interval. The shadow package provides this kind of wrapper function named radiation.

The radiation function needs several parameters to run -

¢ 3D points grid representing surfaces where the solar radiation is evaluated. It is important
to specify whether each grid point is on a "roof" or on a "facade", and the azimuth it is facing
(only for "facade"). A grid with those attributes can be automatically produced using the
surfaceGrid function (see above)

e Obstacles layer defined with obstacles, having an obstacles_height_field attribute (see
above)

e Solar positions defined with solar_pos (see above)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

303

0.8

0.6

0.4

0.2

Figure 12: Sky View Factor (SVF) surface, with SVF value for an individual point (indicated

by black + symbol at the center of the image)

Meteorological estimates defined with solar_normal and solar_diffuse, corresponding
to the same time intervals given by solar_pos

Given this set of inputs, the radiation function:

calculates whether each grid surface point is in shadow or not, for each solar position
solar_pos, using the inShadow function (Equation P.2.1),

calculates the Coefficient of Direct Normal Irradiance reduction, for each grid surface point
at each solar position solar_pos, using the coefDirect function (Equations P.2.5 and P.2.6),

combines shadow, the coefficient and the meteorological estimate solar_normal to calculate
the direct radiation (Equation P.2.7),

calculates the SVF for each grid surface point, using the SVF function (Equations P.2.3 and
P.2.4),

combines the SVF and the meteorological estimate solar_diffuse to calculate the diffuse
radiation (Equation P.2.8)

and calculates the sums of the direct, diffuse and total (i.e. direct+diffuse) solar radiation
per grid surface point for the entire period (Equation P.2.9).

To demonstrate the radiation function, we need one more component not used in the previous
examples: the reference solar radiation data. The shadow package comes with a sample Typical
Meteorological Year (TMY) dataset named tmy that can be used for this purpose. This dataset
was compiled for the same geographical area where the buildings are located, and therefore can be
realistically used in our example.

The tmy object is a data.frame with 8,760 rows, where each row corresponds to an hourly interval
over an entire year (24 x 365 = 8,760). The attributes given for each hourly interval include solar
position (sun_az, sun_elev) and solar radiation measurements (solar_normal, solar_diffuse).
Both solar radiation measurements are given in I/V/m2 units.

> head(tmy, 10)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

time sun_az sun_elev solar_normal solar_diffuse dbt ws
1 1999-01-01 01:00:00 66.73 -70.94 0 0 6.6 1.0
2 1999-01-01 02:00:00 82.02 -58.68 0 0 5.91.0
3 1999-01-01 03:00:00 91.00 -45.99 0 0 5.41.0
4 1999-01-01 04:00:00 98.13 -33.32 0 0 4.91.0
5 1999-01-01 05:00:00 104.81 -20.86 0 0 4.41.0
6 1999-01-01 06:00:00 111.73 -8.76 0 6 4.81.0
7 1999-01-01 07:00:00 119.41 2.91 118 24 7.3 1.0
8 1999-01-01 08:00:00 128.39 13.30 572 45 11.2 1.0
9 1999-01-01 09:00:00 139.20 22.46 767 57 16.0 1.0
10 1999-01-01 10:00:00 152.33 29.63 809 66 16.3 2.1

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

304

The Direct Normal Irradiance (solar_normal) is the amount of solar radiation received per unit
area by a surface that is always held normal to the incoming rays from the sun’s current position in
the sky. This is an estimate of maximal direct radiation, obtained on an optimally tilted surface.
The Diffuse Horizontal Irradiance (solar_diffuse) is the amount of radiation received per unit area
at a surface that has not arrived on a direct path from the sun, but has been scattered by molecules
and particles in the atmosphere. This is an estimate of diffuse radiation.

To use the solar positions from the tmy dataset, we create a separate matrix with just the sun_az
and sun_elev columns -

> solar_pos = as.matrix(tmy[, c("sun_az", "sun_elev")])
The first few rows of this matrix are -
> head(solar_pos)

#> sun_az sun_elev
#> 2 66.73 -70.94
#> 3 82.02 -58.68
#> 4 91.00 -45.99
#> 5 98.13 -33.32
#> 6 104.81 -20.86
#> 7 111.73 -8.76

Now we have everything needed to run the radiation function. We are hereby using the same
grid layer with 3D points covering the roofs and facades of the four buildings created above using
the surfaceGrid function (Figure 9), the layer of obstacles, and the solar position and measured
solar radiation at a reference weather station from the tmy table.

rad = radiation(
grid = grid,
obstacles = build,
obstacles_height_field = "BLDG_HT",
solar_pos = solar_pos,
solar_normal = tmy$solar_normal,
solar_diffuse = tmy$solar_diffuse,
parallel = 5

+ o+ + + + + + + V

~

The returned object rad is a data.frame with the summed direct, diffuse and total (i.e. di-
rect+diffuse) solar radiation estimates, as well as the SVF, for each specific surface location in grid.
Summation takes place over the entire period given by solar_pos, solar_normal and solar_diffuse.
In the present case it is an annual insolation. The units of measurement are therefore Wh/m2
summed over an entire year.

For example, the following printout -

> head(rad)

#> svf direct diffuse total
#> 1 0.9999875 1242100 473334.1 1715434
#> 2 0.9999830 1242100 473332.0 1715432
#> 3 0.9999778 1242100 473329.5 1715429
#> 4 0.9999685 1242100 473325.1 1715425
#> 5 0.9999538 1242099 473318.2 1715417
#> 6 0.9999396 1242099 473311.4 1715411

refers to the first six surface points which are part of the same roof, thus sharing similar annual
solar radiation estimates. Overall, however, the differences in insolation are very substantial among
different locations on the buildings surfaces, as shown in Figure 13. For example, the roofs receive
about twice as much direct radiation as the south-facing facades. The code for producing Figure 13,
using function scatter3D (see Figure 9), can be found on the help page of the radiation function
and is thus omitted here to save space. Note that the figure shows radiation estimates in kWh/m2
units, i.e. the values from the rad table (above) divided by 1000.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 305

Direct radiation KWh / m?

1200

1000

— -

— 800

— 600

400

200

°

Diffuse radiation KWh / m?

400

—

— 300

— 200

100

| —

Total radiation kwWh / m?

1500

—

~ 1000

500

|

Figure 13: Annual direct, diffuse and total radiation estimates per grid point (kWh/mZ). Note
that the Y-axis points to the north. Also note that the color scale range is different
in each panel.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 306

Discussion

The shadow package introduces a simple geometric model for shadow-related calculations in an urban
environment. Specifically, the package provides functions for calculating shadow height, shadow
footprint and SVF. The latter can be combined with TMY data to estimate insolation on built
surfaces. It is, to the best of our knowledge, the only R package aimed at shadow calculations in a
vector-based representation of the urban environment. It should be noted that the insol package
provides similar functionality for a raster-based environment, but the latter is more suitable for
modelling large-scale natural environments rather than detailed urban landscapes.

The unique aspect of our approach is that calculations are based on a vector layer of polygons
extruded to a given height, known as 2.5D, such as building footprints with a height attribute.
The vector-based 2.5D approach has several advantages over the two commonly used alternative
ones: vector-based 3D and raster-based models. Firstly, the availability of 2.5D input data is much
greater compared to both specialized 3D models and high-resolution raster surfaces. Building layers
for entire cities are generally available from various sources, ranging from local municipality GIS
systems to global crowd-sourced datasets (e.g. OpenStreetMap) (Haklay and Weber, 2008). Secondly,
processing does not require closed-source software, or interoperability with complex specialized
software, as opposed to working with 3D models. Thirdly, results are easily associated back to the
respective urban elements such as buildings, parks, roofs facades, etc., as well as their attributes,
via a spatial join operation (e.g. using function over in R package sp). For example, we can easily
determine which building is responsible for shading the green park in the above shadow footprint
example (Figure 10). This is unlike a raster-based approach, where the input is a continuous surface
with no attributes, thus having no natural association to individual urban elements or objects.

However, it should be noted that the 2.5D vector-based approach requires several assumptions
and has some limitations. When the assumptions do not hold, results may be less accurate compared
to the above-mentioned alternative approaches. For example, it is impossible to represent geometric
shapes that are not a simple extrusion in 2.5D (though, as mentioned above, urban surveys providing
such detailed data are not typically available). An ellipsoid tree, a bridge with empty space
underneath, a balcony extruding outwards from a building facade, etc., can only be represented with
a polyhedral surface in a full vector-based 3D environment (Groger and Pliimer, 2012; Biljecki et al.,
2016). Recently, classes for representing true-3D urban elements, such as the Simple Feature type
POLYHEDRALSURFACE, have been implemented in R package sf (Pebesma, 2018). However, functions
for working with those classes, such as calculating 3D-intersection, are still lacking. Implementing
such functions in R could bring new urban analysis capabilities to the R environment in the future,
in which solar analysis of 3D city models probably comprises a major use case (Biljecki et al., 2015).

It should also be noted that a vector-based calculation may be generally slower than a raster
based calculation. This becomes important when the study area is very large. Though the present
algorithms can be optimized to some extent, they probably cannot compete with raster-based
calculations where sun ray intersections can be computed using fast ray-tracing algorithms based
on matrix input (Amanatides et al., 1987), as opposed to computationally intensive search for
intersections between a line and a polygonal layer in a vector-based environment. For example,
calculating the SVF surface shown in Figure 12 requires processing 72 angular sections x 3,780 raster
cells = 272,160 SVF calculations, which takes about 7.3 minutes using five cores on an ordinary
desktop computer (Intel® Core™ i7-6700 CPU @ 3.40GHz x 8). The annual radiation estimate
shown in Figure 13 however takes about 3.9 hours to calculate, as it requires SVF calculation
for 2,693 grid points, as well as 727 ground locations x 8,760 hours = 6,368,520 shadow height
calculations.

To summarize, the shadow package can be used to calculate shadow, SVF and solar radiation in
an urban environment using widely available polygonal building data, inside the R environment (e.g.
Vulkan et al., 2018). Potential use cases include urban environment applications such as evaluation
of micro-climatic influence for urban planning, studying urban well-being (e.g. climatic comfort) and
estimating photovoltaic energy production potential.

Acknowledgements

The shadow package was developed as part of a study funded by the Israel Ministry of National
Infrastructures, Energy and Water Resources under research grant # 021-11-215.

The authors would like thank the Editor and an anonymous reviewer for the review of this article
and for the thoughtful comments.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sf

CONTRIBUTED RESEARCH ARTICLES 307

Bibliography

J. Amanatides, A. Woo, and others. A fast voxel traversal algorithm for ray tracing. In Furographics,
volume 87, pages 3-10, 1987. [p300]

B. Beckers. Solar Energy at Urban Scale. John Wiley & Sons, 2013. [p290]

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Coltekin. Applications of 3D city models:
State of the art review. ISPRS International Journal of Geo-Information, 4(4):2842-2889, 2015.
URL https://doi.org/10.3390/1jgi4042842. [p287, 306]

F. Biljecki, H. Ledoux, and J. Stoter. An improved LOD specification for 3D building models.
Computers, Environment and Urban Systems, 59:25-37, 2016. URL https://doi.org/10.1016/
j.compenvurbsys.2016.04.005. [p306]

R. Bivand and N. Lewin-Koh. Maptools: Tools for Reading and Handling Spatial Objects, 2017.
URL https://CRAN.R-project.org/package=maptools. R package version 0.9-2. [p294]

R. Bivand and C. Rundel. Rgeos: Interface to Geometry Engine - Open Source ("GEOS’), 2017.
URL https://CRAN.R-project.org/package=rgeos. R package version 0.3-26. [p294]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied Spatial Data Analysis with R, Second
Edition. Springer-Verlag, 2013. URL http://www.asdar-book.org/. [p288]

F. Bourbia and F. Boucheriba. Impact of street design on urban microclimate for semi arid
climate (Constantine). Renewable Energy, 35(2):343-347, 2010. URL https://doi.org/10.1016/
j.renene.2009.07.017. [p287]

J. G. Corripio. Insol: Solar Radiation, 2014. URL https://CRAN.R-project.org/package=insol.
R package version 1.1.1. [p287]

M. Dorman. Shadow: Geometric Shadow Calculations, 2019. URL https://CRAN.R-project.org/
package=shadow. R package version 0.6.0. [p288]

E. Erell, D. Pearlmutter, and T. Williamson. Urban Microclimate: Designing the Spaces between
Buildings. Earthscan/James & James Science Publishers, 2011. URL https://doi.org/10.4324/
9781849775397. [p290]

ESRI. ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, CA, 2017. URL
https://www.arcgis.com. [p287]

S. Freitas, C. Catita, P. Redweik, and M. C. Brito. Modelling solar potential in the urban environment:
State-of-the-art review. Renewable and Sustainable Energy Reviews, 41:915-931, 2015. URL
https://doi.org/10.1016/j.rser.2014.08.060. [p287, 292]

P. Fu and P. M. Rich. Design and implementation of the Solar Analyst: An ArcView extension for
modeling solar radiation at landscape scales. In Proceedings of the Nineteenth Annual ESRI User
Conference, pages 1-31, 1999. [p287]

B. Givoni. Climate Considerations in Building and Urban Design. John Wiley & Sons, 1998. [p291]
Google. SketchUp: Release 17. Trimble Inc., CA, 2017. URL https://www.sketchup.com/. [p287]

GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) Software,
Version 7.2. Open Source Geospatial Foundation, 2017. URL http://grass.osgeo.org. [p287]

C. Grimmond, S. Potter, H. Zutter, and C. Souch. Rapid methods to estimate sky-view factors
applied to urban areas. International Journal of Climatology, 21(7):903-913, 2001. URL https:
//doi.org/10.1002/joc.659. [p290]

G. Groger and L. Plumer. CityGML—-Interoperable semantic 3D city models. ISPRS Journal
of Photogrammetry and Remote Sensing, 71:12-33, 2012. URL https://doi.org/10.1016/7.
isprsjprs.2012.04.004. [p288, 306]

T. Gal and J. Unger. A new software tool for SVF calculations using building and tree-crown databases.
Urban Climate, 10:594-606, 2014. URL https://doi.org/10.1016/j.uclim.2014.05.004. [p290]

M. Haklay and P. Weber. OpenStreetMap: User-generated street maps. [EEE Pervasive Computing,
7(4):12-18, 2008. URL https://doi.org/10.1109/MPRV.2008.80. [p288, 300]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=rgeos
http://www.asdar-book.org/
https://doi.org/10.1016/j.renene.2009.07.017
https://doi.org/10.1016/j.renene.2009.07.017
https://CRAN.R-project.org/package=insol
https://CRAN.R-project.org/package=shadow
https://CRAN.R-project.org/package=shadow
https://doi.org/10.4324/9781849775397
https://doi.org/10.4324/9781849775397
https://www.arcgis.com
https://doi.org/10.1016/j.rser.2014.08.060
https://www.sketchup.com/
http://grass.osgeo.org
https://doi.org/10.1002/joc.659
https://doi.org/10.1002/joc.659
https://doi.org/10.1016/j.isprsjprs.2012.04.004
https://doi.org/10.1016/j.isprsjprs.2012.04.004
https://doi.org/10.1016/j.uclim.2014.05.004
https://doi.org/10.1109/MPRV.2008.80

CONTRIBUTED RESEARCH ARTICLES 308

R. J. Hijmans. Raster: Geographic Data Analysis and Modeling, 2017. URL https://CRAN.R-
project.org/package=raster. R package version 2.6-7. [p294]

J. Hofierka and M. Suri. The solar radiation model for Open source GIS: Implementation and
applications. In Proceedings of the Open Source GIS-GRASS Users Conference, volume 2002,
pages 51-70, 2002. [p287]

J. Hofierka and M. Zlocha. A new 3-D solar radiation model for 3-D city models. Transactions in
GIS, 16(5):681-690, 2012. URL https://doi.org/10.1111/7.1467-9671.2012.01337 .x. [p288]

L. Kumar, A. K. Skidmore, and E. Knowles. Modelling topographic variation in solar radiation in
a GIS environment. International Journal of Geographical Information Science, 11(5):475-497,
1997.IJRI;https://doi.org/lo.1080/136588197242266.[p287

B. W. Lewis. Threejs: Interactive 8D Scatter Plots, Networks and Globes, 2017. URL https:
//CRAN.R-project.org/package=threejs. R package version 0.3.1. [p294]

J. Liang, J. Gong, J. Zhou, A. N. Ibrahim, and M. Li. An open-source 3D solar radiation model
integrated with a 3D Geographic Information System. Environmental Modelling € Software, 64:
94-101, 2015. URL https://doi.org/10.1016/].envsoft.2014.11.019. [p287]

F. Lindberg, C. S. B. Grimmond, A. Gabey, B. Huang, C. W. Kent, T. Sun, N. E. Theeuwes,
L. Jarvi, H. C. Ward, 1. Capel-Timms, and others. Urban Multi-Scale Environmental Predictor
(UMEP): An integrated tool for city-based climate services. Environmental Modelling & Software,
99:70-87, 2018. URL https://doi.org/10.1016/j.envsoft.2017.09.020. [p287]

E. Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The R
Journal, 10(1):439-446, 2018. URL https://journal .r-project.org/archive/2018/RJ-2018~
009/index.html. [p306]

E. Pebesma and R. S. Bivand. Classes and methods for spatial data: The sp package. R news, 5(2):
9-13, 2005. URL https://CRAN.R-project.org/doc/Rneus/. [p28§]

S. Pusat, Ismail Ekmekci, and M. T. Akkoyunlu. Generation of typical meteorological year for
different climates of Turkey. Renewable Energy, 75:144-151, 2015. URL https://doi.org/10.
1016/j.renene.2014.09.039. [p293]

QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Founda-
tion, 2017. URL http://qgis.osgeo.org. [p287]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/. [p297]

C. Ratti and P. Richens. Raster analysis of urban form. Environment and Planning B: Planning
and Design, 31(2):297-309, 2004. URL https://doi.org/10.1068/b2665. [p2