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Geospatial Point Density

by Paul F. Evangelista and David Beskow

Abstract This paper introduces a spatial point density algorithm designed to be explainable, meaning-
ful, and efficient. Originally designed for military applications, this technique applies to any spatial
point process where there is a desire to clearly understand the measurement of density and maintain
fidelity of the point locations. Typical spatial density plotting algorithms, such as kernel density
estimation, implement some type of smoothing function that often results in a density value that is
difficult to interpret. The purpose of the visualization method in this paper is to understand spatial
point activity density with precision and meaning. The temporal tendency of the point process as an
extension of the point density methodology is also discussed and displayed. Applications include
visualization and measurement of any type of spatial point process. Visualization techniques integrate
ggmap with examples from San Diego crime data.

Introduction

The pointdensityP package is an example of a tailored package that was created to visualize and
quantify spatiotemporal point data (Evangelista and Beskow, 2018). The innovation in the presented
methods lies in the implementation, simplification, and general improvements over other methods.
Although designed for military analysis, the presented analysis and visualization methods work
for any discrete point process that contains a spatial dimension. The point density method in this
paper calculates event frequency intensity, or density, within the neighborhood of a given point,
accounting for geospatial projection. Additionally, if the point process includes a temporal dimension,
the temporal tendency can also be calculated. The temporal tendency is the average age of events
within the neighborhood of each point, providing perspective on density trends over time.

The purpose of any type of map projection is simple—to understand a phenomenon within
the context of our physical environment. The impetus of the work within this paper resulted from
difficult-to-explain output from common spatial density or “hot spot” visualization techniques. Many
of these spatial density approaches use a methodology that would be appropriate for a continuous
valued phenomenon but does not apply well to discrete phenomenon. Many of the existing density
visualization techniques apply a smoothing function that depicts activity where there should be
no activity, essentially spreading the density across the area of interest without spatial specificity.
Furthermore, many of the density approximation techniques, such as kernel density estimation, create
an output value that is not easily interpreted. All too often the output simply provides a relative
comparison, with colors representing values that indicate a higher or lower density without providing
meaningful quantification of the measured phenomenon.

Related work

Spatial density measurement or “hot spot” analysis is widespread in geospatial literature. Baddeley
et al. provide an authoritative overview of numerous spatial point pattern computational methods,
to include density methods using spatstat (Baddeley et al., 2015). Within R, kde2d is probably the
most commonly used spatial density function (Ripley et al., 2015; Venables and Ripley, 2002). This
function creates a gaussian kernel density estimate for two-dimensional data. Wand and Jones discuss
computing techniques for kernel estimators in Wand and Jones (1995) and Wand (1994), describing the
technique of binning data prior to estimating the kernel density. The function bkde2D implements
Wand’s binned kernel density estimation technique (Wand and Ripley, 2014). The binning approach
reduces the computing cost significantly. Assuming n data points that will create a density estimate
for m points, the direct computation of the kernel estimate will be O(nm). Binning maps n points to G
grid points, where G < n, and reduces complexity to O(Gm).

There are several problems related to kernel-based smoothing when applied to discrete spatio-
temporal events. Ease of interpretation and outputs designed for a continuous valued process have
already been mentioned. For the binned kernel density estimation, granularity of the mesh also quickly
increases computational requirements. Kernel based smoothing calculates and returns density for
every point in the mesh. Discrete event spatio-temporal phenomenon, especially social phenomenon,
only apply to regions of space where people are active. For example, in the San Diego data analyzed
in this paper, there is no need to calculate crime density tens of miles into the Pacific Ocean. However,
the square mesh approach used in the kernel smoothing algorithms forces this calculation. The
pointdensity() algorithm presented in this paper returns values only for event locations, improving
clarity on both the location and density of event behavior. The following code creates an example
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of binned kernel density estimation, using bkde2D, applied to the San Diego crime data (San Diego
Regional Data Library, 2015). Figure 1 contains the visual results.

SD <- read.table("incidents-5y.csv”, sep = ",", header = TRUE)
x <- cbind(SD$lon, SD$lat)
est <- bkde2D(x, bandwidth = c(.01, .01), gridsize = c(750, 800),
range.x = list(c(-117.45, -116.66), c(32.52, 33.26)))
BKD_df <- data.frame(lat = rep(est$x2, each = 750), lon = rep(est$x1, 800),
count = c(est$fhat))
map_base <- gmap(location = "32.9,-117.1", zoom = 10, darken = 0.3)
map_base + stat_contour(bins = 150, geom = "polygon”, aes(x = lon, y = lat, z = count,
fill = ..level..), data = BKD_df, alpha = 0.15)
+ scale_fill_continuous(name = "density"”, low = "green"”, high = "red")

Figure 1: Two-dimensional binned kernel density estimation applied to San Diego crime data.

The method proposed in this paper requires two parameters:

* g, agrid size that represents the fraction of latitude and longitude degree separation in the grid
or binning system that will be used for aggregation, and

* 7, a positive integer value that represents the radius in grid steps for the neighborhood of
interest, which yields a complexity of O(n(2r)2).

Typically, (2r)> < G. As a comparison, Figure 1 resulted from bkde2D and compared 800,000 crime
locations across a mesh that measured 800 x 750 = 600,000 = G, creating a mesh of points separated by
approximately 0.1 km. In comparison, Figure 4 resulted from pointdensity() and uses a radius of
10 steps (1 kilometer total) and the same grid size of 0.1 km, comparing 800,000 crime locations each
against a local neighborhood of (2r)? = 400 points. This reduced computational complexity achieved
by the pointdensity() algorithm largely results from the advantage of assuming and managing an
unbounded spatial extent.

Both bkde2D and geom_bin2d() from ggplot2 require a bounded spatial extent. Density al-
gorithms with a bounded spatial extent have two common disadvantages: they usually include
unnecessary computations, and they always require pre-existing knowledge regarding the spatial
extent. While this advantage is not completely analogous to the concept of unbounded data processing,
there are similarities. Akidau et al. (2015) describe the fundamental aspects of unbounded data and
the need for modern computing methods to accomodate this growing field. Since the pointdensity()
algorithm processes data without the requirement for a spatial extent, it is possible to efficiently

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859


https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 349

process data that includes significant spatial separation, a potentially useful trait depending upon the
nature of the data under consideration.

The techniques discussed in this paper have been under development for several years and
employed in several studies. Previous implementations involved other programming languages
(Perl, Python) and leveraged ESRI’'s ArcMap to visualize results (Environmental Systems Research
Institute (ESRI), 2018). Although plotting and graphics have long been a strong suit of R, geospatial
visualization lagged behind many commercial geospatial information systems until the release of
ggmap in 2011. ggmap is an R package where the authors present methods for plotting geospatial
information by leveraging existing online map sources through their APIs and plotting the map as an
image in R (Kahle and Wickham, 2013a,b). Similar to ArcMap, ggmap enables layers of geospatial data
to be plotted over a georectified image for the sake of analysis and visualization. The aesthetic appeal
of these downloaded images coupled with the capability to overlay sophisticated graphics motivated
the creation of the techniques discussed in this paper.

Methodology

Although the claimed merits of the methods in this paper include simplicity and ease of understanding,
there are two aspects of this algorithm that may not be immediately apparent without describing in
detail. The first involves the method of discretization and geospatial projection used to manage and
measure the density. And the second aspect involves the data management necessary to implement this
discretization and efficiently calculate the density. Two data management practices will be discussed:
the original use of hash data structures and the recent use of matrix-based data structures.

The pointdensity() algorithm

The pointdensity() algorithm applies elementary geometry with a geospatial projection in order to
build the point density measurements. Figure 2 shows how the neighborhood radius, r, is projected
across a square grid. Geographers refer to this as a cylindrical or mercator projection where longi-
tudinal lines appear to remain equidistant. The mercator projection has been used for the sake of
illustration, however the algorithm uses a spherical projection and great circle distances to achieve
maximal accuracy. As previously mentioned, the algorithm applies a simple binning rule that signifi-
cantly reduces computations. Density is only collected at the intersection of the grid lines shown in
the figure, referred to as grid points. Assume that the center of the circle represents the grid point
closest to an event or binned collection of events. The density of every grid point within r will increase
by the amount of density associated with the center grid point. The algorithm iterates north and south
within r along the latitudes of the grid and calculates the tolerance, t, of longitudinal grid lines that are
within r. The spherical Pythagorean theorem is used to find ¢, providing an accurate binning tolerance
irrespective of location on the globe (Veljan, 2018). This binning tolerance ensures that only grid points
within r increase in density.

Figure 2: Calculating the longitudinal tolerance.

Figure 3 shows a toy example of the point density method examining only three points. This image
shows points A, B, and C, and the radius is four grid steps. Assume that these three points are near the
equator and the mercator projection is a reasonable representation of true distance to scale. This figure
shows the final density count for every point within the neighborhood radius of the three events.

The original hash-based data structure approach is shown with pseudo-code in algorithm 1. The
interested reader can find the implementation of the hash-based algorithm in pointdensityP version

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859


https://CRAN.R-project.org/package=ggmap

CONTRIBUTED RESEARCH ARTICLES 350

1: Store n points and let lat;, lon;, and date; represent the latitude, longitude, and date of
each point, respectively. Let g represent the grid size measured in degrees latitude, and
r represent the radius measured in grid steps. For each lat; and lon;, round each to the
nearest grid point, and store the rounded points as t/at; and tlon;. Set m = 0.
: fori =1tondo
if bin_density_hash(tlat;, tlon;) exists then
bin_density_hash(tlat;, tlon;) + +
bin_temporal_hash(tlat;, tlon;)+ = date;
else
bin_density_hash(tlat;, tlon;) =1
bin_temporal_hash(tlat;, tlon;) = date;
active_grid_hash(m) = (tlat;, tlon;)
10: m+ +
11:  endif
12: end for
13: forj=1tomdo
14:  retrieve tlat; and tlonj from active_grid_hash(j)
15:  forlat; = tlat; — rg to tlat; + rg do

R A O o

16: t = arccos(cos(rg)/ cos(lat; —tlat;))/g
17: round f to the nearest integer

18: t=txg

19: for lon; = tlonj —ttotlon; +t do

20 density_hash (lat, lon;) + +

21: temporal_hash(lat;, lon;)+ = temporal_hash(tlat;, tion;)
22: lony = lony + g

23: end for

24: lat; = lat; + g

25:  end for

26: end for

27: fori =1ton do
28:  round (lat; = lat;/g) to the nearest integer
29:  laty =latyx g
30:  round (lon; = lon;/g) to the nearest integer
31:  long =long*g
32:  temporal_hash(lat;, lon;) = temporal_hash(lat;, lon;)/density_hash(lat;, lon;)
33:  print lat;, lon;, density_hash(lat;, lon;), temporal_hash(lat;, lon;)
34: end for
Algorithm 1: Hash-based point density algorithm

0.2.1. Discussing the original use of hash data structures for the pointdensity() algorithm provides
two insights: the hash-based approach provides an accessible explanation of the pointdensity()
computational approach; and secondly, a comparison of the hash-based method to the matrix-based
method illustrates a significant difference in computing time when using hash-based data retrieval
compared to matrix-based data retrieval. Hash data structures, or associative arrays, are ubiquitous
in programming, but considered somewhat of a late arrival to R from a programming standpoint.
However, many have pointed out that R’s native environment data structures are inherently a hash
data structure and can be leveraged as such. Brown (2013) wrote an R package specifically designed to
“fully implement” hash data structures in R. The use of hash data structures for the pointdensity()
algorithm reduced unneeded computations and stored geographic data only within the neighborhood
radius of event points. While the use of hash data structures improved the computational complexity
from O(Gm) to O(n(2r)?), the use of matrices and carefully indexed data proved to be an even faster
solution. Both computing methods are explained in this paper.

Use of the hash-based data structure achieved desired results, reducing computational complexity
while returning an adequate approximation of density. However, the speed of the computation was
not satisfactory for larger datasets. While retaining the binned density concept, the algorithm was
reduced to one loop of length = n event points using matrix and array facilities. This latter approach
will be referred to as the matrix-based approach. The implementation of the matrix-based approach
can be found in pointdensityP version 0.3.4.

The general process of the pointdensity() algorithm reduces a list of n points to a list of m grid
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Figure 3: Visualizing the point density algorithm.

points on a mesh. The calculation of density and temporal tendency remains relative to the mesh. Once
the overall pointdensity() algorithm is complete, it is necessary to assign the density and temporal
tendency back to the original list of data. The hash-based algorithm creates intuitive data structures
and data retrieval to relate the list of 2 points to the list of m grid points. Unfortunately, the retrieval of
information from the hash tables proved increasingly time consuming as the datasets grew. In order
to overcome this problem while continuing to manage the requirement to relate n original points
to m grid points, a careful sort and index process, using matrix-based facilities and the data.table
package, replaced the hash-based storage and retrieval method (Dowle and Srinivasan, 2017). A brief
explanation of the improved computing approach follows.

The original list of n points, sorted by their latitude and longitude, reduces to m points once
every point is rounded to the nearest point on the mesh. All of the aggregation and sorting leverages
functions from the data.table package. For each of the m points on the mesh, an initial density of one
or greater exists. This initial density is retained through the algorithm. After calculating the final
density for each point, this initial density is used to re-expand the list to the original size of n points,
in the original order, to return the final density count and temporal tendency.

Each of the m points processes through a density calculation function. The function to calculate
the local density surrounding an event point is named calc_density() in the pointdensityP package.
The function starts with enumeration of all latitudes within the radius of the event point, annotated as
lati and loni. These latitudes are stored in a vector:
lat.vec <- seq(lati - radius * grid_size, lati + radius * grid_size, grid_size)

The variable radius represents the radius measured in grid steps, and grid_size represents the
size of the grid measured in degrees latitude. lati is the latitude of the grid point located closest to
the event point. lat.vec is now an array of each latitude contained in the neighborhood. For each
latitude, there is a longitudinal distance that represents the tolerance of the radius. This tolerance is
computed using the spherical Pythagorean theorem, as previously discussed. lat.vec. t will contain
the longitudinal tolerance for each latitude:

lat.vec.t <- acos(cos(radius * grid_size) / cos(lat.vec - lati))
lat.vec.t <- lat.vec.t / cos(lat.vec * 2 * pi / 360)
lat.vec.t <- round(lat.vec.t / grid_size, @) * grid_size

The final line of code above rounds the tolerance to the nearest longitude grid line on the mesh.
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Figure 4: Point density visualization of San Diego crime.

The calculation of lon.vec occurs in the same manner as lat.vec, which is then further expanded to
a matrix, lon.mat. This matrix contains the longitudinal value of every point within a square mesh
that includes (2 * radius + 1)*2 points, with the event point at the center. After subtracting lati
from this matrix, the absolute value of the matrix then contains the distance between the longitude of
the event point and the longitude of every point in the mesh. The final subtraction of lat.vec.t then
returns a matrix that indicates all points outside of the radius as a negative value. After setting all
negative elements to zero and all positive values to 1, the Hadamard product of this binary matrix
and the original matrix of longitudinal values contained in lon.mat returns a matrix that contains a
longitudinal value for every point within the radius and a value of 0 for every grid point outside of
the radius. Combining these non-zero longitudinal values with the latitude vector returns a list of
points within the radius of the event grid point. The final step of the local density calculation involves
assigning the temporal value, or sum of temporal values if there is more than one event that rounds to
the event grid point, and assigning the original density of the event point to every grid point in the
neighborhood. These steps distribute the density and the temporal value of the event point across
the neighborhood, completing function calc_density() and creating a list of grid points prepared for
aggregation without processing a for-loop in R.

As each of the m points processes through calc_density(), the list of returned points adds to a
data.table object which is then aggregated, summing both the density and temporal value for each
unique grid point in the data.table object. After processing each of the m points and aggregating the
returned results, every grid point with a positive density exists in the data.table object. The m grid
points associated with one of the original 7 points are retained and re-sorted into their original order,
and all other points are discarded. The initial density of every grid point is then added as an additional
column to the data.table, which is then expanded to length n with the following command:

nfinal <- final.1[rep(seq(1, nrow(final.1)), final.1$yy_count)]

The data.table final.1 contains the grid point location, density, and sum of temporal values. The
field yy_count contains the number of original points that were associated with the event’s grid point
location. After this expansion, a sorted list of 1 events exists that includes the density and temporal
sum of every original point. The temporal sum is then divided by the density. The pointdensity
algorithm finally returns every original point location, a density value, and the temporal tendency of
the point.

Figure 4 displays the calculated density for the San Diego crime data (San Diego Regional Data
Library, 2015). Visualizing only the points in the location where the crime occurred provides spatial
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specificity, and the coloring provides an explainable measure of the density. Figure 4 results from the
following commands:

SD_density <- pointdensity(df = SD_sub, lat_col = "lat”, lon_col = "lon",
date_col = "date”, grid_size = 0.1, radius = 1)
SD_density$count[SD_density$count > 10000] <- 10000
## creates discriminating color scale
map_base + geom_point(aes(x = lon, y = lat, colour = count), shape = 16, size = 2,
data = SD_density) + scale_colour_gradient(low = "green”, high = "red")

The difference in speed between the hash-based approach and the newer matrix-based approach
was significant. The matrix-based approach eliminates the need for information retrieval from large
hash tables, the most expensive aspect of the hash-based approach. Table 1 compares pointdensityP
version 0.2.1 (hash-based) against version 0.3.2 (matrix-based).

data records 10 102 108 10% 10° 100
hash-based time (s) 0.06 0.14 1.19 1060 265.65 857.15
matrix-based time (s) 0.03 0.15 1.19 797 3335 74.88

Table 1: Time comparison between hash-based algorithm and matrix-based algorithm.

Temporal tendency of event data

A byproduct of the original pointdensity() algorithm was the concept of computing the temporal
tendency for the events in the neighborhood of every event. Given a set of n events with a spatial
and temporal dimension, it is possible to calculate an average event date for the entire dataset or any
subset of the data. This is an elementary calculation, however when combined with the neighborhood
aggregation approach used in the pointdensity() algorithm, it is possible to expose previously
undetected trends and patterns.

Figure 5 shows a toy example of two time series plots that span an equivalent period. Clearly the
plot on the left will have a smaller temporal tendency due to the heavier density in the earlier periods.
This is unarguably a simplistic measure for detecting differences in trends, however it has proven to
be a reliable technique in practice.
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Figure 5: A toy example of the temporal tendency discriminating between an increasing and decreasing
trend.

The temporal tendency represents the average age of all events within the neighborhood. This
measurement also creates a naive measurement for the relative temporal trend, increasing or decreas-
ing, in the neighborhood. A neighborhood with an increasing trend will have a more recent temporal
tendency since a higher density of events occurred more recently. A neighborhood with a decreasing
trend will have an older temporal tendency, representing a higher density of events occurring earlier
in the time period.

The spatial patterns that emerge from the temporal tendency projection provide the most com-
pelling aspect of the temporal tendency calculation. Some tuning of the color scale is necessary to
create visual discrimination. The following lines of code create the underlying temporal tendency plot
and histograms shown in Figure 6:

SD_temp_tend <- SD_density[SD_density$date_avg > 0]
SD_temp_tend$dateavg[SD_temp_tend$dateavg < 147111 <- 14711
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SD_temp_tend$dateavg[SD_temp_tend$dateavg > 14794] <- 14794
map_base + geom_point(aes(x = lon, y = lat, colour = dateavg), shape = 16, size = 2,
data = SD_temp_tend) + scale_colour_gradient(low = "green"”, high = "red")

Histograms result from the following:

x <- as.Date(SD$date)

hist(x, "weeks"”, format = "%d %b %y", freq = TRUE)

mid_city <- subset(SD, lat > 32.69 & lon > -117.14 & lat < 32.79 & lon < -117.08)
X <- as.Date(mid_city$date)

hist(x, "weeks"”, format = "%d %b %y", freq = TRUE)

encinitas <- subset(SD, lat > 33 & lon > -117.32 & lat < 33.09 & lon < -117.27)

x <- as.Date(encinitas$date)

hist(x, "weeks"”, format = "%d %b %y", freq = TRUE)

Figure 6 shows the results of temporal tendency projection for the San Diego crime data. Regions
of disparate activity become apparent with this projection, providing an opportunity to detect areas
that are “heating up” compared to areas that are “cooling down”. The overall San Diego crime dataset
shows an aggregate decreasing trend for 2007 - 2012. Box 1, Encinitas, shows a slightly increasing
trend. Mid-City is a region with one of the strongest decreasing trends.

weekly frequency counts

count of reported crime

count of reported crime

count of reported crime

31 Dec 07 25May 09 11 Oct10 13 Feb 12

Figure 6: Temporal tendency projection of San Diego crime data.

Simple linear regression is a common method to detect trends. The following code creates a linear
model and summary of the model’s utility for any of the histograms discussed above:

res <- hist(x, "weeks”, format = "%d %b %y", freq = TRUE)
xres <- res$breaks[1: (length(res$breaks) - 1)]
summary (Im(res$counts ~ xres))

The simple linear regression estimate for the slope coefficient parameter was significant for each
of the three regions explored. The map and histograms in Figure 6 highlight the two sub-regions
analyzed, Encinitas and Mid-City, as well as the San Diego super-set region that includes all of the
data. The trends for each of these regions are apparent from the histograms, and the model utility test
results shown in Table 2 for each of these regions shows that there is statistically significant evidence
that the slope coefficients are not zero, indicating that a trend exists. This test provides both evidence
of the existence of a trend and also quantifies the expected rate of change. The San Diego crime rate in
its entirety is dropping by about one crime every two days during this period. Encinitas, lit up in red
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on the map, shows a relatively more recent temporal tendency when compared to crime across the
entire San Diego region, indicating that the rate of crime change in Encinitas will be increasing at a
greater rate when compared to the entire San Diego region. The Encinitas histogram shows evidence
of a slight increase, and the model utility test for the slope coefficient provides evidence that the slope
is greater than zero. On the opposite end of the spectrum, Mid-City averages a crime rate decrease that
drops by 1 crime every 10 days. The green coloring on the map clearly highlights an older temporal
tendency in this region, which is reinforced by the histogram and regression analysis.

Estimate Std. Error tstatistic Pr(>1tl)

San Diego Total -0.5077  0.0204 -24.89 <2e-16
Encinitas 0.0023 0.0008 2.88 0.00435
Mid-City -0.0958  0.0037 -25.81 <2e-16

Table 2: Simple linear regression slope coefficient estimates for weekly crime frequencies shown in
Figure 6.

Realize that the temporal tendency calculation is sensitive in areas with a low density. When
visualizing the map-based plot, it is possible to compare regions with minimal density with regions
that have a much more significant density. For this reason, it is often advisable to use the temporal
tendency visualization alongside the point density visualization and possibly restrict the temporal
tendency to areas with a minimum density threshold.

Conclusion

Both the temporal tendency projection and point density projection help illustrate regions of disparate
activity. These are regions where event behavior is significantly different, oftentimes warranting
investigation into underlying causes. The temporal tendency analysis provides a useful perspective
on a commonly elusive dimension of spatio-temporal data: change. The most important insights
involving spatio-temporal phenomenon commonly relate to change over time.

Future directions for this work include the calculation, exploration, and visualization of other
summary statistics that summarize spatio-temporal behavior. For example, estimates for the variance
and skew of the temporal behavior readily extends from the aggregation of the squared and cubed
temporal values. Analysis of these measurements could provide better fidelity on trends. Lastly,
automating the detection of boundaries of regions of disparate activity could provide significant
contributions in identifying cause and effect of spatio-temporal behavior.
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