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Forecast Combinations in R using the
ForecastComb Package
by Christoph E. Weiss and Eran Raviv and Gernot Roetzer

Abstract This paper introduces the R package ForecastComb. The aim is to provide researchers and
practitioners with a comprehensive implementation of the most common ways in which forecasts can
be combined. The package in its current version covers 15 popular estimation methods for creating a
combined forecasts – including simple methods, regression-based methods, and eigenvector-based
methods. It also includes useful tools to deal with common challenges of forecast combination (e.g.,
missing values in component forecasts, or multicollinearity), and to rationalize and visualize the
combination results.

Introduction

Model uncertainties and/or model instabilities are deeply-rooted in real-life forecasting challenges.
More often than not, and particularly in soft sciences including econometrics, the underlying data-
generating process is not well understood.

In the business of time series forecasting, accuracy is key. The advent of “black-box” statistical
learning methods (such as Artificial Neural Networks) testifies to the fact that forecasting practitioners
and researchers alike tend to favor accuracy over explainability of a forecast model. There is a strong
consensus in the social sciences that the observed processes are too complex to be modelled perfectly.
Excluding some natural sciences, it is generally undisputed that the underlying data-generating
process is unknown1. Even in the unrealistic case where the structural form of a data-generating
process is more or less known, except for the parameter values that has to be estimated, a misspecified
model can produce better forecasts than a correctly specified model due to parameters’ estimation
uncertainty2.

Hence, statistical models are habitually too simple, misspecified, and/or incomplete; a fact that is
widely accepted in theory, but less widely applied in practice, in the field of econometrics, in which
researchers often still hang on to the conceptual error of assuming one true data-generating process
and putting too much focus on model selection to find the one true model. Hansen (2005) takes note
of this and related misconceptions of econometric forecasting practice in his essay on the challenges
for econometric model selection: “models should be viewed as approximations, and econometric
theory should take this seriously”. An obvious alternative to choosing a single ‘best’ forecasting
method is to combine forecasts from different models. A combined forecast can also be thought of as
one which originates from a very complex model, an overarching model with different underlying
simpler models in order to achieve a better data-generating process approximation. By now it is well
established, empirically but in many different settings, that combining different forecasts delivers
results which are “better than the best”.

Following the advice in Hansen (2005), we abandon the quest for the one true correctly specified
model, so that we are free to include information from different models. While this freedom, as seen
empirically, improve forecast accuracy it is generally more intricate to interpret a forecast combined
from different models compared to a forecast generated from a single model. In the context of forecast-
ing, this means combining forecasts from different sources (models, experts). This emphasizes the
aforementioned shift in approaching practical econometric forecasting problems: model misspecifi-
cation cannot be fully rectified, but strategies can be found to mitigate its adverse effects on forecast
quality. Selecting a single “best” forecasting model bears the risk of ending up with a model which is
only accurate when evaluated using some validation sample, yet might prove unreliable when applied
to new data. In the past decades, ample empirical evidence on the merits of combining forecasts
has piled up; it is generally accepted that the (mostly linear) combination of forecasts from different
models is an appealing strategy to hedge against forecast risk. Even though reduction of forecast risk
is the main argument for using combined forecasts, it should also be noted that there are cases when
combined forecasts are more accurate than even its best component (e.g. Graefe et al., 2014). While
this is not theoretically sound, it is somewhat intuitive that in a continuously changing environment
different forecasting models deliver different results at different time periods. For example, it is
reasonable for one method to perform well in a low-volatility regime, and for another method to
perform poorly in that regime, but perform well in a high-volatility regime. Strong empirical support
for this argument of change in relative performance of different methods over time is found among

1Referring for example to George’s Box well rehearsed aphorism: “All models are wrong but some are useful”.
2We thank an anonymous referee for pointing this out.
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others by Elliott and Timmermann (2005).

“Hedging” against model risk by combining different forecasts is intuitive and appealing. Joined
with accuracy gains, the idea is widely adopted in macroeconomics and finance, with application
abound. Magnus and Wang (2014) explore growth determinants, Stock and Watson (2004) use forecast
combination for output forecasting, Wright (2009) and Kapetanios et al. (2008) for inflation forecasting,
Avramov (2002), Rapach et al. (2010) and Ravazzolo et al. (2007) for forecasting stock returns, Wright
(2008) for exchange rate forecasts, Andrawis et al. (2011) for forecasting inbound tourism figures,
Nowotarski et al. (2014) and Raviv et al. (2015) for electricity price forecasting, and Weiss (2017) for
healthcare demand forecasting. More recently, forecast combinations have been applied not only in
“first moment” applications, but for higher moments as well. For example in Christiansen et al. (2012)
for volatility forecasting, and Opschoor et al. (2014) for Value-at-Risk forecasting.

The theoretical foundations of forecast combination date back five decades to the seminal papers of
Crane and Crotty (1967) and Bates and Granger (1969). Yet even in the recent past, papers discussing
new combination techniques are published in reputable journals and stimulate further research still
(Hansen, 2007, 2008; Hansen and Racine, 2012; Elliott et al., 2013; Morana, 2015; Cheng and Yang,
2015). Two extensive reviews of the literature, techniques and applications of forecast combinations
are Clemen (1989) and Timmermann (2006).

Given the topic’s popularity in both theoretical and empirical research, it is somewhat surprising
that very few combination techniques are readily available in R: There are some packages that cover
specialized specific topics related to combination methods, e.g. the BMA package by Raftery and
Painter (2005) for Bayesian model averaging, as well as the opera package by Gaillard and Goude
(2016) and the forecastHybrid package by Shaub and Ellis (2017). However, as of now the only two R
packages that are entirely devoted to forecast combination are the ForecastCombinations package by
Raviv (2015), which focuses on regression-based combination methods, and the GeomComb package
by Weiss and Roetzer (2016), which focuses on geometric, eigenvector-based combination methods.

Aiming to improve user experience, we have merged these last two aforementioned packages,
providing one unified package for the widest range of forecast combination approaches available
today in R. The package is flexible and provides enough guidance for users familiar or unfamiliar with
the world of forecasting. We have made both regression-based and eigenvector-based combination
methods available to users in a single standardized framework based on S3 classes and methods.
The logic behind this choice is that comparing regression-based and eigenvector-based combination
methods is often insightful – as pointed out by Hsiao and Wan (2014), the conditions under which
these two approaches perform well differ from each other: regression-based methods tend to produce
more accurate forecasts when one or a few of the individual forecasts are considerably better than the
rest, while eigenvector-based methods perform better when the individual forecasts are in the same
ballpark. This paper presents the functionalities made available in the package and demonstrates how
to implement them in an empirical exercise.

In the following section we review the forecast combination methods that are available in the
ForecastComb package. We then provides a detailed implementation description using the package,
with a specific empirical example – we combine univariate time series forecasts for UK energy supply.

Forecast combinations

Since the seminal paper by Bates and Granger (1969), myriad combination strategies have been put
forward in theoretical and empirical literature. The best way to combine different forecasts has no
theoretical underpinnings, a lot depends on the specifics of the data at hand. Andrawis et al. (2011)
even suggest to use hierarchical forecast combinations, i.e. combining combined forecasts. The
purpose here is not to investigate which combination method is suitable in which context. Rather, we
provide a broad range of options for the user to explore and experiment with. Again, owing to a lack
of theoretical foundation or the empirical lack of evidence for a one dominant way in which forecasts
should be combined.

To fix notations, denote FT×P as the matrix of forecast with dimension T× P where T is the number
of rows and P is the number of columns (so we have P forecasts at each point in time). Denote fi as
the forecast obtained using model i, i ∈ {1 . . . P}. When there is no danger of confusion, we omit the
additional subscript t which denotes the time dimension of the forecast. Some combination methods
require an ordering of the component forecasts. When this is the case, f(i) denotes the ith order statistic
of the cross-section of component forecasts. Finally, the weight given to that forecast in the overall
combined forecast is denoted as wi, and the combined forecast as f c.
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Frequently used schemes for forecast combinations

Simple Combination Methods

We now present few simple ways in which forecasts can be combined. They are simple in that there
is no need to exactly estimate the weight each forecast should be given in the overall combination.
We just use some location measure (for example the average) of the cross-sectional distribution of the
individual forecasts. In theory some location measures are the same if the cross-sectional distribution
is symmetric, but if the distribution is asymmetric, and/or if there is one method which produces
extreme forecasts then the following few combination methods become pertinent.

1. Simple Average. The most intuitive approach to combine forecasts is using the average of all
those forecasts. Over the years this innocent approach has established itself as an excellent
benchmark, despite or perhaps because of its simplicity (e.g. Genre et al., 2013). The combined
forecast is straightforwardly given by

f c =
1
P

P

∑
i=1

fi. (1)

Clemen (1989) argues that this equal weighting of component forecasts is often the best strategy
in this context. This is still true almost thirty years later and called the “forecast combination
puzzle”, a term coined by Stock and Watson (2004). A rigorous attempt to explain why simple
average weights often outperform more sophisticated forecast combination techniques is pro-
vided in a simulation study by Smith and Wallis (2009), who ascribe this surprising empirical
finding to the effect of finite-sample error in estimating the combination weights. Recently,
Claeskens et al. (2016) provide a theoretical argumentation to these empirical findings. The
authors make the case that lower estimation noise, when the weights are determined rather than
estimated, goes a long way in explaning the puzzle. A more detailed overview of the empirical
support for the “forecast combination puzzle” can be found in Graefe et al. (2014).

2. Median. Another fairly simple and appealing combination method is using the median of the
component forecasts. The median is insensitive to outliers, which can be relevant for some
applications. Palm and Zellner (1992) suggest that simple averaging may not be a suitable
combination method when some of the component forecasts are biased. This calls for the use
of another location measures which is robust to outliers. The median method is an appealing,
rank-based combination method that has been used in a wide range of empirical studies
(e.g. Armstrong, 1989; McNees, 1992; Hendry and Clements, 2004; Stock and Watson, 2004;
Timmermann, 2006).
For the median method, the combined forecast is given by:

• For odd P:

f c = f( P
2 +0.5) (2)

• For even P:

f c =
1
2

(
f( P

2 )
+ f( P

2 +1)

)
(3)

3. Trimmed Mean. Another outlier-robust location measure that is commonly used is the trimmed
mean (e.g. Armstrong, 2001; Stock and Watson, 2004; Jose and Winkler, 2008).
Using a trim factor λ (i.e. the top/bottom 100× λ% are trimmed) the combined forecast is
calculated as:

f c =
1

P(1− 2λ)

(1−λ)P

∑
i=λP+1

f(i) (4)

Typically, we use λ = 0.1 indicating we trim the top and bottom 10% of the most extreme
component forecasts, excluding those from the computation of the combined forecast. The
trimmed mean is an interpolation between the simple average (λ = 0) and the median (λ = 0.5).

4. Winsorized Mean. Like the trimmed mean, the winsorized mean is a robust statistic that is
less sensitive to outliers than the simple average. It takes a softer line when handling outliers:
Instead of altogether removing them as in the trimmed mean approach, it caps outliers at a
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certain level. By capping outliers rather than removing them, we allow for at least some degree
of influence. For this reason, the measure is sometimes preferred, for example by Jose and
Winkler (2008).
Let λ be the trim factor (i.e. the top/bottom 100 × λ% are winsorized) and K = λP. The
combined forecast is then calculated as:

f c =
1
P

[
K f(K+1) +

P−K

∑
i=K+1

K f(P−K)

]
(5)

5. Bates/Granger (1969). In their seminal paper, Bates and Granger (1969) introduced the idea of
combining forecasts. Their approach builds on portfolio diversification theory and uses the
diagonal elements of the estimated mean squared prediction error matrix in order to compute
combination weights:

f c =
P

∑
i=1

f ′i ×
σ̂−2(i)

∑P
j=1 σ̂−2(j)

(6)

where σ̂2(i) is the estimated mean squared prediction error of model i.
The approach ignores correlation between component forecasts due to difficulties in precisely
estimating the covariance matrix.

6. Newbold/Granger (1974). Building on the earlier research by Bates and Granger (1969), the
methodology of Newbold and Granger (1974) also extracts the combination weights from the
estimated mean squared prediction error matrix.
Let Σ be the mean squared prediction error matrix of FN×P and e be a P× 1 vector of (1, 1, ..., 1)′.
Newbold and Granger (1974)’s method is a constrained minimization of the mean squared
prediction error using the normalization condition e′w = 1. This yields the following combined
forecast:

f c = FN×P ×
Σ−1e

e′Σ−1e
(7)

While the method dates back to Newbold and Granger (1974), the variant of the method we
use in the ForecastComb package does not impose the prior restriction that Σ is diagonal. This
approach, used by Hsiao and Wan (2014), is a generalization of the original method.

7. Inverse Rank. The inverse rank approach, suggested by Aiolfi and Timmermann (2006), ranks
the forecast models based on their performance up to time N. The model with the lowest mean
squared prediction error is assigned the rank 1, the model with the second lowest mean squared
prediction error is assigned the rank 2, etc. The combined forecast is then calculated as follows:

f c =
P

∑
i=1

f ′i ×
Rank−1

i

∑P
j=1 Rank−1

j

(8)

Timmermann (2006) points out that this method, just like Bates and Granger (1969), also ignores
correlations across forecast errors. However, the method is more robust to outliers, since total
rankings are not likely to change dramatically by the presence of extreme forecasts.

Regression-based Combination Methods

8. Ordinary Least Squares (OLS) regression. The idea to use regression for combining forecasts was
put forward by Crane and Crotty (1967) and successfully driven to the forefront by Granger
and Ramanathan (1984). Using this approach, the combined forecast is a linear function of the
individual forecasts where the weights are determined using a regression of the individual
forecasts on the target itself:

y = α +
P

∑
i=1

wi fi + ε, (9)

Using a portion of the forecasts to train the regression model, the OLS coefficients can be
estimated by way of minimizing the sum of squared errors in equation(8). The combined
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forecast is then given by:

f c = α̂ +
P

∑
i=1

ŵi fi, (10)

An advantage of the OLS forecast combinations is that the combined forecast is unbiased due to
the intercept in the equation, even if one of the individual forecasts is biased. A disadvantage
is that the method places no restriction on the combination weights (i.e. they do not add up
to 1 and can be negative), which complicatesinterpretation, especially if the coefficients are
non-convex.3

9. Least Absolute Deviation (LAD) regression. While the OLS regression estimates the coefficients
in equation (10) by minimizing the sum of squared errors, we may want to estimate those
coefficients differently, minimizing a different loss function4, for example the absolute sum of
squares. The reason is best explained using an example: Assume we have a model that performs
well in general, yet every now and then misses the target by a very large margin. Such a model
would be weighted more heavily under the LAD scheme than under the OLS scheme since
those large but infrequent errors will be more heavily penalized using OLS. Whether this is
beneficial depends on the user’s preference and/or the cost of missing the target given the
problem at hand. It should be noted that this lower sensitivity to outliers has another advantage:
OLS weights can be unstable when predictors are highly correlated, which is the norm in
forecast combination. Minor fluctuations in the sample can cause major shifts in the coefficient
vector (‘bouncing betas’), often leading to poor out-of-sample performance. This suggests that
LAD combination should be favored in the presence of highly correlated component forecasts
(Nowotarski et al., 2014).

10. Constrained Least Squares (CLS) regression. Like the LAD approach, CLS addresses the issue of
‘bounding betas’. It does so by minimizing the sum of squared errors under some additional
constraints. Specifically, we constrain the estimated coefficients {wi}, allowing only for positive
solutions: wi ≥ 0 ∀i, and to sum up to one: ∑P

i=1 wi = 1. The solution requires numerical
minimization, but good optimization algorithms are readily available: The ForecastComb
package relies on the function solve.QP available from the quadprog package (Turlach and
Weingessel, 2013). To tackle problems with high (but imperfect) collinearity that can cause errors
in the CLS estimation, we also implement a revised Cholesky decomposition based on Ridge
regression which has been propsed by Babaie-Kafaki and Roozbeh (2017) and can mitigate
issues with multicollinearity.
Theoretically, the additional constraints set CLS sub-optimally compared to the OLS. It lacks the
good asymptotic properties admitted by OLS. However, in practice it is often found to perform
better, especially so when the individual forecasts are highly correlated. In addition, the CLS
weights are more easily interpretable. It is hard to justify a non-convex linear combination of
two forecasts, while CLS weights can be conveniently interpreted for example as percentages
devoted to each of the individual forecasts.

11. Complete subset regression. The ForecastComb package allows the relatively new idea of com-
puting forecast combination weights using complete subset regression. The underlying idea
is relatively straightforward: With P component forecasts that can serve as predictors in the
regression model, we can form n regression models, each with a unique subset of predictors. n,
the total number of combined forecasts from regression models is given by

n =
P

∑
i=1

(
P
i

)
=

P

∑
i=1

P!
i!(P− i)!

= 2P − 1 (11)

In the most basic variant, the final combined forecast is obtained by taking the simple average
over the cross-section of these n combined forecasts from complete subset regressions. The
method is proposed by Elliott et al. (2013) who develop the theory behind this estimator and
present favourable results from simulations and empirical application for US stock returns.
Admittedly, the scheme is computationally expensive, and thus additional computational
resources may be required if P is in the dozens (Elliott et al. (2013), Section 2.5.1 proposes a
workaround based on random sampling from P). Additionally, since all n forecasts are returned,

3if the combination of two individual forecasts is not convex, the resulting combined forecast will not necessarily
lie between those individual forecasts. As an example, we can look at the first quarter (2014 or 2015) GDPplus
series estimate, published by the Federal Reserve Bank of Philadelphia. The combined prediction of two individual
estimates of the US GDP; one based on the expenditure-side and one based on the income-side, lied above the sum
of those two estimate. Intuitively, this is hard to communicate (https://www.philadelphiafed.org/research-
and-data/real-time-center/gdpplus).

4For a discussion of optimal forecast combinations under general loss functions, see Elliott and Timmermann
(2004)
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the user can freely refine the technique further – for example by choosing not to average over all
n forecasts, but some partial subset. Using the median instead of the mean is another option
that comes to mind.
Obtaining n combined forecasts from the complete subset regression also allows us to use a
frequentist approach to forecast combination, also known as information-theoretic forecast
combinations. In the ForecastComb package, several information criteria are available in the
complete subset regression method, each with its own merits and weaknesses: By far the
most common are the AIC (Akaike’s information criterion) and the BIC (Bayesian information
criterion, also known as the Schwarz information criterion). Both are supplied in addition to the
corrected AIC (Hurvich and Tsai, 1989) and the Hannan Quinn information criterion (Hannan
and Quinn, 1979).
Formally, the weight given to each forecast based on the information-theoretic forecast combina-
tions is the following:

wi =
exp(−1/2$i)

∑n
j=1 exp(−1/2$j)

, (12)

where $i is the information criterion for forecast i obtained using a regression with a specific
combination of forecasts. The value of n is fixed as the number of possible combinations, and
the combined forecast is given by:

f c =
n

∑
i=1

wi f̃i. (13)

It is worth noting that this is a two-step combination method. The first step is the computation
of n combined forecasts f̃i using the complete subset regression method with the original P
forecasts as predictors; the second step is the combination of these combined forecasts using the
weights based on information criteria.
One advantage of this frequentist approach to model averaging is that the amount of shrinkage
enforced on each individual forecast is data driven. The specification of a shrinkage hyper-
parameter, which is required in the corresponding Bayesian framework (e.g. Raftery and Painter,
2005) is spared from the user in this case.

Eigenvector-based Combination Methods

The eigenvector-based forecast combination methods, proposed by Hsiao and Wan (2014), are based
on the idea of minimizing the mean squared prediction error subject to a normalization condition.

The most commonly used normalization condition for this purpose is to require the combination
weights to add up to one, i.e. ∑P

i=1 wi = 1 (e.g. Newbold and Granger, 1974; Timmermann, 2006).
Hsiao and Wan (2014) show that this normalization condition leads to a constrained minimum of
the mean squared prediction error (MSPE), and propose a normalization condition that leads to an
unconstrained minimum of the MSPE:

P

∑
i=1

w2
i = 1 (14)

This unconstrained minimum of the MSPE is the basis of the four eigenvector-based approaches in
the ForecastComb package.

12. Standard Eigenvector Approach. The standard eigenvector approach retrieves combination weights
from the estimated MSPE matrix as follows: The P positive eigenvalues of the MSPE matrix
are arranged in increasing order (Φ1 = Φmin, Φ2, ..., ΦP), and κi denotes the eigenvector corre-
sponding to Φi. Let di = e′κi with e being a P× 1 vector of (1, 1, ...1)′. The combination weights
w are then chosen corresponding to the minimum of (Φ1

d2
1

, Φ2
d2

2
, ..., ΦP

d2
P
), denoted as κl , as:

w =
1
dl

κl (15)

The combined forecast is then obtained as usual:

f c =
P

∑
i=1

f ′i wi (16)

13. Bias-Corrected Eigenvector Approach. The bias-corrected eigenvector approach builds on the
idea that if one or more of the component models yield biased forecasts, the accuracy of the
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standard eigenvector approach can be improved by eliminating the bias. It modifies the standard
approach by decomposing forecast errors into three parts: model-specific bias, omitted common
factors of all component models, as well as an idiosyncratic part that is uncorrelated across the
component models.
The optimization procedure to obtain combination weights coincides with the standard ap-
proach, except that we use as an input the centered MSPE matrix, i.e. after extracting the bias by
subtracting the column means of the MSPE:

w =
1
d̃l

κ̃l (17)

where d̃i and κ̃i are defined analogously to di and κi in the standard eigenvector approach with
the only difference that they correspond to the spectral decomposition of the centered MSPE
matrix rather than the original (uncentered) MSPE matrix.
The combined forecast is then obtained by:

f c = α +
P

∑
i=1

f ′i wi (18)

where the intercept α corrects for the potential bias.

14. Trimmed Eigenvector Approach.
The standard approach is highly sensitive to the disparities in performance of different predictive
models, i.e. the standard eigenvector approach’s performance could be severely impaired by
one or more component models that produce poor forecasts. This is due to treating uncertainties
in the actual series, y, and the uncertainties of the component models, FN×P, symmetrically. For
a detailed discussion of this so-called orthogonality principle, see Section 3 in Hsiao and Wan
(2014). The trimmed eigenvector approach takes note of this issue.
The idea of trimming the pool of input forecasts has been used by Aiolfi and Timmermann
(2006) and is picked up by Hsiao and Wan (2014) using the eigenvector framework – the weights
are computed exactly as in the standard eigenvector approach, but based on the MSPE matrix
of the trimmed forecasts, after discarding particularly bad component models.

15. Trimmed Bias-Corrected Eigenvector Approach. The underlying methodology of the trimmed bias-
corrected eigenvector approach is the same as the bias-corrected eigenvector approach: The
weights are retrieved through the spectral decomposition of the centered MSPE matrix.
The only difference to the bias-corrected eigenvector approach is that this method, like the
trimmed eigenvector approach, pre-selects component models that serve as input for the forecast
combination; only a subset of the available forecast models is retained, while the models with
the worst performance are discarded, thereby combining the favourable modifications of the
previous two methods.

There are three more related functions. The function auto_combine computes the fit for all the
available forecast combination methods and is based on a grid-search optimization. It returns the
combined forecast with the best in-sample accuracy. The default accuracy metric is the RMSE and
MAE or MAPE are also available. The function rolling_combine is simply a dynamic variant, where
the computation is done in an expanding window fashion rather than a single in- and out-of-sample
split. Finally, the function predict.foreccomb_res allows to obtain the forecasts using previously
trained forecast combination model. It is a simple utility function to quickly get the forecasts in an
uncomplicated manner.

Implementation

The main functions provided in the ForecastComb package can be classified in 3 categories:

• Data Preparation

• Estimation of Forecast Combination

• Post-Fit Presentation of Results

In addition, some auxiliary functions are provided. Table 1 gives the list of the main functions.
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Function Description

Data Preparation Functions

foreccomb Transform raw input data for forecast combination

cs_dispersion Compute cross-sectional dispersion

Forecast Combination Functions

Simple Forecast Combination Functions

comb_BG Bates/Granger (1969) forecast combination

comb_InvW Inverse Rank forecast combination

comb_MED Median Forecast Combination

comb_NG Newbold/Granger (1974) forecast combination

comb_SA Simple Average forecast combination

comb_TA Trimmed Mean forecast combination

comb_WA Winsorized Mean forecast combination

Regression-Based Forecast Combination Functions

comb_CLS Constrained Least Squares (CLS) forecast combination

comb_CSR Complete Subset Regression forecast combination

comb_LAD Least Absolute Deviation (LAD) forecast combination

comb_OLS Ordinary Least Squares (OLS) forecast combination

Eigenvector-Based Forecast Combination Functions

comb_EIG1 Standard Eigenvector forecast combination

comb_EIG2 Bias-Corrected Eigenvector forecast combination

comb_EIG3 Trimmed Eigenvector forecast combination

comb_EIG4 Trimmed Bias-Corrected Eigenvector forecast combination

Other Forecast Combination Functions

auto_combine Automated grid-search forecast combination

rolling_combine Rolling forecast combination (time-varying
combination weights)

Post-Fit Functions

plot.foreccomb_res S3 method to plot results from a forecast combination
model

summary.foreccomb_res S3 method – summary of the forecast combination
estimation

predict.foreccomb_res S3 method to create forecasts using weights from previously
trained forecast combination model

Table 1: Brief description of main functions available in the ForecastComb package
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Data Preparation

The ForecastComb package considers as a starting point that the user has already obtained a set
of component forecasts, either from survey data or using statistical techniques, and now seeks to
improve accuracy by combining those component forecasts into one. If the user only has the actual
time series data, other packages in R can be used to create a set of component models. For instance,
the forecastHybrid package by Shaub and Ellis (2017) which creates several univariate forecasts using
methods available in the mature and popular forecast package (Hyndman, 2017).

The method foreccomb is the workhorse in the data preparation step. It supports the user with
transforming the raw input data to make sure that the estimation of the forecast combinations will run
smoothly.

The call of foreccomb is:

foreccomb(observed_vector, prediction_matrix, newobs = NULL,
newpreds = NULL, byrow = FALSE, na.impute = TRUE, criterion = "RMSE")

The function requires user input for the parameters observed_vector (a vector, the actual data)
and prediction_matrix (a matrix, the set of component forecasts to be combined). The format of
the input matrix is as follows: Each column contains the forecasts from one of the P component
models. Each row corresponds to the cross-section of component forecasts at a specific point in time.
A situation where the format of the data is reversed, meaning that rows correspond to forecast models
and columns correspond to the time index, is handled by setting the argument byrow = TRUE.

The foreccomb function includes some convenient features that take note of the fact that in many
cases combination methods are applied to survey forecasts and the challenges that come along with
this:

• Split into Training Set and Test Set. The function allows the user to specify a training set
(observed_vector and prediction_matrix)and a test set (newobs and newpreds) separately.
This is useful since most combination functions have to estimate the weights (requiring part of
the sample to be dedicated to that task), while it is recommended that a test set is available to
evaluate the model’s performance on “new” data.

• Missing Value Imputation. Survey forecasts usually include missing values. This can be either
because some of the survey participants did not respond or because the set of survey participants
is changed. The foreccomb function provides two alternatives to deal with missing values: The
default option (na.impute = TRUE) uses the missing value imputation algorithm from the mtsdi
by Junger and de Leon (2012). It is a modified version of the EM algorithm for imputation that
is specifically adjusted for multivariate time series data, accounting for correlation between the
forecasting models and the time structure of the series itself. A smoothing spline is fitted to
each of the time series at every iteration and the degrees of freedom of each spline are chosen by
cross-validation. Alternatively, the argument can be set to na.impute = FALSE, which means
the component forecast models that include any missing values are dropped prior to estimating
forecast combinations, and the user is notified in the console if so relevant.

• Handling Multicollinearity. More often than not component forecasts that are used in the forecast
combination are highly correlated. This can trouble the estimation process which does not
handle well perfect collinearity. The foreccomb function has an inherent algorithm that checks
the set of component forecasts for perfect multicollinearity, and if detected, drops one of the
component models from the input data. The algorithm is designed to minimize the cost of
dropping one or more models from the input data, in the sense that out of the models that cause
perfect multicollinearity, it drops the least accurate forecast model. Only perfect multicollinearity
is handled. By default, Root Mean Squared Error (RMSE) is used as the accuracy metric, but
alternatively the user may choose the Mean Absolute Error (MAE) or the Mean Absolute
Percentage Error (MAPE) by changing the argument criterion.

The output of the foreccomb function is an object of S3 class foreccomb that can be passed on to the
estimation functions or the other auxiliary functions, for instance the function cs_dispersion which
computes the cross-sectional dispersion of the set of component forecasts.

This is often helpful for selecting a suitable combination method: One of the main findings of
Hsiao and Wan (2014) is that regression-based methods produce more accurate forecasts when one
or a few of the component forecasts are much better than the rest, while eigenvector-based methods
perform better when there is low dispersion among the component forecasts. The cs_dispersion
function can be used to compute and plot this cross-sectional dispersion using standard deviation
(default), interquartile range, or range.
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Estimation of Forecast Combination

The package provides the user with functions for the 15 estimation techniques for combined forecasts,
which were described in previous Section. The estimation functions require an object of S3 class
foreccomb as input, which is obtained using the methods from the previous subsection.

Four of the methods include trimming, i.e. a pre-selected subset of the full set of component
models that should be used in the estimation of combination weights. These are:

• Trimmed Mean (comb_TA)

• Winsorized Mean (comb_WA)

• Trimmed Eigenvector Approach (comb_EIG3)

• Trimmed Bias-Corrected Eigenvector Approach (comb_EIG4)

For these methods, the user has some flexibility. The package provides the option to set the
trimming factor (or, for the eigenvector methods, the number of retained component models) manually.
Otherwise, an inbuilt optimization algorithm is used for choosing the trimming factor such that the
combined forecast has the best possible fit. Again, this optimization can be based on either RMSE,
MAE, or MAPE, which are controlled by the argument criterion.

A simple simulation example:

R> actual <- rnorm(100)
R> forecasts <- matrix(rnorm(1000, 1), 100, 10)

R> input_data <- foreccomb(actual, forecasts)

R> # Manual Selection of Trimming Factor:
R> model1 <- comb_TA(input_data, trim_factor = 0.3)

R> # Assess accuracy of the combined forecast:
R> model1$AccuracyTrain

ME RMSE MAE MPE MAPE ACF1 Theil's U
Training Set -1.07312 1.520668 1.274116 146.411 486.3501 -0.0480562 1.698456

R> # Algorithm-Optimized Selection of Trimming Factor:
R> model2 <- comb_TA(input_data, criterion = "RMSE")

Optimization algorithm chooses trim factor for trimmed mean approach...
Algorithm finished. Optimized trim factor: 0.1

R> # Assess accuracy of the combined forecast:
R> model2$AccuracyTrain

ME RMSE MAE MPE MAPE ACF1 Theil's U
Training Set -1.063363 1.515091 1.27304 134.7211 489.4353 -0.03678255 1.692617

As can be seen, the automated selection of the trimming factor leads to an improved accuracy of
the combined forecast.

The 15 methods included in the package all produce static combination weights, i.e. the models
use the training set data to estimate combination weights, which will in turn be applied to all periods
of the test set. The research community in the forecasting field is strongly divided in the assessment
of the value of time-varying combination weights, since putting higher weights on more recent data
tends to increase the parameter variance. Section 4.1 in Timmermann (2006) reviews the advantages
and challenges of allowing for time-varying weights.

While the ForecastComb mainly uses time-invariant combination weights, the user is provided
with some flexibility. The rolling_combine function allows for the estimation of each of the methods
with time-varying weights. The approach builds on the idea of time series cross-validation (Bergmeir
et al., 2015), using the provided training set as a departure point to estimate starting weights, and then
increasing the training set one step at a time and re-estimating the weights for the remaining test set.
However, this approach requires that the user provides a full test set, i.e. also providing observed
values for the test set.

The function auto_combine provides a quick and painless alternative. The function is based on a
grid-search optimization that returns the combined forecast with the best in-sample accuracy (using
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RMSE as accuracy metric in the default setting).

All of the estimation methods return an object of S3 class foreccomb_res with the components
presented in Table 2. The object can subsequently be passed on to post-fit functions.

Return Values Description

For all methods

Method Returns the used forecast combination method

Models Returns the individual input models that were used for the forecast combinations

Weights Returns the combination weights obtained by applying the combination method
to the training set

Fitted Returns the fitted values of the combination method for the training set

Accuracy_Train Returns a range of accuracy measures for the training set

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set

Accuracy_Test Returs a range of accuracy measures for the test set. Only returned if input
included a forecast matrix and a vector of actual values for the test set

Input_Data Returns the data forwarded to the method

Only for comb_TA and comb_WA

Trim Factor Returns the trim factor, λ

Only for comb_OLS, comb_LAD, comb_EIG3 and comb_EIG4

Intercept Returns the intercept (bias correction)

Only for comb_EIG3 and comb_EIG4

Top_Predictors Number of retained predictors

Ranking Ranking of predictors that determines which models are removed in the trimming
step

Table 2: Output Components of the Forecast Combination Estimation Metods

Post-Fit Functions

Results from the estimation of combined forecasts can be passed on to two post-fit convenience
functions: summary and plot, which are S3 methods specific to the class foreccomb_res.

The summary function displays the output of the respective forecast combination in concise form,
it displays the estimated combination weights (and the intercept, if the combination method includes
one), as well as accuracy statistics for the training set and the test set.

The plot function will produce different plots based on the input data. If only a training set
was provided, it plots the actual versus the fitted values; if a test set was also provided, it plots the
combined forecasts as well. Another option for the user is a plot of the combination weights5, obtained
by setting which = 2 in the function call.

5In case the combined forecast is produced using time-varying combination weights, the weights plot displays
only the average weight of the respective component model over the test set period.
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UK Electricity Supply: An Empirical Example

The ForecastComb package includes the dataset electricity, which is a multivariate time series of
monthly UK electricity supply (in GWh) from January 2007 to March 2017, and 5 univariate time series
forecasts for the same series and period. The observed data series is sourced from the International
Energy Agency (IEA, 2017). The component models to be combined are the following cross-validated
one-month univariate forecasts in the dataset:

• ARIMA (produced using the auto.arima function in the forecast package),

• ETS (produced using the ets function in the forecast package),

• Neural Network (produced using the nnetar function in the forecast package),

• Damped Trend (produced using the ets function in the forecast package),

• Dynamic Optimized Theta Model (produced using the dotm function in the forecTheta package
by Fiorucci et al. (2016)).

To illustrate the functionalities of the package, we apply 4 combination techniques: the simple
average (comb_SA), the OLS regression (comb_OLS), the standard eigenvector approach (comb_EIG1) and
the trimmed bias-corrected eigenvector approach (comb_EIG4). The selected methods span all three
categories of combination techniques (statistics-based, regression-based, and eigenvector-based) and
includes trimmed and bias-corrected methods and are therefore suitable to show the full functionality
of the ForecastComb package in this empirical context. using both the static and dynamic version of
each. For the selected combination methods, we produce both static and dynamic forecasts, which
gives us a total of 7 different time series of combined forecasts (not 8, since the static and dynamic
versions of the simple average combination are identical).

UK Electricity Supply, 2007 − 2017
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Figure 1: UK Electricity Supply, 2007 - 2017: Actual Value and Forecasts.

For the purpose of this exercise, we use the first 84 months as training set, which leaves us with a
test set size of 39. Figure 1 plots the actual series and the univariate forecasts. The forecasts (which are
1-month forecasts obtained via time series cross-validation) track the actual series very well. None of
them performs exceptionally poorly compared with the rest, which are conditions that tend to favour
eigenvector approaches (Hsiao and Wan, 2014). As it is with most electricity data, the main difference
between the individual models is in their ability to quickly recognize and adjust for turning points.
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For example, the neural nets model handles turning points well, but sometimes also overshoots, while
the ARIMA model has a smoother behaviour around turning points.

First, we format the data correctly for the estimation of combination weights. This step ensures
later operations would proceed smoothly. Since there are no missing values and no perfectly collinear
columns in our dataset, this is relatively straightforward:

R> data(electricity)
R> train.obs <- electricity[1:84, 6]
R> train.pred <- electricity[1:84, 1:5]
R> test.obs <- electricity[85:123, 6]
R> test.pred <- electricity[85:123, 1:5]
R> input_data <- foreccomb(train.obs, train.pred, test.obs, test.pred)

Once the object of S3 class foreccomb is created, it can be fed into the estimation functions. We can
look at the cross-sectional dispersion, to get a better idea of variability in the univariate forecasts.

R> cs_dispersion(input_data, measure = "SD", plot = TRUE)
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Figure 2: Cross-Sectional Standard Deviation of the Component Forecasts.

Figure 2 shows that apart from a brief period of increased dispersion around the end of 2009, the
cross-sectional standard deviation of the component forecasts is rather stable and low given the level
of around 25,000 to 35,000 GWh. This begs the question whether conditions have fluctuated enough
during the test set so that estimation of time-varying weights is beneficial, yet we proceed with it for
this demonstration.

R> ####### ESTIMATION OF STATIC FORECAST COMBINATIONS ########
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R> SA <- comb_SA(input_data)
R> OLS_static <- comb_OLS(input_data)
R> EIG1_static <- comb_EIG1(input_data)
R> EIG4_static <- comb_EIG4(input_data, criterion = "MAE")

R> ###### ESTIMATION OF DYNAMIC FORECAST COMBINATIONS
R> OLS_dyn <- rolling_combine(input_data, "comb_OLS")
R> EIG1_dyn <- rolling_combine(input_data, "comb_EIG1")
R> EIG4_dyn <- rolling_combine(input_data, "comb_EIG4", criterion = "MAE")

The 7 combined forecasts can be evaluated separately by looking at their summary measures,
which we present here for the static Ordinary Least Squares approach:

R> summary(OLS_static)

Summary of Forecast Combination
-------------------------------
Method: Ordinary Least Squares Regression
Individual Forecasts & Combination Weights:

Combination Weight
arima 0.02152869
ets -0.20646266
nnet 0.20992792
dampedt -1.04349858
dotm 1.97991049

Intercept (Bias-Correction): 962.3229

Accuracy of Combined Forecast:

ME RMSE MAE MPE MAPE
Training Set -4.417560e-12 888.1433 697.8645 -0.08262472 2.254470
Test Set -4.007742e+01 671.5214 536.0331 -0.24705122 1.841961

Additional information can be extracted from the combination object:
For fitted values (training set): OLS_static$Fitted
For forecasts (test set): OLS_static$Forecasts_Test
See str(OLS_static) for full list.

The output shows that the OLS combination puts an extremely high relative weight on the forecast
from the Dynamic Optimized Theta model, which seems to be the best component forecast, which is
rather surprising given that seasonality is an important feature in the analyzed series and Theta models
cannot incorporate seasonality into the estimation so far, relying on pre-estimation deseasonalizing
and post-estimation reseasonalizing. Table 3 shows a comparison of the accuracies achieved by the
combined forecasts. Since all forecasts are for the same series, it is reasonable to use MAE as accuracy
metric.

Method MAE Training Set MAE Test Set
Simple Average 819.28 573.39
Ordinary Least Squares (static) 697.86 536.03
Ordinary Least Squares (dynamic) 697.86 533.47
Standard Eigenvector (static) 821.60 573.84
Standard Eigenvector (dynamic) 821.60 572.99
Trimmed Bias-Corrected Eigenvector (static) 785.30 540.18
Trimmed Bias-Corrected Eigenvector (dynamic) 785.30 541.98

Table 3: Mean Absolute Errors of Combined Forecasts

The evaluation of accuracy delivers some interesting insight: All of the combination models
perform better in the test set than in the training set, which is counter-intuitive, but is likely due to
the increased dispersion among the component forecasts in the early period. The results also clearly
suggest that one or more of the component forecasts were biased. The two methods with an intercept
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(i.e. bias correction) perform best. Finally, allowing for time-varying combination weights does not
seem to change test-set accuracy much compared with the models’ static counterparts, suggesting
that the estimated combination weights did not fluctuate a lot over time. There are some potential
explanations why the OLS method performed extremely well in this case:

• With such stable conditions the risk of ‘bouncing betas’ (described in the previous section) is
low,

• The OLS method produces unbiased forecasts even if one or more of the component forecasts are
biased (which is why the trimmed bias-corrected eigenvector approach performed reasonably
well too),

• One of the component forecasts is much better than the rest, a situation that is favorable
for regression-based approaches, as pointed out by Hsiao and Wan (2014). These are also
conditions under which sophisticated methods actually can largely improve upon a simple
average combination.

Now that we learned that some of the combination models produced more accurate forecasts
than the simple average, we address the next, very natural question: How well did the combination
methods perform compared to the univariate component forecasts themselves? To shed more light on
this question, Table 4 shows the MAE values for the univariate models during the test set period.

Method MAE Test Set
ARIMA 770.32
ETS 615.88
Neural Network 730.35
Damped Trend 660.08
DOTM 540.24

Table 4: Mean Absolute Errors of Univariate Component Forecasts

The results of the accuracy evaluation speak for themselves. Not only did two of the combined
forecasts perform better or equally well as the best univariate forecast over the test set period, but
also the forecast risk is considerably lower indeed. In the test set the range of MAEs of the different
combined forecast methods is only 40, while the corresponding value for the univariate forecasting
methods is 230. It is worth noting that all of the combined forecasts perform considerably better than
even the second-best univariate forecast, emphasizing the appeal of forecast combination: In the ideal
case, it is possible to end up with a forecast that is better than the best univariate forecast. Even if this
is not the case, using forecast combination considerably decreases the risk of ending up with a poorly
performing model.

Finally, we take a closer look at the results from the best combined forecast, which is the dynamic
OLS combination method in this exercise.

R> ##### ACTUAL VS FITTED PLOT #####
R> plot(OLS_dyn)

R> ##### COMBINATION WEIGHTS #####
R> OLS_static$Weights
fhatarima fhatets fhatnnet fhatdampedt fhatdotm
0.02152869 -0.20646266 0.20992792 -1.04349858 1.97991049
R> colMeans(OLS_dyn$Weights)

fhatarima fhatets fhatnnet fhatdampedt fhatdotm
0.002750948 -0.123811218 0.184846358 -1.098381593 2.001988985

Figures 3 shows how well the combined forecast obtained from the dynamic OLS method predicts
the monthly electricity supply series. Results confirm the conjecture that the stable conditions (low
cross-sectional dispersion and one very dominant univariate component forecast) do not cause a lot of
fluctuation in the combination weights even when allowing for time-varying weights.

The weights presented also confirms another thing: that weights obtained using the OLS combina-
tion methods can be hard to interpret. It seems obvious that the method should put a high weight on
the DOTM forecast, since it is the best univariate forecast by far. However, the reason why it assigns
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Figure 3: Static OLS Forecast Combination: Actual vs Fitted Plot.

negative weights to the ETS and Damped Trend forecasts (the second- and third-best univariate
forecasts) is not very intuitive. A possible explanation might be that all three of these are exponential
smoothing-type models, suggesting that the information obtained from the ETS and Damped Trend
models is better captured by the DOTM model, while ARIMA and Neural Networks are not closely
related modelling approaches to the Theta model, so that even though these models perform far worse
on average, they capture information differently and might outperform the DOTM forecast in some
periods for that reason, justifying their positive weights (however small) and explaining how the
combined forecast can slightly outperform the best component forecast.

Discussion and Conclusions

Forecast combination is a useful strategy to hedge against model risk. Even if combined forecasts
do not win over the most accurate component forecast, they generally avoid poor performance by
circumventing the choice between individual methods (Timmermann, 2006). Instead of putting all
eggs into one basket using model selection, these model averaging techniques are motivated by
portfolio theory and diversify across component forecasts.

The ForecastComb package categorizes some of the most popular approaches into 3 groups: (a)
simple statistics-based methods, (b) regression-based methods, and (c) eigenvector-based methods.
Providing both regression-based combinations and eigenvector-based combinations to the users is
considered useful, since the former tend to perform relatively better when one or a few component
forecasts are much better than the rest, while the latter perform relatively better when all forecasts are
in the same ballpark (Hsiao and Wan, 2014).

The package is designed to support users along the entire modelling process: data preparation,
model estimation, and interpretation of results using summaries and plotting functionalities. It in-
cludes tools for data transformation that are designed to deal with two common issues in forecast
combination prior to estimation – missing values and multicollinearity. The 15 combination methods
are available in both static and dynamic variants, and users have the option to automate the selection
algorithm so that a good combination method is found based on training set fit. Finally, the package
offers specialized functions for summarizing and visualizing the combination results.
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While the current version of the package already provides a comprehensive set of tools for forecast
combination, there is scope for further extensions in future updates. First, additional combination
methods that showed promising results recently can be added, for instance the factor-augmented
regression approach by Cheng and Hansen (2015) and the AdaBoost algorithms reviewed by Barrow
and Crone (2016). Second, additional algorithms for adaptive combination weights (cf. Timmermann,
2006) can be implemented to provide even more flexibility with dynamic estimation. There are few
other possible extensions which are not handled here. For example the adaptation for a forecast
combination context of the mean absolute scaled error (Hyndman and Koehler, 2006) – the current
gold standard for accuracy evaluation – using the in-sample MAE of the best component forecast as
scaling factor. Another extension is of course the combination of forecast densities, while in this paper
the scope was limited to point-forecasts only.
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