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BNSP: an R Package for Fitting Bayesian
Semiparametric Regression Models and

Variable Selection
by Georgios Papageorgiou

Abstract The R package BNSP provides a unified framework for semiparametric location-scale
regression and stochastic search variable selection. The statistical methodology that the package is
built upon utilizes basis function expansions to represent semiparametric covariate effects in the mean
and variance functions, and spike-slab priors to perform selection and regularization of the estimated
effects. In addition to the main function that performs posterior sampling, the package includes
functions for assessing convergence of the sampler, summarizing model fits, visualizing covariate
effects and obtaining predictions for new responses or their means given feature/covariate vectors.

Introduction

There are many approaches to non- and semi-parametric modeling. From a Bayesian perspective,
Miiller and Mitra (2013) provide a review that covers methods for density estimation, modeling of
random effects distributions in mixed effects models, clustering, and modeling of unknown functions
in regression models.

Our interest is on Bayesian methods for modeling unknown functions in regression models. In
particular, we are interested in modeling both the mean and variance functions non-parametrically, as
general functions of the covariates. There are multiple reasons why allowing the variance function
to be a general function of the covariates may be important (Chan et al., 2006). Firstly, it can result
in more realistic prediction intervals than those obtained by assuming constant error variance, or as
Miiller and Mitra (2013) put it, it can result in more honest representation of uncertainties. Secondly, it
allows the practitioner to examine and understand which covariates drive the variance. Thirdly, it
results in more efficient estimation of the mean function. Lastly, it produces more accurate standard
errors of unknown parameters.

In the R (R Core Team, 2016) package BNSP (Papageorgiou, 2018) we implemented Bayesian
regression models with Gaussian errors and with mean and log-variance functions that can be mod-
eled as general functions of the covariates. Covariate effects may enter the mean and log-variance
functions parametrically or non-parametrically, with the nonparametric effects represented as linear
combinations of basis functions. The strategy that we follow in representing unknown functions is to
utilize a large number of basis functions. This allows for flexible estimation and for capturing true
effects that are locally adaptive. Potential problems associated with large numbers of basis functions,
such as over-fitting, are avoided in our implementation, and efficient estimation is achieved, by
utilizing spike-slab priors for variable selection. A review of variable selection methods is provided by
O’Hara and Sillanpédé (2009).

The methods described here belong to the general class of models known as generalized additive
models for location, scale, and shape (GAMLSS) (Rigby and Stasinopoulos, 2005; Stasinopoulos and
Rigby, 2007) or the Bayesian analogue termed as BAMLSS (Umlauf et al., 2018) and implemented
in package bamlss (Umlauf et al., 2017). However, due to the nature of the spike-and-slab priors
that we have implemented, in addition to flexible modeling of the mean and variance functions, the
methods described here can also be utilized for selecting promising subsets of predictor variables in
multiple regression models. The implemented methods fall in the general class of methods known as
stochastic search variable selection (SS5VS). SSVS has received considerable attention in the Bayesian
literature and its applications range from investigating factors that affect individual’s happiness
(George and McCulloch, 1993), to constructing financial indexes (George and McCulloch, 1997), and to
gene mapping (O'Hara and Sillanpad, 2009). These methods associate each regression coefficient, either
a main effect or the coefficient of a basis function, with a latent binary variable that indicates whether
the corresponding covariate is needed in the model or not. Hence, the joint posterior distribution of
the vector of these binary variables can identify the models with the higher posterior probability.

R packages that are related to BNSP include spikeSlabGAM (Scheipl, 2016) that also utilizes SSVS
methods (Scheipl, 2011). A major difference between the two packages, however, is that whereas
spikeSlabGAM utilizes spike-and-slab priors for function selection, BNSP utilizes spike-and-slab
priors for variable selection. In addition, Bayesian GAMLSS models, also refer to as distributional
regression models, can also be fit with R package brms using normal priors (Biirkner, 2018). Further,
the R package gamboostLSS (Hofner et al., 2018) includes frequentist GAMLSS implementation based
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on boosting that can handle high-dimensional data (Mayr et al., 2012). Lastly, the R package mgcv
(Wood, 2018) can also fit generalized additive models with Gaussian errors and integrated smoothness
estimation, with implementations that can handle large datasets.

In BNSP we have implemented functions for fitting such semi-parametric models, summarizing
model fits, visualizing covariate effects and predicting new responses or their means. The main
functions are mvrm, mvrm2meme, print.mvrm, summary.mvrm, plot.mvrm, and predict.mvrm. A quick
description of these functions follows. The first one, mvrm, returns samples from the posterior distri-
butions of the model parameters, and it is based on an efficient Markov chain Monte Carlo (MCMC)
algorithm in which we integrate out the coefficients in the mean function, generate the variable
selection indicators in blocks (Chan et al., 2006), and choose the MCMC tuning parameters adaptively
(Roberts and Rosenthal, 2009). In order to minimize random-access memory utilization, posterior
samples are not kept in memory, but instead written in files in a directory supplied by the user.
The second function, mvrm2meme, reads-in the samples from the posterior of the model parameters
and it creates an object of class "memc”. This enables users to easily utilize functions from package
coda (Plummer et al., 2006), including its plot and summary methods for assessing convergence and
for summarizing posterior distributions. Further, functions print.mvrm and summary.mvrm provide
summaries of model fits, including models and priors specified, marginal posterior probabilities of
term inclusion in the mean and variance models and models with the highest posterior probabilities.
Function plot.mvrm creates plots of parametric and nonparametric terms that appear in the mean
and variance models. The function can create two-dimensional plots by calling functions from the
package ggplot2 (Wickham, 2009). It can also create static or interactive three-dimensional plots by
calling functions from the packages plot3D (Soetaert, 2016) and threejs (Lewis, 2016). Lastly, function
predict.mvrm provides predictions either for new responses or their means given feature/covariate
vectors.

We next provide a detailed model description followed by illustrations on the usage of the package
and the options it provides. Technical details on the implementation of the MCMC algorithm are
provided in the Appendix. The paper concludes with a brief summary.

Mean-variance nonparametric regression models

Lety = (yq,.. .,yn)—r denote the vector of responses and let X = [xq,. .. ,xn]—r and Z = [zq,... ,zn]—r

denote design matrices. The models that we consider express the vector of responses utilizing
Y= 130111 +Xﬁ1 +e€,

where 1, is the usual n-dimensional vector of ones, By is an intercept term, B, is a vector of regression
coefficients and € = (e, ..., en)—r is an n-dimensional vector of independent random errors. Each
€,i = 1,...,n, is assumed to have a normal distribution, €; ~ N(0, 0’i2), with variances that are

modeled in terms of covariates. Let 02 = (1712, ...,02) . We model the vector of variances utilizing

log(o?) = agly, + Zay,

where «( is an intercept term and &4 is a vector of regression coefficients. Equivalently, the model for
the variances can be expressed as

o? =c?exp(zfm),i=1,...,n, 1)

2

where 0= = exp(ay).

Let D(x) denote an n-dimensional, diagonal matrix with elements exp(z?:xl /2),i=1,...,n.
Then, the model that we consider may be expressed more economically as

Y=X"B+e,
€ ~ N(0,0°D?(x)), ()

where B = (Bo, B{ )" and X* = [1,,, X].

In the following subsections we describe how, within model (2), both parametric and nonpara-
metric effects of explanatory variables on the mean and variance functions can be captured utilizing
regression splines and variable selection methods. We begin by considering the special case where
there is a single covariate entering the mean model and a single covariate entering the variance model.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859


https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=plot3D
https://CRAN.R-project.org/package=threejs

CONTRIBUTED RESEARCH ARTICLES 528

Locally adaptive models with a single covariate

Suppose that the observed dataset consists of triplets (y;, u;, w;),i =1, ..., n, where explanatory vari-
ables 1 and w enter flexibly the mean and variance models, respectively. To model the nonparametric
effects of 1 and w we consider the following formulations of the mean and variance models

q1
i =PBo+ fulu)) = Po+ Y Bignj(ui) = Bo+x; By, @)
=
q2
log(07) = ao + fo(w;) = ao+ Y ajhoj(w;) = o + 2 1. (4)
=

In the preceding x; = (¢11(u;), - - -, P14, (u;))" and z; = (¢o1(w;), ..., ¢og, (w;)) " are vectors of basis
functions and B; = (B1,...,Bq) and & = (a1,..., &) " are the corresponding coefficients.

In package BNSP we implemented two sets of basis functions. Firstly, radial basis functions

B = {91(w) = u,¢2(u) = [|lu = &1 Pog (|lu— & l2) -,
9q() = [|u = &a] Plog (Jlu = &1112) }, )

where ||u|| denotes the Euclidean norm of u and 1, . .., §; 1 are the knots that within package BNSP
are chosen as the quantiles of the observed values of explanatory variable u, with & = min(u;),
{q—1 = max(u;) and the remaining knots chosen as equally spaced quantiles between ¢; and &, 1.

Secondly, we implemented thin plate splines

By ={g1(u) =u,¢o(u) = (u—C1)1,. ., Pq(u) = (u—Gg)+ },

where (a)+ = max(a,0) and the knots {1, ..., ;1 are determined as above.

In addition, BNSP supports the smooth constructors from package mgcv (e.g., the low-rank thin
plate splines, cubic regression splines, P-splines, their cyclic versions, and others). Examples on how
these smooth terms are used within BNSP are provided later in this paper.

Locally adaptive models for the mean and variance functions are obtained utilizing the method-
ology developed by Chan et al. (2006). Considering the mean function, local adaptivity is achieved
by utilizing a large number of basis functions, 1. Over-fitting, and problems associated with it, is
avoided by allowing positive prior probability that the regression coefficients are exactly zero. The
latter is achieved by defining binary variables v;,j = 1,...,q1, that take value 7; = 1if §; # 0 and

7vj = 0if B; = 0. Hence, vector v = (71, .-, 'yql)T determines which terms enter the mean model. The
vector of indicators § = (41, ..., 0, )T for the variance function is defined analogously.

Given vectors y and J, the heteroscedastic, semiparametric model (2) can be written as
Y=X\B,+te
e ~ N(0, UzDz(tx,;)),

where B, consisting of all non-zero elements of f; and X’} consists of the corresponding columns of
X*. Subvector a; is defined analogously.

We note that, as was suggested by Chan et al. (2006), we work with mean corrected columns in the
design matrices X and Z, both in this paper and in the BNSP implementation. We remove the mean
from all columns in the design matrices except those that correspond to categorical variables.

Prior specification for models with a single covariate
Let X = D(a)~'X*. The prior for B, is specified as (Zellner, 1986)
T \—
ﬂ,y\cﬁ,(r2,'y, a,d ~ N(0, C/gO’Z(X,},Xry) 1).
Further, the prior for «; is specified as
aglca, 8 ~ N(0,coI).

Independent priors are specified for the indicators variables y; as P(7; = 1|7,) = 7y, j = 1,...,q1,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 529

from which the joint prior is obtained as
N _
P(y|my) = 7, (7)(1 — )M N(),

where N(7y) = 271:1 ¥j-

Similarly, for the indicators J; we specify independent priors P((Sj =1lny)=ngj=1,...,902. It
follows that the joint prior is

P(d|7r) = iy (1 — 7y NO),

where N(8) = Z?il oj.

We specify inverse Gamma priors for ¢g and ¢, and Beta priors for 77, and 714

cp~ IG({Z/g, bﬁ),ca ~1G(ay, by),
Ty, ~ Beta(cy, dy), o ~ Beta(cs, dy). (6)

Lastly, for o2 we consider inverse Gamma and half-normal priors

0% ~ 1G(ay, by) and |o| ~ N(0,2). )

Extension to bivariate covariates

It is straightforward to extend the methodology described earlier to allow fitting of flexible mean and
variance surfaces. In fact, the only modification required is in the basis functions and knots. For fitting
surfaces, in package BNSP we implemented radial basis functions

By = {1 () = w1, pa() = u, s () = ||u = &2 1og (|u = &1 ) ...
9q(u) = |1 — &yl P1og (|1n — &,_a|?) }-

We note that the prior specification presented earlier for fitting flexible functions remains unchained
for fitting flexible surfaces. Further, for fitting bivariate or higher order functions, BNSP also supports
smooth constructors s, te, and ti from mgev.

Extension to additive models

In the presence of multiple covariates, the effects of which may be modeled parametrically or semi-
parametrically, the mean model in (3) is extended to the following

K
pi = Po+tulpB+ Y fux(un)i=1,..,n
k=1

where u;, includes the covariates the effects of which are modeled parametrically, B denotes the
corresponding effects, and f%k(uik),k =1,...,Kj, are flexible functions of one or more covariates

expressed as
Tk

Fux(uin) = Y Brjprj (ui),
=

where P1kjs j=1,...,q1x are the basis functions used in the kth component, k =1, ..., Kj.

Similarly, the variance model (4), in the presence of multiple covariates, is expressed as

K>
log(aiz) =g+ w;a + Z fox(wi),i=1,...,n,
k=1

where
Q2K

fox(Wix) = Y axjari(wik)-
A

For additive models, local adaptivity is achieved using a similar strategy, as in the single covariate
case. That is, we utilize a potentially large number of knots or basis functions in the flexible components
that appear in the mean model, fy/k, k=1,...,Kq, and in the variance model, f, i,k =1,...,K>. To
avoid over-fitting, we allow removal of the unnecessary ones utilizing the usual indicator variables,
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Vi = (fykl,...,'ykqlk)—r,k =1,...,Ky,and & = (0, - ..,5kq2k)T,k =1,...,K;. Here, vectors v; and J
determine which basis functions appear in f, x and f; \ respectively.

The model that we implemented in package BNSP specifies independent priors for the indicators
variables vy as P(vk; = 1|7ty,) = 7y, j = 1,..., q1x- From these, the joint prior follows

N _
P(yelrmp) = ﬂﬂk('m(l — T ) 1 N(m),

where N(7;) = L1 7.
Similarly, for the indicators &;; we specify independent priors P(0y; = 1|70,) = 7e,, j = 1,..., qo-
It follows that the joint prior is

(8¢l 7ty) = ) (1 — 710 ) 12N (),

where N (&) = Z]q.i"l Okj-
We specify the following independent priors for the inclusion probabilities.

Tt ~ Beta(cy,, dy ),k =1,...,Ky 714 ~ Beta(cq, do ), k=1,...,Ko. 8)

The rest of the priors are the same as those specified for the single covariate models.

Usage

In this section we provide results on simulation studies and real data analyses. The purpose is twofold:
firstly we point out that the package works well and provides the expected results (in simulation
studies) and secondly we illustrate the options that the users of BNSP have.

Simulation studies

Here we present results from three simulations studies, involving one, two, and multiple covariates.
For the majority of these simulation studies, we utilize the same data-generating mechanisms as those
presented by Chan et al. (2006).

Single covariate case

We consider two mechanisms that involve a single covariate that appears in both the mean and
variance model. Denoting the covariate by u, the data-generating mechanisms are the normal model
Y ~ N{u(u),0?(u)} with the following mean and standard deviation functions:

1. pu(u) =2u,0(u) =01+u,
2. p(u) = {N(u,p=02,0%=0.004) + N(u,p = 0.6,0> =0.1)} /4,
o(u) = {N(u,p=02,0% =0.004) + N(u,u = 0.6,02 = 0.1)} /6.

We generate a single dataset of size n = 500 from each mechanism, where variable u is obtained from
the uniform distribution, # ~ Unif(0,1). For instance, for obtaining a dataset from the first mechanism
we use

mu <- function(u) {2 * u}
stdev <- function(u) {0.1 + u}
set.seed(1)

n <- 500

u <- sort(runif(n))

y <= rnorm(n, mu(u), stdev(u))
data <- data.frame(y, u)

V V V V V V YV

Above we specified the seed value to be one, and we do so in what follows, so that our results are
replicable.

To the generated dataset we fit a special case of the model that we presented, where the mean and
variance functions in (3) and (4) are specified as

q1 q2
w=Po+ ful) =PBo+ ) Bjprj(u) and log(c?) =ag+ fo(u) =ag+ ) ajpaj(u), )
A A
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with ¢ denoting the radial basis functions presented in (5). Further, we choose 41 = g2 = 21 basis
functions or, equivalently, 20 knots. Hence, we have ¢1;(u) = ¢j(u),j = 1,...,21, which results in
identical design matrices for the mean and variance models. In R, the two models are specified using

> model <-y ~ sm(u, k =20, bs = "rd") | sm(u, k = 20, bs = "rd")

The above formula (Zeileis and Croissant, 2010) specifies the response, mean and variance models.
Smooth terms are specified utilizing function sm, that takes as input the covariate u, the selected
number of knots and the selected type of basis functions.

Next we specify the hyper-parameter values for the priors in (6) and (7). The default prior for cg is
inverse Gamma with ag = 0.5,bg = n/2 (Liang et al., 2008). For parameter c, the default prioris a
non-informative but proper inverse Gamma with a, = by, = 1.1. Concerning 7, and 7, the default
priors are uniform, obtained by setting ¢, = d;, = 1 and ¢, = dy = 1. Lastly, the default prior for the

error standard deviation is the half-normal with variance ¢2 = 2, |¢| ~ N(0,2).

We choose to run the MCMC sampler for 10,000 iterations and discard the first 5,000 as burn-in.
Of the remaining 5,000 samples we retain 1 of every 2 samples, resulting in 2,500 posterior samples.
Further, as mentioned above, we set the seed of the MCMC sampler equal to one. Obtaining posterior
samples is achieved by a function call of the form

> DIR <- getwd()
> ml <- mvrm(formula = model, data = data, sweeps = 10000, burn = 5000,

+ thin = 2, seed = 1, StorageDir = DIR,
+ c.betaPrior = "IG(0.5,0.5%n)", c.alphaPrior = "IG(1.1,1.1)",
+ pi.muPrior = "Beta(1,1)", pi.sigmaPrior = "Beta(1,1)", sigmaPrior = "HN(2)")

Samples from the posteriors of the model parameters {8, v, &, J, cg, ca, 0?2} are written in seven separate
files which are stored in the directory specified by argument StorageDir. If a storage directory is
not specified, then function mvrm returns an error message, as without these files there will be no
output to process. Furthermore, the last two lines of the above function call show the specified priors,
which are c¢g ~ 1G(0.5,1/2), ¢y ~ IG(1.1,1.1), 7t ~ Beta(1,1), my ~ Beta(1,1) and |o| ~ N(0,2),
respectively. As we mentioned above, these priors are the default ones, and hence the same function
call can be achieved without specifying the last two lines. Here we display the priors in order to
describe how users can specify their own priors. For parameters cg and c, only inverse Gamma priors
are available, with parameters that can be specified by the user in the intuitive way. For instance, the
prior cg ~ IG(1.01,1.01) can be specified in function mvrm by using c.betaPrior = "IG(1.01,1.01)".
The second parameter of the prior for cg can be a function of the sample size 1 (but only symbol n
would work here), so for instance c.betaPrior = "IG(1,@.4*n)" is another acceptable specification.
Further, Beta priors are available for parameters 71, and 71, with parameters that can be specified
by the user again in the intuitive way. Lastly, two priors are available for the error variance. These
are the default half-normal and the inverse Gamma. For instance, sigmaPrior = "HN(5)" defines
|o| ~ N(0,5) as the prior while sigmaPrior = "IG(1.1,1.1)" defines 0> ~ IG(1.1,1.1) as the prior.

Function mvrm2memc reads in posterior samples from the files that the call to function mvrm generated
and creates an object of class "memc”. Hence, for summarizing posterior distributions and for assessing
convergence, functions summary and plot from package coda can be used. As an example, here we
read in the samples from the posterior of § and summarize the posterior using summary. For the sake
of economizing space, only the part of the output that describes the posteriors of By, B1, and B, is
shown below:

> beta <- mvrm2mcmc(m1, "beta")
> summary (beta)

Iterations = 5001:9999
Thinning interval = 2

Number of chains = 1

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) 9.534e-01 0.004399 8.799e-05 0.0002534
u 1.864e+00 0.042045 8.409e-04 0.0010356
sm(u).1 3.842e-04 0.016421 3.284e-04 0.0003284
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Figure 1: Trace and density plots for the regression coefficients g, 81 and B of the first simulated
example. Parameters B and B, are the coefficients of the first two basis functions, denoted by “u” and
“sm(u).1”. Plots for coefficients B3, ..., Bo1 are omitted as they follow a very similar pattern to that

seen for B (i.e., most of the time they take value zero but with random spikes away from zero).

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) ©.946 0.9513 0.9533 0.9554 0.960
u 1.833 1.8565 1.8614 1.8682 1.923
sm(u) .1 0.000 0.0000 0.0000 0.0000 0.000

Further, we may obtain a plot using
> plot(beta)

Figure 1 shows the first three of the plots created by function plot. These are the plots of the
samples from the posteriors of coefficients B¢, 81 and B,. As we can see from both the summary and

Figure 1, only the first two coefficients have posteriors that are not centered around zero.
Returning to the function mvrm2meme, it requires two inputs. These are an object of class "mvrm” and
the name of the file to be read in R. For the parameters in the current model {8, v, &, 6, B/ Ca, (72} the

corresponding file names are ‘beta’, ‘gamma’, ‘alpha’, ‘delta’, ‘cbeta’, ‘calpha’, and ‘sigma2’ respectively.

Summaries of mvrm fits may be obtained utilizing functions print.mvrm and summary.mvrm. The
method print takes as input an object of class "mvrm”. It returns basic information of the model fit, as
shown below:

> print(m1)

Call:

mvrm(formula = model, data = data, sweeps = 10000, burn = 5000,
thin = 2, seed = 1, StorageDir = DIR, c.betaPrior = "IG(@.5,0.5%n)",
c.alphaPrior = "IG(1.1,1.1)", pi.muPrior = "Beta(1,1)",
pi.sigmaPrior = "Beta(1,1)", sigmaPrior = "HN(2)")

2500 posterior samples

Mean model - marginal inclusion probabilities
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u sm(u).1 sm(u).2 sm(u).3 sm(u).4 sm(u).5
1.0000 0.0040 0.0036 0.0032 0.0084 0.0036

0.0060 0.0020 ©0.0060 ©.0036 ©0.0056 ©.0056

sm(u).16 sm(u).17 sm(u).18 sm(u).19 sm(u).20
0.0060 0.0044 0.0056 0.0044 0.0052

Variance model - marginal inclusion probabilities

u sm(u).1 sm(u).2 sm(u).3 sm(u).4 sm(u).5
1.0000 ©0.6072 ©.5164 0.5808 ©0.5488 0.6760

0.6936 0.6708 ©.5996 0.4816 0.4912 0.3728

sm(u).16 sm(u).17 sm(u).18 sm(u).19 sm(u).20
0.5872 0.6528 0.4428 0.6900 0.5356

sm(u).6

sm(u).6

sm(u).7

0.0044 0.0028
sm(u).8 sm(u).9 sm(u).10 sm(u).11 sm(u).12 sm(u).13 sm(u).14 sm(u).15
0.0036  0.0052

sm(u).7

0.5320 0.6336
sm(u).8 sm(u).9 sm(u).10 sm(u).11 sm(u).12 sm(u).13 sm(u).14 sm(u).15
0.6268 0.5688

The function returns a matched call, the number of posterior samples obtained, and marginal
inclusion probabilities of the terms in the mean and variance models.

Whereas the output of the print method focuses on marginal inclusion probabilities, the output of
the summary method focuses on the most frequently visited models. It takes as input an object of class
"mvrm” and the number of (most frequently visited) models to be displayed, which by default is set to

nModels = 5. Here to economize space we set nModels =
method is shown below

> summary(ml, nModels = 2)

Specified model for the mean and variance:

y ~ sm(u, k =20, bs = "rd") | sm(u, k = 20, bs = "rd")

Specified priors:

[1] c.beta = 1G(0.5,0.5%xn) c.alpha = IG(1.1,1.1) pi.mu

[4] pi.sigma = Beta(1,1) sigma = HN(2)

= Beta(1,1)

Total posterior samples: 2500 ; burn-in: 5000 ; thinning: 2

Files stored in /home/papgeo/1/

Null deviance: 1299.292
Mean posterior deviance: -88.691

Joint mean/variance model posterior probabilities:

mean.u mean.sm.u..l mean.sm.u..2 mean.sm.u..3 mean.sm.u..4 mean.sm.u.

1 1 Q [ 0 Q

2 1 0 0 0 Q
mean.sm.u..6 mean.sm.u..7 mean.sm.u..8 mean.sm.u..9 mean.sm.u..10

1 % 0 Q 0 0

2 0 0 Q 0 0
mean.sm.u..11 mean.sm.u..12 mean.sm.u..13 mean.sm.u..14 mean.sm.u..

1 [ 0 0 Q

2 0 0 0 0
mean.sm.u..16 mean.sm.u..17 mean.sm.u..18 mean.sm.u..19 mean.sm.u..

1 [ 0 0 Q

2 0 0 0 0

var.sm.u..1l var.sm.u..2 var.sm.u..
1 1 1
2 1 0
var.sm.u..7 var.sm.u..8 var.sm.u..
1 1 1
2 1 1

1

3
1
1 1
9
1
1

1

var.sm.u..4 var.sm.u..5 var.sm.u.

1
1

1
1

2. The information returned by the summary

.5

0

0
15
%
0
20 var.u
[ 1
0 1

.6
1
1

var.sm.u..10 var.sm.u..11 var.sm.u..12
0

4
1

var.sm.u..13 var.sm.u..14 var.sm.u..15 var.sm.u..16 var.sm.u..17 var.sm.u..18

1 1 1 1

2 Q 1 1
var.sm.u..19 var.sm.u..20 freq prob cumulative

1 1 1 141 5.64 5.64

2 1 0 120 4.80 10.44

Displaying 2 models of the 916 visited
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2 models account for 10.44% of the posterior mass

Firstly, the method provides the specified mean and variance models and the specified priors. This
is followed by information about the MCMC chain and the directory where files have been stored.
In addition, the function provides the null and the mean posterior deviance. Finally, the function
provides the specification of the joint mean/variance models that were visited most often during
MCMC sampling. This specification is in terms of a vector of indicators, each consisting of zeros and
ones, that show which terms are in the mean and variance model. To make clear which terms pertain
to the mean and which to the variance function, we have preceded the names of the model terms by
“mean.” or “var.”. In the above output, we see that the most visited model specifies a linear mean
model (only the linear term is included in the model) while the variance model includes twelve terms.
See also Figure 2.

We next describe the function plot.mvrm which creates plots of terms in the mean and variance
functions. Two calls to the plot method can be seen in the code below. Argument x expects an object
of class "mvrm”, as created by a call to the function mvrm. The model argument may take on one of three
possible values: "mean”, "stdev”, or "both", specifying the model to be visualized. Further, the term
argument determines the term to be plotted. In the current example there is only one term in each of
the two models which leaves us with only one choice, term = "sm(u)". Equivalently, term may be
specified as an integer, term = 1. If term is left unspecified, then, by default, the first term in the model
is plotted. For creating two-dimensional plots, as in the current example, the plot method utilizes the
package ggplot2. Users of BNSP may add their own options to plots via the argument plotOptions.
The code below serves as an example.

x1 <- seq(@, 1, length.out = 30)
plotOptionsM <- list(geom_line(aes_string(x = x1, y = mu(x1)), col = 2, alpha = 0.5,
1ty = 2), geom_point(data = data, aes(x = u, y =y)))

plot(x = m1, model = "mean”, term = "sm(u)", plotOptions = plotOptionsM,

intercept = TRUE, quantiles = c(0.005, ©0.995), grid = 30)
plotOptionsV = list(geom_line(aes_string(x = x1, y = stdev(x1)), col = 2,

alpha = 0.5, 1ty = 2))

plot(x = m1, model = "stdev"”, term = "sm(u)"”, plotOptions = plotOptionsV,

intercept = TRUE, quantiles = c(0.05, 0.95), grid = 30)

+ V + V + V + V V

The resulting plots can be seen in Figure 2, panels (a) and (b). Panel (a) displays the simulated
dataset, showing the expected increase in both the mean and variance with increasing values of the
covariate 1. Further, we see the posterior mean of y(u) = Bo + fu(u) = Bo + ijil Bj¢1j(u) evaluated
over a grid of 30 values of u, as specified by the (default) grid = 30 option for plot. For each
sample /S(s ), s=1,...,S, from the posterior of B, and for each value of u over the grid of 30 values,
uj,j =1,...,30, the plot method computes y(ui)<S> = ,B(()S) + ijil ,B](-S)<p1j(u]»). The default option
intercept = TRUE specifies that the intercept By is included in the computation, but it may be removed
by setting intercept = FALSE. The posterior means are computed by the usual fi(u;) = STy, p(uj) ()
and are plotted with solid (blue-color) line. By default, the function displays 80% point-wise credible
intervals (CI). In Figure 2, panel (a) we have plotted 99% Cls, as specified by option quantiles =
¢(0.005,0.995). This option specifies that for each value u i j=1,...,30, on the grid, 99% ClIs for
#(u;) are computed by the 0.5% and 99.5% quantiles of the samples (u j)(s), s=1,...,S. Plots without
credible intervals may be obtained by setting quantiles = NULL.

Figure 2, panel (b) displays the posterior mean of the standard deviation function (1) =
o exp{Z]"?zz1 ajj(u)/2}. The details are the same as for the plot of the mean function, so here we briefly
mention a difference: option intercept = TRUE specifies that ¢ is included in the calculation. It may be
removed by setting intercept = FALSE, which will result in plots of o(u)* = exp{Z}h:l ajoj(u)/2}.

We use the second simulated dataset to show how the s constructor from the package mgcv may
be used. In our example, we use s to specify the model:

> model <-y ~ s(u, k =15, bs = "ps"”, absorb.cons=TRUE) |
+ s(u, k =15, bs "ps", absorb.cons=TRUE)

Function BNSP: : s calls in turn mgev: : s and mgev: : smoothCon. All options of the last two functions
may be passed to BNSP: :s. In the example above we used options k, bs, and absorb. cons.

The remaining R code for the second simulated example is precisely the same as the one for the
first example, and hence omitted. Results are shown in Figure 2, panels (c) and (d).

We conclude the current section by describing the function predict.mvrm. The function provides
predictions and posterior credible or prediction intervals for given feature vectors. The two types of
intervals differ in the associated level of uncertainty: prediction intervals attempt to capture a future
response and are usually much wider than credible intervals that attempt to capture a mean response.
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Figure 2: Results from the single covariate simulated examples. The column on the left-hand side
displays the generated data points and posterior means of the estimated effect along with 99% Cls.
The column on the right-hand side displays the posterior mean of the estimated standard deviation
function along with 90% Cls. In all panels, the truth is represented by dashed (red color) lines, the
posterior means by solid (blue color) lines, and the Cls by gray color.

The following code shows how credible and prediction intervals can be obtained for a sequence of
covariate values stored in x1

> x1 <- seq(@, 1, length.out = 30)
> p1 <- predict(ml, newdata = data.frame(u = x1), interval = "credible")
> p2 <- predict(ml, newdata = data.frame(u = x1), interval = "prediction”)

where the first argument in the predict method is a fitted mvrm model, the second one is a data frame
containing the feature vectors at which predictions are to be obtained and the last one defines the
type of interval to be created. We applied the predict method to the two simulated datasets. To each
of those datasets we fitted two models: the first one is the one we saw earlier, where both the mean
and variance are modeled in terms of covariates, while the second one ignores the dependence of the
variance on the covariate. The latter model is specified in R using

> model <=y ~ sm(u, k = 20, bs = "rd") | 1

Results are displayed in Figure 3. Each of the two figures displays a credible interval and two
prediction intervals. The figure emphasizes a point that was discussed in the introductory section, that
modeling the variance in terms of covariates can result in more realistic prediction intervals. The same
point was recently discussed by Mayr et al. (2012).

Bivariate covariate case

Interactions between two predictors can be modeled by appropriate specification of either the built-in
sm function or the smooth constructors from mgcv. Function sm can take up to two covariates, both
of which may be continuous or one continuous and one discrete. Next we consider an example that
involves two continuous covariates. An example involving a continuous and a discrete covariate is
shown later on, in the second application to a real dataset.
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(a) (b)

Figure 3: Predictions results from the first two simulated datasets. Each panel displays a credible
interval and two prediction intervals, one obtained using a model that recognizes the dependence of
the variance on the covariate and one that ignores it.

Letu = (uy,up) " denote a bivariate predictor. The data-generating mechanism that we consider is
y(u) ~ N{p(u),0*(u)},

p(u) =01+ N (u,py, 1) + N (4,45, L3),

() = 0.1+ {N (w11, Z1) + N (u, 1y, Z2)} /2,

_(025) 5 _ (003 001 _(065) 5 _ (009 001

1= o75) =1~ \oo1 003)#27 \035)*27 \o.o1 0.09)
As before, 1y and u, are obtained independently from uniform distributions on the unit interval.
Further, the sample size is set to n = 500.

u

In R, we simulate data from the above mechanism using

mul <- matrix(c(@.25, 0.75))
sigmal <- matrix(c(0.03, 0.01, 0.01, 0.03), 2, 2)
mu2 <- matrix(c(0.65, ©.35))
sigma2 <- matrix(c(0.09, 0.01, 0.01, 0.09), 2, 2)
mu <- function(x1, x2) {x <- cbind(x1, x2);
0.1 + dmvnorm(x, mul, sigmal) + dmvnorm(x, mu2, sigma2)}
Sigma <- function(x1, x2) {x <- cbind(x1, x2);
0.1 + (dmvnorm(x, mul, sigmal) + dmvnorm(x, mu2, sigma2)) / 2}
set.seed(1)
n <- 500
wl <= runif(n)
w2 <- runif(n)
y <- vector()
for (i in 1:n) y[il <- rnorm(1, mean = mu(wi[i], w2[il),
sd = sqrt(Sigma(wi[il, w2[il)))
data <- data.frame(y, wl, w2)

V + VVVVVYV + YV + VYV VYVYV

We fit a model with mean and variance functions specified as

12 12 12 12
H(u) = ‘30 + 2 2 ﬁj1,j2¢1j1,jz (u)' log(az(u)) =ap + 2 2 ajl,jz¢2j1,jz(u)'

1=1j2=1 h=1p=1
The R code that fits the above model is

> Model <-y ~ sm(wl, w2, k =10, bs = "rd") | sm(wl, w2, k =10, bs = "rd")
> m2 <- mvrm(formula = Model, data = data, sweeps = 10000, burn = 5000, thin = 2,
+ seed = 1, StorageDir = DIR)

As in the univariate case, convergence assessment and univariate posterior summaries may be
obtained by using function mvrm2memc in conjunction with functions plot.memc and summary.mcmc.
Further, summaries of the mvrm fits may be obtained using functions print.mvrm and summary.mvrm.
Plots of the bivariate effects may be obtained using function plot.mvrm. This is shown below, where
argument plotOptions utilizes the package colorspace (Zeileis et al., 2009).

> plot(x = m2, model = "mean”, term = "sm(wl,w2)", static = TRUE,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859


https://CRAN.R-project.org/package=colorspace

CONTRIBUTED RESEARCH ARTICLES 537

mean st dev

@ o
@ W2

4ég %ﬁ» 10

(a) (b)

Figure 4: Bivariate simulation study results with two continuous covariates. Shown are posterior
means of (a) the mean and (b) the standard deviation function.

+ plotOptions = list(col = diverge_hcl(n = 10)))
> plot(x = m2, model = "stdev”, term = "sm(wl,w2)", static = TRUE,
+ plotOptions = list(col = diverge_hcl(n = 10)))

Results are shown in Figure 4. For bivariate predictors, function plot.mvrm calls function ribbon3D
from the package plot3D. Dynamic plots, viewable in a browser, can be created by replacing the
default ‘static=TRUE’ by ‘static=FALSE’. When the latter option is specified, function plot.mvrm
calls the function scatterplot3js from the package threejs. Users may pass their own options to
plot.mvrmvia the plotOptions argument.

Multiple covariate case

We consider fitting general additive models for the mean and variance functions in a simulated
example with four independent continuous covariates. In this scenario, we set # = 1000. Further the
covariates w = (w1, wy, ws, w4)T are simulated independently from a uniform distribution on the unit
interval. The data-generating mechanism that we consider is

Y(w) ~ N(p(w),0*(w)),
4
w) = Z{yj(w]-) and o(w) = Haj(wj),
=

where functions W, 0}, j=1,...,4, are specified below:

Ly (wy) = 15wy, 09 (wy) = {N(wy, p = 02,0% = 0.004) + N(wy, p = 0.6,02 = 0.1)} /2,
2. pa(wz) = {N(wy, u = 0.2,0% = 0.004) + N(wp, p = 0.6,0> = 0.1)} /2,
oz (wy) = 0.6 + 0.5sin(2Tw,),
3. uz(ws) =1+ sin(2rws), 03(ws3) = 1.1 — w3,
4. py(wy) = —wy, 04(wy) = 0.2 4+ 1.5wy.

To the generated dataset we fit a model with mean and variance functions modeled as
4 16 4 16
w(w) =Po+ Y Y Biipwi(we) and  log{o?(w)} =ag+ Y Y apipii ().
k=1j=1 k=1j=1

Fitting the above model to the simulated data is achieved by the following R code

> Model <- y ~ sm(wl, k 5, bs = "rd") + sm(w2, k =15, bs = "rd") +
+ sm(w3, k =15, bs = "rd") + sm(w4, k = 15, bs = "rd") |
+ sm(wl, k = 15, bs = "rd") + sm(w2, k = 15, bs = "rd") +
+ sm(w3, k = 15, bs = "rd") + sm(w4, k = 15, bs = "rd")
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> m3 <- mvrm(formula = Model, data = data, sweeps = 50000, burn = 25000,
+ thin = 5, seed = 1, StorageDir = DIR)

By default the function sm utilizes the radial basis functions, hence there is no need to specify bs =
"rd", as we did earlier, if radial basis functions are preferred over thin plate splines. Further, we have
selected k = 15 for all smooth functions. However, there is no restriction to the number of knots and
certainly one can select a different number of knots for each smooth function.

As discussed previously, for each term that appears in the right-hand side of the mean and
variance functions, the model incorporates indicator variables that specify which basis functions
are to be included and which are to be excluded from the model. For the current example, the
indicator variables are denoted by Vi and (5k]~,k = 1,2,3,4j = 1,...,16. The prior probabili-
ties that variables are included were specified in (8) and they are specific to each term, 7, ~
Beta(cy,, dy,), 7o, ~ Beta(co, do, ), k = 1,2,3,4. The default option pi.muPrior = "Beta(1,1)" spec-
ifies that 7y, ~ Beta(1,1),k = 1,2, 3, 4. Further, by setting, for example, pi.muPrior = "Beta(2,1)"
we specify that 7y, ~ Beta(2,1),k = 1,2,3,4. To specify a different Beta prior for each of the four
terms, pi.muPrior will have to be specified as a vector of length four, as an example, pi.muPrior =
c("Beta(1,1)","Beta(2,1)","Beta(3,1)","Beta(4,1)"). Specification of the priors for 77, is done
in a similar way, via argument pi.sigmaPrior.

We conclude this section by presenting plots of the four terms in the mean and variance models.
The plots are presented in Figure 5. We provide a few details on how the plot method works in the
presence of multiple terms, and how the comparison between true and estimated effects is made.
Starting with the mean function, to create the relevant plots, that appear on the left panels of Figure 5,
the plot method considers only the part of the mean function y(u) that is related to the chosen term
while leaving all other terms out. For instance, in the code below we choose term = "sm(u1)" and
hence we plot the posterior mean and a posterior credible interval for Z}il B1j#1j(u1), where the
intercept fy is left out by option intercept = FALSE. Further, comparison is made with a centered
version of the true curve, represented by the dashed (red color) line and obtained by the first three
lines of code below.

x1 <- seq(@, 1, length.out = 30)
y1 <= mul(x1)
y1 <= y1 - mean(y1)
PlotOptions <- list(geom_line(aes_string(x = x1, y = y1),
col = 2, alpha = 0.5, 1ty = 2))
plot(x = m3, model = "mean”, term = "sm(wl)", plotOptions = PlotOptions,
intercept = FALSE, centreEffects = FALSE, quantiles = c(0.005, 1 - 0.005))

+ V + V V V V

The plots of the four standard deviation terms are shown in the right panels of Figure 5. Again,
these are created by considering only the part of the model for o(u) that is related to the chosen term.
For instance, below we choose term = "sm(u1)". Hence, in this case the plot will present the posterior
mean and a posterior credible interval for exp{[j}i1 aqjrj(u1)/2}, where the intercept ay is left out
by option intercept = FALSE. Option centreEffects = TRUE scales the posterior realizations of
exp{Z}il aqj¢1;(u1)/2} before plotting them, where the scaling is done in such a way that the realized
function has mean one over the range of the predictor. Further, the comparison is made with a scaled
version of the true curve, where again the scaling is done to achieve mean one. This is shown below
and it is in the spirit of Chan et al. (2006) who discuss the differences between the data generating
mechanism and the fitted model.

y1 <- stdev1(x1) / mean(stdevi(x1))
PlotOptions <- list(geom_line(aes_string(x = x1, y = y1),
col = 2, alpha = 0.5, 1ty = 2))
plot(x = m3, model = "stdev”, term = "sm(wl1)", plotOptions = PlotOptions,
intercept = FALSE, centreEffects = TRUE, quantiles = c(0.025, 1 - 0.025))

+ V + Vv V

Data analyses

In this section we present four empirical applications.

Wage and age
In the first empirical application, we analyse a dataset from Pagan and Ullah (1999) that is available

in the R package np (Hayfield and Racine, 2008). The dataset consists of n = 205 observations on
dependent variable logwage, the logarithm of the individual’s wage, and covariate age, the individual’s
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Figure 5: Multiple covariate simulation study results. The column on the left-hand side presents the
true and estimated mean functions, along with 99% credible intervals. The column on the right-hand
side presents the true and estimated standard deviation functions, along with 95% credible intervals.
In all panels, the truth is represented by dashed (red color) lines, the estimated functions by solid (blue
color) lines, and the credible intervals by gray color.
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Figure 6: Results from the data analysis on the relationship between age and the logarithm of wage.
Panel (a) shows the posterior mean, an 80% credible interval of the mean function, and the observed
data-points. Panel (b) shows the posterior mean and an 80% credible interval of the standard deviation
function.

age. The dataset comes from the 1971 Census of Canada Public Use Sample Tapes and the sampling
units it involves are males of common education. Hence, the investigation of the relationship between
age and the logarithm of wage is carried out controlling for the two potentially important covariates
education and gender.

We utilize the following R code to specify flexible models for the mean and variance functions, and
to obtain 5, 000 posterior samples, after a burn-in period of 25,000 samples and a thinning period of 5.

data(cps71)
DIR <- getwd()
model <- logwage ~ sm(age, k = 30, bs = "rd") | sm(age, k = 30, bs = "rd")
m4 <- mvrm(formula = model, data = cps71, sweeps = 50000,
burn = 25000, thin = 5, seed = 1, StorageDir = DIR)

+ V V V VvV

After checking convergence, we use the following code to create the plots that appear in Figure 6.

> wagePlotOptions <- list(geom_point(data = cps71, aes(x = age, y = logwage)))
plot(x = m4, model = "mean”, term = "sm(age)", plotOptions = wagePlotOptions)
> plot(x = m4, model = "stdev"”, term = "sm(age)")

A\

Figure 6 (a) shows the posterior mean and an 80% credible interval for the mean function and it
suggests a quadratic relationship between age and logwage. Figure 6 (b) shows the posterior mean and
an 80% credible interval for the standard deviation function. It suggest a complex relationship between
age and the variability in logwage. The relationship suggested by Figure 6 (b) is also suggested by
the spread of the data-points around the estimated mean in Figure 6 (a). At ages around 20 years the
variability in logwage is high. It then reduces until about age 30, to start increasing again until about
age 45. From age 45 to 60 it remains stable but high, while for ages above 60, Figure 6 (b) suggests
further increase in the variability, but the wide credible interval suggests high uncertainty over this
age range.

Wage and multiple covariates

In the second empirical application, we analyse a dataset from Wooldridge (2008) that is also available
in the R package np. The response variable here is the logarithm of the individual’s hourly wage
(1wage) while the covariates include the years of education (educ), the years of experience (exper),
the years with the current employer (tenure), the individual’s gender (named as female within the
dataset, with levels Female and Male), and marital status (named as married with levels Married and
Notmarried). The dataset consists of n = 526 independent observations. We analyse the first three
covariates as continuous and the last two as discrete.

As the variance function is modeled in terms of an exponential, see (1), to avoid potential numerical
problems, we transform the three continuous variables to have range in the interval [0, 1], using

> data(wagel)
> wagel$ntenure <- wagel$tenure / max(wagel$tenure)
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>
>

wagel$nexper <- wagel$exper / max(wagel$exper)
wagel$neduc <- wagel$educ / max(wagel$educ)

We choose to fit the following mean and variance models to the data

ii = Bo + B1 married; + fi(ntenure;) + fo(neduc;) + f3(nexper;, female;),
log(0?) = g + fa(nexper;).

We note that, as it turns out, an interaction between variables nexper and female is not necessary for
the current data analysis. However, we choose to add this term in the mean model in order to illustrate
how interaction terms can be specified. We illustrate further options below.

+ + + V. V VvV V

knots1 <- seq(min(wagel$nexper), max(wagel$nexper), length.out = 30)

knots2 <- c(0, 1)

knotsD <- expand.grid(knots1, knots2)

model <- lwage ~ fmarried + sm(ntenure) + sm(neduc, knots=data.frame(knots =
seq(min(wagel$neduc), max(wagel$neduc), length.out = 15))) +

sm(nexper, ffemale, knots = knotsD) | sm(nexper, knots=data.frame(knots =
seq(min(wagel$nexper), max(wagel$nexper), length.out=15)))

The first three lines of the R code above specify the matrix of (potential) knots to be used for represent-
ing f3(nexper, female). Knots may be left unspecified, in which case the defaults in function sm will
be used. Furthermore, in the specification of the mean model we use sm(ntenure). By this, we chose
to represent f; utilizing the default 10 knots and the radial basis functions. Further, the specification of
f2 in the mean model illustrates how users can specify their own knots for univariate functions. In the
current example, we select 15 knots uniformly spread over the range of neduc. Fifteen knots are also
used to represent f; within the variance model.

>
>
+

The following code is used to obtain samples from the posteriors of the model parameters.

DIR <- getwd()
m5 <- mvrm(formula = model, data = wagel, sweeps = 100000,
burn = 25000, thin = 5, seed = 1, StorageDir = DIR))

After summarizing results and checking convergence, we create plots of posterior means, along

with 95% credible intervals, for functions fi, ..., f4. These are displayed in Figure 7. As it turns out,
variable married does not have an effect on the mean of 1lwage. For this reason, we do not provide
further results on the posterior of the coefficient of covariate married, ;. However, in the code below
we show how graphical summaries on 1 can be obtained, if needed.

+ VVV+V +VVVVYV + VYV + VYV

PlotOptionsT <- list(geom_point(data = wagel, aes(x = ntenure, y = lwage)))

plot(x = m5, model = "mean”, term="sm(ntenure)”, quantiles = c(0.025, 0.975),
plotOptions = PlotOptionsT)

PlotOptionsEdu <- list(geom_point(data = wagel, aes(x = neduc, y = lwage)))

plot(x = m5, model = "mean”, term = "sm(neduc)”, quantiles = c(0.025, 0.975),
plotOptions = PlotOptionsEdu)

pchs <- as.numeric(wagel$female)

pchs[pchs == 1] <- 17; pchs[pchs == 2] <- 19

cols <- as.numeric(wagel$female)

cols[cols == 2] <- 3; cols[cols == 1] <- 2

PlotOptionsE <- list(geom_point(data = wagel, aes(x = nexper, y = lwage),

col = cols, pch = pchs, group = wagel$female))

plot(x = m5, model = "mean”, term="sm(nexper,female)”, quantiles = c(0.025, 0.975),
plotOptions = PlotOptionsE)

plot(x = m5, model = "stdev", term = "sm(nexper)"”, quantiles = c(0.025, 0.975))

PlotOptionsF <- list(geom_boxplot(fill = 2, color = 1))

plot(x = m5, model = "mean”, term = "married”, quantiles = c(0.025, 0.975),
plotOptions = PlotOptionsF)

Figure 7, panels (a) and (b) show the posterior means and 95% credible intervals for f(ntenure)

and f,(neduc). It can be seen that expected wages increase with tenure and education, although there
is high uncertainty over a large part of the range of both covariates. Panel (c) displays the posterior
mean and a 95% credible interval for f3. We can see that although the forms of the two functions
are similar, (i.e. the interaction term is not needed), males have higher expected wages than females.
Lastly, panel (d) displays posterior summaries of the standard deviation function, 0; = o exp(fs/2). It
can be seen that variability first increases and then decreases as experience increases.
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Figure 7: Results from the data analysis on the relationship between covariates gender, marital
status, experience, education, and tenure, and response variable logarithm of hourly wage. Posterior
means and 95% credible intervals for (a) f1(ntenure), (b) f2(neduc), (c) f3(nexper, female), and (d)
the standard deviation function 0; = o exp[fs(nexper)/2].

Lastly, we show how to obtain predictions and credible intervals for the levels "Married” and
"Notmarried"” of variable fmaried and the levels "Female” and "Male"” of variable fffemale, with
variables ntenure, nedc, and nexper fixed at their mid-range.

> pl1 <- predict(m5, newdata = data.frame(fmarried = rep(c("Married”, "Notmarried"), 2),
+ ntenure = rep(@.5, 4), neduc = rep(@.5, 4), nexper = rep(0.5, 4),
+ ffemale = rep(c("Female”, "Male"), each = 2)), interval = "credible")

> pl

fit lwr upr
1.321802 1.119508 1.506574
1.320400 1.119000 1.505272
1.913341 1.794035 2.036255
1.911939 1.791578 2.034832

Hw N =

The predictions are suggestive of no “marriage” effect and of “gender” effect.

Brain activity

Here we analyse brain activity level data obtained by functional magnetic resonance imaging. The
dataset is available in package gamair (Wood, 2006) and it was previously analysed by Landau et al.
(2003). We are interested in three of the columns in the dataset. These are the response variable, medFPQ,
which is calculated as the median over three measurements of “Fundamental Power Quotient” and
the two covariates, X and Y, which show the location of each voxel.

The following R code loads the relevant data frame, removes two outliers and transforms the
response variable, as was suggested by Wood (2006). In addition, it plots the brain activity data using
function levelplot from the package lattice (Sarkar, 2008).

> data(brain)
> brain <- brain[brain$medFPQ > 5e-5, ]
> brain$medFPQ <- (brain$medFPQ) * 0.25
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Figure 8: Results from the brain activity level data analysis. Panel (a) shows the observed data and
panel (b) the model-based smooth surface.

> levelplot(medFPQ ~ Y * X, data = brain, xlab = "Y", ylab = "X",
+ col.regions = gray(10 : 100 / 100))

The plot of the observed data is shown in Figure 8, panel (a). Its distinctive feature is the noise
level, which makes it difficult to decipher any latent pattern. Hence, the goal of the current data
analysis is to obtain a smooth surface of brain activity level from the noisy data. It was argued by
Wood (2006) that for achieving this goal a spatial error term is not needed in the model. Thus, we
analyse the brain activity level data using a model of the form

10 10
ind .
medFPQ; kS N(]/li,ﬂz), where p; = By + Z Z ﬁjlsz¢1jlsz(Xi,Y,-),z =1,...,n,
j1=1p=1

where n = 1565 is the number of voxels.
The R code that fits the above model is

> Model <- medFPQ ~ sm(Y, X, k =10, bs = "rd") | 1
> m6 <- mvrm(formula = Model, data = brain, sweeps = 50000, burn = 20000, thin = 2,
+ seed = 1, StorageDir = DIR)

From the fitted model we obtain a smooth brain activity level surface using function predict.
The function estimates the average activity at each voxel of the brain. Further, we plot the estimated
surface using function levelplot.

> pl <- predict(mé6)
> levelplot(pl1[, 1] ~ Y % X, data = brain , xlab = "Y", ylab = "X",
+ col.regions = gray(1@ : 100 / 100), contour = TRUE)

Results are shown in Figure 8, panel(b). The smooth surface makes it much easier to see and
understand which parts of the brain have higher activity.

Cars

In the fourth and final application we use the function mvrm to identify the best subset of predictors in
a regression setting. Usually stepwise model selection is performed, using functions step from base R
and stepAIC from the MASS package. Here we show how mvrm can be used as an alternative to those
two functions. The data frame that we apply mvrm on is mtcars, where the response variable is mpg
and the explanatory variables that we consider are disp, hp, wt, and gsec. The code below loads the
data frame, specifies the model and obtains samples from the posteriors of the model parameters.

> data(mtcars)

> Model <- mpg ~ disp + hp + wt + gsec | 1

> m7 <- mvrm(formula = Model, data = mtcars, sweeps = 50000, burn = 25000, thin = 2,
+ seed = 1, StorageDir = DIR)
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The following is an excerpt of the output that the summary method produces showing the three
models with the highest posterior probability.

> summary(m7, nModels = 3)

Joint mean/variance model posterior probabilities:
mean.disp mean.hp mean.wt mean.qgsec freq prob cumulative

1 0 1 1 0@ 1085 43.40 43.40
2 0 0 1 1 1040 41.60 85.00
3 0 0 1 0 128 5.12 90.12

Displaying 3 models of the 11 visited
3 models account for 90.12% of the posterior mass

The model with the highest posterior probability (43.4%) is the one that includes explanatory variables
hp and wt. The model that includes wt and gsec has almost equal posterior probability, 41.6%. These
two models account for 85% of the posterior mass. The third most promising model is the one that
includes only wt as predictor, but its posterior probability is much lower, 5.12%.

Appendix: MCMC algorithm

In this section we present the technical details of how the MCMC algorithm is designed for the case
where there is a single covariate in the mean and variance models. We first note that to improve mixing
of the sampler, we integrate out vector B from the likelihood of y, as was done by Chan et al. (2006):

N+

f(yla,cg, v, 5,0%) |(72D2(4x5)\7%(cﬁ +1)" 2 . exp(—S/Zaz), (10)

where, withj = D™} (as)y, we have S = S(y, ,cg,7,8) =9 ' — %y”TXry QZIX'W)*XI?.
The six steps of the MCMC sampler are as follows

1. Similar to Chan et al. (2006), the elements of 7 are updated in blocks of randomly chosen
elements. The block size is chosen based on probabilities that can be supplied by the user or
be left at their default values. Let 5 be a block of random size of randomly chosen elements
from <. The proposed value for 7 is obtained from its prior with the remaining elements of v,
denoted by e, kept at their current value. The proposal pmf is obtained from the Bernoulli
prior with 77, integrated out

p(y) _ Beta(cy + N(7),dy +q1 — N(7))
p(yge)  Beta(cy + N(vpe), dy+q1 — L(vg) — N(vpe))’

p(vglvee) =

where L(vp) denotes the length of 5 (i.e., the size of the block). For this proposal pmf, the
acceptance probability of the Metropolis-Hastings move reduces to the ratio of the likelihoods
in (10)

NEYD)+

(cp+ 1)_% exp(—S"/20?)

min < 1, Vo p

(cp+ 1)*# exp(—S€/202)

where superscripts P and C denote proposed and currents values respectively.

2. Vectors & and ¢ are updated simultaneously. Similarly to the updating of -, the elements

of § are updated in random order in blocks of random size. Let dp denote a block. Blocks
Jp and the whole vector « are generated simultaneously. As was mentioned by Chan et al.
(2006), generating the whole vector &, instead of subvector ap, is necessary in order to make the
proposed value of « consistent with the proposed value of .
Generating the proposed value for d is done in a similar way as was done for p in the previous
step. Let § P denote the proposed value of §. Next, we describe how the proposed vale for a s
is obtained. The development is in the spirit of Chan et al. (2006) who built on the work of
Gamerman (1997).

Let BS = {cp/(1+ cﬁ)}(XIXv)_lXjr—y denote the current value of the posterior mean of g, .

Define the current squared residuals
C T 2Cy\2
e = (yi— (%) By)%
2

i =1,...,n. These will have an approximate U’iz )(% distribution, where 07 = o2 exp(z;ra). The
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latter defines a Gamma generalized linear model (GLM) for the squared residuals with mean
E(c?x?) = 0% = o?exp(z] a), which, utilizing a log-link, can be thought of as Gamma GLM
with an offset term: log(c?) = log(c?) + z,' &. Given the proposed value of 8, denoted by &7,
the proposal density for zxgp is derived utilizing the one step iteratively re-weighted least squares

algorithm. This proceeds as follows. First define the transformed observations

C _ (o
d¢ (a©) = log(c?) + 2z, a€ + -

1

where superscript C denotes current values. Further, let d© denote the vector of d,C.
Next we define

AOP) = (1 +25Z5p) ! andé(67,aC) = A2, dS,

where Z is the design matrix. The proposed value agp is obtained from a multivariate normal

distribution with meand (6%, &€) and covariance A (87, denoted as N(zxgp;&(ép, «©),hA(67)),
where F is a free parameter that we introduce and select its value adaptively (Roberts and
Rosenthal, 2009) in order to achieve an acceptance probability of 20% — 25% (Roberts and
Rosenthal, 2001).

Let N(a$; &(5C, &%), hA(8C)) denote the proposal density for taking a step in the reverse direc-

tion, from model &7 to €. Then the acceptance probability of the pair (67, agp) is the minimum

between 1 and

_NED)

(D) exp(—S/20%) (27ca) "5 exp(— k- (ahy) Tal) N(aS e hic)
T

P

b
1 < P o :
|D2(a§C)\ 2 exp(—S€/202) (27‘[6,1)71\](5 : exp(*;Tﬂ(“g;Cc) ‘xgc) N (agpidse, hAsr)

We note that the determinants that appear in the above ratio are equal to one when utilizing
centred explanatory variables in the variance model and hence can be left out of the calculation
of the acceptance probability.

3. We update ¢ utilizing the marginal (10) and the two priors in (7). The full conditional corre-
sponding to the IG(ag, by) prior is

f(@?]...) e (6?) 2% Lexp{—(S/2+by)/0?},

which is recognized as another inverse gamma IG(n/2 + a5, 5/2 + b, ) distribution.
The full conditional corresponding to the normal prior || ~ N(0, ¢2) is

F(0?]...) & (62) 72 exp(—5/202) exp(—0? /22).

Proposed values are obtained from (T% ~ N(0?, f?) where ¢? denotes the current value. Pro-

posed values are accepted with probability f ((7%,| )/ f(0?]...). We treat f2 as a tuning
parameter and we select its value adaptively (Roberts and Rosenthal, 2009) in order to achieve
an acceptance probability of 20% — 25% (Roberts and Rosenthal, 2001).

4. Parameter cg is updated from the marginal (10) and the IG(ag, bg) prior

N+t 2 —ap—1
flegl...) o (cpg+1)" 2 exp(—=S/207)(cp) """ exp(—bg/cp).
To sample from the above, we utilize a normal approximation to it. Let £(cg) = log{f(cg|...)}.
We utilize a normal proposal density N(¢g, — /0 (¢p)), where ¢g is the mode of /(cg), found
using a Newton-Raphson algorithm, ¢* (¢p) is the second derivative of £(cg) evaluated at the

mode, and g2 is a tuning variance parameter the value of which is chosen adaptively (Roberts
and Rosenthal, 2009). At iteration u + 1 the acceptance probability is the minimum between one
and

Fleg V1) N(essep —g2/¢ (@)
f(cg‘)\ ) N(cf;‘“) ie5,—82/0' (25))

5. Parameter c, is updated from the inverse Gamma density IG(a, + N(6)/2, by + &) a5/2).

6. The sampler utilizes the marginal in (10) to improve mixing. However, if samples are required
from the posterior of B, they can be generated from

2
e B T \-1pT: T B oTo -1
Byl -~ NG &%) g, o (0 %) ™,
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where B, is the non-zero part of .

Summary

We have presented a tutorial on several functions from the R package BNSP. These functions are
used for specifying, fitting and summarizing results from regression models with Gaussian errors and
with mean and variance functions that can be modeled nonparametrically. Function smis utilized to
specify smooth terms in the mean and variance functions of the model. Function mvrm calls an MCMC
algorithm that obtains samples from the posteriors of the model parameters. Samples are converted
into an object of class "memc"” by the function mvrm2meme which facilitates the use of multiple functions
from package coda. Functions print.mvrm and summary.mvrm provide summaries of fitted "mvrm”
objects. Further, function plot.mvrm provides graphical summaries of parametric and nonparametric
terms that enter the mean or variance function. Lastly, function predict.mvrm provides predictions for
a future response or a mean response along with the corresponding prediction/credible intervals.
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