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SARIMA Analysis and Automated Model
Reports with BETS, an R Package
by Talitha F. Speranza, Pedro C. Ferreira, and Jonatha A. da Costa

Abstract This article aims to demonstrate how the powerful features of the R package BETS can be
applied to SARIMA time series analysis. BETS provides not only thousands of Brazilian economic
time series from different institutions, but also a range of analytical tools, and educational resources.
In particular, BETS is capable of generating automated model reports for any given time series. These
reports rely on a single function call and are able to build three types of models (SARIMA being one of
them). The functions need few inputs and output rich content. The output varies according to the
inputs and usually consists of a summary of the series properties, step-by-step explanations on how
the model was developed, predictions made by the model, and a file containing these predictions. This
work focuses on this feature and several other BETS functions that are designed to help in modeling
time series. We present them in a thorough case study: the SARIMA approach to model and forecast
the Brazilian production of intermediate goods index series.

Introduction

The BETS (Ferreira et al., 2017) package (an abbreviation for Brazilian Economic Time Series) for R
(R Core Team, 2017) allows easy access to the most important Brazilian economic time series and a
range of powerful tools for analyzing and visualizing not only these data, but also external series. It
provides a much-needed single access point to the many Brazilian series through a simple, flexible and
robust interface. The package now contains more than 18,000 Brazilian economic series and contains
an integrated modelling and learning environment. In addition, some functions include the option of
generating explanatory outputs that encourage and help users to expand their knowledge.

BETS relies on several well-established R packages. In order to work with time series, BETS
functions build upon packages such as forecast (Hyndman, 2015), mFilter (Balcilar, 2016), urca (Pfaff
et al., 2016) and seasonal (Sax, 2016). Access to external APIs to obtain data is handled by the web
scraping and HTTP tools available through the httr (Wickham, 2017) and rvest (Wickham, 2016)
packages, whereas BETS own databases are queried using the package RMySQL (Ooms et al., 2016).

This article seeks to demonstrate many of these features through a practical case. We create a
SARIMA model (Box and Jenkins, 1970) for the Brazilian production of intermediate goods index
(BPIGI) series, step by step, using mostly functions from BETS. Then, we show that BETS is capable
of using rmarkdown (Allaire, 2017) to generate a fully automated report that includes a virtually
identical SARIMA analysis. The report needs few inputs, runs for any given time series and has
the advantage of outputting several informative comments, explaining to the user how and why it
achieved the given results. The outputs, of course, vary according to the inputs. Reports provide a link
to a file containing the series under analysis and the predictions calculated by the automated model.

Automated reports can also produce GRNN1 and exponential smoothing models, but here we
focus on the previously specified methodology2. In the next section, we briefly present the SARIMA
approach and show how to use BETS functions to conduct such an analysis in a typical case: predicting
the future levels of the BPIGI. Then, in Section 3, we introduce the automated model reports and
illustrate its capabilities by applying it to the series under study using a range of other inputs. Section
4 concludes this article.

SARIMA Analysis: A Case Study

In this section we develop a case study in which we use a handful of BETS functions to model and
forecast values of the Brazilian production of intemediate goods index, following the SARIMA (Box &
Jenkins) approach. Before starting the analysis we will briefly look at the methodology to be used. For
a more comprehensive treatment of the topic, see Box and Jenkins (1970) and Ferreira et al. (2016)3.

1General Regression Neural Network, as proposed by Specht (1991)
2Examples on how to use GRNN and exponential smoothing reports are available in the documentation for the

function report().
3For a hands-on introduction, see the tutorial of Arima models offered by Duke university at https://people.

duke.edu/~rnau/411arim.htm
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Box & Jenkins Methodology

The Box & Jenkins methodology allows the prediction of future values of a series based only on past
and present values of the same series. These univariate models are known as SARIMA, an abbreviation
for Seasonal Autoregressive Integrated Moving Average, and have the following form:

ΦP(B)φp(B)∇d∇DZt = ΘQ(B)θq(B)at, (1)

where

• B is the lag operator, i.e., for all t > 1, BZt = Zt−1

• P, Q, p and q are the orders of the polynomials

• ΦP(B) is the seasonal autoregressive polynomial

• φp(B) is the autoregressive polynomial

• ∇d = (1− B)d is the difference operator and d is the number of unit roots

• ∇D = (1− Bs)D is the difference operator at the seasonal frequency s and D is the number of
seasonal unit roots

• Zt is the series being studied

• ΘQ(B) is the seasonal moving average polynomial

• θq(B) is the moving average polynomial

• at is the random error.

In its original form, which will be used here, the Box & Jenkins methodology consists of three
iterative stages:

(i) Identification and selection of the models: the series is checked for stationarity and the appro-
priate corrections are made for non-stationary cases, by differencing the series d times in its own
frequency and D times in the seasonal frequency. The orders of the polynomials φ, Φ, θ, and
Θ are identified using the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the series.

(ii) Estimation of the model’s parameters using maximum likelihood or dynamic regression.

(iii) Confirmation of model compliance using statistical tests.

The ACF, used in stage (i), can be defined as the correlation of a series with a lagged copy of itself
as a function of lags. Formally, we can write the ACF of a time series s with realizations si for i ∈ [1, N]
and mean s̄ as

ACF(s, l) =
∑N−l

i=1 (si − s̄)(si+l − s̄)

∑N
i=1(si − s̄)2

. (2)

Another tool for phase (i), the PACF also gives the correlation of a series with its own lagged
values, but controlling for all lower lags. Let Pt,l(x) denote the projection of xt onto the space spanned
by xt+1, . . . , xt+l−1. We can define the PACF as

PACF(s, l) =

{
Cor(si, si+1) if l = 1,
Cor(st+l − Pt,l(st+l), ... ,st − Pt,l(st)) if l ≥ 1.

(3)

The PACF is used to find p (the lag beyond which the PACF becomes zero is the indicated number
of autoregressive terms), while the ACF is used to find q (the cut in the ACF points to the number of
moving average terms). Seasonal polynomial orders, P and Q, are identified in a similar fashion, but by
inspecting high values at fixed intervals. In this case, the intervals become the orders.

If the model does not pass phase (iii), the procedure starts again at step (i). Otherwise, the model
is ready to be used to make forecasts. In the next section we will look at each of these stages in more
detail and say more about the methodology as we go through the case study.

Some preliminary topics

The first step is to find the series in the BETS database. This can be done with the BETSsearch()
function. It performs flexible searches on the metadata table that stores series characteristics. Since
metadata is accessed through SQL queries, searchers are fast and the package performs well in any
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environment. BETSsearch() is a crucial feature of BETS, so we provide a thorough description in this
section.

Accepted parameters, expected data types, and definitions are the following:

• description - A character. A search string to look for matching series descriptions.

• src - A character. The source of the data.

• periodicity - A character. The frequency with which the series is observed.

• unit - A character. The unit in which the data were measured.

• code - An integer. The unique code for the series in the BETS database.

• view - A boolean. By default, TRUE. If FALSE, the results will be shown directly on the R console.

• lang - A character. Search language. By default, ’pt’, for Portuguese. A search can also be
performed in English by changing the value to ’en’.

To refine the search, there are syntax rules for the parameter description:

1. To look for alternative words, separate them by blank spaces. Example: description = 'core
ipca' means that the description of the series should contain the words core and ipca.

2. To search for complete expressions, put them inside single quotes (’ ’). Example: description =
"index and 'core ipca'" means that the description of the series should contain the expression
core ipca and the word index.

3. To exclude words from the search, insert a ∼ before each word. Example: description = "ipca
∼ core" means that the description of the series should contain the word ipca and should not
contain the word core.

4. To exclude a whole expression from a search, place them inside single quotes (’ ’) and insert
a ∼ before each of them. Example: description = "index ∼ 'core ipca'" means that the
description of the series should contain index and should not contain core ipca.

5. It is possible to search for or exclude certain words as long as these rules are obeyed.

6. No blank space is required after the exclusion sign (∼), but it is required after each expression
or word.

Finally, the command to find information about the series, which we will use throughout this
article, is shown below, along with the corresponding output.

# Searching for the production of intermediate goods index series
# excluding the term 'imports' from the search

results <- BETSsearch(description = "'intermediate goods' ~ imports", view = F, lang = "en")
results

#> # A tibble: 3 x 7
#> code description unit periodicity start
#> <chr> <chr> <chr> <chr> <chr>
#> 1 11068 Intermediate go? Index M 31/0?
#> 2 1334 Production indi? Index M 31/0?
#> 3 21864 Physical Produc? Index M 01/0?
#> # ... with 2 more variables: last_value <chr>,
#> source <chr>

The series we are looking for is the third (code 21864). We now load it using the function BETSget()
and store some values for later comparison with the model’s forecasts. We will also produce a graph
(Figure 1) to help formulate hypotheses about the behavior of the underlying stochastic process. The
professional looking chart is created with chart(), which has the nice property of displaying useful
information about the series, such as the last value and monthly/interannual variations.

# Get the series with code 21864 (BPIGI, IBGE)
data <- BETSget(21864)

# Keep last values for comparison with the forecasts
data_test <- window(data, start = c(2015,11), end = c(2016,4), frequency = 12)
data <- window(data, start = c(2002,1), end = c(2015,10), frequency = 12)

# Graph of the series
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params <- list(
title = "Intermediate Goods Production",
subtitle = "Index",
colors = "royalblue")

chart(ts = data, style = "normal", open = T, params = params, file = "igp.png")

Figure 1: Graph of the BPIGI, made with function chart(). Indicators below the x coordinates
represent index variation over a month and over 12 months, respectively.

Four characteristics can be observed. First, the series is homoskedastic, with monthly seasonality.
A further striking feature is the structural break in November 2008, when the international financial
crisis occurred and investor confidence plummeted. This break had a direct impact on the next
important characteristic of the series, the trend, which was initially clearly one of growth, albeit not at
explosive rates. From November 2008 onward, however, production appeared to remain unchanged
or even to fall. Since the main goal of this article is to present BETS’ features, rather than performing
an overcautious time series analysis, we decided to work with fewer observations, thus avoiding
problems with the structural break. Only the values from January 2009 on were used. This did not
imply poorer results. In fact, discarding older values yields better predictions, at least within the
SARIMA framework.

data <- window(data, start = c(2009,1), end = c(2015,10), frequency = 12)

In the following sections we create a model for the chosen series following the previously defined
modelling steps.

I. Identification

Stationarity Tests

This subsection covers a crucial step in the Box & Jenkins approach: checking if there are unit roots
in the seasonal and non-seasonal autoregressive model polynomials and determining how many of
these roots there are. If there are no unit roots, the series is stationary. In case we find unit roots, it is
possible to obtain stationarity by differencing the original series. Then, the order of the polynomials
can be identified using the ACF and the PACF funcitons.

The ur_test() function performs unit root tests. The user can choose among Augmented Dickey
Fuller (ADF, Dickey and Fuller (1979)), Phillips-Perron (PP, Phillips and Perron (1988)), and KPSS
(Kwiatkowski et al., 1992) tests. The ur_test() function was built around functions from the urca
package. Relative to those, the advantage of ur_test() is the output, which is designed to quickly see
the test’s results and all the needed information. The output is an object with two fields: (i) a table
showing test statistics, critical values and whether the null hypothesis is rejected or not, and (ii) a
vector containing the residuals of the test’s equation. This equation is shown below.

∆yt = φ1 + τ1t + τ2yt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt (4)

The test statistics in the output table refer to the coefficients φ (drift), τ1 (deterministic trend) and
τ2 (unit root). Inclusion of the constant (drift) and deterministic trend is optional. To control the
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test parameters, ur_test() accepts the same parameters as urca’s ur.df(), as well as the desired
significance level.

df <- ur_test(y = data, type = "drift", lags = 12,
selectlags = "BIC", level = "5pct")

# Show the result of the tests
df$results

## statistic crit.val rej.H0
## tau2 -0.9673939 -2.89 no
## phi1 0.7526983 4.71 yes

Therefore, for the series in levels, the null hypothesis that there is a unit root cannot be rejected at
a 95% confidence level, as the test statistic tau2 is greater than the critical value. We will now apply
the diff function to the series repeatedly, to determine whether the differenced series has a unit root.
This way we find out how many unit roots there are.

ns_roots <- 0
d_ts <- data

# Dickey-Fuller tests loop
# Execution is interrupted when the null hypothesis cannot be rejected
while(df$results[1,"statistic"] > df$results[1,"crit.val"]) {

ns_roots <- ns_roots + 1
d_ts <- diff(d_ts)
df <- ur_test(y = d_ts, type = "none", lags = 12,

selectlags = "BIC", level = "5pct")
}
ns_roots
#> [1] 1

Hence, for the series in first differences, the hypothesis that there is a unit root is rejected at
the 5% significance level. We now use the nsdiffs function from the forecast package to perform
the Osborn-Chui-Smith-Birchenhall test (Osborn et al., 1988) and identify unit roots at the seasonal
frequency (in our case, monthly).

library(forecast)

# OCSB tests for unit roots at the seasonal frequency
nsdiffs(data, test = "ocsb")

#> [1] 1

The results indicate that there is a seasonal unit root and that seasonal differencing is therefore
required:

d.data <- diff(diff(data), lag = 12, differences = 1)

Autocorrelation Functions

The previous conclusions are corroborated by the autocorrelation function of the series in differences
(from now on, ∇∇12Zt). It shows that statistically significant correlations, i.e., correlations outside the
confidence interval, are not persistent for lags corresponding to multiples of 12 or values close to these
multiples. This indicates the absence of a seasonal unit root.

The BETS function that we use to draw the correlograms is corrgram(). Unlike its main alternative,
the forecast package’s Acf() function, corrgram() returns an attractive graph and provides the option
of calculating the confidence intervals using the method proposed by Bartlett (Bartlett, 1946). The
greatest advantage it offers, however, cannot be shown here as it depends on Javascript. If the style
parameter is set to 'plotly', an interactive graph is produced, displaying all the values of interest
(autocorrelations, lags and confidence intervals) on mouse hover, as well as providing zooming,
panning, and the option to save the graph in png format.

# Correlogram of differenced series
corrgram(d.data, lag.max = 48, mode = "bartlett", style="normal")
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Figure 2: Autocorrelation function of ∇∇12Zt

This correlogram, however, is not sufficient for us to propose a model for the series. We will
therefore produce a graph of the partial autocorrelation function (PACF) of ∇∇12Zt. corrgram() can
also be used for this purpose.

# Partial autocorrelation function of diff(data)
corrgram(d.data, lag.max = 48, type = "partial", style="normal")

Figure 3: Partial autocorrelation function of ∇∇12Zt

The ACF in Figure 2 and PACF in Figure 3 could have been generated by a SARIMA(1,0,0)(0,0,0)
process. The explanation is straightforward: the ACF exhibits exponential decay and the PACF has
a sharp cutoff after the first lag. This is a textbook example of an AR(1) process. Therefore, the first
model proposed for Zt will be a SARIMA(1,1,0)(0,1,0)[12] model.

II. Estimation

To estimate the coefficients of the SARIMA(1,1,0)(0,1,0)[12] model, we will use the Arima() function
from the forecast package. The t tests will be performed using the t_test() function, which receives
an object of type "arima" or "Arima", an integer representing the number of exogenous variables in the
model and an integer for the desired significance level. It returns a data frame containing information
related to the test (estimated coefficients, standard errors, test statistics, critical values and the results
of the test).

# Estimation of the model parameters
model1 <- Arima(data, order = c(1,1,0),

seasonal = list(order = c(0,1,0), period = 12))

# t-test with the estimated coefficients
# 1% significance level
t_test(model1, alpha = 0.01)

#> Coeffs Std.Errors t Crit.Values Rej.H0
#> ar1 -0.386501 0.1099599 3.514925 2.639505 TRUE
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We conclude from column Rej.H0 that the AR(1) coefficient, when estimated by maximum likeli-
hood, is statistically significant at a 99% confidence level .

III. Diagnostic Tests

The aim of the diagnostic tests is to determine whether the chosen model is suitable. Here, two
well-known tools will be used: analysis of standardized residuals and the Llung-Box test (Ljung and
Box, 1978).

The graph of the standardized residuals will be produced with the std_resid() function, which
was implemented specifically for this purpose.

# Graph of the standardized residuals
resids <- std_resid(model1, alpha = 0.01)

# Highlight outlier
points(2013 + 1/4, resids[52], col = "red")

Figure 4: Standard residuals from the first proposed model.

We can see that there is a prominent and statistically significant outlier in April 2013. A second
model including a dummy (a time series whose values can be either 0 or 1, to control for the structural
break) is therefore proposed. The dummy is defined as follows:

D1t =

{
1, t = April 2013
0, otherwise

(5)

This dummy can be created using the dummy() function, as shown below. The start and end
parameters indicate time period covered by the dummy. The from and to fields indicate the interval
within which the dummy should take a value of 1.

dummy1 <- dummy(start = c(2009,1), end = c(2015,10),
year = 2013, month = 4)

Estimation of this model by maximum likelihood resulted in coefficients that are statistically
different from 0 at a 1% significance level. The graph of the standardized residuals of the new model
(Figure 5) also shows that the decision to include Dt was correct as there is no more evidence of a
structural break.

# Estimation of the parameters of the model with a dummy
model2 <- Arima(data, order = c(1,1,0),

seasonal = list(order = c(0,1,0), period = 12), xreg = dummy1)

# t-test with the estimated coefficients
# 1% significance level
t_test(model2, alpha = 0.01)

#> Coeffs Std.Errors t Crit.Values Rej.H0
#> ar1 -0.4063976 0.1095272 3.710472 2.639505 TRUE
#> dummy 5.2072304 1.3552891 3.842155 2.639505 TRUE
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resids <- std_resid(model2, alpha = 0.01)

# Highlight November 2008
points(2013 + 1/4, resids[52], col = "red")

Figure 5: Standard residuals of the model proposed after the detection of a structural break

We spotted some other possible outliers in the standard residuals graph. Hence we introduce two
more dummies to improve the model and then estimate a third set of coefficients.

D2t =

{
1, t = December 2012
0, otherwise

(6)

D3t =

{
1, t = January 2013 or February 2013
0, otherwise

(7)

dummy2 <- dummy(start = c(2009,1), end = c(2015,10), year = 2012, month = 12)
dummy3 <- dummy(start = c(2009,1), end = c(2015,10), year = 2013, month = c(1,2))
dummy <- cbind(dummy1,dummy2,dummy3)

model3 <- Arima(data, order = c(1,1,0),
seasonal = list(order = c(0,1,0), period = 12), xreg = dummy)

One possible way of evaluating the quality of the models is to calculate the value of an information
criterion. This is already contained in the object returned by Arima().

# Show BIC for the two estimated models
model1$bic
#> [1] 335.7308
model3$bic
#> [1] 334.3813

Note also that the Bayesian Information Criterion (BIC, Schwarz (1978)) for the model with the
dummies is smaller. Hence, based on this criterion as well, the model with the dummy should be
preferred over the previous one.

The Ljung-Box test for the chosen model can be performed with the Box.test() function in the
stats package. We will follow Rob Hyndman’s suggestion4 and use min(2m, T/5) lags, where m is the
period of seasonality (12 here) and T is the length of the time series (82), which yields 16 in our case.

# Ljung-Box test on the residuals of the model with a dummy
Box.test(resid(model3), type = "Ljung-Box",lag = 16)

#> Box-Ljung test

#> data: resid(model2)
#> X-squared = 27.073, df = 16,
#> p-value = 0.04067

4The discussion can be found at https://robjhyndman.com/hyndsight/ljung-box-test/.
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The p-value of 0.041 is low and indicates there is no statistical evidence to reject the null hypothesis
of no autocorrelation in the residuals. We could have added one MA term to double the p-value and
generate such evidence, but we decided not to, for two reasons: (i) the law of parsimony; (ii) adding
an extra term would be an ad hoc solution - we have no indication from the ACF and PACF that this
term should exist; and (iii) there is no reason to be overcautious and present an extensive analysis,
because our intention is to exhibit BETS’ features.

IV. Forecasts

BETS provides a convenient way of making forecasts with SARIMA, GRNN, and exponential smooth-
ing models. The predict() function receives the parameters from the forecast() function (from the
package of the same name) and returns not only the objects containing the information related to
the forecasts, but also produces a graph of the series including the predicted values. Displaying the
information in this way is important to get a better idea of how suitable the model is. The actual values
for the forecasting period can also be shown if desired.

We now call predict() to generate the forecasts for the proposed model. The parameters object
(object of type arima or Arima), h (forecast horizon), and xreg (the dummy for the forecasting period)
are inherited from the forecast() function. The others are from predict() itself and control features of
the graph, except for actual, which is the the series of effective values observed during the forecasting
period.

new_dummy <- dummy(start = start(data_test), end = end(data_test))
new_dummy <- cbind(new_dummy, new_dummy, new_dummy)

preds <- predict(object = model3, xreg = new_dummy,
actual = data_test, xlim = c(2010, 2016.2),
ylab = "R$ Millions",
style = "normal", legend.pos = "bottomleft")

Figure 6: Graph of the proposed SARIMA model forecasts, an output of predict

The areas in dark blue and light blue around the forecasts are the 85% and 95% confidence intervals,
respectively. It appears that the forecasts were satisfactory, since in general the actual values are inside
the confidence interval.

To make this statement more meaningful, we can check various measures of fit by consulting the
accuracy field contained within the predictions object (preds).

preds$accuracy

#> ME RMSE MAE MPE MAPE ACF1
#> Test set -0.08333333 2.252776 1.85 -0.2144377 2.14463 0.3403901
#> Theil's U
#> Test set 0.5675735

The other field in this object, predictions, contains the object returned by forecast() (or by
another forecasting function, such as grnn.test() or predict(), depending on the model).
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Using the automated report for SARIMA modeling

The report() function performs the Box & Jenkins modeling for any series chosen by the user and
generates reports with the results and explanatory comments. Besides, it allows the forecasts of the
model to be saved in a data file and accepts parameters in order to increase model flexibility. Each
input series produce a different output, as expected. The report() prototype is as follows:

report(mode = "SARIMA", ts = 21864, parameters = NULL,
report.file = NA, series.saveas = "none")

If the user changes the value of the parameter series.saveas() from ‘none’ to a valid format,
the series and the model forecasts are saved in a file. series.saveas accepts all the formats save()
functions can handle (namely, ‘.sas’, ‘.dta’ and ‘.spss’) plus ‘.csv’, which is very convenient. The
argument ts is just as flexible, and is capable of receiving a list containing ts objects, codes of series
within the BETS database, or a combination of both. A report is generated for each element on this
list. For instance, the following piece of code would work:

series <- list(21863, BETSget(21864))

parameters <- list(cf.lags= 25, n.ahead = 15 )

report(ts = series, parameters = parameters)

The list of reports’ specific arguments are passed through parameters, whose accepted fields vary
according to the type of report (defined via mode). In the case of SARIMA models, these fields are
presented in table 1, all of them being optional.

Name Type Description

cf.lags integer Maximum number of lags to show on the ACFs and
PACFs

n.ahead integer Prevision horizon (number of steps ahead)
inf.crit character Information criterion to be used in model selection (BIC

or AIC).
dummy ts object A dummy regressor. Must also cover the forecasting

period.
ur.test list Parameters of ur_test
arch.test list Parameters of arch_test
box.test list Parameters of Box.test, from package stats

Table 1: Possible fields of parameters, an argument of report function, when mode is set to SARIMA

To model the BPIGI series in a similar way to what we modeled in the last section, we resort to the
call below:

params = list(
cf.lags = 48,
n.ahead = 12,
box.test = list(lag = 16),
dummy = dummy(start= c(2009,1) , end = c(2016,4) , year = 2013, month = 4),
ur.test = list(mode = "ADF", type = "none", lags = 12,

selectlags = "BIC", level = "5pct")
)

report(ts = window(BETSget(21864), start= c(2009,1) , end = c(2015,10)),
parameters = params,
series.saveas = "csv")

The report is rendered in the form of an html file, which opens automatically in the user’s default
internet browser. This whole file is shown in Figure 7. It consists of the following:

1. The information about the series as it is found in the BETS metadata table. In our example call,
we use a custom series, so it exhibits more general information.
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Figure 7: The output file of report() function for the series under study.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 144

2. The graph of the series along with its trend, which is extracted with an HP Filter (Hodrick and
Prescott, 1997). The graph is produced with the dygraphs package (Vanderkam et al., 2016) and
enables the user to define windows and examine the series’ values.

3. The steps involved in the identification of a possible model: unit root tests (at the moment, ACF
(Dickey and Fuller, 1979), PP (Phillips and Perron, 1988) or KPSS (Kwiatkowski et al., 1992)
for non-seasonal unit roots, and OCSB (Osborn et al., 1988) test for seasonal unit roots) and
correlograms of the original series (if no unit root is found), or the differenced series (if one or
more unit roots are found).

4. Estimation of the parameters and display of the result from the automatic model selection
performed by the auto.arima() function (from the forecast package).

5. The ARCH test (Engle, 1982) for heteroskedasticity in the residuals. If residuals are found to be
heteroskedastic, the report performs a log transformation on the original series and run steps 3
and 4 again for the transformed series.

6. The graph of the standard residuals.

7. The Ljung-Box (Ljung and Box, 1978) test for autocorrelation in the residuals. If the null
hypothesis of no autocorrelation is rejected, the user will be advised to use a dummy or another
type of model.

8. The n-steps-ahead forecasts and a graph of the original series with the forecasted values and
confidence intervals, also produced with dygraphs (this output is an option of predict()).

9. A link to the file containing the original data and the forecasts.

One example of how the output could change in response to different inputs is obtained by
removing the dummy from the last example. The call without a dummy renders a report that, after
detecting autocorrelation in the residuals, suggests the usage of a dummy to solve the problem (Figure
8). It does indeed solve it, as we demonstrated.

Figure 8: Snippet of the report generated without a dummy.

We now provide one more call and output snippets from the report() function, aiming at illustrat-
ing its capabilities. First, suppose we need to model the Brazilian production of capital goods (BPCG)
series. Its unique identifier in the BETS database is 21863, so this will be the value of parameter ts.
The next piece of code builds a SARIMA report using the same dummy we needed in the case study,
but ARCH test and Box test parameters are different.5

dum <- dummy(start= c(2002,1) , end = c(2017,12) , from = c(2008,7) , to = c(2008,11))
series <- window(BETSget(21863), start = c(2002,1), end = c(2017,6))

params <- list(
cf.lags = 36,
n.ahead = 6,
dummy = dum,
arch.test = list(lags = 12, alpha = 0.03),
box.test = list(type = "Box-Pierce")

)
report(ts = series, parameters = params)

Figures 9 to 11 show snippets of the report that was generated by the last call and demonstrate that
it presents different results when compared to the one produced previously. OCSB test, for instance,
did not find any seasonal unit root, thereby displaying a different comment (Figure 9).

5This time, we employ the Box-Pierce test (Box and Pierce, 1970)
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Figure 9: First snippet of the example report with the BPCG series

In addition, residuals were found to be heteroskedastic, which forced the model to be estimated a
second time, using the log transformation of the original series (Figure 10).

Figure 10: Second snippet of the example report with the BPCG series

Finally, the second model was tested and considered better than the first (Figure 11) and no
autocorrelation in the residuals were found.

Figure 11: Third snippet of the example report with the BPCG series

Note that running a report saves a lot of time and might be insightful. However, performing
the analysis in detail, using individual BETS functions rather than the batch of functions included
in the reports, may provide more flexibility. Since reports use auto.arima(), they might not find
models that are in line with a more sofisticated analysis. For example, the SARIMA model calculated
by auto.arima() in the first example (Figure 7) is not the one we proposed in the case study. This
happened because the function did not find a non-seasonal unit root, since it does not test for more
than 2 lags, and we tested for 6. For now, we cannot include the option of testing for more lags, the
reason being that auto.arima() does not accept it.

Conclusion

We have shown in this article that the approach adopted in BETS is a novel one as it allows users
not only to quickly and easily access thousands of Brazilian economic time series, but also to use
and analyze these series in many different ways. Its automated reports are comprehensive, fully
customizable and three methods can be readily applied: SARIMA models, GRNNs and exponential
smoothing models. We showed case studies to examine the use of the first, but only mentioned the
latter two. Nevertheless, the user can benefit from the extensive documentation shipped with the
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package, where example code to generate GRNN and exponential smoothing reports are exhibited
and discussed.

In the future we hope to expand these dynamic reports and provide new options for users. One
such option has already been taken into account in the design of the package: a display mode that
does not include explanations about the methodology, so that the information is provided in a more
technical, succinct manner. In addition to developing new modeling methods, such as Multi-Layer
Perceptrons, fuzzy logic, Box & Jenkins with transfer functions, and multivariate models, we plan to
refine the analyses themselves.
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