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Dynamic Simulation and Testing for
Single-Equation Cointegrating and
Stationary Autoregressive Distributed
Lag Models
by Soren Jordan and Andrew Q. Philips

Abstract While autoregressive distributed lag models allow for extremely flexible dynamics, interpret-
ing the substantive significance of complex lag structures remains difficult. In this paper we discuss
dynamac (dynamic autoregressive and cointegrating models), an R package designed to assist users in
estimating, dynamically simulating, and plotting the results of a variety of autoregressive distributed
lag models. It also contains a number of post-estimation diagnostics, including a test for cointegration
for when researchers are estimating the error-correction variant of the autoregressive distributed lag
model.

Introduction

Many important social processes vary systematically over time. Models designed to account for such
dynamics have become more common in the social sciences. Applied examples range from prime
ministerial approval (Clarke et al., 2000), to the determinants of prison admission rates (Jacobs and
Helms, 1996), to preferences for different types of government spending (Wlezien, 1995), to how
changing tax rates affect income (Mertens and Montiel Olea, 2018).

Dynamic processes take many forms. Some of these processes are integrated, such that the
current value (“realization”) of a series is an expression of all past values in the series plus some
new innovation (i.e. yt ∼ I(1) if yt = yt−1 + εt). These series are referred to as I(1), non-stationary,
or having a “unit root.”1 Other processes revert back to some mean level over time. Since they are
not integrated, often these series are termed stationary, or I(0). Stationary series are characterized by
constant mean, variance, and covariance; non-stationary series violate one or more of these properties.
An especially interesting relationship exists when two (or more) integrated variables are in a long-run
relationship with each other, even if in the short term the series may move apart. Such series are said
to be cointegrated.2

The job of properly modeling such a diverse set of dynamic processes is challenging. Researchers
want to test whether a theoretical regressor of interest, X, has an effect on a dependent variable y,
accounting for each series’ own dynamics. Moreover, these effects might occur in both the short-run
and long-run of the series. Additionally, in cases where we have multiple I(1) variables, we must test
whether the variables are in a cointegrating relationship. Researchers still need a way to interpret the
effects of these complex models. When modeling dynamics, then, we might be particularly drawn to a
strategy that contributes to each of these goals.

We advocate for one particular specification because of its generalizability, flexibility and robust-
ness to a variety of data-generating proceeses: autoregressive distributed lag (ARDL) models. ARDL
models can account for multiple lags of independent variables, either in levels or in first-differences,
as well as multiple lags of the dependent variable. Moreover, utilizing the ARDL-bounds testing
procedure of Pesaran et al. (2001), we can test whether variables in the ARDL model are also in a
cointegrating relationship. However, the very flexibility of this modeling strategy produces its own
challenges. If the researcher includes multiple lags (or differences, or lagged differences) of some
independent variable, it becomes increasingly difficult to discern various effects of a change in X on y,
beyond the individual coefficients estimated in the ARDL model. These are more complicated than
static models (De Boef and Keele, 2008), since they often involve both short- and long-run effects of X
on y.3

We introduce a new R package, dynamac (Jordan and Philips, 2018), to help ameliorate these
two challenges. The core of the package consists of two functions: pssbounds, which implements

1A unit-root is one common form of non-stationarity; a series could be non-stationary due to a linear trend, for
instance.

2Stationary variables cannot be in cointegrating relationships, as their long-run response is to return to their
mean value, not a linear combination of some other series.

3See Beck and Katz (2011) or Blackwell and Glynn (2018) for a discussion of this in the cross-sectional time series
context.
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the ARDL-bounds testing procedure for cointegration (Pesaran et al., 2001), and dynardl, which
estimates ARDL models and simulates the effect of some X on y by way of dynamic simulations. The
simulations provided by the latter function help provide substantive inferences of some X on y (1)
in both the short run and long run, (2) when X appears in multiple forms (such as first-differences,
lagged first-differences, and/or lagged levels), and (3) accounting for similar specifications of other
control variables Z. We also include functions to easily take the lag, first-difference, and lagged-first
difference of a series, as well as post-estimation diagnostics users can employ to ensure residuals
from their resulting model are white noise. In doing so, we complement other R packages designed to
show substantive and statistical significance of dynamic models (for instance, the dynsim package,
Gandrud et al., 2015, 2016), as well as broader classes of models such as those compatible with Zelig
(Choirat et al., 2018).

Below we explain the context of ARDL models generally, as well as cointegration testing and the
ARDL-bounds test in particular. We then discuss dynamac functions to help estimate both the ARDL-
bounds test as well as the ARDL models (and their stochastic simulations). We provide illustrative
examples of each function, and conclude by offering suggestions for future research.

The general ARDL model

The autoregressive distributed lag model has a very general form:

yt, ∆yt =α0 + δT +
P

∑
p=1

φpyt−p +
L1

∑
l1=0

θ1l x1,t−l1 + · · ·+
Lk

∑
lk=0

θkl xt−lk
+

M

∑
m=1

αm∆yt−m +
Q1

∑
q1=0

β1q1 ∆x1,t−q1 + · · ·+
Qk

∑
qk=0

βkqk
∆xk,t−qk

+ εt

(1)

The left-hand side can be estimated either in levels (yt) or in first-differences (∆yt). This may be a
function of a constant, a linear trend, up to p lags of the dependent variable, a series of lags for each of
the k regressors—appearing either contemporaneously or with a lag—m lagged first-differences of the
dependent variable, and contemporaneous and/or lagged first-differences of each of the regressors.
Lagged first-differences may enter into Equation 1 for theoretical reasons, or to help ensure that the
resulting residuals ε are white noise.4 Since this model obviously results in a heavy parameterization,
restrictions are often imposed. Two of the most common restrictions are the ARDL(1,1) model with
all-stationary data:

yt =α0 + φ1yt−1 + θ1,0x1,t + · · ·+ θk,0xk,t + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + εt (2)

as well as its non-stationary and cointegrating variant, often referred to as an error-correction
model:5

∆yt = α0 + φ1yt−1 + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + β1∆x1,t + · · ·+ βk∆xk,t + εt (3)

For clarity, lagged first-differences are not shown, although they may be added to Equations 2 and 3,
either for theoretical reasons or to purge autocorrelation from the residuals.6

The strength and drawback of the ARDL model should be immediately apparent: while researchers
can specify a variety of lagged levels and differences to account for theory as well as ensure white-
noise (random) residuals (that is, no residual autocorrelation), the same flexibility can make inferences
regarding the total effect of any individual X variable difficult to discern. This is exacerbated even
more when we consider that these variables might have short-run and long-run effects. In other words,
an immediate change in an X variable might have an immediate impact in the contemporaneous
period t, but if lagged values of X also appear in the model, this effect will persist for multiple time
periods. Moreover, if the dependent variable is entered into the model in lagged levels through φp, the
effects of the independent variable X in some time period t persist over time. There is a cumulative—or
long-run—effect across time, given a change in X in a single time period. In simple cases this can be
calculated as a non-linear combination of the lagged parameter estimate and the parameter on the
lagged dependent variable (De Boef and Keele, 2008). Yet even these calculations become tedious with
multiple lags of the regressors and the dependent variable.

We circumvent this difficulty by employing stochastic simulations rather than direct interpretation
of coefficients in order to show statistical and substantive significance. Dynamic stochastic simulations

4i.e., ε ∼ N(0, σ2). We discuss the importance of white-noise residuals below.
5Of course, all-stationary series may be estimated in an error-correction model as well (De Boef and Keele, 2008).
6i.e., users could add: ∑M

m=1 αm∆yt−m + ∑Q1
q1=0 β1q1 ∆x1,t−q1 + · · ·+ ∑

Qk
qk=0 βkqk

∆xk,t−qk
.
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provide an alternative to direct hypothesis testing of coefficients, instead focusing on simulating
meaningful counterfactuals from model coefficients many times and drawing inferences from the
central tendencies of the simulations. Such simulations are becoming increasingly popular with
increased computing power, as demonstrated in the social sciences by recent methodological and
applied work (Tomz et al., 2003; Breunig and Busemeyer, 2012; Williams and Whitten, 2012; Philips
et al., 2015, 2016; Gandrud et al., 2015; Choirat et al., 2018).

Recall that the other challenge we wish to confront is that of identifying cointegration in autore-
gressive distributed lag models in error-correction form. In instances of small-sample data, especially
of time points t of 80 or less, traditional tests like the Engle-Granger “two-step” method (Engle and
Granger, 1987) or the Johansen (1991, 1995) approaches too often conclude cointegration when it does
not exist (Philips, 2018). An alternative test, proposed by Pesaran et al. (2001), is more conservative,
meaning it does not conclude cointegration when it does not exist, especially in small samples. This
test, which we call the ARDL-bounds test, is desirable for the social sciences, where shorter time
series (smaller samples) are quite common. The difficulty of the ARDL-bounds test is that it requires
a specific form of the ARDL model and unique critical values. While these are not insurmountable
obstacles, the usefulness of the test would be extended if software existed to get and test these critical
values for the user.

In dynamac, these challenges are resolved through pssbounds (named for Pesaran, Shin and Smith,
the authors of the test), which implements the ARDL-bounds test for cointegration, and dynardl,
which estimates autoregressive distributed lag models and implements the stochastic simulations
we describe above. The commands also have the virtue of working together: estimating an ARDL
model in error-correction form with dynardl by nature stores the values necessary to execute the
ARDL-bounds test with pssbounds. Below, we use a substantive example to motivate our discussion
of the package in greater detail.

Modeling using dynamac

We illustrate the process—autoregressive distributed lag modeling, testing for cointegration with
pssbounds, and interpretation of X through stochastic simulations—using data originally from Wright
(2017) on public concern about inequality in the United States.7 For our example, assume that public
concern about inequality in the US, Concern (concern), is a function of the share of income going to
the top ten percent, Income Top 10 (incshare10). We also hypothesize that the unemployment rate,
Unemployment (urate), affects concern over the short-run (i.e., is not cointegrating):

Concernt = f (Income Top 10t + ∆Unemploymentt) (4)

Before estimating any model using dynamac, users should first check for stationarity. A variety of
unit root tests can be performed using the urca package (Pfaff et al., 2016). These suggest that all three
series are integrated of order I(1), as they appear integrated in levels but stationary in first-differences
(∆), shown in Table 1.

Table 1: Unit root tests

Augmented DF Phillips-Perron Dickey-Fuller GLS KPSS

Concern 0.688 -3.437∗ -0.893 0.642∗

∆Concern -3.507∗ -7.675∗ -3.124∗ 0.814∗

Unemployment -0.612 -2.762 -2.802∗ 0.224

∆Unemployment -5.362∗ -4.879∗ -5.308∗ 0.064

Income Top 10 2.992 0.442 0.994 2.482∗

∆Income Top 10 -3.170∗ -6.244∗ -4.032∗ 0.218
One augmenting lag included for all tests. ∗ : p < 0.05. Augmented Dickey-Fuller, PP,
and DF-GLS have null hypothesis of a unit-root, while KPSS has a null of stationarity.

Given that all series appear to be I(1), we proceed with estimating a model in dynardl in error-
correction form, and then testing for cointegration between concern about inequality and the share

7Available at: http://dx.doi.org/10.7910/DVN/UYUU9G. For simplicity, we use a smaller version of Wright’s
dataset with missing values at the beginning of the series removed.
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of income of the top 10 percent. In general, we suggest using this strategy—outlined in Philips
(2018)—along with alternative tests for cointegration.8 Our error-correction model appears as:

∆Concernt = α0 + φ1Concernt−1 + θ1Income Top 10t−1+

β1∆Income Top 10t + β2∆Unemploymentt + εt
(5)

where we assume εt ∼ N(0, σ2). Now we estimate this model with dynardl.

Estimation using dynardl

The syntax for dynardl, the main function in the package, is as follows:

• formula, a formula of the type y ∼ x1 + x2 + x3 + . . . xk. Note the variables do not need to be
lagged or differenced in the specification; these transformations will be handled automatically
by dynardl.

• data, an optional argument specifying a particular dataset in which the variables from formula
can be found.

• lags, a list of variables to be lagged and their corresponding lagged levels. For instance, if an
analyst had two variables, X1 and X2, that he or she wished to incorporate with a single lag
at t− 1, he or she would specify lags = list("X1" = 1,"X2" = 1). If he or she wanted to
incorporate multiple lags on X2 from time periods t− 1 and t− 2, the code would appear as
lags = list("X1" = 1,"X2" = c(1,2,...), expanded for however many lags were desired.

• diffs, a vector of variables to be differenced, i.e., included as ∆Xt. Only first-differences are
supported. For instance, if an analyst wanted to first-difference X1 and X3, he or she would
include diffs = c("X1",X3").

• lagdiffs, a list of variables to be included with lagged first-differences. The syntax is identical
to lags, but instead of incorporating lagged levels of the relevant variable Xk at t− 1, lagged
differences ∆Xk,t−1 are included. For instance, if the analyst wanted to include a first lagged
difference of X1,t at t− 1, he or she would include lagdiffs = list("X1" = 1).

• levels, a vector of variables to be included in levels contemporaneously—i.e., at time t. If the
analyst wanted to include X2 and X3 in levels at time t, he or she would include levels =
c("X2","X3").

• ec, a TRUE/FALSE option for whether the model should be estimated in error-correcting form.
If ec = TRUE, the dependent variable will be run in differences. The default is FALSE.

• trend, a TRUE/FALSE option for whether a linear trend should be included in the regression.
The default is FALSE.

• constant, a TRUE/FALSE option for whether a constant should be included in the regression.
The default is TRUE.

• modelout, a TRUE/FALSE option for whether model output from the ARDL model should be
printed in the console. The default is FALSE.

• simulate, a TRUE/FALSE option for whether any shocks should be simulated. Since simulations
are potentially computationally intensive, if the analyst is simply using dynardl to test for
cointegration using the bounds procedure, or wishes to just view the model output, he or she
might not wish to estimate simulations in the interim. The default is FALSE.9

Reading the above, dynardl is simply an engine for regression, but one that allows users to focus
on theoretical specification rather than technical coding. All variables in the model are entered into
the formula. In this sense, dynardl can be used in any ARDL context, not just ones in which the user is
also expecting cointegration testing or dynamic simulations.We estimate our example model shown in
Equation 5 using dynardl as follows:

data(ineq)

res1 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
ec = TRUE, simulate = FALSE )

8These include the Johansen (1995) cointegration test (available in urca) or the proposed test by Engle and
Granger (1987), among others.

9For this first example, we will treat this option as FALSE.
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[1] "Error correction (EC) specified;
dependent variable to be run in differences."

We specify the formula by letting dynardl know what the dependent variable and the regressors
are. Next, in the lags option, we let the program know we want a lag at t − 1 for the dependent
variable and for Income Top 10.10 Since Unemployment did not appear in lag form in Equation 5, it
does not appear in lags. In diffs, we let dynardl know to include the first-difference for both Income
Top 10 and Unemployment. The option ec = TRUE estimates the dependent variable in error-correction
form (i.e., takes the first-difference of Concern), and the program will issue a message indicating
to the user that such a transformation has taken place.11 By setting simulate = FALSE, we save on
computing time by estimating the model without performing stochastic simulations needed to make
substantive inferences through stochastic simulations, as shown in the next sections. This is useful if
the residuals of our first model indicate residual autocorrelation and require respecification.

Presenting the model summary is the usual summary(foo):

summary(res1)

Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

Residuals:
Min 1Q Median 3Q Max

-0.025848 -0.005293 0.000692 0.006589 0.031563

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.122043 0.027967 4.364 7.87e-05 ***
l.1.concern -0.167655 0.048701 -3.443 0.0013 **
d.1.incshare10 0.800585 0.296620 2.699 0.0099 **
d.1.urate 0.001118 0.001699 0.658 0.5138
l.1.incshare10 -0.068028 0.031834 -2.137 0.0383 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01169 on 43 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.3671, Adjusted R-squared: 0.3083
F-statistic: 6.236 on 4 and 43 DF, p-value: 0.0004755

As shown from the regression results, dynardl has included a constant, the lagged dependent
variable, l.1.concern, the first difference of the two regressors (Income Top 10 and Unemployment),
as well as the lag of Income Top 10.12 While changes in Income Top 10 affect changes in Concern in
the short-run, changes in Unemployment do not have a statistically significant effect in the short-run.
The lag of Income Top 10 is negative and statistically significant. Moreover, the parameter on the
lagged dependent variable is negative, between 0 and -1, and statistically significant, giving us cursory
evidence of a cointegrating process taking place; we use a statistical test for this below.

Post-estimation diagnostics

An essential component of ARDL modeling is ensuring that the residuals from any ARDL estimation
are white noise. One symptom of residual autocorrelation in the presence of a lagged dependent
variable (where φ1 6= 0) is that OLS will result in biased and inconsistent estimates (c.f., Keele and
Kelly, 2006, pp. 189-191). Autocorrelation is especially pernicious when using the ARDL-bounds
cointegration test, since the test relies on the assumption of, “serially uncorrelated errors for the
validity of the bounds tests” (Pesaran et al., 2001, p. 311). Moreover, a number of scholars stress that

10If we wanted further lags, we could specify it here, for instance lags = list("concern" = c(1,2),
"incshare10" = 2, "urate" = 2) would add lags at t− 1 and t− 2 for concern, and at t− 2 for incshare10 and
urate.

11Setting this option to ‘FALSE’ would estimate the dependent variable in levels. If ec = TRUE, the saved object
will also contain $pssbounds, described below.

12Lagged variables are denoted by l.X.variable, where X is the lag. First-differences are denoted by d.variable.
Lagged first-differences are denoted by l.d.X.variable, where X is the lag.
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autocorrelation is likely indicative of model misspecification more broadly—which may cause omitted
variable bias in addition to incorrect standard errors—and thus testing for autocorrelation can help
inform users as to which covariates should be included or excluded, as well as the correct dynamic
specification (Mizon, 1995; Keele and Kelly, 2006).

To assist users in model selection and residual testing, we offer dynardl.auto.correlated. This
function takes the residuals from an ARDL model estimated by dynardl and conducts two tests for
autocorrelation—the Shaprio-Wilk test for normality and the Breusch-Godfrey test for higher-order
serial correlation—as well as calculates the fit statistics for the Akaike information criterion (AIC),
Bayesian information criterion (BIC), and log-likelihood. The arguments for this function are:

• x, a dynardl model object.

• bg.type, a character string, either "Chisq" or "F" of the type of Breusch-Godfrey test for higher-
order serial correlation. This returns either the Chi-squared test statistic or the F statistic. The
default is "Chisq".

• digits, an integer for the number of digits to round fit statistics to (by default, this is three
digits).

• order, an integer for the highest possible order of autocorrelation to test in the data. By default,
this is computed by the length of the series.

• object.out, a TRUE/FALSE option for whether to print this output into an object. This might
be useful if the analyst is comparing multiple ARDL objects and testing for white-noise residuals
on the basis of fit criteria like AIC. In this case, the analyst could assign the output to some
object for later comparison.

To run this post-estimation diagnostics for our model above, we type:

dynardl.auto.correlated(res1)

------------------------------------------------------
Breusch-Godfrey LM Test
Test statistic: 3.704
p-value: 0.054
H_0: no autocorrelation up to AR 1

------------------------------------------------------
Shapiro-Wilk Test for Normality
Test statistic: 0.965
p-value: 0.158
H_0: residuals are distributed normal

------------------------------------------------------
Log-likelihood: 148.094
AIC: -284.187
BIC: -272.96
Note: AIC and BIC calculated with k = 5 on T = 48 observations.

------------------------------------------------------
Breusch-Godfrey test indicates we reject the null hypothesis of no
autocorrelation at p < 0.10.
Add lags to remove autocorrelation before running dynardl simulations.

Given the results of the Breusch-Godfrey LM test for autocorrelation, there appears to be some
autocorrelation still in the residuals. To mitigate this, we can add lagged first-differences to our model
(Philips, 2018). For instance, to add a lagged first-difference of the dependent variable:

res2 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = FALSE)

For brevity the results are not shown here, but they indicate that AR(1) autocorrelation is no longer
present in the residuals after adding a lagged first-difference of the dependent variable.
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Cointegration testing using pssbounds

Recall the definition of cointegration: two or more integrated series of order I(1) are cointegrated if
some linear combination of them results in a stationary series.13 This means that they have some
long-run relationship; although temporary shocks may move the series apart, there is an attracting
force that brings them back into a stable equilibrium relationship over the long-run. These movements
are commonly referred to as being “corrected” or “re-equilibrated”; cointegrated series do not simply
happen to move together, but are quite literally brought back into long-run relationship by an attracting
force. Since not all I(1) series are cointegrating, failing to account for cointegration—in other words,
including I(1) series in an error-correction model when they are not cointegrating—can lead to a drastic
increase in Type I error (c.f., Grant and Lebo, 2016).

A variety of cointegration tests have been proposed, which we do not discuss here. Instead,
we advocate for a test that has been shown to demonstrate strong small sample properties (Philips,
2018); the ARDL-bounds test for cointegration (Pesaran et al., 2001). The ARDL-bounds procedure
proceeds as follows. First, analysts must ensure that the regressors are not of order I(2) or more, and
that any seasonal component of the series has been removed. Second, analysts must ensure that the
dependent variable y is I(1). A wide variety of unit root tests are designed to assist in this, including
the Dickey-Fuller, Elliott-Rothenberg-Stock, Phillips-Perron, and Kwiatkowski-Phillips-Schmidt-Shin
tests. We reference these tests in Table 1.

Once the analyst ensures that the dependent variable y is I(1), and the independent variables
are not of order I(2) and contain no seasonal components, he or she estimates an ARDL model in
error-correction form.14 That form resembles Equation 6, where the dependent variable is run in
differences:

∆yt =α0 + φ1yt−1 + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + β1∆x1,t + · · ·+ βk∆xk,t+

M

∑
m=1

αm∆yt−m +
Q1

∑
q1=1

β1q1 ∆x1,t−q1 + · · ·+
Qk

∑
qk=1

βkqk
∆xk,t−qk

+ εt
(6)

Two points are key. First, any independent variables that are potentially I(1) must be entered
in lagged levels at t− 1. Second, the resulting residuals of the ARDL model must be white noise
in order to perform the cointegration test (approximately normally distributed, with no residual
autocorrelation). If they are not, the analyst should incorporate additional lags of the first difference
of the variables until they are (Philips, 2018). A variety of tests exist to help determine whether the
residuals are white noise, as well as aiding in model specification, including information criteria (like
SBIC and AIC), Breusch-Godfrey tests, Durbin’s Alternative test, and Cook-Weisberg. Users can find
most of these in dynardl.auto.correlated, discussed in the previous section.

The special case of the ARDL model in Equation 6 is that the X variables appearing in levels
(θ1 . . . θk) are the only ones that can possibly be in a cointegrating relationship with the dependent
variable y. The ARDL-bounds test for cointegration works by using a Wald or F-test on the following
restriction from Equation 6:

H0 : φ1 = θ1,1 = · · · = θk,1 = 0 (7)

In other words, that the coefficients on variables appearing in first lags are jointly equal to zero.
The null hypothesis is that of no cointegration. Rejecting the null hypothesis indicates there is a
cointegrating relationship between the series. In addition to the F-test, a one-sided t-test may be used
to test the null hypothesis that the coefficient on the lagged dependent variable (in levels) is equal to
zero, or:

H0 : φ1 = 0 (8)

The alternative to this test is that φ1 < 0, or that y is cointegrating with the regressors. This is
known as the bounds t-test.

The procedure and tests themselves are relatively straightforward to implement, but are com-
plicated by two factors. The first is that critical values for these tests are non-standard, meaning
that they are not readily testable in canned procedures. The correct (asymptotic) critical values are

13For instance, given yt = κ0 + κ1xt + zt, cointegration would exist if zt ∼I(0). Higher orders of cointegration may
also be cointegrating—something known as multicointegration—but these are not supported by the ARDL-bounds
test.

14Note this does not require the analyst to make the sharp distinction between an I(0) or an I(1) regressor, a
special benefit of the ARDL-bounds procedure. This is especially useful when “near integrated” series can appear
to be integrated in small samples even though, if we were to observe more innovations, the series would ultimately
return to some mean value (that is, it would be stationary).
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provided by Pesaran et al. (2001), and the small sample critical values for the F-statistic are given by
Narayan (2005).15 Moreover, the appropriate critical values depend on the “case” of the regression:
a combination of whether the regression includes a (restricted) trend term (or not) and a (restricted)
constant (or not). As Philips (2018) describes, whether the resulting F-statistic is higher than the I(1)
critical value, below the I(0) critical value, or between the two, gives differential evidence on the
integrated nature of the X variables and the potential cointegrating relationship between them.

Just looking at the above discussion: even if the test is powerful, it can be difficult to implement
and interpret correctly. Accordingly, we offer two functions to help implement the test and get dynamic
inferences. The first function, dynardl, estimates the ARDL relationship described above (to obtain
the resulting F-statistic and t-statistic). The second function, pssbounds, takes the results of the ARDL
model and implements the ARDL-bounds test for cointegration, providing the user with the correct
critical values and an easy-to-understand description of hypothesis testing.

To summarize, if we find that the dependent variable and regressors are all I(1), they can only
appear in lagged levels in the error-correction model if there is evidence of cointegration. dynamac
contains the Pesaran et al. (2001) ARDL-bounds cointegration test to assist users in testing for this. To
implement the bounds testing procedure, we introduce the function pssbounds. This function has the
following syntax:

• data, an optional argument expecting a dynardl model, which calculates the following argu-
ments for the user. If none is given, the user must supply each of the following:

• obs, an integer for the number of observations in the model time series.

• fstat, the F statistic on the restriction that each of the first lags in the model (including the
lagged dependent variable) are jointly equal to zero.

• tstat, the t statistic on the lagged dependent variable in the error-correction model.

• case, a numeric 1-2-3-4-5 or numeral I-II-III-IV-V of the case of the regression.

– 1: No intercept and no trend

– 2: Restricted intercept and no trend

– 3: Unrestricted intercept and no trend (the most common case)

– 4: Unrestricted intercept and restricted trend

– 5: Unrestricted intercept and unrestricted trend

• k, the number of regressors appearing in first lags.

• digits, an integer for the number of digits to round fit statistics to (by default, this is three
digits).

• object.out, a TRUE/FALSE option for whether to print this output into an object. The default
is FALSE.

This command can be implemented in two ways. First, users can run the appropriate model
(following the instructions of Philips (2018)) and pass the relevant arguments—obs, fstat, tstat,
case, and k—to pssbounds. Alternatively—and as we advocate—users can estimate the model using
foo <-dynardl(...) and then, post-estimation, run pssbounds(foo).16

Moving back to our example, to test for cointegration, we use the pssbounds command:17

res2 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = FALSE)

pssbounds(res2)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST

Observations: 47

15No small-sample critical values are given for the t-test, so it should not be used to conclusively decide whether
a cointegrating relationship exists; rather, only for confirmatory evidence.

16As described earlier, this only applies to models where ec = TRUE, as only error-correcting models can
potentially be cointegrating.

17To re-emphasize, this test is inappropriate if the residuals are not white-noise (Pesaran et al., 2001, p. 311).
Therefore, it is crucial to users to first test for stationarity, run dynardl, and adjust their model as needed before
testing for cointegration.
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Number of Regressors (k): 1
Case: 3

------------------------------------------------------
- F-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value 4.19 4.94
5% critical value 5.22 6.07
1% critical value 7.56 8.685

F-statistic = 12.204
------------------------------------------------------
- t-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value -2.57 -2.91
5% critical value -2.86 -3.22
1% critical value -3.43 -3.82

t statistic = -3.684
------------------------------------------------------

t-statistic note: Small-sample critical values not provided for Case III.
Asymptotic critical values used.

The program displays the number of observations from the regression, the number of regressors
appearing in lagged levels (i.e., the cointegrating equation), and the case (unrestricted intercept and
no trend); all of these are necessary to obtain the special critical values used by Pesaran et al. (2001).18

This situates the F-statistic and t-statistic with the correct critical values for the appropriate test. Users
are then free to compare the test statistics to the critical values and make the appropriate deduction
regarding cointegration in the sample model.

In our example, since the value of the F-statistic exceeds the critical value at the upper I(1) bound
of the test at the 1% level, we may conclude that Income Top 10 and Concern about inequality are in a
cointegrating relationship. As an auxiliary test, pssbounds displays a one-sided test on the t-statistic
on the lagged dependent variable.19 Since the t-statistic of -3.684 falls below the 5% critical value I(1)
threshold, this lends further support for cointegration. Taken together, these findings indicate that
there is a cointegrating relationship between concern about inequality and the income share of the top
10 percent, and that Equation 6 is appropriately specified.20

Gaining substantive and statistical significance of results using dynardl

Once users have decided on the appropriate theoretical model—accounting for the appropriate lags of
the independent variables, first-differenced variables, and so on—and drawn conclusions regarding
cointegration using pssbounds (if applicable), their resulting models might be somewhat complicated.
Our solution to inferences in the face of this complexity is the use of stochastic simulations.21

If a user runs dynardl with the argument simulate = TRUE, then the following options become
available:

• shockvar, the independent variable to be shocked in the simulation. This is the independent
variable for which we want to estimate an effect. Analysis should enter this in quotes, like
shockvar = "X1". This is the only option required without a default: we must know which
variable we want inferences about.

18Pesaran et al. (2001) provide asymptotic critical values. We use small-sample critical values, calculated by
Narayan (2005), when available.

19We call this an auxiliary test since only asymptotic critical values are available, while small sample critical
values are available for most F-tests. When not available, pssbounds issues a warning note.

20Had we not found evidence of cointegration, (either the F-statistic fell between or below the I(1) and I(0) critical
values), we could adjust our model accordingly, as outlined by Philips (2018).

21If users are aiming for analysis to be able to be repeated, they should set a seed before engaging in stochastic
simulations.
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• shockval, the amount by which the independent variable should be shocked. The default is a
standard deviation of the shock variable.

• time, the time period within the range of the simulation when to shock the independent variable
of interest (the shockvar). The default is 10.

• qoi, whether we should summarize the response of the dependent variable with the mean or
the median. Although the default is mean, if there is underlying skew in the distribution, it
might be better summarized by median (Rainey, 2017).

• forceset, a list of variables and their values that should be set to particular values during the
simulations. By default, variables in levels are held at their means, and variables in differences
are held at 0. If forceset is not specified, the simulation will be estimated using these default
values. However, if the analyst wanted to investigate the change in y when some variables are at
different values, he or she should do this with forceset. These values can be any user-defined
value, including means, medians, percentiles, or other values of interest. For instance, if X1
was meant to be held at 3 (rather than the mean of X1), the analyst would specify forceset =
list("X1" = 3).

• range, an integer for how long the simulation is to run (the default is 20 periods)

• burnin, the number of time periods before the range begins. burnin allows time for the variables
to equilibriate. The default is 20. This means that 20 time periods are simulated, then the range
of the simulation begins. Users are not shown the burnin time periods.

• sims, the number of simulations to run. The quantities of interest are created from these
simulations. The default number is 1000.

• sig, an integer for any user-desired significance level in the form of 1− p. So if the user wants a
p value of 0.10, sig would be 90. The default level is 95.

• expectedval, a TRUE/FALSE option for whether the expected values (which average errors
within simulations) or predicted values (which do not) are desired. Unless the analyst has
a strong reason to use expected values, we recommend using predicted values by including
expectedval = FALSE, the default.

dynardl takes this set of arguments and generates the appropriate autoregressive distributed lag
given the levels, lagged levels, first-differences, and lagged first-differences of the variables provided.
Once this model is estimated using OLS, dynardl simulates the quantities of interest. Specifically, the
coefficients β̂ are simulated as draws (with number of sims) from a multivariate normal distribution
with mean of β̂ and variance from the variance-covariance of the estimated model (using the MASS
package from Ripley (2018)). We introduce uncertainty into these simulations by simulating σ̂2 scaled
by random draws from the chi-squared distribution. We then use this estimate of σ̂2 to add back in
fundamental random error to the predicted value of each simulation. These predictions come from
set levels of the independent variables: the X variables in levels are held at their means and other
variables in differences are held at 0. Users can override this default by specifying a different value for
any variable using forceset. Note that the equation is given time to equilibriate (through the use of
burnin periods) before the independent variable is shocked.

Perhaps the most important argument is shockvar. This is the variable for which the user wants
some sort of inference regarding the effect of an independent variable on the dependent variable: the
response in the dependent variable is created by shocking the shockvar. At time time, the shockvar is
“shocked” by the amount of shockval. This shock is distributed appropriately, as defined by the model
specified. For instance, if the shockvar is entered into the model in lagged levels at time t− 1, that X
variable would be shocked at time +1. Just like in an interactive model, one of the best ways to gain
inferences regarding the effect of X on y is by varying a single X at a single point in time. Accordingly,
only a single shockvar can be specified.

The only thing left to resolve is what to do with our sims. We are not particularly interested in any
individual simulation in any individual time period. Rather, we can get a sense of the central effect of
the shockvar on y by doing some meaningful analysis across the simulations within any time period.
Accordingly, in foo$simulation, dynardl stores the desired summary quantity of interest (either qoi
= "mean" or qoi = "median") of y in each time period. It also stores the lower and upper percentiles
for the 75%, 90% and 95% intervals. Users can add additional intervals with sig. Additionally, users
can specify whether they want predicted values (the average across the simulations within a time
period) or expected values (where each individual simulation essentially averages out fundamental
error). This is through the option expectedval = FALSE or TRUE, respectively; we highly recommend
the former.

Moving back to our substantive example, now that we have our model and found the relationship
to be cointegrating, we move onto interpreting the results through dynamic simulations. Again,
although analytic calculations of short- and long-run effects are possible (c.f., De Boef and Keele, 2008),
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with a multitude of lags and lagged first differences, the ability to interpret the effect on y, given a
change in a regressor, can become even more difficult. One of the easiest ways of getting a sense of the
effect of the shockvar on y is through plotting the simulation results (Tomz et al., 2003; Breunig and
Busemeyer, 2012; Williams and Whitten, 2012; Philips et al., 2015, 2016; Gandrud et al., 2015; Blackwell
and Glynn, 2018; Choirat et al., 2018). To this end, we offer two more functions: area.simulation.plot
and spike.simulation.plot. The only difference is whether an area plot or a spike plot is desired
(both are illustrated below). The arguments for both functions are:

• x, a dynardl model object with a simulation to plot.

• response, whether the the simulated response of the dependent variable should be plotted in
absolute levels of the response, or in changes from the mean value of the dependent variable
(response = "mean.changes"). The default is response = "levels".

• bw, whether the plot should be produced in black and white (for publications) or color. The
default is bw = FALSE (a color plot).

To plot these simulations, all the researcher needs to do is imagine the counterfactual he or she
wishes to investigate. For instance, what is the effect of a 7-percentage-point increase in Income Top 10
on Concern? To examine statistical and substantive significance of this counterfactual, we estimate the
following model below and plot it. Note that users may want to first set a seed in order to ensure that
the plots are reproducible, since the simulations are stochastic. The resulting plot is shown in Figure 1.

set.seed(2059120)
res3 <- dynardl(concern ~ incshare10 + urate, data = ineq,

lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = TRUE,
shockvar = c("incshare10"), shockval = .07)

area.simulation.plot(res3)
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Figure 1: Area plot produced using area.simulation.plot()

The black dotted line shows the predicted value, while the colored areas, from darkest to lightest,
show the 75, 90, and 95 percentiles of the predictions from the simulations, something akin to a credible
interval or confidence interval. The shock to Income Top 10 occurs by default at t = 10, though users
can change this using the time option. If instead we desire a spikeplot, we could type:

spike.simulation.plot(res3)

The resulting plot is shown in Figure 2.

Figures 1 and 2 both illustrate that the immediate effect of a 7-percentage-point increase in Income
Top 10 is to increase Concern by about 4 percentage points. Over time, this effect decays, eventually
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Figure 2: Spike plot produced using spike.simulation.plot()

moving Concern to a new value of 0.56 from its pre-shock mean of 0.58. For clarity: these effects are
produced by estimating the model formula given by the user, taking the estimated coefficients from the
model, drawing a number of simulated coefficients from a multivariate normal distribution with mean
and variance given by the estimated coefficients and variance-covariance from the model, and using
them to predict values of the dependent variable (and incorporating fundamental error by drawing
stochastic terms from σ̂2). It then tracks the response in these predicted values to simulated shifts in
the independent variables. We might also note that the dependent variable could still be responding:
users could increase the range of the simulation time periods to ensure that the dependent variable
has enough time to respond.

Users may have noticed fluctuations in the confidence intervals shown in Figures 1 and 2. This is
due to the stochastic sampling technique used to create these simulations. When using dynardl, users
have the option of increasing the number of simulations performed using the sims option. This should
have the effect of smoothing out period-to-period fluctuations in the confidence intervals, at the cost
of increased computing time.

Additional tools for dynamic analysis with dynamac

dynardl has a number of additional features users may find useful. First, not only is it suitable for
error-correction models; dynardl can model a variety of stationary ARDL processes. To see this, we
show a simple example using data from Durr et al. (2000), who examine how ideological movements
in the United States affect aggregate public support for the Supreme Court. Our model is:

Supreme Court Supportt =α + φ1Supreme Court Supportt−1 + β1Ideological Divergencet+

β2Congressional Approvalt + εt
(9)

where support for the US Supreme Court (1973-1993) (dcalc) is a function of a constant, the lag
of Supreme Court Support, the ideological divergence between the Supreme Court and the public
(Ideological Divergence, iddiv), and the level of Congressional Approval (congapp).22 To estimate this
model using dynardl, we type:

data(supreme.sup)

res4 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,
lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = FALSE)

22As stressed in previous sections, stationarity testing is recommended on all dependent and independent
variables before determining whether a stationary or error-correcting ARDL model should be estimated. This is a
stylized example only meant to demonstrate additional capabilities of dynamac.
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[1] "Dependent variable to be run in levels."

Anytime we specify levels, any variables appearing in the list will be included contemporaneously
(i.e., appear at time t without any lags or differences) in the model. As with the error-correction
specification, we can obtain regression results by typing:

summary(res4)

Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

Residuals:
Min 1Q Median 3Q Max

-12.1912 -3.7482 -0.2058 2.6513 11.9549

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.6319 11.7367 3.547 0.001078 **
l.1.dcalc 0.2437 0.1352 1.802 0.079758 .
iddiv -5.4771 2.5803 -2.123 0.040535 *
congapp 0.4732 0.1270 3.725 0.000649 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.626 on 37 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.4693, Adjusted R-squared: 0.4263
F-statistic: 10.91 on 3 and 37 DF, p-value: 2.833e-05

As the results show, the lag of Supreme Court Support is only weakly related to Supreme Court
Support. Moreover, as Ideological Divergence grows, Supreme Court Support decreases. In contrast,
as Congressional Approval increases, Supreme Court Support also increases. We can also bring a
substantive interpretation to these effects by again using stochastic simulations. We can investigate
the counterfactual of a 15-percentage-point decrease in Congressional Approval on Supreme Court
Support. Moreover, we demonstrate the difference between the number of simulations used to
generate predictions in Figure 3.

# 1000 sims
res4 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,

lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"))

# 15000 sims
res5 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,

lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"),
sims = 15000)

par(mfrow = c(2, 1))
area.simulation.plot(res4)
area.simulation.plot(res5)

The effect of the 15-percentage-point decrease in Congressional Approval is about a 10-point
decrease in Supreme Court Support. To uncover this effect, the upper plot uses 1000 simulations, while
the bottom uses 15000 and results in a much smoother measure of uncertainty in predictions across the
simulated timeframe, with only a slight increase in estimation time.23 Of course, it is important to note
that simulations do not lower uncertainty (simulating more values does not decrease the underlying
variance). More simulations just improve and smooth our estimates within each time period.

23For comparison, in this model, 1000 simulations took 3.98 seconds, while 15,000 took 4.12 seconds.
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Figure 3: Effect of a 15-percentage-point decrease in Congressional Approval; 1000 simulations
(default) (top) and 15000 (bottom)

While the default range for simulations is 20 time periods, with a shock occurring at time t = 10—as
shown in Figure 3 for instance—users can change these using the time and range options. In addition,
dynardl offers the ability to set variables at particular values other than their means throughout the
simulation through the option forceset.24 This would be ideal when the mean value is not particularly
intuitive or of substantive interest, such as when dealing with a dichotomous variable. Instead, users
can specify particular values using the option forceset. As an example of this, we re-estimate the
model from above, but extend the total simulation range to t = 50, the shock time to t = 20, and set
both Congressional Approval and Ideological Divergence to their 75th percentiles instead of their
means:

res6 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,
lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"),
sims = 15000, time = 20, range = 50,
forceset = list("iddiv" = 0.22, "congapp" = 72))

spike.simulation.plot(res6)

The results of a 15-percentage-point drop in Congressional Approval on Supreme Court Support
are shown in Figure 4. It is clear that there is a relatively quick negative effect on Supreme Court
Support in response to a drop in Congressional Approval, and Supreme Court Support remains at
around 88 for the rest of the time periods.

dynamac also offers a few ancillary functions to help assist in dynamic modeling using autoregres-
sive distributed lag models and dynardl in particular. These include three basic time-series operators
to lag, difference, and lag-difference variables. Users are free to utilize these functions outside of
estimating the models.

For lagging variables, we use lshift(x,l), where x is the variable to be lagged and l is the number
of periods to be lagged. If a user wanted a second lag (that is Xt−2, he or she would use lshift(X,2):

head(ineq$incshare10)
[1] 0.3198 0.3205 0.3198 0.3182 0.3151 0.3175

head(lshift(ineq$incshare10, 2)) # second lag
[1] NA NA 0.3198 0.3205 0.3198 0.3182

For differencing variables, we use dshift(x), where x is the variable to be first-differenced:

24Recall that, by default, variables in levels are set to their means throughout the simulation (unless shocked),
while variables in differences are set to zero.
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Figure 4: Extending the simulation range and using forceset

head(dshift(ineq$incshare10))
[1] NA 0.0007 -0.0007 -0.0016 -0.0031 0.0024

For lag-differencing variables, we use ldshift(x,l), where x is the variable to be lag-differenced
and l is the number of periods for the difference to be lagged. If a user wanted for the difference of X
from two time periods ago (∆Xt−2) to be calculated, he or she would use ldshift(X,2):

head(ldshift(ineq$incshare10, 2))
[1] NA NA NA 0.0007 -0.0007 -0.0016

Additional example: the GDP-energy nexus

As a final example, we model the relationship between a country’s energy consumption and its
economic output. There is a substantial body of literature that focuses on both the short-and long-run
effects between energy and GDP—as well as the directionality of the relationship—making it a prime
candidate for time series analysis (Ozturk, 2010; Tugcu et al., 2012). In fact, a number of articles utilize
the bounds testing approach discussed above (e.g., Odhiambo, 2009; Fuinhas and Marques, 2012).
In the analysis below, we focus on two key variables: the natural log of gross domestic product (in
constant 2010 US dollars) and the log of energy consumption (in million tons of oil equivalent). These
data are for the French economy, measured annually from 1965 to 2017.25 For this example, we assume
that energy consumption, lnenergy, drives GDP, lnGDP_cons2010USD, not the other way around.

As Figure 5 suggests, both series appear non-stationary, with probably a trend as well. Unit-root
tests (not shown) confirm that both series contain a unit root. Therefore, we proceed to estimate an
ARDL model in error-correction form with a deterministic trend, test for cointegration, and interpret
the results.

data(france.data)

res7 <- dynardl(lnGDP_cons2010USD ~ lnenergy, data = france.data,
lags = list("lnGDP_cons2010USD" = 1, "lnenergy" = 1),
diffs = c("lnenergy"), trend = TRUE,
ec = TRUE, simulate = FALSE)

summary(res7)
Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

25GDP data are from the World Bank World Development Indicators. Data on energy
consumption are from the BP Statistical Review of World Energy (June 2018), available at:
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html


CONTRIBUTED RESEARCH ARTICLES 484

1970 1980 1990 2000 2010

27
.4

27
.6

27
.8

28
.0

28
.2

28
.4

28
.6

Solid blue line: ln(GDP), Dotted black line: ln(Energy Consumption)
Year

ln
(G

D
P

),
 in

 2
01

0 
U

S
$

4.
8

5.
0

5.
2

5.
4

5.
6

ln
(E

ne
rg

y 
C

on
su

m
pt

io
n)

, m
ill

. t
on

s 
oi

l e
qu

iv
al

en
t

Figure 5: GDP and energy consumption in France, 1965-2017

Residuals:
Min 1Q Median 3Q Max

-0.0262561 -0.0056128 0.0000717 0.0053919 0.0246083

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.995130 1.743518 4.012 0.000214 ***
l.1.lnGDP_cons2010USD -0.283335 0.071552 -3.960 0.000253 ***
d.1.lnenergy 0.257645 0.055622 4.632 2.88e-05 ***
l.1.lnenergy 0.170680 0.048796 3.498 0.001036 **
trendvar 0.003824 0.001063 3.598 0.000769 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01112 on 47 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.6688, Adjusted R-squared: 0.6406
F-statistic: 23.72 on 4 and 47 DF, p-value: 8.84e-11

As is clear from the regression results, there appears to be a fairly slow rate of re-equilibration
when the two series are out of their long-run equilibrium relationship, as shown by the coefficient
on the lagged dependent variable. Moreover, both the first-difference and lag of the log of energy
consumption, as well as the trend variable, are statistically significant. Before proceeding to test for
cointegration, we ensure the residuals are white-noise using dynardl.auto.correlated:

dynardl.auto.correlated(res7)

------------------------------------------------------
Breusch-Godfrey LM Test
Test statistic: 2.563
p-value: 0.109
H_0: no autocorrelation up to AR 1

------------------------------------------------------
Shapiro-Wilk Test for Normality
Test statistic: 0.971
p-value: 0.241
H_0: residuals are distributed normal

------------------------------------------------------
Log-likelihood: 162.789
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AIC: -313.578
BIC: -301.87
Note: AIC and BIC calculated with k = 5 on T = 52 observations.

------------------------------------------------------

The Breusch-Godfrey test suggests there is no residual autocorrelation of order AR(1), and the
residuals are approximately normally distributed. In addition, using the information criteria reported
in dynardl.auto.correlated, we find that the model with a trend term estimated above is more
consistent with the data than one without (these results are not reported here). Given that the model
appears to be well-specified, we proceed to test for cointegration. Note that the program automatically
selects critical values from “Case 5”, an unrestricted intercept and trend:

pssbounds(res7)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST

Observations: 52
Number of Regressors (k): 1
Case: 5

------------------------------------------------------
- F-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value 5.8 6.515
5% critical value 6.93 7.785
1% critical value 9.8 10.675

F-statistic = 8.2
------------------------------------------------------
- t-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value -3.13 -3.4
5% critical value -3.41 -3.69
1% critical value -3.96 -4.26

t statistic = -3.96
------------------------------------------------------

t-statistic note: Small-sample critical values not provided for Case V.
Asymptotic critical values used.

Since the F-statistic (i.e., the test that all variables appearing in lagged levels are equal to zero) is
larger than the I(1) critical value in the table at the 5% level, we conclude that cointegration between
energy consumption and economic output exists. In addition, the one-sided t-test of the coefficient on
the lagged dependent variable also supports the conclusion of cointegration. Given our model results,
and finding evidence of cointegration, we turn to a substantive interpretation of our findings: what
would be the effect of a one standard deviation decrease in energy consumption on GDP?

res7 <- dynardl(lnGDP_cons2010USD ~ lnenergy, data = france.data,
lags = list("lnGDP_cons2010USD" = 1, "lnenergy" = 1),
diffs = c("lnenergy"), trend = TRUE,
ec = TRUE, simulate = TRUE, shockvar = "lnenergy", shock = -0.2289)

[1] "Error correction (EC) specified;
dependent variable to be run in differences."
[1] "Deterministic linear trend added to model formula."
[1] "dynardl estimating ..."
|==============================================================| 100%

spike.simulation.plot(res7)
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As shown by the spikeplot in Figure 6, the pre-shock (i.e., any prediction before t = 10) values are
consistently increasing over time; this is due to the trend term. At t = 10, the one standard deviation
decrease in energy consumption occurs. This effect does not result in a statistically significant decrease
in the contemporaneous period, but continues to lower GDP until two periods after the shock occurs.
Moreover, it is not until 10 years after this hypothetical shock that GDP returns to its pre-shock level.
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Figure 6: The effect of a one standard deviation decrease in energy consumption on economic growth

Conclusion

In this paper we have introduced dynamac, a suite of functions designed to assist applied time
series analysts. This centers around dynardl, a multipurpose function to estimate autoregressive
distributed lag models. This flexible program models both stationary ARDL relationships as well as
cointegrating ones, and it allows users to easily change model specifications (e.g., lags, differences, and
lag-differences). We also include two post-estimation diagnostic commands to check for white-noise
residuals and cointegration. Last, through several applied examples we have shown the advantages of
dynamic simulation for interpreting the substantive significance of the results of single-equation time
series models, something users can easily do using dynamac.

There are a number of interesting potential future research areas. Most useful would be extending
ARDL modeling to the panel context. While other packages are designed to handle multiple panels
(c.f., Gandrud et al., 2016), the ability to incorporate models that account for unit heterogeneity, such
as random or fixed intercepts, would prove useful to users. In addition, adding the ability to estimate
alternative models in the dynamic panel data context, such as those that account for causal feedback
and time-varying covariates (Blackwell and Glynn, 2018), or generalized method of moments (GMM)
estimators, would also assist practitioners.
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