CONTRIBUTED RESEARCH ARTICLES 516

RcppMsgPack: MessagePack Headers and

Interface Functions for R
by Travers Ching and Dirk Eddelbuettel

Abstract MessagePack, or MsgPack for short, or when referring to the implementation, is an efficient
binary serialization format for exchanging data between different programming languages. The
ReppMsgPack package provides R with both the MessagePack C++ header files, and the ability to
access, create and alter MessagePack objects directly from R. The main driver functions of the R
interface are two functions msgpack_pack and msgpack_unpack. The function msgpack_pack serializes
R objects to a raw MessagePack message. The function msgpack_unpack de-serializes MessagePack
messages back into R objects. Several helper functions are available to aid in processing and formatting
data including msgpack_simplify, msgpack_format and msgpack_map.

Introduction

MessagePack (or MsgPack for short, or when referring to the actual implementation) is a binary
serialization format made for exchanging data between different programming languages (Furuhashi,
2018). Unlike other related formats such as JSON, MsgPack is a binary format—which makes it
more efficient in terms of (disk or memory) space, transfer speeds (which is increasingly important
for large data sets across networks) and potentially also precision (as textual representation rarely
goes to the length of binary precision). As shown on the project homepage at https://msgpack.org,
several major projects including Redis, Pinterest, Fluentd and Treasure Data utilize MsgPack to transfer
data or to represent internal data structures (Furuhashi, 2018). Other binary serialization formats
similar to MsgPack include BSON (MongoDB, 2018) and ProtoBuf (Google, 2018) which have their
own advantages and disadvantages, such as serialization speed, memory usage, compression and
requirement of descriptive schemas (Hamida et al., 2015; Dawborn and Curran, 2014). R support
for these formats is available via the packages mongolite (Ooms, 2014) and RProtoBuf (Eddelbuettel
et al., 2016); Redis is also implemented in R through the RcppRedis package (Eddelbuettel, 2018).
ReppMsgPack (Ching et al., 2018) brings support for the MsgPack specification to R.

The MsgPack specification describes a number of common data type: Booleans, Integers, Floats,
Strings, Binary data, Arrays, Maps, and user-defined extension types, and has been implemented
in most major programming languages. ReppMsgPack aims to provide an efficient, and easy to use
implementation by relying on the official C++ MsgPack code and the Rcpp package (Eddelbuettel,
2013; Eddelbuettel et al., 2018). The package provides users with the MsgPack header files which
can be used to more directly integrate MsgPack into R projects through C++ code. It also provides
the ability to serialize and de-serialize data directly to and from R (e.g., through pipes, file handlers,
sockets or binary object files). These functionalities can be used to efficiently transfer data between
various programming languages and between separate R instances.

In this manuscript, we describe the main interface functions used to serialize and deserialize
MsgPack messages, and the conversion between R data types and MsgPack data types. We describe
helper functions contained in ReppMsgPack and describe several use cases and examples of how
RceppMsgPack can be used in practice, benchmarking several common approaches for transferring
data between processes.

Interface functions

The functions msgpack_pack and msgpack_unpack allow serialization and de-serialization of R objects
respectively (Figure 1). Here, msgpack_pack takes in any number of R objects and generates a single
serialized message in the form of a raw vector. Conversely, msgpack_unpack takes a serialized message
as input, and returns the R object(s) contained in the message. Moreover, msgpack_format is a helper
function to properly format R objects for input, and msgpack_simplify is a helper function to simplify
output from a MsgPack conversion. One of the main goals of MsgPack is the transfer of data
across processes and/or hosts. Therefore, we also define two helper functions msgpack_write and
msgpack_read which facilitate writing and reading of MsgPack objects to files, pipes or any connection
object.

The data types in MsgPack do not directly map on to R data types, more so than other languages.
For example, basic R “atomic” types such as integers and strings are inherently vectorized, which is
not true in C++, Python or most other languages. ILe., in R there is no distinction between a single
integer and a vector of integers of length 1. R also has multiple non-value types, such as NULL or NA

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://msgpack.org
https://CRAN.R-project.org/package=mongolite
https://CRAN.R-project.org/package=RProtoBuf
https://CRAN.R-project.org/package=RcppRedis
https://CRAN.R-project.org/package=RcppMsgPack
https://CRAN.R-project.org/package=Rcpp

CONTRIBUTED RESEARCH ARTICLES

517

Other R types R types Msgpack Types R types Simplified R types

Unnamed . . Atomic
R Unnamed List Array Unnamed Listp=-=-=-=-=-===-
Atomic Vector If elements are Vector
Map/Data.frame Map/Data.frame Map w/ vector
Named Vector == w/ key and value w/ key and value [== ===
A N . - columns
. column lists column lists

msgpack_format () msgpack_pack () msgpack_unpack () msgpack_simplify ()

If keys are
strings

If abs(x)>

If keys are strings
and values are
similar atomic types

2/32/2-1

Raw Vector
attr. EXT

R Y Ti
attr. EXT ext

Figure 1: A flowchart of the conversion of R objects to MsgPack objects and vice versa.

for integer, string, numeric, etc. Because of these complexities, the conversion processes using these
interface functions are described in detail below.

R integers are converted into MsgPack integers, which are automatically reduced in size, de-
pending on the value of the integer. MsgPack integers are converted back into R integers. Because
R does not natively support 64 bit integers, whereas MsgPack supports integers up to 64 unsigned
bits in value, MsgPack integers exceeding signed 32 bits supported by R are coerced to R numeric
values, with potential loss of precision. The integer NA value in R is represented by its bit value in C++
(0x80000000), and requires no special treatment.

R numeric (i.e., doubles) variables conform to IEEE 754 double-precision standards (IEEE Standards
Committee, 2008), and also require no special treatment. The numeric NA value is a special case of
NaN values, and is serialized by its bit representation.

R strings (i.e., objects of class character) are converted to MsgPack strings. Because C++ and
MsgPack do not have missing values for strings, NA characters are converted into MsgPack Nil
(similar to NULL in R).

R logical values are converted into MsgPack bool. Again, because NA logical values do not exist
in C++ or MsgPack, NA logical values are converted into MsgPack Nil.

R raw vectors are converted into MsgPack bin. Raw vectors with the “EXT” integer attribute are
converted into MsgPack extension types. The EXT attribute should be a positive integer, as negative
values are reserved for official extensions.

Currently, the MsgPack specifications includes one official extension type: timestamps. Times-
tamps are a MsgPack extension type with extension value -1 and can be converted to and from R
POSIXct objects using msgpack_timestamp_decode and msgpack_timestamp_encode respectively. Ms-
gPack timestamps can encode nanosecond precision. R POSIXct objects rely on numeric, and therefore
conversion may have some loss of precision (unless a package such as nanotime (Eddelbuettel and
Silvestri, 2018) is used, which is left as a future extension).

MsgPack specifications define two container objects: arrays and maps. MsgPack arrays are a
sequential container object. The length of the array is defined in its message header. Arrays can contain
any other MsgPack types, including other arrays or maps.

MsgPack arrays are naturally analogous to R unnamed 1list objects. However, because lists have
a large memory footprint, R atomic vectors (with length of 0 or greater than or equal to 2) are also
allowed as input for serialization to arrays.

MsgPack maps are an ordered sequence of key and value pairs, where each key and value can
be any MsgPack object. There is no requirement for unique keys. Maps do not have an analogous
data type in R . Therefore, maps are implemented by creating an object of class map, which is also a
data.frame with key and value columns. As input to serialization, these columns can also be lists,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

- Named List

Named Vector

https://CRAN.R-project.org/package=nanotime

CONTRIBUTED RESEARCH ARTICLES 518

and can therefore contain any other R object, and not only a single type. The function msgpack_map is
a simple helper function that takes two lists and returns a map which can be serialized into a MsgPack
object with msgpack_pack.

In order to support as much generality as possible in serialization and deserialization, the use
of lists to represent arrays and maps is necessary. However, it is often the case in R that one would
want to deal with large vectors or matrices of a single type without the computational and memory
overhead of lists. Two approaches are given to deal with this type of scenario. msgpack_simplify can
be used after a call to msgpack_unpack to recursively simplify lists to vectors when only a single type
is included within a list. (For lists of characters or logicals, this may also include NULLs.) Secondly,
msgpack_unpack can be called with the simplify=TRUE parameter, which performs the same task as
msgpack_simplify within C++, and is therefore much faster. The second approach can drastically
improve speed and memory usage compared to the first approach.

Using MsgPack C++ headers through RecppMsgPack and Repp

Complex objects or data structures, such as trees, often do not fit into R data types because a tree data
structure does not map nicely to an R vector, data.frame, matrix, etc. Storing such a complex object as
a MsgPack message will be more performant in terms of serialization speed and memory usage.

The example below demonstrates how MsgPack headers can be integrated into a standard Repp
workflow. In this example, a prefix tree is created for nucleotide sequences, and is serialized through
MsgPack to create a persistant tree object in the form of a raw vector in R. The stored tree can be saved
to disk, unpacked within R directly using msgpack_unpack or it can be reconstructed into the prefix
tree within C++ using the MsgPack C++ interface. The code below defines a structure for storing the
Prefix tree data and a function for constructing the tree using sequence data input from R and saving
it as a MsgPack object:

struct Node {

std: :shared_ptr<Node> parent;

std: :set<int> sequence_idx;

std: :map< std::string, std::shared_ptr<Node> > children;
I

struct std::shared_ptr<Node>
NewNode (std: : shared_ptr<Node> parent,
std::string name,
std: :set<int> sequence_idx) {
std: :shared_ptr<Node> node = std::shared_ptr<Node>(new Node);
node->sequence_idx = sequence_idx;
if (parent) {
parent->children.insert(std::pair<std::string,
std: :shared_ptr<Node> >(name, node));
}
return node;

3

void packTree(std: :shared_ptr<Node> node,
msgpack: : packer<std: :stringstream>& pkr) {
pkr.pack_array(2);
std: :set<int> sequence_idx = node->sequence_idx;
std: :vector<int> vs(sequence_idx.begin(), sequence_idx.end());
pkr.pack(vs);
std: :map< std::string, std::shared_ptr<Node> > children = node->children;
pkr.pack_map(children.size());
for (auto const& x : children) {
pkr.pack(x.first);
packTree(x.second, pkr);
}
}

Rcpp: :RawVector create_prefix_tree(std::vector<std::string> clone_sequences) {
std: :shared_ptr<Node> root;
root = NewNode(std::shared_ptr<Node>(nullptr), "*", {});
for(int i=0; i<clone_sequences.size(); it++) {

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

519

3

std: :shared_ptr<Node> current_node = root;
for(int j=0; j < clone_sequences[i].size(); j++) {
std::string nuc = clone_sequences[i].substr(j,1);

if(current_node->children.count(nuc) == 1) {
current_node = current_node->children[nuc];
if(j == clone_sequences[i].size() - 1) {
current_node->sequence_idx.insert(i);
3
} else {
if(j == clone_sequences[i].size() - 1) {
current_node = NewNode(current_node, nuc, {i});
} else {
current_node = NewNode(current_node, nuc, {});
3
}

3
}
std::stringstream buffer;
msgpack: :packer<std: :stringstream> pk(&buffer);
packTree(root, pk);
std::string bufstr = buffer.str();

Rcpp: :RawVector rawbuffer(bufstr.begin(), bufstr.end());

return rawbuffer;

The create_prefix_tree function is an C++ function that returns a raw vector, which is a serial-

ization of the prefix tree. From R, the prefix tree can be initialized and serialized through calling the
Rcepp function.

tree <- create_prefix_tree(c("AGCT", "AGCC", "AGC", "ATG", "GACC", "GTCT"))

Because the resulting message is a standard MsgPack object, the tree can be unpacked directly

in R using msgpack_unpack. Additionally, the following code reconstructs the prefix tree from the
MsgPack message from within C++ using the C++ interface:

void print_node(msgpack::object & node_obj, std::string name) {

3

void print_newick_tree(std::vector<unsigned char> packed_tree) {
std: :string message(packed_tree.begin(), packed_tree.end());

}

std: :vector<msgpack: :object> node_obj_array;
node_obj.convert(node_obj_array);

msgpack: :object_kv* p = node_obj_array[1].via.map.ptr;
msgpack: :object_kv* pend = node_obj_array[1].via.map.ptr +
node_obj_array[1].via.map.size;

std::cout << name;
if(p != pend) {
std::cout << "(";
for (5 p < pend; ++p) {

std::string name_child = p->key.as<std::string>();
msgpack: :object node_child_obj = p->val.as<msgpack

print_node(node_child_obj, name_child);
if(p < (pend-1)) std::cout << ",";

3

std::cout << ")";

}

msgpack: :object_handle oh;

msgpack: :unpack(oh, message.data(), message.size());
msgpack: :object obj = oh.get();

print_node(obj, "Root");

Called from within R, the tree is printed to the console:

tree_nested_list <- msgpack_unpack(tree, simplify=F)
print_newick_tree(tree)

[1] Root(A(G(C(C,G,T),G)),G(A(C(C)), T(C(A,T))))

The R Journal Vol. 10/2, December 2018

::object>();

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 520

Writing MsgPack objects to disk and reading data from the internet

Following is an example of how one can create a MsgPack serialized message as a binary file, and
read it from the internet into R. The first step would be to read in the data to R as normal, and serialize
the data using the msgpack_pack function.

dat <- read.csv(paste@("https://raw.githubusercontent.com/vincentarelbundock/",
"Rdatasets/master/csv/mosaicData/Birthdays.csv"))
mp <- with(dat, msgpack_pack(X, state, year, month, day, date, wday, births))

The msgpack_pack function returns a raw vector, which can be written to disk using the writeBin
function or the helper function msgpack_write.

msgpack_write(mp, file="birthdays_msgpack.mp")

A MsgPack object can be read directly from the internet, e.g., using the GET function from the
httr package (Wickham, 2018). Subsequently, the msgpack_unpack function can be used to unpack the
object to its original values.

md <- GET("http://travers.im/birthdays_msgpack.mp")
mp <- md$content
mu <- msgpack_unpack(mp)

Transferring large datasets from Python to R and back

To evaluate the performance of MsgPack serialization, we benchmarked the transfer of the MNIST
(LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) datasets to and from Python and R. We compared
this approach to writing and reading in CSV format, and to writing and reading using feather
(Wickham et al., 2016), a cross-platform library and specification for efficiently handling tabular data.
(The feather package is no longer actively developed, and will be superseded by Apache Arrow
(Apache Arrow Developers, 2018), a more general cross-language development platform for working
with in-memory data in a standardized language-independent columnar memory format. However,
Arrow is not yet available for R.) In Python, serialization of the data was performed using the msgpack
package and written to disk in binary format:

Transferring data: MNIST Transferring data: CIFAR-10
Python R Python R
= 2001 =
25 1 150 4
==
100 4
E £ °
o =
5 254
10 1
14 5
10 B
Read Write Read Write Read Write Read Write

Format [CSV [Feather [1 MsgPack
Figure 2: Transferring the MNIST dataset (left) and the CIFAR-10 dataset (right) to and from R and
Python using either MsgPack, feather or CSV format.

xb = msgpack.packb(x)
with open("/tmp/dataset.mp”, "wb") as file:
file.write(xb)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=feather

CONTRIBUTED RESEARCH ARTICLES 521

Conversely, the unpackb function was used when benchmarking the transfer time from R to
Python:

with open("/tmp/dataset.mp”, "rb") as file:
file.write(xb)
x = msgpack.unpackb(file.read())

In R, we used the readBin function followed by msgpack_unpack function to deserialize the dataset.
Alternatively, one could use the helper function msgpack_read.

” n

xb <- readBin(con = "/tmp/dataset.mp”, "raw”,
n=file.info("/tmp/dataset.mp”)$size)
x <- msgpack_unpack(xb, simplify=T)

Subsequently, the data can be re-serialized and written to disk using the msgpack_pack function
followed by writeBin:

xb <- msgpack_pack(x)
writeBin(xb,"/tmp/dataset.mp”, useBytes=T)

For CSV format, we used the fread and fwrite functions in the data.table package (Dowle
etal., 2018) to write and read CSV tables in R. In Python, we used the package numpy savetxt and
loadtxt functions (van der Walt et al., 2011). For the feather format, we used the write_feather
and read_feather functions within the feather package in R and Python. All approaches were
benchmarked after clearing the system cache and replicated 5 times (Figure 2).

Serialization and de-serialization of objects from MsgPack objects was similar between R and
Python, with a slight speed advantage going to Python. Reading MsgPack objects was generally
considerably faster than reading CSV format in both R and Python. Comparing MsgPack to feather,
feather was generally faster. As feather is designed for columnar binary data, it does not use a header
for every element and therefore has an advantage over the (more general) MsgPack in this context.

One surprising result is in writing of CSVs in R. Using data.table, writing the MNIST dataset was
faster than MsgPack, although not quite as fast as feather. The MNIST dataset is formatted as a single
floating point value in per pixel by TensorFlow (Abadi et al., 2016). When writing floating point data
as CSV, both numpy and the data.table package truncate floating point numbers by default, which
causes loss of precision.

MsgPack serialization memory usage

Raw Compressed

le+05-

le+04-

le+03-

MsgPack size (bytes)

le+02-

le+02 le+03 le+04 le+05 le+02 le+03 le+04 le+05
R size (bytes)

Figure 3: Serialization memory usage: MsgPack vs. R. Left: raw serialization size for datasets in
datasets. Right: Gzip-compressed serialization size.

To compare the memory usage of MsgPack to native R serialization, we serialized the datasets
found in the datasets R package (Figure 3). For R serialization, this was done by calling the serialize
function for native R serialization or calling the msgpack_pack function for MsgPack serialization. For
compression, the memCompress function was called on the results. Some datasets contained formulas,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLES 522

or other R-specific attributes that can’t be stored in MsgPack; these attributes were removed prior to
serialization and compression.

Memory usage was generally very similar between MsgPack and native R. Although there were
some differences in raw serialization, the difference seems to be less apparent after compression. For
some uncompressed serializations, MsgPack significantly outperformed R in memory usage. This
is attributable to efficient integer storage: MsgPack stores variable size integers depending on the
integer magnitude, and can be as low as 8 bits. Native R serialization uses the modified External Data
Representation (XDR) standard (Srinivasan, 1995), which uses a fixed 32 bits for integers. Furthermore,
attributes of each dataset are stored as lists internally, which can increase the relative overhead for
small datasets, as R lists are not memory-efficient objects.

On the other hand, every MsgPack element has a short header of several bits, which increases its
memory overhead, particularly for large vectors. This overhead is apparent for larger datasets, where
R typically is more memory efficient.

Serialization of large lists

Serialization and Compression Serialization only In-memory compression
Write Read Write Read Compress Decompress
250 - 250 - 250 -
=
200 - 200 - 200 -
= —
@ 150- @ 150- @ 150-
E £ E
£ £ £
= 100 - [100 - = 100 -
50- 50 - 50-
o- —1 L | D I:, 0- Ifl ﬁ D E 0- L e]
Q’béé .4@9\ Q'bc\’# .\‘Qf?\ Q’bc\’& .\@'Q\ Q’béé ,\@'Q\ Q'bc\’# ,\\'qu\ Q’bc\’é .\‘qu\
@e% & @r& & @6% & @9% & @9‘) & \\5‘3 &

Figure 4: Serialization and compression time of a large list of DNA sequences.

As mentioned, one situation where MsgPack serialization is much more efficient than R serializa-
tion is how it handles list objects. Because R lists have a large memory overhead, both compression
times and writing/reading to disk are faster using the MsgPack format. To show this, we generated a
contrived list of DNA sequences as follows:

X <- replicate(10000, {
replicate(sample(5,1), {
paste(sample(c("G","C","A","T"), size=sample(50,1), replace=T), collapse="")
D
b

If the data structure of the object is known, using the C++ headers directly can speed up serializa-
tion and de-serialization by avoiding the logic involved in serializing generic data structures, although
the speed-up is not large. Compression and writing to disk can also be performed directly within C++,
for example, by using the zlib C++ library (Gailly and Adler, 2018) to perform standard DEFLATE
compression. The example below illustrates MsgPack serialization and subsequent compression using
the zlib library:

void list_pack_gzip(List x, std::string file) {
std: :stringstream buffer;
msgpack: :packer<std::stringstream> pk(&buffer);
pk.pack_array(x.size());
for(int i=0; i<x.size(); it++) {
CharacterVector xi = x[i];
if(xi.size() == 1) {
pk.pack(Rcpp: :as<std::string>(xi[0]));
} else {

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 523

pk.pack_array(xi.size());
for(int j=0; j<xi.size(); j++) {
pk.pack(Rcpp: :as<std::string>(xi[jl1));
3
3
}
std::string bufstr = buffer.str();
gzFile fi = gzopen(file.c_str(),"wb");
gzwrite(fi, bufstr.c_str(), bufstr.size());
gzclose(fi);
}

Conversely, uncompression and deserialization would need to be performed to recover the original
R object. The following C++ function illustrates how this could be done:

Repp::List list_unpack_gzip(std::string file) {
gzFile fi = gzopen(file.c_str(),"rb");
char buf[8192];
std: :vector<char> dat;
uint b = gzread(fi, buf, 8192);
while (b) {
dat.insert(dat.end(), buf, buf + b);
b = gzread(fi, buf, 8192);
3
gzclose(fi);
std::string message = std::string(dat.data(), dat.size());
msgpack: :object_handle oh;
msgpack: :unpack(oh, message.data(), message.size());
msgpack: :object obj = oh.get();
std: :vector<msgpack: :object> obj_vector;
obj.convert(obj_vector);
Repp::List L = Rcpp::List(obj_vector.size());
std::vector< std::string > temp_str_vec;
std::string temp_str;
for (int i=0; i< obj_vector.size(); it++) {
if (obj_vector[i].type == msgpack::type::ARRAY) {
obj_vector[i].convert(temp_str_vec);
L[i] = Rcpp::wrap(temp_str_vec);
} else {
obj_vector[i].convert(temp_str);
L[i] = Rcpp::wrap(temp_str);
}
}
return(L);

3

To illustrate the potential benefit of this approach, we compared MsgPack serialization and zlib
compression to standard R serialization using the saveRDS function (Figure 4). Using MsgPack,
serialization is slightly faster for the example above. The timing of these two approaches can be broken
down by process: both serialization and compression to disk (and vice versa) are faster using the
MsgPack approach described above for certain types of data structures, such as lists. However, for
most other types of data structures, native R serialization is usually faster. Most of the time-saving
comes from the fact that the serialized MsgPack message is considerably smaller, leading to faster
compresion time and/or faster reading and writing to disk.

Summary

The examples given above show how working with the R interface functions the C++ headers in
RceppMsgPack can be useful in transferring data and integrated within data analysis workflows.
The package allows fast and flexible serialization of generic data structures in R, and equivalent
de-serialization of objects from other langauages. The ReppMsgPack package is hosted on CRAN,
and can be installed via the standard install.packages("RcppMsgPack”) command.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 524

Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,]. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
and others. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages
265-283, 2016. [p521]

Apache Arrow Developers. Apache Arrow: A cross-language development platform for in-memory
data. https://arrow.apache.org/, 2018. [p520]

T. Ching, D. Eddelbuettel, the authors, and ontributors of MsgPack. RcppMsgPack: 'MsgPack’
C++ Header Files and Interface Functions for R, 2018. URL https://cran.r-project.org/package=
RcppMsgPack. R package version 0.2.3. [p516]

T. Dawborn and J. R. Curran. Docrep: A lightweight and efficient document representation framework.
In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical
Papers, pages 762-771, 2014. [p516]

M. Dowle, A. Srinivasan, J. Gorecki, M. Chirico, P. Stetsenko, T. Short, S. Lianoglou, E. Antonyan,
M. Bonsch, and H. Parsonage. data.table: Extension of ‘data.frame’, 2018. URL https://cran.r-
project.org/package=data.table. R package version 1.11.8. [p521]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer-Verlag, New York, 2013. ISBN
978-1-4614-6867-7. [p516]

D. Eddelbuettel. RecppRedis: Rcpp Bindings for Redis Using the Hiredis Library, 2018. URL https:
//cran.r-project.org/package=RcppRedis. R package version 0.1.9. [p516]

D. Eddelbuettel and L. Silvestri. Nanotime: Nanosecond-Resolution Time for R, 2018. URL https:
//cran.r-project.org/package=nanotime. R package version 0.2.3. [p517]

D. Eddelbuettel, M. Stokely, and J. Ooms. RProtoBuf: Efficient cross-language data serialization in
R. Journal of Statistical Software, 71(2):1-24, 2016. URL https://doi.org/10.18637/jss.v071.102.

[p516]

D. Eddelbuettel, R. Frangois,]. Allaire, K. Ushey, Q. Kou, N. Russel, J. Chambers, and D. Bates. Rcpp:
Seamless R and C++ Integration, 2018. URL https://cran.r-project.org/package=Rcpp. R package
version 1.0.0. [p516]

S. Furuhashi. MessagePack. https://msgpack.org//,2018. [p516]
J.-L. Gailly and M. Adler. Zlib compression library, 2018. URL https://z1lib.net/. [p522]
Google. Protocol Buffers. http://code.google.com/apis/protocolbuffers/,2018. [p516]

S. T.-B. Hamida, E. B. Hamida, and B. Ahmed. A new mhealth communication framework for use in
wearable wbans and mobile technologies. Sensors, 15(2):3379-3408, 2015. [p516]

IEEE Standards Committee. 754-2008 IEEE standard for floating-point arithmetic. IEEE Computer
Society Std, 2008, 2008. [p517]

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009. [p520]

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2, 2010. [p520]

MongoDB. Bson (binary json) serialization, 2018. [p516]

J. Ooms. The jsonlite package: A practical and consistent mapping between json data and r objects.
arXiv:1403.2805 [stat.CO], 2014. URL http://arxiv.org/abs/1403.2805. [p516]

R. Srinivasan. XDR: External Data Representation Standard. No. RFC 1832,1995. URL http://www.rfc-
editor.org/rfc/pdfrfc/rfc1832. txt.pdf. [p522]

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for efficient numerical
computation. Computing in Science & Engineering, 13(2):22-30, 2011. [p521]

H. Wickham. Httr: Tools for Working with URLs and HTTP, 2018. URL https://cran.r-project.org/
package=httr. R package version 1.4.0. [p520]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://arrow.apache.org/
https://cran.r-project.org/package=RcppMsgPack
https://cran.r-project.org/package=RcppMsgPack
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=RcppRedis
https://cran.r-project.org/package=RcppRedis
https://cran.r-project.org/package=nanotime
https://cran.r-project.org/package=nanotime
https://doi.org/10.18637/jss.v071.i02
https://cran.r-project.org/package=Rcpp
https://msgpack.org//
https://zlib.net/
http://code.google.com/apis/protocolbuffers/
http://arxiv.org/abs/1403.2805
http://www.rfc-editor.org/rfc/pdfrfc/rfc1832.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc1832.txt.pdf
https://cran.r-project.org/package=httr
https://cran.r-project.org/package=httr

CONTRIBUTED RESEARCH ARTICLES

525

H. Wickham, RStudio, Feather developers, Google, and LevelDB Authors. Feather: R Bindings to the
Feather API, 2016. URL https://cran.r-project.org/package=feather. R package version 0.3.1.

[p520]

Travers Ching
Unaffiliated

ORCiD: 0000-0002-5577-3516

traversc@gmail.com

Dirk Eddelbuettel
Department of Statistics

University of Illinois at Urbana-Champaign

725 S Wright St
Champaign, IL 61820

ORCiD: 0000-0001-6419-907X

dirk@eddelbuettel.com

The R Journal Vol. 10/2, December 2018

ISSN 2073-4859

https://cran.r-project.org/package=feather
mailto:traversc@gmail.com
mailto:dirk@eddelbuettel.com

