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jsr223: A Java Platform Integration for R
with Programming Languages Groovy,
JavaScript, JRuby, Jython, and Kotlin
by Floid R. Gilbert and David B. Dahl

Abstract The R package jsr223 is a high-level integration for five programming languages in the
Java platform: Groovy, JavaScript, JRuby, Jython, and Kotlin. Each of these languages can use Java
objects in their own syntax. Hence, jsr223 is also an integration for R and the Java platform. It enables
developers to leverage Java solutions from within R by embedding code snippets or evaluating script
files. This approach is generally easier than rJava’s low-level approach that employs the Java Native
Interface. jsr223’s multi-language support is dependent on the Java Scripting API: an implementation
of “JSR-223: Scripting for the Java Platform” that defines a framework to embed scripts in Java
applications. The jsr223 package also features extensive data exchange capabilities and a callback
interface that allows embedded scripts to access the current R session. In all, jsr223 makes solutions
developed in Java or any of the jsr223-supported languages easier to use in R.

Introduction

About the same time Ross Ihaka and Robert Gentleman began developing R at the University of
Auckland in the early 1990s, James Gosling and the so-called Green Project Team was working on a
new programming language at Sun Microsystems in California. The Green Team did not set out to
make a new language; rather, they were trying to move platform-independent, distributed computing
into the consumer electronics marketplace. As Gosling explained, “All along, the language was a tool,
not the end” (O’Connell, 1995). Unexpectedly, the programming language outlived the Green Project
and sparked one of the most successful development platforms in computing history: Java. According
to the TIOBE index, Java has been the most popular programming language, on average, over the last
sixteen years. Java’s success can be attributed to several factors. Perhaps the most important factor is
platform-independence: the same Java program can run on several operating systems and hardware
devices. Another important factor is that memory management is handled automatically for the
programmer. Consequently, Java programs are easier to write and have fewer memory-related bugs
than programs written in C/C++. These and other factors accelerated Java’s adoption in enterprise
systems which, in turn, established a thriving developer community that has created production-
quality frameworks, libraries, and programming languages for the Java platform. Many successful
Java solutions are relevant to data science today such as Hadoop, Hive, Spark, Cassandra, HBase,
Mahout, Deeplearning4j, Stanford CoreNLP, and others.

In 2003, Simon Urbanek released rJava (2017), an integration package designed to avail R of the
burgeoning development surrounding Java. The package has been very successful to this end. In
the year 2018 alone, rJava registered over 1.95 million downloads on CRAN.1 The rJava package is
described by Urbanek as a low-level R to Java interface analogous to .C and .Call, the built-in R
functions for calling compiled C code. Like R’s integration for C, rJava loads compiled code into an
R process’s memory space where it can be accessed via various R functions. Urbanek achieves this
feat using the Java Native Interface (JNI), a standard framework that enables native (i.e. platform-
dependent) code to access and use compiled Java code. The rJava API requires users to specify classes
and data types in JNI syntax. One advantage to this approach is that it gives users granular, direct
access to Java classes. However, as with any low-level interface, the learning curve is relatively high
and implementation requires verbose coding. A second advantage to using JNI is that it avoids
the difficult task of dynamically interpreting or compiling source code. Of course, this is also a
disadvantage: it limits rJava to using compiled code as opposed to embedding source code directly
within R script.

Our jsr223 package builds on rJava to provide a high-level interface to the Java platform. We
accomplish this by embedding other programming languages in R that use Java objects in natural
syntax. As we show in Section “rJava software review”, this approach is generally simpler and more
intuitive than rJava’s low-level JNI interface. To date, jsr223 supports embedding five programming
languages: Groovy, JavaScript, JRuby, Jython, and Kotlin. (JRuby and Jython are Java platform
implementations of the Ruby and Python languages, respectively.) See Table 1 for a brief description
of each language.

1Downloads tabulated by the cranlogs package (Csardi, 2015).
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Language Description

Groovy Groovy is a scripting language that follows Java syntax very closely.
Hence, jsr223 enables developers to embed Java source code directly in
R script. Groovy also supports an optionally typed, functional paradigm
with relaxed syntax for less verbose code.

JavaScript JavaScript is well known for its use in web applications. However, its
popularity has overflowed into standalone solutions involving databases,
plotting, machine learning, and network-enabled utilities, to name just a
few. The jsr223 package uses Nashorn, the ECMA-compliant JavaScript
implementation for the Java platform.

JRuby JRuby is the Ruby implementation for the Java platform. Ruby is a
general-purpose, object-oriented language with unique syntax. It is
often used with the web application framework Ruby on Rails. Ruby
libraries, called gems , can be accessed via jsr223.

Jython Jython is the Python implementation for the Java platform. Like R, the
Python programming language is used widely in science and analytics.
Python has many powerful language features, yet it is known for being
concise and easy to read. Popular libraries SciPy and NumPy are avail-
able for the Java platform through JyNI (the Jython Native Interface).

Kotlin Kotlin version 1.0 was released in 2016 making it the newest jsr223-
supported language. It is a statically typed language that supports both
functional and object-oriented programming paradigms. Kotlin has simi-
larities to Java, but it often requires less code than Java to accomplish the
same task. Kotlin and Java are the only languages officially supported
by Google for Android application development.

Table 1: The five programming languages supported by jsr223. See the jsr223 User Manual for code
examples and language details.

The jsr223 multi-language integration is made possible by the Java Scripting API (Oracle, 2016), an
implementation of the specification “JSR-223: Scripting for the Java Platform” (Sun Microsystems, Inc.,
2006). The JSR-223 specification includes two crucial elements: an interface for Java applications to
execute code written in scripting languages, and a guide for scripting languages to create Java objects
in their own syntax. Hence, JSR-223 is the basis for our package. However, no knowledge of JSR-223 or
the Java Scripting API is necessary to use jsr223. Figures 1 and 2 show how rJava and jsr223 facilitate
access to the Java platform. Where rJava uses JNI, jsr223 uses the Java Scripting API and embeddable
programming languages.

The primary goal of jsr223 is to enable R developers to leverage existing Java solutions with relative
ease. We demonstrate two typical use cases in this document with subjects that are of particular interest
to many data scientists: a natural language processor and a neural network classifier. In addition to Java
solutions, R developers can use projects developed in any of the five jsr223-supported programming
languages. In essence, jsr223 opens R to a broader ecosystem.

For Java developers, jsr223 facilitates writing high-performance, cross-platform R extensions
using their preferred platform. The jsr223 package also allows organizations that run enterprise
Java applications to more readily develop dashboards and other business intelligence tools. Instead
of writing R code to query raw data from a database, jsr223 enables R packages to consume data
directly from their application’s Java object model where the data has been coalesced according to
business rules. Java developers will also be interested to know that the jsr223-supported programming
languages can implement interfaces and extend classes, just like the Java programming language.
See “Extending existing Java solutions” in the jsr223 User Manual for an in-depth code example that
demonstrates extending Java classes and several other features.

In this paper, we present an introduction to the jsr223 package. Section ”jsr223 package imple-
mentation and features overview” contains a brief description of the package’s primary features and
internals. The section “Typical use cases” provides code examples that highlight the jsr223 pack-
age’s core functionality. Finally, the “Software review” section puts the jsr223 project in context with
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Figure 1: The rJava package facilitates low-level access to the Java platform through the Java Native
Interface (JNI). Some knowledge of JNI is required.

comparisons to other relevant software solutions.

Figure 2: The jsr223 package provides high-level access to the Java platform through five programming
languages. Although jrs223 uses the Java Scripting API in its implementation, users do not need to
learn the API.

The jsr223 package implementation and features overview

The jsr223 package supports most of the major programming languages that implement JSR-223.
Technically, any JSR-223 implementation will work with our package, but we may not officially
support some languages. The most notable exclusion is Scala; we don’t support it simply because
the JSR-223 implementation is not complete. (Consider, instead, the rscala package for a Scala/R
integration (Dahl, 2018).) We also exclude languages that are not actively developed, such as BeanShell.

The jsr223 package features extensive, configurable data exchange between R and Java via jsr223’s
companion package jdx (Gilbert and Dahl, 2018). R vectors, factors, n-dimensional arrays, data frames,
lists, and environments are converted to standard Java objects. Java scalars, n-dimensional arrays,
maps, and collections are inspected for content and converted to the most appropriate R structure
(vectors, n-dimensional arrays, data frames, or lists). Several data exchange options are available
including row-major and column-major ordering schemes for data frames and n-dimensional arrays.
Many language integrations for R provide a comparable feature set by using JSON (JavaScript Object
Notation) libraries. In contrast, the jsr223 package implements data exchange using custom Java
routines to avoid the serialization overhead and loss of floating point precision inherent in JSON data
conversion.

The jsr223 package also supports converting the most common data structures from the jsr223-
supported languages. For example, jsr223 can convert Jython dictionaries and user-defined JavaScript
objects to R objects. Behind the scenes, every Java-based programming language uses Java objects.
For example, a Jython dictionary is backed by a Java object that defines the dictionary’s behavior. The
jsr223 package uses jdx to inspect these Java objects for data and convert them to an appropriate R
object. In most cases, the default conversion rules are intuitive and seamless. Details covering data
exchange features and behavior can be found in the jsr223 User Manual and the jdx package vignette.

The jsr223 programming interface follows design cues from rscala, and V8 (Ooms, 2017b). The
application programming interface is implemented using R6 (Chang, 2017) classes for a traditional
object-oriented style of programming. R6 objects wrap methods in an R environment making them
accessible from the associated variable using list-like syntax (e.g., myObject$myMethod()).

The jsr223 package uses rJava to load and communicate with the Java Virtual Machine (JVM):
the abstract computing environment that executes compiled Java code. The jsr223 package employs
a client-server architecture and a custom multi-threaded messaging protocol to exchange data and
handle script execution. This protocol optimizes performance by eliminating rJava calls that inspect
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generic return values and transform data, both which incur significant overhead. The protocol also
facilitates callbacks that allow embedded scripts to manipulate variables and evaluate R code in the
current R session. This callback implementation is lightweight, does not require any special R software
configuration, and supports infinite callback recursion between R and the script engine (limited only
by stack space).

Other distinguishing jsr223 features include script compiling and string interpolation. Complete
feature documentation is available in the jsr223 User Manual vignette.

Typical use cases

This section includes examples that demonstrate typical use cases for the jsr223 package. More code
examples are available in the jsr223 User Manual.

Using Java libraries

For this introductory example, we use Stanford’s Core Natural Language Processing Java libraries
(Manning et al., 2014) to identify grammatical parts of speech in a text. Natural language processing
(NLP) is a key component in statistical text analysis and artificial intelligence. This example shows
how so-called “glue” code can be embedded in R to quickly leverage the Stanford NLP libraries. It also
demonstrates how easily jsr223 converts Java data structures to R objects. The full script is available at
https://github.com/floidgilbert/jsr223/tree/master/examples/JavaScript/stanford-nlp.R.

The first step: create a jsr223 "ScriptEngine" instance that can dynamically execute source code.
In this case, we use a JavaScript engine. The object is created using the ScriptEngine$new constructor
method. This method takes two arguments: a scripting language’s name and a character vector
containing paths to the required Java libraries. In the code below, the class.path variable contains
the required Java library paths. The new "ScriptEngine" object is assigned to the variable engine.

class.path <- c(
"./protobuf.jar",
"./stanford-corenlp-3.9.0.jar",
"./stanford-corenlp-3.9.0-models.jar"

)
library("jsr223")
engine <- ScriptEngine$new("JavaScript", class.path)

Now we can execute JavaScript source code. The jsr223 interface provides several methods to do so.
In this example, we use the %@% operator; it executes a code snippet and discards the return value, if
any. The code snippet imports the Stanford NLP "Document" class. The import syntax is peculiar to the
JavaScript dialect. The result, DocumentClass, is used to instantiate objects or access static methods.

engine %@% 'var DocumentClass = Java.type("edu.stanford.nlp.simple.Document");'

The next code sample defines a JavaScript function named getPartsOfSpeech. It tags each element in
a text with a grammatical part of speech (e.g., noun, adjective, or verb). The function parses the text
using a new instance of the "Document" class. The parsing results are transferred to a list of JavaScript
objects. Each JavaScript object contains the parsing information for a single sentence.

engine %@% '
function getPartsOfSpeech(text) {

var doc = new DocumentClass(text);
var list = [];
for (i = 0; i < doc.sentences().size(); i++) {
var sentence = doc.sentences().get(i);
var o = {
"words":sentence.words(),
"pos.tag":sentence.posTags(),
"offset.begin":sentence.characterOffsetBegin(),
"offset.end":sentence.characterOffsetEnd()

}
list.push(o);

}
return list;

}
'
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We use engine$invokeFunction to call the JavaScript function getPartsOfSpeech from R. The method
invokeFunction takes the name of the function as the first parameter; any arguments that follow
are automatically converted to Java objects and passed to the JavaScript function. The function’s
return value is converted to an R object. In this case, jsr223 intuitively converts the list of JavaScript
objects to a list of R data frames as seen in the output below. The parts of speech abbreviations
are defined by the Penn Treebank Project (Taylor et al., 2003). A quick reference is available at
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

engine$invokeFunction(
"getPartsOfSpeech",
"The jsr223 package makes Java objects easy to use. Download it from CRAN."

)

## [[1]]
## words pos.tag offset.begin offset.end
## 1 The DT 0 3
## 2 jsr223 NN 4 10
## 3 package NN 11 18
## 4 makes VBZ 19 24
## 5 Java NNP 25 29
## 6 objects NNS 30 37
## 7 easy JJ 38 42
## 8 to TO 43 45
## 9 use VB 46 49
## 10 . . 49 50
##
## [[2]]
## words pos.tag offset.begin offset.end
## 1 Download VB 51 59
## 2 it PRP 60 62
## 3 from IN 63 67
## 4 CRAN NNP 68 72
## 5 . . 72 73

In this example, we effectively used Stanford’s Core NLP library with a minimal amount of code.
This same functionality can be replicated in any of the jsr223-supported programming languages.

Using Java libraries with complex dependencies

In this example we use Deeplearning4j (DL4J) (Eclipse Deeplearning4j Development Team, 2018) to
build a neural network. DL4J is an open-source deep learning solution for the Java platform. It is
notable both for its scalability and performance. DL4J can run on a local computer with a standard
CPU, or it can use Spark for distributed computing and GPUs for massively parallel processing.
DL4J is modular in design and it has a large number of dependencies. As with many other Java
solutions, it is designed to be installed using a software project management utility like Apache Maven,
Gradle, or sbt. These utilities feature dependency managers that automatically download a library’s
dependencies from a central repository and make them accessible to your project. This is similar to
installing an R package from CRAN using install.packages; by default, any referenced packages are
also downloaded and installed.

The primary goal of this example is to show how jsr223 can easily leverage complex Java solutions
with the help of a project management utility. We will install both Groovy and DL4J using Apache
Maven. We will then integrate a Groovy script with R to create a simple neural network. The process
is straightforward: i.) create a skeleton Java project; ii.) add dependencies to the project; iii.) build a
class path referencing all of the dependencies; and iv.) pass the class path to jsr223. Though we use
Maven here, the same concepts apply to any project management utility that supports Java.

To begin, visit the Maven web site (https://maven.apache.org/) and follow the installation
instructions for your operating system. Next, create an empty folder for this sample project. Open a
terminal (a system command prompt) and change the current directory to the project folder. Execute
the following Maven command. It will create a skeleton Java project named ‘stub’ in a subfolder
by the same name. The Java project is used only to retrieve dependencies; it is not required for the
R project. If this is the first time Maven has been executed on your computer, several files will be
downloaded to the local Maven repository cache on your computer.

mvn archetype:generate -DgroupId=none -DartifactId=stub -DinteractiveMode=false
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Open the Maven project object model file, ‘stub/pom.xml’, in a plain text editor or an XML editor.
Locate the XML element <dependencies>. It will be similar to the example displayed below. A
<dependency> child element defines a single project dependency that will be retrieved from the Maven
repository. Notice that a dependency has a group ID, an artifact ID, and a version. (Artifact is the
general term for any file residing in a repository.) How do you know which dependencies are required
for your project? They are often provided in the installation documentation. Or, if you are starting
from a code example, dependencies can be located in a Maven repository using fully-qualified Java
class names.

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>

</dependency>
</dependencies>

Maven dependency definitions can be located at https://search.maven.org. We will search for
dependencies using the syntax ‘g:<group-id> a:<artifact-id>’. This avoids erroneous results and
near-matches. A search string for each dependency in our demonstration is provided in the bullet
list below. Perform a search using the first bullet item. In the search results, click the version number
under the column heading “Latest Version.” On the right-hand side of the page that follows you will
see an XML Maven dependency definition for the artifact. Copy the XML and insert it after the last
</dependency> end tag in your ‘pom.xml’ file. It is not necessary to preserve indentations or other
white space. Repeat this process for each of the remaining search strings below.

• g:org.apache.logging.log4j a:log4j-core

• g:org.slf4j a:slf4j-log4j12

• g:org.deeplearning4j a:deeplearning4j-core

• g:org.nd4j a:nd4j-native-platform

• g:org.datavec a:datavec-api

• g:org.codehaus.groovy a:groovy-all

Save the ‘pom.xml’ file. In your terminal window, change directories to the Java project folder
(‘stub’) and execute the following Maven command. This will download all of the dependencies to a
local repository cache on your computer. It will also create a file named ‘jsr223.classpath’ in the parent
folder. It contains a class path referencing all of the dependencies that will be used by jsr223.

mvn dependency:build-classpath -Dmdep.outputFile="../jsr223.classpath"

Now everything is in place to create a neural network using Groovy and DL4J. To keep the example
simple, we use a feedforward neural network to classify species in the iris data set. The example
involves an R script (‘dl4j.R’) and a Groovy script (‘dl4j.groovy’). Both scripts can be downloaded from
https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy/dl4j. Save both scripts
in the same folder as ‘jsr223.classpath’.

The R script First, we read in the class path created by Maven and create the Groovy script engine.

library(jsr223)

file.name <- "jsr223.classpath"
class.path <- readChar(file.name, file.info(file.name)$size)
engine <- ScriptEngine$new("groovy", class.path)

Next, we set a seed for reproducible results. The value is saved in a variable that will be retrieved
by the Groovy script.

seed <- 10
set.seed(seed)

The code that follows splits the iris data into train and test matrices. The inputs are centered and
scaled. The labels are converted to a binary matrix format: for each record, the number 1 is placed in
the column corresponding to the correct label.
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train.idx <- sample(nrow(iris), nrow(iris) * 0.65)
train <- scale(as.matrix(iris[train.idx, 1:4]))
train.labels <- model.matrix(~ -1 + Species, iris[train.idx, ])
test <- scale(as.matrix(iris[-train.idx, 1:4]))
test.labels <- model.matrix(~ -1 + Species, iris[-train.idx, ])

Finally, we execute the Groovy script. The results will be printed to the console.

result <- engine$source("dl4j.groovy")
cat(result)

The Groovy script The Groovy script here follows Java syntax with one exception: we provide no
class. Instead, we place all of the code at the top level to be executed at once. This is merely a style
choice to keep the code samples easy to follow. The script begins by importing the necessary classes.

import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.cpu.nativecpu.NDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.LossFunctions;

Next, we convert the train and test data from R objects to the DataSet objects consumed by DL4J.
We retrieve the data from the R environment using the get method of jsr223’s built-in R object. The
R matrices are automatically converted to multi-dimensional Java arrays. These arrays are used to
instantiate the NDArray objects which, in turn, are used to instantiate the DataSet objects.

DataSet train = new DataSet(
new NDArray(R.get("train")),
new NDArray(R.get("train.labels"))

);
DataSet test = new DataSet(

new NDArray(R.get("test")),
new NDArray(R.get("test.labels"))

);

Pulling the data from the R environment using the R object is just one convenient way to share
data between R and the Java environment. It is also possible to push data from R to the Groovy
environment, or to pass the data as function parameters. Note: for very large data sets it is impractical
to exchange data between R and Java using jsr223 methods. Instead, load the data on the Java side for
processing using DL4J classes optimized for big data.

Here we configure a feedforward neural network with backpropagation. The network consists
of four inputs, a seven node hidden layer, a three node hidden layer, and a three node output
layer. An explanation of the network’s hyperparameters is beyond the scope of this discussion.
See https://deeplearning4j.org/docs/latest/deeplearning4j-troubleshooting-training for a
DL4J hyperameter reference.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(R.get("seed").intValue())
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.updater(new Sgd(0.1)) // Learning rate.
.list()
.layer(new DenseLayer.Builder().nIn(4).nOut(7).build())
.layer(new DenseLayer.Builder().nIn(7).nOut(3).build())
.layer(

new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.activation(Activation.SOFTMAX)
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.nIn(3)

.nOut(3)

.build()
)

.backprop(true)

.build();

We use the network configuration to initialize a model which is then trained over 200 epochs.

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

for (int i = 0; i < 200; i++) {
model.fit(train);

}

At last, the trained model is evaluated using the test data. The last line produces a text report
including classification metrics and a confusion matrix.

Evaluation eval = new Evaluation(3); // 3 is the number of possible classes
INDArray output = model.output(test.getFeatures());
eval.eval(test.getLabels(), output);
eval.stats();

Results Executing the R script will produce the following console output. Our simple model
performs reasonably well in this case, misclassifying two out of 53 observations.

## ========================Evaluation Metrics========================
## # of classes: 3
## Accuracy: 0.9623
## Precision: 0.9628
## Recall: 0.9628
## F1 Score: 0.9628
## Precision, recall & F1: macro-averaged (equally weighted avg. of 3 classes)
##
##
## =========================Confusion Matrix=========================
## 0 1 2
## ----------
## 17 0 0 | 0 = 0
## 0 16 1 | 1 = 1
## 0 1 18 | 2 = 2
##
## Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times
## ==================================================================

This example demonstrated that complex Java solutions can be integrated with R using jsr223 and
standard dependency management practices.

Using other language libraries

In addition to using Java libraries, jsr223 can easily take advantage of solutions written in other
languages. In some cases, integration is as simple as sourcing a script file. For example, many common
JavaScript libraries like Underscore (http://underscorejs.org) and Voca (https://vocajs.com) can
be sourced using a URL. The following example sources Voca and word-wraps a string.

engine$source(
"https://raw.githubusercontent.com/panzerdp/voca/master/dist/voca.min.js",
discard.return.value = TRUE

)
engine$invokeMethod("v", "wordWrap",
"A long sentence to wrap using Voca methods.",
list(width = 20)

)

## [1] "A long sentence to\nwrap using Voca\nmethods."
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Compiled Groovy and Kotlin libraries are accessed in the same way as Java libraries: simply
include the relevant class or JAR files when instantiating a script engine.

Ruby gems (i.e., libraries) can also be used with jsr223. The jsr223 User Manual provides instruc-
tions and a code example that uses a gem to generate fake entities for sample data sets.

Core Python language features are fully accessible via jsr223. The jsr223 User Manual contains a
code example that implements a simple HTTP server in Python. The Python server calls back to R
to retrieve HTML content. Compatibility with some Python libraries is limited on the Java platform.
Please see “Python integrations software review” for more information.

Software review

There are many integrations that combine the strengths of R with other programming languages. These
language integrations can generally be classified as either R-major or R-minor . R-major integrations
use R as the primary environment to control some other embedded language environment. R-minor
integrations are the inverse of R-major integrations. For example, rJava is an R-major integration
that allows Java objects to be used within an R session. The Java/R Interface (JRI), in contrast, is an
R-minor integration that enables Java applications to embed R.

The jsr223 package provides an R-major integration for the Java platform and several programming
languages. In this software review, we provide context for the jsr223 project through comparisons
with other R-major integrations. Popular R-minor language integrations such as Rserve (Urbanek,
2013) and opencpu (Ooms, 2017a) are not included in this discussion because their objectives and
features do not necessarily align with those of jsr223. We do, however, include a brief discussion of an
R language implementation for the JVM.

Before we compare jsr223 to other R packages, we point out one unique feature that contrasts
jsr223 with all other integrations in this discussion: jsr223 is the only package that provides a standard
interface to integrate R with multiple programming languages. This key feature enables developers
to take advantage of solutions and features in several languages without the need to learn multiple
integration packages.

Our software review does not include integrations for Ruby and Kotlin because jsr223 is the only
R-major integration for those languages on CRAN.

An rJava software review

As noted in the introduction, rJava is the preeminent Java integration for R. It provides a low-level
interface to compiled Java classes via the JNI. The jsr223 package uses rJava together with the Java
Scripting API to create a user-friendly, multi-language integration for R and the Java platform.

The following code example is taken from rJava’s web site http://www.rforge.net/rJava. It
demonstrates the essential functions of the rJava API by way of creating and displaying a GUI window
with a single button. The first two lines are required to initialize rJava. The next lines use the .jnew
function to create two Java objects: a GUI frame and a button. The associated class names are denoted
in JNI syntax. Of particular note is the first invocation of .jcall, the function used to call object
methods. In this case, the add method of the frame object is invoked. For rJava to identify the
appropriate method, an explicit return type must be specified in JNI notation as the second parameter
to .jcall (unless the return value is void). The last parameter to .jcall specifies the object to be
added to the frame object. It must be explicitly cast to the correct interface for the call to be successful.

library("rJava")
.jinit()
f <- .jnew("java/awt/Frame", "Hello")
b <- .jnew("java/awt/Button", "OK")
.jcall(f, "Ljava/awt/Component;", "add", .jcast(b, "java/awt/Component"))
.jcall(f, , "pack")
# Show the window.
.jcall(f, , "setVisible", TRUE)
# Close the window.
.jcall(f, , "dispose")

The snippet below reproduces the rJava example above using JavaScript. In comparison, the
JavaScript code is more natural for most programmers to write and maintain. The fine details of
method lookups and invocation are handled automatically: no explicit class names or type casts are
required. This same example can be reproduced in any of the five other jsr223-supported programming
languages.
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var f = new java.awt.Frame('Hello');
f.add(new java.awt.Button('OK'));
f.pack();
// Show the window.
f.setVisible(true);
// Close the window.
f.dispose();

Using jsr223, the preceding code snippet can be embedded in an R script. The first step is to create
an instance of a script engine. A JavaScript engine is created as follows.

library(jsr223)
engine <- ScriptEngine$new("JavaScript")

This engine object is now ready to evaluate script on demand. Source code can be passed to the engine
using character vectors or files. The sample below demonstrates embedding JavaScript code in-line
with character vectors. This method is appropriate for small snippets of code. (Note: If you try this
example the window may appear in the background. Also, the window must be closed using the last
line of code. These are limitations of the code example, not jsr223.)

# Execute code inline to create and show the window.
engine %@% "
var f = new java.awt.Frame('Hello');
f.add(new java.awt.Button('OK'));
f.pack();
f.setVisible(true);

"

# Close the window
engine %@% "f.dispose();"

To execute source code in a file, use the script engine object’s source method:
engine$source(file.name). The variable file.name may specify a local file path or a URL. Whether
evaluating small code snippets or sourcing script files, embedding source code using jsr223 is straight-
forward.

In comparison to rJava’s low-level interface, jsr223 allows developers to use Java objects without
knowing the details of JNI and method lookups. However, it is important to note that rJava does
include a high-level interface for invoking object methods. It uses the Java reflection API to automati-
cally locate the correct method signature. This is an impressive feature, but according to the rJava web
site, its high-level interface is much slower than the low-level interface and it does not work correctly
for all scenarios.

The jsr223-compatible programming languages also feature support for advanced object-oriented
constructs. For example, classes can be extended and interfaces can be implemented using any
language. These features allow developers to quickly implement sophisticated solutions in R without
developing, compiling, and distributing custom Java classes. This can speed development and
deployment significantly.

The rJava package supports exchanging scalars, arrays, and matrices between R and Java. The
following R code demonstrates converting an R matrix to a Java object, and vice versa, using rJava.

a <- matrix(rnorm(10), 5, 2)
# Copy matrix to a Java object with rJava
o <- .jarray(a, dispatch = TRUE)
# Convert it back to an R matrix.
b <- .jevalArray(o, simplify = TRUE)

Again, the jsr223 package builds on rJava functionality by extending data exchange. Our package
converts R vectors, factors, n-dimensional arrays, data frames, lists, and environments to generic Java
objects.2 In addition, jsr223 can convert Java scalars, n-dimensional arrays, maps, and collections to
base R objects. Several data exchange options are available, including row-major and column-major
ordering schemes for data frames and n-dimensional arrays.

This code snippet demonstrates data exchange using jsr223. The variable engine is a jsr223
ScriptEngine object. Similar to the preceding rJava example, this code copies a matrix to the Java
environment and back again. The same syntax is used for all supported data types and structures.

2rJava’s interface can theoretically support n-dimensional arrays, but currently the feature does not produce
correct results for n > 2. See the related issue at the rJava GitHub repository: “‘.jarray(..., dispatch=T)’ on
multi-dimensional arrays creates Java objects with wrong content.”
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a <- matrix(rnorm(10), 5, 2)
# Copy an R object to Java using jsr223.
engine$a <- a
# Retrieve the object.
engine$a

The rJava package does not directly support callbacks into R. Instead, callbacks are implemented
through JRI: the Java/R Interface. The JRI interface is included with rJava. However, to use JRI, R
must be compiled with the shared library option ‘--enable-R-shlib’. The JRI interface is technical
and extensive. In contrast, jsr223 supports callbacks into R using a lightweight interface that provides
just three methods to execute R code, set variable values, and retrieve variable values. The jsr223
package does not use JRI, so there is no requirement for R to be compiled as a shared library.

In conclusion, jsr223 provides an alternative integration for the Java platform that is easy to learn
and use.

Groovy integrations software review

Besides jsr223, the only other Groovy language integration available on CRAN is rGroovy (Fuller,
2018). It is a simple integration that uses rJava to instantiate groovy.lang.GroovyShell and pass code
snippets to its evaluate method. We outline the typical integration approach using rGroovy.

Class paths must set in the global option GROOVY_JARS before loading the rGroovy package.

options(GROOVY_JARS = list("groovy-all.jar", ...))
library("rGroovy")

After the package is loaded, the Initialize function is called to instantiate an instance of
the Groovy script engine that will be used to handle script evaluation. The Initialize function
has one optional argument named binding. This argument accepts an rJava object reference to a
groovy.lang.Binding object that represents the bindings available to the Groovy script engine. Hence,
rJava must be used to create, set, and retrieve values in the bindings object. The following code
example demonstrates instantiating the Groovy script engine. We initialize the script engine bindings
with a variable named myValue that contains a vector of integers. Notice that knowledge of rJava and
JNI notation is required to create an instance of the bindings object, convert the vector to a Java array,
cast the resulting Java array to the appropriate interface, and finally, call the setVariable method of
the bindings object.

bindings <- rJava::.jnew("groovy/lang/Binding")
Initialize(bindings)
myValue <- rJava::.jarray(1:3)
myValue <- rJava::.jcast(myValue, "java/lang/Object")
rJava::.jcall(bindings, "V", method = "setVariable", "myValue", myValue)

Finally, Groovy code can be executed using the Evaluate method; it returns the value of the last
statement, if any. In this example, we modify the last element of our myValue array, and return the
contents of the array.

script <- "
myValue[2] = 5;
myValue;

"
Evaluate(groovyScript = script)

## [1] 1 2 5

The rGroovy package includes another function, Execute, that allows developers to evaluate
Groovy code without using rJava. However, this interface creates a new Groovy script engine instance
each time it is called. In other words, it does not allow the developer to preserve state between each
script evaluation.

In this code example, we demonstrate Groovy integration with jsr223. After the library is loaded,
an instance of a Groovy script engine is created. The class path is defined at the same time the script
engine is created. The variable engine represents the script engine instance; it exposes several methods
and properties that control data exchange behavior and code evaluation. The third line creates a
binding named myValue in the script engine’s environment; the R vector is automatically converted to
a Java array. The fourth line executes Groovy code that changes the last element of the myValue Java
array before returning it to the R environment.
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library("jsr223")
engine <- ScriptEngine$new("Groovy", "groovy-all.jar")
engine$myValue <- 1:3
engine %~% "
myValue[2] = 5;
myValue;

"

## [1] 1 2 5

In comparison to rGroovy, the jsr223 implementation is more concise and requires no knowledge
of rJava or Java classes. Though not illustrated in this example, jsr223 can invoke Groovy functions
and methods from within R, it supports callbacks from Groovy into R, and it provides extensive and
configurable data exchange between Groovy and R. These features are not available in rGroovy.

In summary, rGroovy exposes a simple interface for executing Groovy code and returning a result.
Data exchange is primarily handled through rJava, and therefore requires knowledge of rJava and JNI.
The jsr223 integration is more comprehensive and does not require any knowledge of rJava.

JavaScript integrations software review

The most prominent JavaScript integration for R is Jeroen Ooms’ V8 package (2017b). It uses the open
source V8 JavaScript engine (Google developers, 2018) featured in Google’s Chrome browser. We
discuss the three primary differences between V8 and jsr223.

First, the JavaScript engine included with V8 provides only essential ECMAscript functionality.
For example, V8 does not include even basic file and network operations. In contrast, jsr223 provides
access to the entire JVM which includes a vast array of libraries and computing functionality.

Second, all data exchanged between V8 and R is serialized using JSON via the jsonlite package
(Ooms et al., 2017). JSON is very flexible; it can represent virtually any data structure. However,
JSON converts all values to/from string representations which adds overhead and imposes round-off
error for floating point values. The jsr223 package handles all data using native values which reduces
overhead and preserves maximum precision. In many applications, the loss of precision is not critical
as far as the final numeric results are concerned, but it does require defensive programming when
checking for equality. For example, an application using V8 must round two values to a given decimal
place before checking if they are equal.

The following code example demonstrates the precision issue using the R constant pi. The JSON
conversion is handled via jsonlite, just as in the V8 package. We see that after JSON conversion the
value of pi is not identical to the original value. In contrast, the jsr223 conversion result is identical to
the original value.

# `digits = NA` requests maximum precision.
library("jsonlite")
identical(pi, fromJSON(toJSON(pi, digits = NA)))

## [1] FALSE

library("jsr223")
engine <- ScriptEngine$new("js")
engine$pi <- pi
identical(engine$pi, pi)

## [1] TRUE

The third significant difference between V8 and jsr223 is syntax checking. V8 includes an interface
to check JavaScript code syntax. The Java Scripting API does not provide an interface for syntax
checking, hence, jsr223 does not provide this feature. We have investigated other avenues to check
syntax, but none are uniformly reliable across all of the jsr223-supported languages. Moreover, this
feature is not critical for most integration scenarios; syntax validation is more common in applications
that involve interactive code editing.

Python integrations software review

In this section, we compare jsr223 with two Python integrations for R: reticulate (Allaire et al., 2018)
and rJython (Grothendieck and Bellosta, 2012). Of the many Python integrations available for R on
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CRAN, reticulate is the most popular as measured by monthly downloads.3 We also discuss rJython
because, like jsr223, it targets Python on the JVM.

The reticulate package is a very thorough Python integration for R. It includes some refined
interface features that are not available in jsr223. For example, reticulate enables Python objects to
be manipulated in R script using list-like syntax. One major jsr223 feature that reticulate does not
support is callbacks (i.e., calling R from Python). Though there are many interface differences between
jsr223 and reticulate (too many to list here), the most practical difference arises from their respective
Python implementations. The reticulate package targets CPython, the reference implementation of the
Python script engine. As such, reticulate can take advantage of the many Python libraries compiled to
machine code such as Pandas (McKinney, 2010). The jsr223 package targets the JVM via Jython, and
therefore supports accessing Java objects from Python script. It cannot, however, access the Python
libraries compiled to machine code because they cannot be executed by the JVM. This isn’t a complete
dead-end for Jython; many important Python extensions are being migrated to the JVM by the Jython
Native Interface project (http://www.jyni.org). These extensions can easily be accessed through
jsr223.

The rJython package is similar to jsr223 in that it employs Jython. Both jsr223 and rJython can
execute arbitrary Python code, call Python functions and methods directly from R, use Java objects,
and copy data between environments. However, there are also several important differences.

Data exchange for rJython can be handled via JSON or direct calls to the Jython interpreter object
via rJava. When using rJava for data exchange, rJython is essentially limited to vectors and matrices.
When using JSON for data exchange, rJython converts R objects to Jython structures. In contrast, the
jsr223 supports a single data exchange interface that supports all major R data structures. It uses
custom Java routines that avoid the overhead and roundoff error associated with JSON conversion.
Finally, jsr223 converts R objects to generic Java structures instead of Jython objects.

JSON data exchange for rJython is handled by the rjson (Couture-Beil, 2014) package. It does not
handle some R structures as one would expect. For example, n-dimensional arrays and unnamed lists
are both converted to one-dimensional JSON arrays. Furthermore, rJython converts data frames to
Jython dictionaries, but dictionaries are always returned to R as named lists.

The jsr223 package does not exhibit these limitations; it provides predictable data exchange for all
major R data structures.

Unlike jsr223, the rJython package does not return the value of the last expression when executing
Python code. Instead, scripts must assign a value to a global Python variable to be fetched by another
rJython method. This does not promote fast code exploration and prototyping. In addition, rJython
does not supply interfaces for callbacks, script compiling, or capturing console output.

In essence, rJython implements a basic interface to the Jython language. The jsr223 package, in
comparison, provides a more developed feature set.

Renjin software review

Renjin (Renjin developers, 2018) is an ambitious project whose primary goal is to create a drop-
in replacement for the R language on the Java platform. The Renjin solution features R syntax
extensions that allow Java classes to be created and used naturally within R script. The Renjin
language implementation has two important limitations: (i) it does not support plotting; and (ii) it
can’t use R packages that contain native libraries (like C). The jsr223 package, in contrast, is designed
for the reference distribution of R. As such, it can be used in concert with any R package.

Renjin also distributes an R package called renjin. It is not available from CRAN. (Find the
installation instructions at http://www.renjin.org.) The renjin package exports a single method that
evaluates an R expression. It is designed only to improve execution performance for R expressions; it
does not allow Java classes to be used in R script. Hence, the renjin package is not a Java platform
integration.

Overall, Renjin is a promising Java solution for R, but it is not yet feature-complete. In comparison,
jsr223 presents a viable Java solution for R today.

Summary

Java is one of the most successful development platforms in computing history. Its popularity continues
as more programming languages, tools, and technologies target the JVM. The jsr223 package provides
a high-level, user-friendly interface that enables R developers to take advantage of the flourishing Java

3The reticulate package has 3,681 downloads per month according to http://rdocumentation.org. The next
most popular Python integration is PythonInR (Schwendinger, 2018) with 322 monthly downloads.
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ecosystem. In addition, jsr223’s unified integration interface for Groovy, JavaScript, Python, Ruby,
and Kotlin also facilitates access to solutions developed in these languages. In all, jsr223 significantly
extends the computing capabilities of the R software environment.

In this paper, we provided an introduction to the main features and advantages of the jsr223
package. For more language-specific examples and a full treatment of software features, see the jsr223
User Manual included in the package vignettes.

Bibliography

J. Allaire, Y. Tang, and M. Geelnard. reticulate: Interface to ’Python’, 2018. URL https://CRAN.R-
project.org/package=reticulate. R package version 1.5. [p451]

W. Chang. R6: Classes with Reference Semantics, 2017. URL https://CRAN.R-project.org/package=R6.
R package version 2.2.2. [p442]

A. Couture-Beil. rjson: JSON for R, 2014. URL https://CRAN.R-project.org/package=rjson. R
package version 0.2.15. [p452]

G. Csardi. cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror, 2015. URL https://CRAN.R-
project.org/package=cranlogs. R package version 2.1.0. [p440]

D. B. Dahl. rscala: Bi-Directional Interface Between R and Scala with Callbacks, 2018. URL http://CRAN.R-
project.org/package=rscala. R package version 2.5.1. [p442]

Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-Source Distributed Deep Learning for
the JVM, 2018. URL http://deeplearning4j.org. [p444]

T. P. Fuller. rGroovy: Groovy Language Integration, 2018. URL https://CRAN.R-project.org/package=
rGroovy. R package version 1.2. [p450]

F. R. Gilbert and D. B. Dahl. jdx: ’Java’ Data Exchange for ’R’ and ’rJava’, 2018. URL https://CRAN.R-
project.org/package=jdx. R package version 0.1.2. [p442]

Google developers. Chrome V8, 2018. URL https://developers.google.com/v8/. [p451]

G. Grothendieck and C. J. G. Bellosta. rJython: R Interface to Python via Jython, 2012. URL https:
//CRAN.R-project.org/package=rJython. R package version 0.0-4. [p451]

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. The Stanford
CoreNLP natural language processing toolkit. In Association for Computational Linguistics (ACL)
System Demonstrations, pages 55–60, 2014. [p443]

W. McKinney. Data structures for statistical computing in python. In S. van der Walt and J. Millman,
editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56, 2010. [p452]

M. O’Connell. Java: The inside story. SunWorld Online, 1995. URL http://tech-insider.org/java/
research/1995/07.html. [p440]

J. Ooms. opencpu: Producing and Reproducing Results, 2017a. URL https://CRAN.R-project.org/
package=opencpu. R package version 2.0.5. [p448]

J. Ooms. V8: Embedded JavaScript Engine for R, 2017b. URL https://CRAN.R-project.org/package=V8.
R package version 1.5. [p442, 451]

J. Ooms, D. T. Lang, and L. Hilaiel. jsonlite: A Robust, High Performance JSON Parser and Generator for R,
2017. URL https://CRAN.R-project.org/package=jsonlite. R package version 1.5. [p451]

Oracle. Java Scripting API, 2016. URL https://docs.oracle.com/javase/8/docs/technotes/guides/
scripting/prog_guide/toc.html. [p441]

Renjin developers. Renjin, 2018. URL http://www.renjin.org. [p452]

F. Schwendinger. PythonInR: Use ’Python’ from Within ’R’, 2018. URL https://CRAN.R-project.org/
package=PythonInR. R package version 0.1-4. [p452]

Sun Microsystems, Inc. JSR-223: Scripting for the Java Platform, 2006. URL https://jcp.org/en/jsr/
detail?id=223. [p441]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=rjson
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=cranlogs
http://CRAN.R-project.org/package=rscala
http://CRAN.R-project.org/package=rscala
http://deeplearning4j.org
https://CRAN.R-project.org/package=rGroovy
https://CRAN.R-project.org/package=rGroovy
https://CRAN.R-project.org/package=jdx
https://CRAN.R-project.org/package=jdx
https://developers.google.com/v8/
https://CRAN.R-project.org/package=rJython
https://CRAN.R-project.org/package=rJython
http://tech-insider.org/java/research/1995/07.html
http://tech-insider.org/java/research/1995/07.html
https://CRAN.R-project.org/package=opencpu
https://CRAN.R-project.org/package=opencpu
https://CRAN.R-project.org/package=V8
https://CRAN.R-project.org/package=jsonlite
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/toc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/toc.html
http://www.renjin.org
https://CRAN.R-project.org/package=PythonInR
https://CRAN.R-project.org/package=PythonInR
https://jcp.org/en/jsr/detail?id=223
https://jcp.org/en/jsr/detail?id=223


CONTRIBUTED RESEARCH ARTICLES 454

A. Taylor, M. Marcus, and B. Santorini. The penn treebank: An overview. In N. Ide, editor, Text, Speech
and Language Technology, volume 20. Springer-Verlag, 2003. URL https://doi.org/10.1007/978-
94-010-0201-1_1. [p444]

S. Urbanek. Rserve: Binary R Server, 2013. URL http://CRAN.R-project.org/package=Rserve. R
package version 1.7-3. [p448]

S. Urbanek. rJava: Low-Level R to Java Interface, 2017. URL https://CRAN.R-project.org/package=
rJava. R package version 0.9-9. [p440]

Floid R. Gilbert
Master’s Student
Department of Statistics
Brigham Young University
Provo, UT 84602
USA
floid.r.gilbert@gmail.com

David B. Dahl
Professor, Graduate Coordinator, and Associate Chair
Department of Statistics
Brigham Young University
Provo, UT 84602
USA
dahl@stat.byu.edu

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://doi.org/10.1007/978-94-010-0201-1_1
https://doi.org/10.1007/978-94-010-0201-1_1
http://CRAN.R-project.org/package=Rserve
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
mailto:floid.r.gilbert@gmail.com
mailto:dahl@stat.byu.edu

