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lmridge: A Comprehensive R Package for
Ridge Regression
by Muhammad Imdad Ullah, Muhammad Aslam, and Saima Altaf

Abstract The ridge regression estimator, one of the commonly used alternatives to the conventional
ordinary least squares estimator, avoids the adverse effects in the situations when there exists some
considerable degree of multicollinearity among the regressors. There are many software packages
available for estimation of ridge regression coefficients. However, most of them display limited
methods to estimate the ridge biasing parameters without testing procedures. Our developed package,
lmridge can be used to estimate ridge coefficients considering a range of different existing biasing
parameters, to test these coefficients with more than 25 ridge related statistics, and to present different
graphical displays of these statistics.

Introduction

For data collected either from a designed experiment or from an observational study, the ordinary
least squares (OLS) method does not provide precise estimates of the effect of any explanatory variable
(regressor) when regressors are interdependent (collinear with each other). Consider a multiple linear
regression (MLR) model,

y = Xβ + ε, (1)

where y is an n× 1 vector of observation on dependent variable, X is known design matrix of order
n× p, β is a p× 1 vector of unknown parameters and ε is an n× 1 vector of random errors with mean
zero and variance σ2 In, where In is an identity matrix of order n.

The OLS estimator (OLSE) of β is given by

β̂ = (X′X)−1X′y, (2)

which depends on characteristics of the matrix X′X. If X′X is ill-conditioned (near dependencies
among various columns (regressors) of X′X exist) or det(X′X) ≈ 0, then the OLS estimates are
sensitive to a number of errors, such as non-significant or imprecise regression coefficients (Kmenta,
1980) with wrong sign and non-uniform eigenvalues spectrum. Moreover, the OLS method, can yield
high variances of estimates, large standard errors, and wide confidence intervals. Quality and stability
of the fitted model may be questionable due to erratic behaviour of the OLSE in case when regressors
are collinear.

Researchers may tempt to eliminate regressor(s) causing the problem by consciously removing
regressors from the model. However, this method may destroy the usefulness of the model by
removing relevant regressor(s) from the model. To control variance and instability of the OLS estimates,
one may regularize the coefficients, with some regularization methods such as ridge regression
(RR), Liu regression, and Lasso regression methods etc., as alternative to OLS. Computationally, RR
suppresses the effects of collinearity and reduces the apparent magnitude of the correlation among
regressors in order to obtain more stable estimates of the coefficients than the OLS estimates and it
also improves accuracy of prediction (see Hoerl and Kennard, 1970a; Montgomery and Peck, 1982;
Myers, 1986; Rawlings et al., 1998; Seber and Lee, 2003; Tripp, 1983, etc.).

There are only a few software programs and R packages capable of estimating and/ or testing
of ridge coefficients. The design goal of our lmridge (Imdad and Aslam, 2018b) is primarily to
provide functionality of all possible ridge related computations. The output of our developed package
(lmridge) is consistent with output of existing software/ R packages. The package, lmridge also
provides the most complete suite of tools for ordinary RR, comparable to those listed in Table 1. For
package development and R documentation, we followed Hadley (2015), Leisch (2008) and R Core
Team (2015). The ridge package by Moritz and Cule (2017) and lm.ridge() from the MASS (Venables
and Ripley, 2002) also provided guidance in coding.

All available software and R packages mentioned in Table 1 are compared with our lmridge
package. For multicollinearity detection, NCSS statistical software (NCSS 11 Statistical Software,
2016) computes VIF/TOL, R2, eigenvalue, eigenvector, incremental and cumulative percentage of
eigenvalues and CN. For RR, ANOVA table, coefficient of variation, plot of residuals vs predicted,
histogram and density trace of residuals are also available in NCSS. In SAS (Inc., 2011), collin option
in the model statement is used to perform collinearity diagnostics while for remedy of multicollinearity,
RR can be performed using a ridge option in proc reg statement. The outVIF option results in
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NCSS SAS Stata StatGraphics lrmest ltsbase penalized glmnet ridge lmridge

Standardization of regressors
X X X X X X X X X

Estimation and testing of ridge coefficient
Estimation X X X X X X X X X X
Testing X X X X
SE of coef X X X X X

Ridge related statistics
R2 X X X X
adj-R2 X X X
m-scale & ISRM X
Variance X
Bias2 X
MSE X X X
F-test X X
Shrinkage factor X
CN X
σ2 X
Ck X
DF X
EDF X
Eft X
Hat matrix X
Var-Cov matrix X
VIF X X X X
Residuals X X X X X X
Ridge fitted X X X
Predict X X X X X X X

Ridge model selection
CV & GCV X X X X
AIC & BIC X
PRESS X

Ridge related graphs
Ridge trace X X X X X
VIF trace X X X X
Bias, var, MSE X
CV, GCV X
AIC & BIC X
m-scale, ISRM X
DF, RSS, PRESS X

Table 1: Comparison of ridge related software and R packages.

VIF values. For RR, Stata (StataCorp, 2014) has no built-in command, however ridgereg add-on is
available that performs calculation on scalar k. The lrmest package (Dissanayake et al., 2016) computes
estimators such as OLS, ordinary RR (ORR), Liu estimator (LE), LE type-1,2,3, Adjusted Liu Estimator
(ALTE), and their type-1,2,3 etc. Moreover, lrmest provides scalar mean square error (MSE), prediction
residual error sum of squares (PRESS) values of some of the estimators. The testing of ridge coefficient
is performed only on scalar k, however, for vector of k, function rid() of lrmest package returns only
MSE along with value of biasing parameter used. The function optimum() of lrmest package can be
used to get the optimal scalar MSE and PRESS values (Arumairajan and Wijekoon, 2015). Statgraphics
standardizes the dependent variable and computes some statistics for detection of collinearity such
as R2, adj-R2, and VIF. Statgraphics also facilitates to perform RR and computes different RR related
statistics such as VIF and ridge trace for different biasing parameter used, R2, adj-R2 and standard
error of estimates etc. The ltsbase package (Kan-Kilinc and Alpu, 2013, 2015) computes ridge and
Liu estimates based on the least trimmed squares (LTS) method. The MSE value from four regression
models can be compared graphically if the argument plot=TRUE is passed to the ltsbase() function.
There are three main functions (i) ltsbase() computes the minimum MSE values for six models:
OLS, ridge, ridge based on LTS, LTS, Liu, and Liu based on LTS method for sequences of biasing
parameters ranging from 0 to 1. If print=TRUE, ltsbase() prints all the MSEs (along with minimum
MSE) for ridge, Liu, and ridge & Liu based on LTS method for the sequence of biasing parameters
given by the user, (ii) the ltsbaseDefault() function returns the fitted values and residual of the
six models (OLS, ridge, Liu, LTS, and ridge & Liu based LTS methods) having minimum MSE, and
(iii) the ltsbaseSummary() function returns the coefficients and the biasing parameter for the best
MSE among the four regression models. The penalized package (Goeman et al., 2017) is designed for
penalized estimation in generalized linear models. The supported models are linear regression, logistic
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regression, Poisson regression and the Cox proportional hazard models. The penalized package allows
an L1 absolute value ("LASSO") penalty, and L2 quadratic ("ridge") penalty or a combination of the two.
It is also possible to have a fused LASSO penalty with L1 absolute value penalty on the coefficients
and their differences. The penalized package also includes facilities for likelihood, cross-validation
and for optimization of the tuning parameter. The glmnet package (Friedman et al., 2010) has some
efficient procedures for fitting the entire LASSO or elastic-net regularization path for linear regression,
logistic and multinomial regression model, Poisson regression and Cox model. The glmnet can also
be used to fit the RR model by setting alpha argument to zero. The ridge package fits linear and also
logistic RR models, including functions for fitting linear and logistic RR models for genome-wide
SNP data supplied as files names when the data are too big to read into R. The RR biasing parameter
is chosen automatically using the method proposed by Cule and De Iorio (2012), however value of
biasing parameter can also be specified for estimation and testing of ridge coefficients. The function,
lm.ridge() from MASS only fits linear RR model and returns ridge biasing parameters given by
Hoerl and Kennard (1970a) and Venables and Ripley (2002) and vector GCV criterion, given by Golub
et al. (1979).

There are other software and R packages that can be used to perform RR analysis such as S-
PLUS (S-PLUS, 2008), Shazam (Shazam, 2011) and R packages such as RXshrink (Obenchain, 2014),
rrBLUP (Endelman, 2011), RidgeFusion (Price, 2014), bigRR (Shen et al., 2013), lpridge (Seifert, 2013),
genridge (Friendly, 2017) and CoxRidge (Perperoglou, 2015) etc.

This paper outlines the collinearity detection methods available in the existing literature and uses
the mctest (Imdad and Aslam, 2018a) package through an illustrative example. To overcome the issues
of the collinearity effect on regressors a thorough introduction to ridge regression, properties of the
ridge estimator, different methods for selecting values of k, and testing of the ridge coefficients are
presented. Finally, estimation of the ridge coefficients, methods of selecting a ridge biasing parameter,
testing of the ridge coefficients, and different ridge related statistics are implemented in R within the
lmridge.

Collinearity detection

Diagnosing collinearity is important to many researchers. It consists of two related but separate
elements: (1) detecting the existence of collinear relationship among regressors and (2) assessing the
extent to which this relationship has degraded the parameter estimates. There are many diagnostic
measures used for detection of collinearity in the existing literature provided by various authors
(Belsley et al., 1980; Curto and Pinto, 2011; Farrar and Glauber, 1967; Fox and Weisberg, 2011; Gunst and
Mason, 1977; Imdadullah et al., 2016; Klein, 1962; Koutsoyiannis, 1977; Kovács et al., 2005; Marquardt,
1970; Theil, 1971). These diagnostics methods assist in determining whether and where some corrective
action is necessary (Belsley et al., 1980). Widely used, and the most suggested diagnostics, are value of
pair-wise correlations, variance inflation factor (VIF)/ tolerance (TOL) (Marquardt, 1970), eigenvalues
and eigenvectors (Kendall, 1957), CN & CI (Belsley et al., 1980; Chatterjee and Hadi, 2006; Maddala,
1988), Leamer’s method (Greene, 2002), Klein’s rule (Klein, 1962), the tests proposed by Farrar and
Glauber (Farrar and Glauber, 1967), Red indicator (Kovács et al., 2005), corrected VIF (Curto and Pinto,
2011) and Theil’s measures (Theil, 1971), (see also Imdadullah et al. (2016)). All of these diagnostic
measures are implemented in the R package, mctest. Below, we use the Hald dataset (Hald, 1952),
for testing collinearity among regressors. We then use the lmridge package to compute the ridge
coefficients for different ridge related statistics and methods of selection of ridge biasing parameter is
also performed. For optimal choice of ridge biasing parameter, graphical representations of the ridge
coefficients, vif values, cross validation criteria (CV & GCV), ridge DF, RSS, PRESS, ISRM and m-scale
versus used ridge biasing parameter are considered. In addition graphical representation of model
selection criteria (AIC & BIC) of ridge regression versus ridge DF is also performed. The Hald data are
about heat generated during setting of 13 cement mixtures of 4 basic ingredients and used by Hoerl
et al. (1975). Each ingredient percentage appears to be rounded down to a full integer. The data set is
already bundled in mctest and lmridge packages.

Collinearity detection: Illustrative example

> library("mctest")
> x <- Hald[, -1]
> y <- Hald[, 1]
> mctest (x, y)
Call:
omcdiag(x = x, y = y, Inter = TRUE, detr = detr, red = red, conf = conf,

theil = theil, cn = cn)
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Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X'X|: 0.0011 1
Farrar Chi-Square: 59.8700 1
Red Indicator: 0.5414 1
Sum of Lambda Inverse: 622.3006 1
Theil's Method: 0.9981 1
Condition Number: 249.5783 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

The results from all overall collinearity diagnostic measures indicate the existence of collinearity among
regressor(s). These results do not tell which regressor(s) are reasons of collinearity. The individual
collinearity diagnostic measures can be obtained through:

> imcdiag(x = x, y, all = TRUE)
Call:
imcdiag(x = x, y = y, method = method, corr = FALSE, vif = vif,

tol = tol, conf = conf, cvif = cvif, leamer = leamer, all = all)

Individual Multicollinearity Diagnostics

VIF TOL Wi Fi Leamer CVIF Klein
X1 1 1 1 1 0 0 0
X2 1 1 1 1 1 0 1
X3 1 1 1 1 1 0 0
X4 1 1 1 1 0 0 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

X1, X2, X3, X4, coefficient(s) are non-significant may be due to multicollinearity

R-square of y on all x: 0.9824

* use method argument to check which regressors may be the reason of collinearity

Results from the most of individual collinearity diagnostics suggest that all of the regressors are
the reason for collinearity among regressors. The last line of imcdiag() function’s output suggests that
method argument should be used to check which regressors may be the reason of collinearity among
different regressors. For further information about method argument, see the help file of imcdiag()
function.

Ridge regression analysis

In the seminal work by Hoerl (1959, 1962, 1964) and Hoerl and Kennard (1970b,a) have developed
ridge analysis technique that purports the departure of the data from orthogonality. Hoerl (1962)
introduced the RR, based on the James-Stein estimator by stating that existence of correlation among
regressors can cause errors in estimating regression coefficients when applying the OLS method. The
RR is similar to the OLS method however, it shrinks the coefficients towards zero by minimizing the
MSE of the estimates, making the RR technique better than the OLSE with respect to MSE, when
regressors are collinear with each other. A penalty (degree of bias) is imposed on the size of coefficients
in the RR to reduce their variances. However, the expected values of these estimates are not equal to
the true values and tend to under estimate the true parameter. Though the ridge estimators are biased
but have lower MSE (more precision) than the OLSEs have, less sensitive to sampling fluctuations or
model misspecification if number of regressors is more than the number of observations in a data set
(i.e., p > n), and omitted variables specification bias (Theil, 1957). In summary, the RR procedure is
intended to overcome the ill-conditioned situation, and is used to improve the estimation of regression
coefficients when regressors are correlated and it also improves the accuracy of prediction (Seber and
Lee, 2003). Obtaining the ridge model coefficients (β̂R) is relatively straight forward, because the ridge
coefficients are obtained by solving a slightly modified form of the OLS method.
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The design matrix X in Eq. (1) can be standardized, scaled or centered. Usually, standardization
of X matrix is done as described by Belsley et al. (1980) and Draper and Smith (1998), that is, Xj =

xij−xj√
∑(xij−xj)2

; where j = 1, 2, · · · , p such that X j = 0 and X′jXj = 1, where Xj is the jth column of the

matrix X. In this way, the new design matrix (say X̃) that contains the standardized p columns and
the matrix X̃′X̃ will be correlation matrix of regressors. To avoid complexity of different notations
and terms, the centered and scaled design matrix X̃ will be represented by X and centered response
variable as y.

The ridge model coefficients are estimated as,

β̂Rk = (X′X + kIp)
−1X′y, (3)

where β̂Rk is the vector of standardized RR coefficients of order p× 1 and kIp is a positive semi-definite
matrix added to the X′X matrix. Note that for k = 0, β̂Rk = β̂ols.

The addition of constant term k to diagonal element of X′X (in other words addition of kIp to
X′X) in Eq. (3) is known as penalty and k is called the biasing or shrinkage parameter. Addition of
this biasing parameter guarantees the invertibility of X′X matrix, such that there is always a unique
solution β̂Rk exists (Draper and Smith, 1998; Hoerl and Kennard, 1970a; McCallum, 1970) and the

condition number (CN) of X′X + kI (CNk =
√

λ1+kI
λp+kI ) also becomes smaller as compared to that of

X′X, where λ1 is the largest and λp is the smallest eigenvalues of the correlation matrix X′X. Therefore,
the ridge estimator (RE) is an improvement over the OLSE for collinear data.

It is desirable to select the smallest value of k for which stabilized regression coefficients occur
and there always exists a particular value of k for which the total MSE of the REs is less than the
MSE of the OLSE, however, the optimum value of k (which produces minimum MSE as compared to
other values of ks) varies from one application to another and hence optimal value of k is unknown.
Any estimator that has a small amount of bias, less variance and substantially more precise than an
unbiased estimator may be preferred since it will have larger probability of being close to the true
parameter being estimated. Therefore, criterion of goodness of estimation considered in the RR is the
minimum total MSE.

Properties of the ridge estimator

Let Xj denotes the jth column of X (1, 2, · · · , p), where Xj = (x1j, x2j, · · · , xnj)
′. As already discussed,

assume that the regressors are centered such that
n
∑

i=1
xij = 0 and

n
∑

i=1
x2

ij = 1 and the response variable

y is centered.

The RR is the most popular among biased methods, because of its relationship to the OLS method
and statistical properties of the RE are also well defined. Most of the RR properties have been discussed,
proved and extended by many researchers such as Allen (1974); Hemmerle (1975); Hoerl and Kennard
(1970b,a); Marquardt (1970); McDonald and Galarneau (1975); Newhouse and Oman (1971). Table 2
lists the RR properties.

Theoretically and practically, the RR is used to propose some new methods for the choice of the
biasing parameter k to investigate the properties of RE, since biasing parameter plays a key role while
the optimal choice of k is the main issue in this context. In the literature, there are many methods
for estimating the biasing parameter k (see Allen, 1974; Guilkey and Murphy, 1975; Hemmerle, 1975;
Hoerl and Kennard, 1970b,a; McDonald and Galarneau, 1975; Obenchain, 1977; Hocking et al., 1976;
Lawless and Wang, 1976; Vinod, 1976; Kasarda and Shih, 1977; Hemmerle and Brantle, 1978; Wichern
and Churchill, 1978; Nordberg, 1982; Saleh and Kibria, 1993; Singh and Tracy, 1999; Wencheko, 2000;
Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi et al., 2006; Alkhamisi and Shukur, 2007; Khalaf,
2013, among many more), however, there is no consensus about which method is preferable (Chatterjee
and Hadi, 2006). Similarly, each of the estimation method of biasing parameter cannot guarantee to
give a better k or even cannot give a smaller MSE as compared to that for the OLS.

Methods of selecting values of k

The optimal value of k is one which gives minimum MSE. There is one optimal k for any problem,
while a wide range of k (0 < k < kopt) give smaller MSE as compared to that of the OLS. For collinear
data, a small change in k varies the RR coefficients rapidly. At some values of k, the ridge coefficients
get stabilized and the rate of change slow down gradually to almost zero. Therefore, a disciplined
way of selecting the shrinkage parameter is required that minimizes the MSE. The biasing parameter
k depends on the true regression coefficients (β) and the variance of the residuals σ2, unfortunately
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sr.# Property Formula

1) Mean E(β̂R) = (X′X + kIp)−1X′Xβ

2) Shorter regression coeffs. β̂′R β̂R ≤ β̂′ β̂
3) Linear transformation β̂R = Zβ̂ ,where Z = (X′X + kI)−1X′X

4) Variance Var(β̂R) = σ2
p
∑

j=1

λj
(λj+k)2

5) Var-Cov matrix

Cov(β̂R) = Cov(Zβ̂)

= σ2(X′X + kI)−1X′X(X′X + kI)−1

= σ2[VIF]

6) Bias

Bias(β̂R) = −k(X′X + kI)−1β

= −k P diag

(
1

λj + k

)
P′β

7) MSE MSE = σ2
p
∑

j=1

λj
(λj+k)2 +

p
∑

j=1

k2α2
j

(λj+k)2

8) Distance between β̂R and β β̂R and the true vector of β have minimum distance
9) Inflated RSS φ0 = k2 β̂′R(X′X)−1 β̂R

10) R2
R R2

R =
β̂′RX′y−kβ̂′R β̂R

y′y
11) Sampling fluctuations The β̂R is less sensitive to the sampling fluctuation

12) Accurate prediction σ2
fR

= σ2
[
1 + x′ P diag

(
λj

(λ+k)2

)
P′x
]
+ (Bias(β̂R))

2

13) Wide range of k 0 < k < kmax, have smaller set of MSE than OLSE
14) Optimal k An optimal k always exists that gives minimum MSE

15) DF Ridge d fRk = EDF =
p
∑

j=1

λj
λj+k = trace

[
HRk

]
,

where HRk = X (X′X + kI)−1 X′

16 Effective no. of parameters EP = trace[2HRk − HRk H′Rk
]

17 Residual EDF REDF = n− trace[2HRk − HRk H′Rk
] = n− EP

Table 2: Properties of the ridge estimator.

these are unknown, but they can be estimated from the sample data.

We classified these estimation method as (i) Subjective or (ii) Objective

Subjective methods

In all these methods, the selection of k is subjective or of judgmental nature and provides graphical
evidence of the effect of collinearity on the regression coefficient estimates and also accounts for
variation by the RE as compared to the OLSE. In these methods, the reasonable choice of k is done
using the ridge trace, df trace, VIF trace and plotting of bias, variance, and MSE. The ridge trace is a
graphical representation of regression coefficients β̂R, as a function of k over the interval [0, 1]. The
df trace and VIF trace are like the ridge trace plot in which EDF and VIF values are plotted against
k. Similarly, plotting of bias, variance, and MSE from the RE may also be helpful in selecting an
appropriate value of k. All these graphs can be used for selection of optimal (but judgmental) value
of k from horizontal axis to assess the effect of collinearity on each of the coefficients. The effect of
collinearity is depressed when value of k increases and all the values of the ridge coefficients, EDF and
VIF values decrease and/ or may stabilize after certain value of k. These graphical representations
do not provide a unique solution, rather they render a vaguely defined class of acceptable solutions.
However, these traces are still useful graphical representations to check for some optimal k.

Objective methods

Suppose, we have set of observations (x1, y1), (x2, y2), · · · , (xn, yn) and the RR model as given in Eq.
(3). Objective methods, to some extent, are similar to judgmental methods for selection of biasing
parameter k, but they require some calculations to obtain these biasing parameters. Table 3 lists widely
used methods to estimate the biasing parameter k already available in the existing literature. Table 3

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 332

also lists other statistics that can be used for the selection of the biasing parameter k. There are other

method formula reference

Ck

Ck =
SSRk

s2 − n + 2 + 2 trace(HRk )

=
SSRk

s2 + 2(1 + trace(HRk ))− n Kennard (1971); Mallows
(1973)

PRESSk

PRESSk =
n

∑
i=1

(yi − ŷ(i,−i)k
)2

=
n

∑
i=1

e2
(i,−i)k

Allen (1971, 1974)

CV CVk = n−1
n
∑

i=1
(yi − Xj β̂ jRk

)2

Delaney and Chatterjee
(1986)

GCV GCVk =
SRRk

n−(1+trace(HRk
))2

Golub et al. (1979)

ISRM ISRMk =
p
∑

j=1

 p
(

λj
λj+k

)2

∑
p
j=1

λj
(λj+k)2

λj

− 1


2

Vinod (1976)

m-scale m = p−
p
∑

j=1

λj
λj+k Vinod (1976)

Information criteria
AIC = n · log(RSS/n) + 2 · d fRk

BIC = n · log(RSS) + 2 · d fRk Akaike (1973); Schwarz
(1978)

Effectiveness index (Eft) EF = σ2 trace(X′X)−1−σ2 trace(VIF)
(Bias(β̂R))2 Lee (1979)

Table 3: Objective methods for selection of biasing parameter k.

methods to estimate biasing parameter k. Table 4 lists various methods for the selection of biasing
parameter k, proposed by different researchers.

Testing of the ridge coefficients

Investigating of the individual coefficients in a linear but biased regression models such as ridge based,
exact and non-exact t type and F test can be used. Exact t-statistics derived by Obenchain (1977) based
on the RR for matrix G whose columns are the normalized eigenvectors of X′X, is,

t∗ =
β̂Rj − β j√
ˆvar(β̂Rj − β j)

, (4)

where j = 1, 2, · · · , p, ˆvar(β̂Rj − β j) is an unbiased estimator of the variance of the numerator in Eq.
(4), and

β j = g′i∆G′[I − (X′X)−1e′i(ei(X′X)−1e′i)
−1]β̂(0),

where g′i is the ith row of G, ∆ is the (p × p) diagonal matrix with ith diagonal element given by
δi =

λi
λi+k and ei is the ith row of the identity matrix.

It has been established that βR ∼ N(ZXβ, φ = ZΩZ′), where Z = (X′X + kIp)−1X′. Therefore,
for jth ridge coefficient βR ∼ N(ZjXβ, φjj = ZjΩZ′j) (see Aslam, 2014; Halawa and El-Bassiouni,
2000). Halawa and El-Bassiouni (2000) presented to tackle the problem of testing H0 : β j = 0 by
considering a non-exact t type test of the form,

tRj =
β̂Rj√

S2(β̂Rj )
,

where β̂Rj is the jth element of RE and S2(β̂Rj ) is an estimate of the variance of β̂Rj given by the ith
diagonal element of the matrix σ2(X′X + kIp)−1X′X(X′X + kIp)−1.
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Sr. # Formula Reference

1) KHKB = pσ̂2

β̂′ β̂
Hoerl and Kennard (1970a)

2) KTH = (p−2)σ̂2
β̂′ β̂

Thisted (1976)

3) KLW = pσ̂2

∑
p
j=1 λj α̂

2
j

Lawless and Wang (1976)

4) KDS = σ̂2

β̂′ β̂
Dwividi and Shrivastava (1978)

5) KLW = (p−2)σ̂2×n
β̂′X′Xβ̂

Venables and Ripley (2002)

6) KAM = 1
p

p
∑

j=1

σ̂2

α̂ j Kibria (2003)

7) K̂GM = σ̂2(
p

∏
j=1

α̂2
j

) 1
p

Kibria (2003)

8) K̂MED = Median{ σ̂2

α̂2
j
} Kibria (2003)

9) KKM2 = max

 1√
σ̂2

α̂2
j

 Muniz and Kibria (2009)

10) KKM3 = max

(√
σ̂2

j

α̂2
j

)
Muniz and Kibria (2009)

11) KKM4 =

 p
∏
j=1

1√√√√ σ̂2
j

α̂2
j


1
p

Muniz and Kibria (2009)

12) KKM5 =

(
p

∏
j=1

√
σ̂2

j

α̂2
j

) 1
p

Muniz and Kibria (2009)

13) KKM6 = Median

 1√√√√ σ̂2
j

α̂2
j

 Muniz and Kibria (2009)

14) KKM8 = max

 1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

 Muniz et al. (2012)

15) KKM9 = max

(√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

)
Muniz et al. (2012)

16) KKM10 =

 p
∏
j=1

1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j


1
p

Muniz et al. (2012)

17) KKM11 =

(
p

∏
j=1

√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

) 1
p

Muniz et al. (2012)

18) KKM12 = Median

 1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

 Muniz et al. (2012)

19) KKD = max
(

0, pσ̂2

α̂′ α̂ − 1
n(VIFj)max

)
Dorugade and Kashid (2010)

20) K4(AD) = Harmonic Mean[Ki(AD)]

=
2p

λmax

p

∑
j=1

σ̂2

α̂2
j

Dorugade (2014)

Table 4: Different available methods to estimate k.
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The statistic tRj is assumed to follow a Student’s t distribution with (n − p) d.f. (Halawa and
El-Bassiouni, 2000). Hastie and Tibshirani (1990); Cule and De Iorio (2012) suggested to use [n −
trace(HRk)] d.f. For large sample size, the asymptotic distribution of this statistic is normal (Halawa
and El-Bassiouni, 2000). Thus, H0 is rejected when |T| > Z1− α

2
.

Similarly, for testing the hypothesis H0 : β 6= β0, where β0 is vector of fixed values. The F statis-
tic for significance testing of the ORR estimator βR with E(β̂R) = ZXβ and estimate of Cov(βR)
distributed as F(DFridge, REDF) is

F =
1
p
(β̂R − ZXβ)′

(
Cov(β̂R)

)−1
(β̂R − ZXβ)

The R package lmridge

Our R package lmridge contains functions related to fitting of the RR model and provides a simple
way of obtaining the estimates of RR coefficients, testing of the ridge coefficients, and computation of
different ridge related statistics, which prove helpful for selection of optimal biasing parameter k. The
package computes different ridge related measures available for the selection of biasing parameter
k, and also computes value of different biasing parameters proposed by some researchers in the
literature.

The lmridge objects contain a set of standard methods such as print(),summary(),plot() and
predict(). Therefore, inferences can be made easily using summary() method for assessing the
estimates of regression coefficients, their standard errors, t values and their respective p values. The
default function lmridge which calls lmridgeEst() to perform required computations and estimation
for given values of non-stochastic biasing parameter k. The syntax of default function is,

lmridge (formula,data,scaling = ("sc","scaled","centered"),K,...)

The four arguments of lmridge() are described in Table 5:

Argument Description

formula Symbolic representation for RR model of the form, response ∼ predictors.
data Contains the variables that have to be used in RR model.
K The biasing parameter, may be a scalar or vector. If a K value is not pro-

vided, K = 0 will be used as the default value, i.e., the OLS results will be
produced.

scaling The methods for scaling the predictors. The sc option uses the default
scaling of the predictors in correlation form as described in (Belsley, 1991;
Draper and Smith, 1998); the scaled option standardizes the predictors
having zero mean and unit variance; and the centered option centers the
predictors.

Table 5: Description of lmridge() function arguments.

The lmridge() function returns an object of class "lmridge". The function summary(),kest(), and
kstats1() etc., are used to compute and print a summary of the RR results, list of biasing parameter
given in Table 4, and ridge related statistics such as estimated squared bias, R2 and variance etc., after
addition of k to diagonal of X′X matrix. An object of class "lmridge" is a list, the components of which
are described in Table 6:

Table 7 lists the functions and methods available in lmridge package:

The lmridge package implementation in R

The use of lmridge is explained through examples by using the Hald dataset.

> library("lmridge")
> mod <- lmridge(y ~ X1 + X2 + X3 + X4, data = as.data.frame(Hald),
+ scaling = "sc", K = seq(0, 1, 0.001))

The output of linear RR from lmridge() function is assigned to an object mod. The first argument of the
function is formula, which is used to specify the required linear RR model for the data provided as
second argument. The print method for mod, an object of class "lmridge", will display the de-scaled
coefficients. The output (de-scaled coefficients) from the above command is only for a few selected
biasing parameter values.
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Object Description

coef A named vector of fitted ridge coefficients.
xscale The scales used to standardize the predictors.
xs The scaled matrix of predictors.
y The centered response variable.
Inter Whether an intercept is included in the model or not.
K The RR biasing parameter(s).
xm A vector of means of design matrix X.
rfit Matrix of ridge fitted values for each biasing parameter k.
d Singular values of the SVD of the scaled predictors.
div Eigenvalues of scaled regressors for each biasing parameter k.
scaling The method of scaling used to standardized the predictors.
call The matched call.
terms The terms object used.
Z A matrix (X′X + kIp)−1X′ for each biasing parameter.

Table 6: Objects from "lmridge" class.

Call:
lmridge.default(formula = y ~ ., data = as.data.frame(Hald),
K = seq(0, 1, 0.001))

Intercept X1 X2 X3 X4
K=0.01 82.67556 1.31521 0.30612 -0.12902 -0.34294
K=0.05 85.83062 1.19172 0.28850 -0.21796 -0.35423
K=0.5 89.19604 0.78822 0.27096 -0.36391 -0.28064
K=0.9 90.22732 0.65351 0.24208 -0.34769 -0.24152
K=1 90.42083 0.62855 0.23540 -0.34119 -0.23358

To get the ridge scaled coefficients mod$coef can be used,

> mod$coef
K=0.01 K=0.05 K=0.5 K=0.9 K=1

X1 26.800306 24.28399 16.061814 13.316802 12.808065
X2 16.500987 15.55166 14.606166 13.049400 12.689060
X3 -2.862655 -4.83610 -8.074509 -7.714626 -7.570415
X4 -19.884534 -20.53939 -16.272482 -14.004088 -13.543744

Objects of class "lmridge" contain components such as rfit, K and coef etc. For fitted ridge model, the
generic method summary() is used to investigate the ridge coefficients. The parameter estimates of
ridge model are summarized using a matrix of 5 columns namely estimates, estimates (Sc), StdErr (Sc),
t values (Sc) and P(>|t|) for ridge coefficients. The following results are shown only for K = 0.012
which produces minimum MSE as compared to others values specified in the argument.

> summary(mod)
Call:
lmridge.default(formula = y ~ ., data = as.data.frame(Hald), K = 0.012)

Coefficients: for Ridge parameter K= 0.012
Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)

Intercept 83.1906 -246.5951 269.2195 -0.916 0.3837
X1 1.3046 26.5843 3.8162 6.966 0.0001 ***
X2 0.3017 16.2649 4.6337 3.510 0.0067 ***
X3 -0.1378 -3.0585 3.7655 -0.812 0.4377
X4 -0.3470 -20.1188 4.7023 -4.279 0.0021 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Ridge Summary
R2 adj-R2 DF ridge F AIC BIC

0.96990 0.95980 3.04587 134.14893 23.24068 58.30578
Ridge minimum MSE= 390.5195 at K= 0.012
P-value for F-test ( 3.04587 , 9.779581 ) = 2.914733e-08
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Functions Description

Ridge coefficient estimation and testing
lmridgeEst() The main model fitting function for implementation of RR models in R.
coef() Display de-scaled ridge coefficients.
lmridge() Generic function and default method that calls lmridgeEst() and returns

an object of S3 class "lmridge" with different set of methods to standard
generics. It has a print method for display of ridge de-scaled coefficients.

summary() Standard RR output (coefficient estimates, scaled coefficients estimates,
standard errors, t values and p values); returns an object of class "sum-
maryridge" containing the relative summary statistics and has a print
method.

Residuals, fitted values and prediction
predict() Produces predicted value(s) by evaluating lmridgeEst() in the frame

newdata.
fitted() Displays ridge fitted values for observed data.
residuals() Displays ridge residuals values.
press() Generic function that computes prediction residual error sum of squares

(PRESS) for ridge coefficients.

Methods to estimate k
kest() Displays various k (biasing parameter) values from different authors

available in literature and have a print method.

Ridge statistics
vcov() Displays associated Var-Cov matrix with matching ridge parameter k

values
hatr() Generic function that displays hat matrix from RR.
infocr() Generic function that compute information criteria AIC and BIC.
vif() Generic function that computes VIF values.
rstats1() Generic function that displays different statistics of RR such as MSE,

squared bias and R2 etc., and have print method.
rstats2() Generic function that displays different statistics of RR such as df, m-scale

and LSRM etc., and have print method.

Ridge plots
plot() Ridge and VIF trace plot against biasing parameter k.
bias.plot() Bias-Variance tradeoff plot. Plot of ridge MSE, bias and variance against k
cv.plot() Cross validation plots of CV and GCV against biasing parameter k.
info.plot() Plot of AIC and BIC against k.
isrm.plot() Plots ISRM and m-scale measure.
rplots.plot() Miscellaneous ridge related plots such as df-trace, RSS and PRESS plots.

Table 7: Functions and methods in lmridge package.

The summary() function also displays ridge related R2, adjusted-R2, df, F statistics, AIC, BIC and
minimum MSE at certain k given in lmridge().

The kest() function, which works with ridge fitted model, computes different biasing parameters
developed by researchers, see Table 4. The list of different k values (22 in numbers) may help in
deciding the amount of bias needs to be introduced in RR.

> kest(mod)

Ridge k from different Authors
k values

Thisted (1976): 0.00581
Dwividi & Srivastava (1978): 0.00291
LW (lm.ridge) 0.05183
LW (1976) 0.00797
HKB (1975) 0.01162
Kibria (2003) (AM) 0.28218
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Minimum GCV at 0.01320
Minimum CV at 0.01320
Kibria 2003 (GM): 0.07733
Kibria 2003 (MED): 0.01718
Muniz et al. 2009 (KM2): 14.84574
Muniz et al. 2009 (KM3): 5.32606
Muniz et al. 2009 (KM4): 3.59606
Muniz et al. 2009 (KM5): 0.27808
Muniz et al. 2009 (KM6): 7.80532
Mansson et al. 2012 (KMN8): 14.98071
Mansson et al. 2012 (KMN9): 0.49624
Mansson et al. 2012 (KMN10): 6.63342
Mansson et al. 2012 (KMN11): 0.15075
Mansson et al. 2012 (KMN12): 8.06268
Dorugade et al. 2010: 0.00000
Dorugade et al. 2014: 0.00000

The rstats1() and rstats2() functions can be used to compute different statistics for a given
ridge biasing parameter specified in a call to lmridge. The ridge statistics are MSE, squared bias,
F statistics, ridge variance, degrees of freedom by Hastie and Tibshirani (1990), condition numbers,
PRESS, R2, and ISRM etc. Following are the results using rstats1() and rstats2() functions, for
some (K = 0, 0.012, 0.1, 0.2).

> rstats1(mod)
Ridge Regression Statistics 1:

Variance Bias^2 MSE rsigma2 F R2 adj-R2 CN
K=0 3309.5049 0.0000 3309.5049 5.3182 125.4142 0.9824 0.9765 1376.8806
K=0.012 72.3245 318.1951 390.5195 4.9719 134.1489 0.9699 0.9598 164.9843
K=0.1 19.8579 428.4112 448.2692 5.8409 114.1900 0.8914 0.8552 22.9838
K=0.2 16.5720 476.8887 493.4606 7.6547 87.1322 0.8170 0.7560 12.0804

> rstats2(mod)
Ridge Regression Statistics 2:

CK DF ridge EP REDF EF ISRM m scale PRESS
K= 0 6.0000 4.0000 4.0000 9.0000 0.0000 3.9872 0.0000 110.3470
K= 0.012 4.8713 3.0459 3.2204 9.7796 10.1578 3.6181 0.9541 92.8977
K= 0.1 4.2246 2.5646 2.9046 10.0954 7.6829 2.8471 1.4354 121.2892
K= 0.2 3.8630 2.2960 2.7290 10.2710 6.9156 2.5742 1.7040 162.2832

The residuals, fitted values from the RR and predicted values of the response variable y can be
computed using functions residual(), fitted() and predict(), respectively. To obtain the Var-Cov
matrix, VIF and Hat matrix, the function vcov(), vif() and hatr() can be used. The df are computed
by following Hastie and Tibshirani (1990). The results for VIF, Var-Cov and diagonal elements of the
hat matrix from vif(), vcov() and hatr() functions are given below for K = 0.012.

> hatr(mod)
> hatr(mod)[[2]]
> diag(hatr(mod)[[2]])
> diag(hatr(lmridge(y ~ ., as.data.frame(Hald), K = c(0, 0.012)))[[2]])

1 2 3 4 5 6 7 8 9 10 11
0.39680 0.21288 0.10286 0.16679 0.24914 0.04015 0.28424 0.30163 0.12502 0.58426 0.29625

12 13
0.12291 0.16294

> vif(mod)
X1 X2 X3 X4

k=0 38.49621 254.42317 46.86839 282.51286
k=0.012 2.92917 4.31848 2.85177 4.44723
k=0.1 1.28390 0.51576 1.20410 0.39603
k=0.2 0.78682 0.34530 0.75196 0.28085

R> vcov(mod)
$`K=0.012`
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X1 X2 X3 X4
X1 14.563539 1.668783 11.577483 4.130232
X2 1.668783 21.471027 3.066958 19.075274
X3 11.577483 3.066958 14.178720 4.598000
X4 4.130232 19.075274 4.598000 22.111196

Following are possible uses of some functions to compute different ridge related statistics. For
detail description of these functions/ commands, see the lmridge package documentation.

> mod$rfit
> resid(mod)
> fitted(mod)
> infocr(mod)
> press(mod)

For given values of X, such as for first five rows of X matrix, the predicted values for some K =
0, 0.012, 0.1, and 0.2 will be computed by predict():

> predict(mod, newdata = as.data.frame(Hald[1 : 5, -1]))
K=0 K=0.012 K=0.1 K=0.2

1 78.49535 78.52225 79.75110 80.73843
2 72.78893 73.13500 74.32678 75.38191
3 105.97107 106.39639 106.04958 105.62451
4 89.32720 89.48443 89.52343 89.65432
5 95.64939 95.73595 96.56710 96.99781

The model selection criteria’s of AIC and BIC can be computed using infocr() function for each
value of K used in argument of ridge(). For some K = 0, 0.012, 0.1, and 0.2, the AIC and BIC values
are:

> infocr(mod)
AIC BIC

K=0 24.94429 60.54843
K=0.012 23.24068 58.30578
K=0.1 24.78545 59.57865
K=0.2 27.98813 62.62961

The effect of multicollinearity on the coefficient estimates can be identified by using different graphical
displays such as ridge, VIF and df traces, plotting of RSS against df, PRESS vs k, and the plotting of bias,
variance, and MSE against K etc. Therefore, for selection of optimal k using subjective (judgmental)
methods, different plot functions are also available in lmridge package. For example, the ridge
(Figure 1) or vif trace (Figure 2) can be plotted using plot() function. The argument to plot functions
are abline = TRUE, and type = c("ridge","vif"). By default, ridge trace will be plotted having
horizontal line parallel to horizontal axis at y = 0 and vertical line on x-axis at k having minimum
GCV.

> mod <- lmridge(y ~ ., data = as.data.frame(Hald), K = seq(0, 0.5, 0.001))
> plot(mod)
> plot(mod, type = "vif", abline = FALSE)
> plot(mod, type = "ridge", abline = TRUE)

> bias.plot(mod, abline = TRUE)
> info.plot(mod, abline = TRUE)

> cv.plot(mod, abline = TRUE)

The vertical lines in ridge trace and VIF trace suggest the optimal value of biasing parameter k
selected at which GCV is minimum. The horizontal line in ridge trace is reference line at y = 0 for
ridge coefficient against vertical axis .

The bias-variance tradeoff plot (Figure 3) may be used to select optimal k using bias.plot()
function. The vertical line in bias-variance tradeoff plot shows the value of biasing parameter k and
horizontal line shows minimum MSE for ridge.

The plot of model selection criteria AIC and BIC for choosing optimal k (Figure 4), info.plot()
function may be used,

Function cv.plot() plots the CV and GCV cross validation against biasing parameter k for the
optimal selection of k (see Figure 5), that is,
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Figure 1: Ridge trace plot.

Figure 2: VIF trace.

> isrm.plot(mod)

The m-scale and ISRM (Figure 6) measures by Vinod (1976) can also be plotted from function of
isrm.plot() and can be used to judge the optimal value of k.

Function rplots.plot() plots the panel of three plots namely (i) df trace, (ii) RSS vs k and (iii)
PRESS vs k and may be used to judge the optimal value of k, see Figure 7.

> rplots.plot(mod)
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Figure 3: Bias-variance trade-off.

Figure 4: Information criteria plot (AIC and BIC).

Summary

Our developed lmridge package provides the most complete suite of tools for RR available in R,
comparable to those available as listed in Table 1. We have implemented functions to compute the
ridge coefficients, testing of these coefficients, computation of different ridge related statistics and
computation of the biasing parameter for different existing methods by various authors (see Table 4).

We have greatly increased the ridge related statistics and different graphical methods for the
selection of biasing parameter k through lmridge package in R.

Up to now, a complete suite of tools for RR was not available for an open source or paid version
of statistical software packages, resulting in reduced awareness and use of developed ridge related
statistics. The package lmridge provides a complete open source suite of tools for the computation of
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Figure 5: Cross-validation plots (CV and GCV).

Figure 6: m-scale and ISRM plot.

ridge coefficients estimation, testing and computation of different statistics. We believe the availability
of these tools will lead to increase utilization and better ridge related practices.
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