
CONTRIBUTED RESEARCH ARTICLE 1

The politeness Package: Detecting
Politeness in Natural Language
by Michael Yeomans, Alejandro Kantor, Dustin Tingley

Abstract This package provides tools to extract politeness markers in English natural language. It
also allows researchers to easily visualize and quantify politeness between groups of documents.
This package combines and extends prior research on the linguistic markers of politeness (Brown
and Levinson, 1987; Danescu-Niculescu-Mizil et al., 2013; Voigt et al., 2017). We demonstrate two
applications for detecting politeness in natural language during consequential social interactions -
distributive negotiations, and speed dating.

Introduction

Politeness is a universal dimension of human communication (Goffman, 1967; Lakoff, 1973; Brown
and Levinson, 1987). In practically all settings, a speaker can choose to be more or less polite to
their audience, and this can have consequences for the speakers’ social goals. Politeness is encoded
in a discrete and rich set of linguistic markers that modify the information content of an utterance.
Sometimes politeness is an act of commission (for example, saying “please” and “thank you”) and
sometimes it is an act of omission (for example, declining to contradictory). Furthermore, the mapping
of politeness markers often varies by culture, or by context (work vs. family vs. friends), or a speaker’s
characteristics (male vs. female) or goals (buyer vs. seller). Many branches of social science might be
interested in how (and when) people express politeness to one another, as one mechanism by which
social co-ordination is achieved.

The politeness package is designed to make it easier to detect politeness in English natural
language, by quantifying relevant characteristics of polite speech, and comparing them to other data
about the speaker. For example, researchers may want to know whether politeness is associated with
some situational or trait-level covariate (text as description). Or researchers might want to know
whether people respond differently to polite rather than impolite language (text as treatment). Or
they might want to know how an intervention affects the production of politeness (text as outcome).
Finally, all of these analytical approaches can coalesce to support a theoretical model in which speakers
strategically choose their politeness as a way to affect their audience’s behavior (text as mediator).

Politeness typically draws from a common pool of linguistic markers for social co-ordination
between speaker and listener. But the weight and valence of each marker depends on the context.
Thus, we do not try to provide a single “politeness dictionary” for all contexts. Instead our approach
draws from common methods in computational linguistics that use algorithms to select from a curated
set of features. (Manning and Schütze, 1999; Grimmer and Stewart, 2013; Jurafsky and Martin, 2014).
That is, we draw on existing linguistic theory to calculate a wide set of potentially relevant features
from the text. But we then estimate the weights on those features empirically, defining politeness
using some ground truth label - from a randomized treatment, or the listener, or a third party, or the
speaker herself. We then use a supervised machine learning algorithm as a context-specific model
of politeness: to classify unlabeled documents, and to characterize the nature of how politeness is
expressed in the domain of interest.

Our software contributes to a rich ecosystem of general text analysis packages in R. This includes
structuring raw text (e.g. tidytext, tm, quanteda, coreNLP, spacyR), sentiment analysis (e.g. tidytext,
SentimentAnalysis, syuzhet), and topic modeling (topicmodeling, stm). We incorporate some of
these packages in our own work. Our package is the first in R to study politeness specifically, and also
one of the first to focus on linguistic pragmatics more broadly. By focusing on the turn-level syntactic
structure in natural language, our work is complementary to (and distinct from) existing work that
primarily focuses on semantic content, such as identifying trends in topics or emotions over large
corpora.

In this paper we also work through two important applications of politeness detection in social
science. First, we measure manipulated politeness as a treatment effect in an experiment in which
writers were instructed to write offers for a phone on craigslist, in a style that was high (or low) in
politeness. This was used to validate a psychometric construct across several studies. Second, we
measure observed politeness as context-specific and naturally-occurring construct in a dataset on
speed-dating. This was used to understand the meaning of politeness from different perspectives.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=tidytext
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=quanteda
http://CRAN.R-project.org/package=coreNLP
http://CRAN.R-project.org/package=spacyR
http://CRAN.R-project.org/package=SentimentAnalysis
http://CRAN.R-project.org/package=syuzhet
http://CRAN.R-project.org/package=topicmodeling
http://CRAN.R-project.org/package=stm

CONTRIBUTED RESEARCH ARTICLE 2

Politeness workflow

The politeness package provides functions to identify politeness markers in natural language, graph-
ically compare these to covariates of interest, develop a supervised model to detect politeness in
new documents, and inspect high- and low-politeness documents. Table 1 summarizes the main
functions of the politeness package. A full description of the functions is available in the package
documentation.

Function Description

politeness() Detects linguistic markers of politeness in natural language. Takes an N-length
vector of text documents and returning an N-row data.frame of feature counts.
Some politeness features depend on grammatical parsing.

politenessPlot() Plots the prevalence of politeness features over a set of documents. Highlights
differences in politeness across covariate.

politenessProjection() Training and projecting a regression model of politeness based on a binary or
continuous variable. Supports both glmnet and textir, with LASSO as the default.

findPoliteTexts() Finds examples of most or least polite texts in a corpus from a covariate identifying
politeness scores of texts.

Table 1: Politeness Functions

These tools can be combined in a workflow that we believe will be useful to most researchers
interested in linguistic politeness. First, we offer a function, politeness() that will calculate a set of
linguistic features that have been identified in the past as relating to politeness. Second, we offer a
function, politenessPlot() to visualize these counts, in comparison to a covariate related to politeness
(e.g. treatment/control). If the researcher wants to generate a politeness classifier, they can do so using
the politenessProjection() function, which creates a single mapping from the politeness features in
the supplied text to some other measure of interest. In particular, if the researcher has some “ground
truth” labels of politeness over a set of texts, they can use this function as a politeness classifier, and
automatically assign politeness scores to many more new texts.

Politeness features

Broadly speaking, the space of politeness features is guided by a rich literature on the linguistics of
politeness (Goffman, 1967; Lakoff, 1973; Brown and Levinson, 1987). In general, politeness in language
is designed to pay face to the listener, so that they feel respected. And while the linguistic markers
of politeness vary from situation to situation, there are two common themes in most polite speech:
Positive Politeness, and Negative Politeness.

Positive politeness involves actively bolstering the listener’s self-image (showing gratitude, identi-
fying as an in-group member, paying complements) as well as not derogating that image (complaints,
cursing, informal titles, and so on). Negative Politeness involves respecting the listener’s autonomy.
This involves a general softening of statements, using hedges and adverbs. Requests may also be
tempered, using indirect subjunctive language, and apologizing. Alternatively, speakers may express
low negative politeness by making bare commands and being contradictory.

These elements are all included in this package as part of the politeness() function, which
tallies 36 separate politeness markers (summarized in Table 2, along with examples of each.). Many
are translated directly from recent research on the computational linguistics of politeness (Danescu-
Niculescu-Mizil et al., 2013; Voigt et al., 2017). We collected all of the features from these two papers,
and removed a few that were very contextually specific (e.g. “keep your hands on the wheel" for
drivers). However as we demonstrate below, many kinds of context-specific features can be helpful,
and we show how to add them to the feature set manually.

The features in the politeness detector are summarized in in Table 2. We refer interested users to
the original papers for details on the design of each feature. All features involve counting matches to a
pre-defined list, which includes some combination of individual words, word stems, adjacency pairs,
dependency pairs, part-of-speech-tags. Additionally, some features distinguish whether a match is
found at the beginning of a sentence or not. Some (e.g. positive or negative emotion) include hundreds
of possible matches; while others (e.g. "for you") are defined by a single phrase.

library(politeness)

data("feature_table")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=textir

CONTRIBUTED RESEARCH ARTICLE 3

feature_table

Feature Name POS Tags Description Example

Hello No "hi", "hello", "hey" "Hi, how are you today?"
Goodbye No "goodbye", "bye", "see you later" "That’s my best offer. Bye!"
Please Start Yes Please to start sentence "Please let me know if that works"
Please Both Please mid-sentence "Let me know if that works, please"
Gratitude Both "thank you", "i appreciate", etc. "Thanks for your interest"
Apologies Both "sorry", "oops", "excuse me", etc. "I’m sorry for being so blunt"
Formal Title No "sir", "madam", "mister", etc. "Sir, that is quite an offer."
Informal Title No "buddy", "chief", "boss", etc. "Dude, that is quite an offer."
Swearing No Vulgarity of all sorts "The dang price is too high"
Subjunctive No Indirect request "Could you lower the price?"
Indicative No Direct request "Can you lower the price?"
Bare Command Yes Unconjugated verb to start sentence "Lower the price for me"
Let Me Know No "let me know" "Let me know if that works"
Affirmation Yes Direct agreement at start of sentence "Cool, that works for me"
Conjunction Start Yes Begin sentence with conjunction "And if that works for you"
Reasoning No Explicit reference to reasons "I want to explain my offer price"
Reassurance No Minimizing other’s problems "Don’t worry, we’re still on track"
Ask Agency No Request an action for self "Let me step back for a minute"
Give Agency No Suggest an action for other "I want to let you come out ahead"
Hedges No Indicators of uncertainty "I might take the deal"
Actually Both Indicators of certainty "This is definitely a good idea."
Positive No Positive emotion words "that is a great deal"
Negative No Negative emotion words "that is a bad deal"
Negation No Contradiction words "This cannot be your best offer"
Questions No Question words to start sentence "Why did you settle on that value?"
By The Way No "by the way" "By the way, my old offer stands"
Adverbial Just Yes modifying a quantity with "just" "It is just enough to be worth it"
Filler Pause No Filler words and verbal pauses "That would be, um, fine"
For Me No "for me" "It would be great for me"
For You No "for you" "It would be great for you"
Group Identity No First-person plural pronouns "it’s a good deal for both of us"
First Person Both First-person singular mid-sentence "It would benefit me, as well"
Second Person Both Second person mid-sentence "It would benefit you, as well"
First Person Start Yes First-person singular to start sentence "I would take that deal"
Second Person Start Yes Second-person to start sentence "You should take that deal"
Impersonal Pronoun No Non-person referents "That is a deal"

Table 2: Politeness features detected by politeness(). Features that have “No” in the POS Tags
column require part-of-speech (POS) tagging; where as those with “Both” can be approximated with
out POS tagging, but POS tagging is recommended.

Parsing grammar

The meaning of a sentence often depends not just on its constituent words, but also on its grammatical
structure. This is useful for words that can have different meanings, such as the adverbial "just" in
"it is just enough" compared to the adjectival use in "the decision was just". Politeness can also be
expressed in the grammatical structure itself (e.g. the unconjugated verbs in bare commands like "give
me that!"). This information is lost in in bag-of-words analyses that do not label the sentence structure,
or ignore word order.

As of this writing, there was no available grammar parsing software available wholly within
the R language. Instead, we build off one of the most powerful natural language processing tools
available currently - the Python module SpaCy (Honnibal and Johnson, 2015). It is open-source, fast,
accurate, and well-benchmarked. We use spacyr (Benoit and Matsuo, 2017) to connect to SpaCy and
take advantage of their pretrained models to identify the grammatical structure of each document.
The current SpaCy model en_core_web_sm is a Convolutional Neural Network trained on OntoNotes,
a large corpus comprising of news, conversational telephone speech, weblogs, usenet newsgroups,
broadcast, and talk shows texts. Prior to using spacyr, users must install SpaCy in Python. As of
spacyr version 0.9.6, this spacy installation can be detected automatically on the user’s computer by
spacyr when it is first called.1

1For advanced users, including those who may have multiple Python installations, you may have to initialize
the SpaCy engine first, so that it is ready for use during the session. That is done using a separate function

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://spacy.io/
https://spacy.io/
https://catalog.ldc.upenn.edu/ldc2013t19

CONTRIBUTED RESEARCH ARTICLE 4

Many of the politeness features can be calculated without grammar parsing by setting parser="none".
We recommend this as an initial first step for researchers, without having to install SpaCy. At this
reduced setting, some features are dropped entirely (e.g. Bare Commands are a specific verb class).
However, some features are approximated. For example, tags allow users to differentiate between a
mid-sentence “please” and a “please” to start a sentence, while the tagless version of the function will
collapse them into a single feature.

Detecting politeness features

The function politeness() takes in an n-length vector of texts, and returns an n-by-f data.frame, with
f columns corresponding to the number of calculated features. We note that our package does not
perform any spell- or grammar-checking on the text - though these kinds of errors can degrade the
fidelity of the information in the text. Instead, we recommend that users do this on their own - either
in R, using another package like hunspell, or else using other software or by hand.

There are 36 features in total (see Table 2), but some user options affect the number of features that
are returned. For one, if a part-of-speech tagger is not used (by setting parser = "none") then some
features that depend on these tags will not be calculated, as detailed in Table 2. Additionally, you may
use the default setting drop_blank = TRUE which will remove features that were not detected in any
of the texts.

For example, consider the following texts.

library(politeness)

texts <- c("Hello, you", "You")

politeness() with parser="none" (default) will identify that both texts contain the feature Sec-
ond.Person and that only the first contains Hello.

df_politeness <- politeness(texts, parser="none",drop_blank = TRUE)
df_politeness

Hello Second.Person
1 1 1
2 0 1

In order to get the full feature space we use parser="spacy". politeness() now differentiates be-
tween the features Second.Person.Start (which captures the pronoun as a sentence subject) and
Second.Person (which captures the pronoun as a sentence object) as shown below.

df_politeness <- politeness(texts, parser="spacy",drop_blank = TRUE)
df_politeness

Hello Second.Person.Start Second.Person
1 1 0 1
2 0 1 0

The examples above are very short, in practice longer sentences will use features multiple times
(e.g. positive words). Setting metric="count" will populate each cell with the raw count of each feature
in the text. Alternatively, metric="binary" will return a binary indicator of the presence or absence of
each feature. Finally, metric="average" will count the prevalence of features as a percentage of the
word count of each document. This is useful as a robustness check when there is wide variance in
document length. For example take the following two texts (this data, borrowed from (Jeong et al.,
2018) is included in the package):

data("phone_offers")
texts <- phone_offers$message[c(21,25)]
texts

(spacyr::spacy_initialize(python_executable = PYTHON_PATH) - make sure to substitute in your preferred
Python path name) and is explained well in the spacyr documentation.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=hunspell

CONTRIBUTED RESEARCH ARTICLE 5

[1] "Hi I am very interested in your phone. It is exactly what I have been looking for.
I would like to offer you 115 for it. It would make me very happy to buy the phone today."

[2] "Hi, I hope your day is going well. I am very pleased to see the phone you are offering
for sale, as it is exactly what I need! I am on a very tight budget so I hope that you will
be willing for accept $115 for the phone. It is the most I can pay. Please know that I
would be so happy if I am able to buy this phone. I'm sorry that I can't offer more.
If you are willing to accept my offer, perhaps I can do you a small favor as well, like
mow your lawn or something. In any case if you accept my offer you would have my sincere
and heartfelt gratitude. Whether you accept my offer or not, I hope that this
message finds you and yours well and happy. I hope you have a great day. :)"

Given a subset of features we observe the following counts.

features <- c("Positive.Emotion", "Impersonal.Pronoun","First.Person","Second.Person",
"Negative.Emotion")

df_politeness <- politeness(texts,drop_blank = TRUE)
df_politeness[, features]

Positive.Emotion Impersonal.Pronoun First.Person Second.Person Negative.Emotion
1 2 4 3 2 0
2 14 10 17 12 1

Although both texts have similar politeness features, the longer text contains larger count values.
The option metric="binary", on the other hand, will return a simplified result with a 1 if the feature
is present in the text as shown below.

df_politeness <- politeness(texts, metric="binary",drop_blank = TRUE)
df_politeness[, features]

Positive.Emotion Impersonal.Pronoun First.Person Second.Person Negative.Emotion
1 1 1 1 1 0
2 1 1 1 1 1

Plotting politeness features

politenessPlot() combines the politeness feature matrix with another measure of substantive interest
that might covary with the prevalence of some of the politeness features - in particular, a ground-truth
measure of politeness from annotation or assignment to treatment. This function generates a horizontal
bar plot (with 95% confidence intervals) of feature prevalence among two groups of documents.

The function can handle any kind of politeness metric (counts, binary, or averaged), but that
distinction must be made in the initial call to politeness(). Below, we plot the politeness features
from a feature count matrix in Figure 1, and a binary feature matrix in Figure 2.

The order of the bars themselves are sorted automatically, and determined by calculating the
variance-weighted log odds of each feature with respect to the binary covariate. Many covariates are
continuous. By default, this package treats the top and bottom terciles of that distribution as binary
categories, with the middle tercile dropped. Users can also create their own categories beforehand,
and enter those labels in place of the covariate.

Often some features are not meaningful for further analysis – either because they are too rare in
the data, or else because they do not meaningfully covary with the covariate of interest. Users have
two options to exclude these from the plot. First, the drop_blank parameter can remove rare features –
it takes a number between 0 and 1, which determines a cut-off based on prevalence. Specifically, all
features which appear in less than this proportion of texts are excluded from the plot. To include all
features, leave this value at 0.

Second, the middle_out parameter can remove features which do not vary meaningfully across
the covariate. Each feature is evaluated using a two-sample t.test, and features are removed when the

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

p-value of this test lies above the user’s provided cut-off, a number between 0 and 1 (the default is 0.1).
To include all features, simply set this value at 1.

df_politeness_count <- politeness(phone_offers$message,
parser="none",
drop_blank=FALSE)

politenessPlot(df_politeness_count,
split=phone_offers$condition,
split_levels = c("Tough","Warm"),
split_name = "Condition")

Positive.Emotion

Second.Person

Questions

Gratitude

Actually

First.Person

Hello

Subjunctive

Negative.Emotion

Impersonal.Pronoun

Give.Agency

For.You

Please

Ask.Agency

Hedges

Negation

0.1 0.5 1 2
Average Feature Use per Document

Condition Tough Warm

Figure 1: Politeness plot showing for each feature the average use per document in square root scale.
Features are ordered by their variance-weighted log odds. This can accommodate any metric for the
politeness features (count, binary, average) but that must be set in the call of politeness() before the
data.frame is passed the plot function.

df_politeness_binary <- politeness(phone_offers$message,
parser="none",
metric="binary",
drop_blank=FALSE)

politenessPlot(df_politeness_binary,
split=phone_offers$condition,
split_levels = c("Tough","Warm"),
split_name = "Condition")

Projecting politeness features

Users can generate a politeness classifier with the politenessProjection() function. This creates a
single mapping from the politeness features in the supplied text to the covariate of interest. This can

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

Gratitude

Questions

Actually

Hello

Subjunctive

Negative.Emotion

Give.Agency

Positive.Emotion

For.You

Please

Hedges

Ask.Agency

Second.Person

First.Person

Negation

0% 25% 50% 75% 100%
Percentage of Documents Using Feature

Condition Tough Warm

Figure 2: Politeness plot showing percentage of documents showing each feature. Features are ordered
by their variance-weighted log odds. In order to plot the percentage of documents showing each
feature metric="binary" must be set in the call of politeness().

then be used to predict the covariate itself in held-out texts. In particular, if the user has some "ground
truth" labels of politeness over a set of texts, they can use this function as a politeness classifier, and
automatically assign politeness scores to many more new texts. This ground truth can be labelled
by annotators in observational data, or - as in our example below - generated from a randomized
experiment in which the text itself is the outcome.

This function is a wrapper around supervised learning algorithms. The default uses glmnet
(Friedman et al., 2010), the vanilla LASSO implementation in R. We also allow users to use a different
algorithm, textir (Taddy, 2013), which implements a massively multinomial inverse regression.
Intuitively, this model represents a more realistic causal structure to text-plus-covariate data – that is,
the metadata is typically an ex ante property of the speaker that has a causal effect on the words they
use, rather than the words having a causal effect on the speaker’s metadata. Both packages have their
merits, though for now we recommend using glmnet to start, especially if it is familiar.

In addition to the phone_offers dataset, we have included a smaller bowl_offers dataset (also
from (Jeong et al., 2018)). Participants in this study were given similar instructions (i.e. communi-
cate in a warm or tough style) but for a different negotiation exercise. We use the phone_offers
dataset to define the construct of interest, and use the bowl_offers dataset as held-out data in
politenessProjection(). The results confirm that the manipulation in the held-out data induced
more politeness in one condition than the other.

In addition to the projected labels for the new documents, politenessProjection() also returns
the coefficients estimated in the model. This provides some transparency regarding the exact functional
form of politeness being generated. However, we caution users that the coefficients are chosen
to maximize the prediction accuracy of the model of the whole, rather than recovering the "true"
coefficient for any particular feature. In particular, these models may not reflect the first-order
relationships in the data, especially when many relevant features are colinear with each other.

df_polite_train <- politeness(phone_offers$message, drop_blank=FALSE)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 8

df_polite_holdout <- politeness(bowl_offers$message, drop_blank=FALSE)

project <- politenessProjection(df_polite_train,
phone_offers$condition,
df_polite_holdout)

t.test(project$test_proj[bowl_offers$condition==0],
project$test_proj[bowl_offers$condition==1])

t = -6.4515, df = 66.914, p-value = 1.439e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.4216472 -0.2223876
sample estimates:
mean of x mean of y
0.2217517 0.5437691

project$train_coefs

Positive.Emotion Negative.Emotion Negation Informal.Title
0.49911207 0.38236159 -1.04272459 0.10637694

Subjunctive For.You Give.Agency Hello
0.92618688 0.11704362 0.48516687 0.60900150

Group.Identity Questions Gratitude Actually
-0.52233935 1.32231435 0.69019865 1.34960715

Please First.Person Second.Person
0.04522580 0.03072077 0.03484301

We consistently recommend that researchers build a context-specific model of politeness for their
own datasets, using labeled examples from within-domain. However, some new users may want to
try this workflow before deciding whether to hand-label new documents in their own domain. In that
case, users can follow the example above to build a rudimentary out-of-the-box politeness classifier
with the phone_offers dataset and the politenessProjection() function). This analysis assumes
that the rules of politeness in the user’s domain are identical to the rules of politeness in negotiations,
which may or may not hold.

Finding examples of polite and impolite documents

Before users apply any output from the politenessProjection() function to other analyses, they
should first be curious about examples of texts that best represent the distinction made by that
projection (i.e. the most- or least-typically polite texts). The findPoliteTexts function replicates the
analyses of politenessProjection but instead returns a selection of the texts that are the most extreme
(i.e. high, or low, or both) along the projected dimension. The parameters type and num_docs allow
users to specify the type and number of texts that are returned.

set.seed(111)

fpt_most <- findPoliteTexts(phone_offers$message,
df_polite_train,
phone_offers$condition,
type="most",
num_docs=2)

fpt_least <- findPoliteTexts(phone_offers$message,
df_polite_train,
phone_offers$condition,
type="least",
num_docs=2)

fpt_most$text

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

[1] Hello, Oh my goodness, I'm so excited to see your listing. The phone is EXACTLY
what I have been searching for! And I can tell from your description and the photo
that it's just perfect, too. I can almost hear it ringing in my pocket right now!
What's that? Hello? So, happy to hear from you. Sorry, sorry. I'm getting ahead of
myself.
Soooo, I was wondering if there was any way that you might consider taking a little bit
less for this phone? It's absolutely everything I've been looking for but my bosses
< grrrrr!!!> will only give us $115 to get this phone. I know! Can you believe
it? Is there any way you could absolutely make my day and say ""yes"" to $115? I'd
be so, so grateful. Just let me know when you can. Thanks so much. :)

[2] Hello, I am glad you're selling this phone. Is it still available? I would love to
purchase it. Would you consider $115 for it? I can buy it today if that price works.
Thank you.

fpt_least$text

[1] I am inquiring about your Iphone 6 plus that you had posted. I am wanting to buy
and I have cash in hand. The max amount I can offer is $115. No more, no less.
Let me know.

[2] Come on. The price you are offering on a product that ISN'T NEW is unreasonable.
Now, I for one am very interested in getting this item. BUT, I will only pay $115.
I am not paying a penny more.

Execution time

In principle, these functions can handle an arbitrarily large set of documents. In practice, however,
language data can be quite large, both in the amount of documents and the length of the documents.
This can have a marked effect on execution time, especially on smaller computers.

In order to reduce computation time, we use data.table (Dowle and Srinivasan, 2017) and quanteda
(Benoit et al., 2017) in the backend which have fast implementations of data manipulation. We also
analyzed the execution time of intermediate steps within politeness() to identify any potential
critical points.

To provide rough benchmarks, we ran the politeness() function with a range of document counts
(102, 103, 104) and lengths (100,200). The tests were performed using a 2012 Macbook Pro with a 2.5
GHz Intel Core i5. For each case we ran it three times, both with and without part-of-speech tagging,
and the resulting execution times are plotted below.

Figure 3) shows that politeness() scales reasonably well for large sets of documents. For example,
given 200-word documents, and using the spacy parser, we found that 100 and 1,000 length vectors
of texts take an average of 7.3 and 70.6 seconds, respectively. We recommend that for larger corpora,
researchers test the code on smaller subsets first.

A common and complex situation is when text is broken up into many documents per observation.
One example of this would be a conversation transcript, in which people take many turns over a single
conversation, but the covariates are measured at the level of the person, or conversation. In these
cases, we recommend calculating the politeness markers in individual documents separately, and then
aggregated into person-level counts afterwards, for plotting, analysis, and model-building. This will
be more efficient and more accurate than concatenating each person’s turns into one long document
and calculating the politeness of the entire text at once.

Extended Example: Politeness in Speed Dating

We demonstrate the broader applications of our package in a new context: courtship, in face-to-face
conversation with many turns per speaker. This example comes from the SpeedDate corpus (originally
published in (Ranganath et al., 2009; McFarland et al., 2013). Here, politeness is not a treatment effect.
Instead, we model the naturally-occurring variation in politeness (as rated by listeners) during a series
of speed dating events. Furthermore, we highlight the context-specificity of politeness - we compare
the linguistic markers of politeness in both female speakers (as rated by men) and male speakers (as

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLE 10

Bag of Words Only Grammar Parsing

10 100 1000 10 100 1000

0

20

40

60

Number of texts

S
ec

on
ds

Word count of texts 100 200

Figure 3: Execution time of politeness() with different number of texts, length of texts, and parsers.

rated by women), while holding constant the domain, the outcome measure, and the conversation
itself.

The data were collected over three evenings, in which 110 heterosexual participants each met with
15-20 other potential partners for four minutes at a time. The main observations are gathered from
each dater, from a survey immediately after their date. For privacy reasons, we cannot include the text
of the dates themselves. However, we do include the matrix of politeness features as calculated by the
politeness() function.

Note that the original function call treats each turn in the dataset as a separate document, to
produce a one-row-per-turn matrix. So to analyze these data within our framework we need to
condense the politeness feature matrix to the same one-row-per-person-date level. To do this here, we
loop through each row of the per-person-date data, and add up the counts from the relevant section of
the per-turn database.

load("speedDateDates.rdata")
load("speedDateTurns.rdata")

id.vars<c("selfid","otherid","turn","span","group")
polite.cols<-names(speedDateTurns)[!names(speedDateTurns)%in%id.vars]
speedDateDates[,polite.cols]<-NA
for (o in 1:nrow(speedDateDates)){
matched.rows<-(speedDateTurns$selfid==speedDateDates[o,"otherid"])

&(speedDateTurns$otherid==speedDateDates[o,"selfid"])
speedDateDates[o,polite.cols]<-colSums(speedDateTurns[matched.rows,polite.cols],na.rm=T)

}

We wanted to include extra domain-specific features, to capture elements of live face-to-face
conversation. These were calculated separately, and merged into the politeness feature matrix. First,
we counted moments of laughter, which were indicated by the transcribers. We also included repair
questions (e.g. "pardon?") using a list from Ranganath et al. (2009). Finally, we included four kinds
of question types from Huang et al. (2017) - switch questions, which change the topic; follow-up
questions, which expand on the current topic; introductory questions, which open a dialogue, and
mirror questions, in which one person returns a question that they had just been asked. By merging
these six extra features into the politeness feature matrix, downstream functions will treat them as
though they were part of the original feature set.

extra_names<-c(paste0(c("Followup","Switch","Intro","Mirror","Repair"),".Qs"),"Laughter")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 11

Table 3: Prevalence of features added to politeness detector, by gender.

Followup.Qs Switch.Qs Intro.Qs Mirror.Qs Repair.Qs Laughter
Spoken by Women 4.04 2.89 0.26 1.85 0.13 4.42
Spoken by Men 5.11 3.51 0.38 1.73 0.17 1.83

extras<-rbind(round(colMeans(speedDateDates[(speedDateDates$sex==1),extra_names]),2),
round(colMeans(speedDateDates[(speedDateDates$sex==0),extra_names]),2))

row.names(extras)<-c("Spoken by Women (to Men)","Spoken by Men (to Women)")

extras

Immediately after each date, both participants evaluated their partner on a set of dimensions. The
one most relevant for our purposes was the question “how courteous was your partner", which was
rated on a scale from 1-10 (plotted in Figure 4). We use this as a ground truth measure of politeness.
Because politeness was measured (not manipulated) we must dichotomize the continuous variable
into two groups. We drop the middle third of medium-courtesy dates and compare the dates that
were rated as most and least rude, to increase contrast. For clarity we do this manually in the example
below, but the package also does this automatically if the provided labels are on a continuous scale.

speedDateDates$politeness <- ""
speedDateDates$politeness[speedDateDates$courtesy>8] <- "Courteous"
speedDateDates$politeness[speedDateDates$courtesy<6] <- "Rude"
speedDateDates<-speedDateDates[speedDateDates$politeness != "",]

Figure 4: Distribution of rated courtesy in SpeedDate corpus

Finally, we wanted to know whether the rules by which politeness is judged were different for men
and for women. The average courtesy rating of men by women was slightly lower than that of the
women by men. But these summary ratings do not tell us anything about how rudeness or courtesy
is determined. Instead, we apply the politenessPlot() function among each gender separately to
determine gender-specific models for how politeness is related to the linguistic choices of the speaker.

politenessPlot(speedDateDates[(speedDateDates$sex==1),
c(polite.cols,extra_names)],
split=speedDateDates$politeness[(speedDateDates$sex==1)],
split_name="Ratings of Women (by Men)",
top_title="",
middle_out=.1)

politenessPlot(speedDateDates[(speedDateDates$sex==0),
c(polite.cols,extra_names)],

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 12

split=speedDateDates$politeness[(speedDateDates$sex==0)],
split_name="Ratings of Men (by Women)",
top_title="",
middle_out=.1)

Figure 5: Politeness markers in speed-dating by speaker gender.

The results in Figure 5 demonstrate that the rules for what is considered polite behavior from
a man or a woman can be quite different, even the same conversation. Men laugh less often than
women, overall; but when they do laugh it is associated with courtesy by their partner. Men who
are considered rude tend to give formal goodbyes as they are leaving, and more often respond to
a question by mirroring it back to their partner. On the other hand, women are seen as rude when
they contradict, or when they ask questions (in particular, topic-switching questions) but are seen as
polite when they reveal more about themselves - the "actually" feature captures pivots to greater detail,
such as "in fact" or "to be honest". Interpreting these features can be difficult without the text in hand,

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

though, and users are encouraged to incorporate qualitative analyses of their own data, in addition to
the analyses provided here.

We note that the differences in feature use between polite and impolite daters (of both genders)
are not as stark in this example as in the negotiation study. This is for two reasons. First, the variation
in politeness is naturally occurring, rather than induced by a randomized treatment. Contrasts will be
greater when writers are instructed and able to adopt a particular communication style. Secondly, the
speed daters communicated face-to-face, so there could be other sources of information that would
affect the listener’s rating of a speaker’s politeness (such as intonation, body language, pacing, and so
on). In datasets where they are measured, these other features could be added to the workflow in the
same way as the extra text-based features above.

Conclusions

We detail an empirical model of politeness, as codified in the politeness package. We use simple
examples to show the range of output from the politeness() and politenessPlot() functions. We
also show how politenessProjection() can be used to develop a domain-specific supervised model
for politeness, which can be used by findPoliteTexts() to identify and explore distinctive documents.
We also work through two examples of consequential politeness - as manipulated amongst negotiators,
and as observed amongst speed daters - that highlight many challenges that are common for all sorts
of research in R that uses natural language data from social interactions.

The tools presented here should be useful for all researchers who study how people interact with
one another, across a wide variety of contexts. In future work, we hope to expand this toolkit to
handle a wider range of politeness markers that are not present in proper written english (including
shorthand, slang, nonverbals, and other languages). Further research is also needed into the extent
to which the markers of politeness can vary from one context to another, and the consequences of
politeness on interpersonal relations.

Acknowledgements

We thank the Spencer Foundation, the Hewlett Foundation, Harvard’s Institute for Quantitative Social
Science and the Harvard Vice Provost for Advances in Learning Research Group for their support.

Bibliography

K. Benoit and A. Matsuo. Spacyr: R Wrapper to the spaCy NLP Library, 2017. URL http://github.com/
kbenoit/spacyr. R package version 0.9.2. [p3]

K. Benoit, K. Watanabe, P. Nulty, A. Obeng, H. Wang, B. Lauderdale, and W. Lowe. Quanteda:
Quantitative Analysis of Textual Data, 2017. URL http://quanteda.io. R package version 0.9.9-65.
[p9]

P. Brown and S. C. Levinson. Politeness: Some universals in language usage. Studies in interactional
sociolinguistics, 4, 1987. URL http://psycnet.apa.org/record/1987-97641-000. [p1, 2]

C. Danescu-Niculescu-Mizil, M. Sudhof, D. Jurafsky, J. Leskovec, and C. Potts. A computational
approach to politeness with application to social factors. CoRR, abs/1306.6078, 2013. URL http:
//arxiv.org/abs/1306.6078. [p1, 2]

M. Dowle and A. Srinivasan. Data.table: Extension of ‘data.frame‘, 2017. URL https://CRAN.R-project.
org/package=data.table. R package version 1.10.4-3. [p9]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/
v33/i01/. [p7]

E. Goffman. On face-work. Interaction Rituals, pages 5–45, 1967. [p1, 2]

J. Grimmer and B. Stewart. Text as data: The promise and pitfalls of automatic content analysis.
Political Analysis, 21(3):267–297, 2013. [p1]

M. Honnibal and M. Johnson. An improved non-monotonic transition system for dependency parsing.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1373–
1378, Lisbon, Portugal, 2015. Association for Computational Linguistics. URL https://aclweb.org/
anthology/D/D15/D15-1162. [p3]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://CRAN.R-project.org/package=politeness
http://github.com/kbenoit/spacyr
http://github.com/kbenoit/spacyr
http://quanteda.io
http://psycnet.apa.org/record/1987-97641-000
http://arxiv.org/abs/1306.6078
http://arxiv.org/abs/1306.6078
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162

CONTRIBUTED RESEARCH ARTICLE 14

K. Huang, M. Yeomans, A. W. Brooks, J. Minson, and F. Gino. It doesn’t hurt to ask: Question-asking
increases liking. Journal of Personality and Social Psychology, 113(3):430–452, 2017. [p10]

M. Jeong, J. Minson, M. Yeomans, and F. Gino. Communicating warmth in distributive negotiations is
surprisingly counter-productive. Working Paper, 2018. [p4, 7]

D. Jurafsky and J. Martin. Speech and Language Processing. Pearson, 2014. [p1]

R. T. Lakoff. The Logic of Politeness: Minding Your P’s and Q’s. Chicago Linguistic Society, 1973. URL
https://books.google.com/books?id=DfWfNAAACAAJ. [p1, 2]

C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT Press, 1999. [p1]

D. McFarland, D. Jurafsky, and R. Ranganath. Making the connection: Social bonding in courtship
situations. American Journal of Sociology, 118(6):1596–1649, 2013. [p9]

R. Ranganath, D. Jurafsky, and D. McFarland. It’s not you, it’s me: Detecting flirting and its misper-
ception in speed-dates. Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, 1(1):334–342, 2009. [p9, 10]

M. Taddy. Multinomial inverse regression for text analysis, 2013. [p7]

R. Voigt, N. P. Camp, V. Prabhakaran, W. L. Hamilton, R. C. Hetey, C. M. Griffiths, D. Jurgens,
D. Jurafsky, and J. L. Eberhardt. Language from police body camera footage shows racial disparities
in officer respect. Proceedings of the National Academy of Sciences, 114(25):6521–6526, 2017. ISSN
0027-8424. URL https://doi.org/10.1073/pnas.1702413114. [p1, 2]

Michael Yeomans
Harvard University
Cambridge, MA 02138, USA
yeomans@fas.harvard.edu

Alejandro Kantor
Institute for Quantitative Social Science
Harvard University
Cambridge, MA 02138, USA
alejandrokantor@fas.harvard.edu

Dustin Tingley
Department of Government
Harvard University
Cambridge, MA 02138, USA
dtingley@gov.harvard.edu

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://books.google.com/books?id=DfWfNAAACAAJ
https://doi.org/10.1073/pnas.1702413114
mailto:yeomans@fas.harvard.edu
mailto:alejandrokantor@fas.harvard.edu
mailto:dtingley@gov.harvard.edu

	The politeness Package: Detecting Politeness in Natural Language
	Introduction
	Politeness workflow
	Politeness features
	Parsing grammar
	Detecting politeness features
	Plotting politeness features
	Projecting politeness features
	Finding examples of polite and impolite documents
	Execution time
	Extended Example: Politeness in Speed Dating
	Conclusions
	Acknowledgements

