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Stilt: Easy Emulation of Time Series AR(1)
Computer Model Output in
Multidimensional Parameter Space
by Roman Olson, Kelsey L. Ruckert, Won Chang, Klaus Keller, Murali Haran, and Soon-Il An

Abstract Statistically approximating or “emulating” time series model output in parameter space is a
common problem in climate science and other fields. There are many packages for spatio-temporal
modeling. However, they often lack focus on time series, and exhibit statistical complexity. Here, we
present the R package stilt designed for simplified AR(1) time series Gaussian process emulation,
and provide examples relevant to climate modelling. Notably absent is Markov chain Monte Carlo
estimation – a challenging concept to many scientists. We keep the number of user choices to a
minimum. Hence, the package can be useful pedagogically, while still applicable to real life emulation
problems. We provide functions for emulator cross-validation, empirical coverage, prediction, as well
as response surface plotting. While the examples focus on climate model emulation, the emulator is
general and can be also used for kriging spatio-temporal data.

Introduction

Emulation of computer model behavior in parameter space is a challenging problem (Drignei et al.,
2008; Higdon et al., 2008; Holden et al., 2010; Bhat et al., 2012; Olson et al., 2012; Sexton et al., 2012;
Olson et al., 2013; Chang et al., 2014a,b). Often a limited number of runs are available and we desire
to estimate model output at a variety of new parameter settings (Drignei et al., 2008; Holden et al.,
2010; Bhat et al., 2012; Olson et al., 2012; Sexton et al., 2012; Olson et al., 2013; Chang et al., 2014b).
Emulation is often used in the context of another common problem, input parameter estimation. Here,
we desire to find probability distribution functions for model input parameters given observational
data (e.g., Olson et al., 2012; Chang et al., 2014b). While model output is often multi-dimensional,
we restrict the discussion here to time series although our approach can apply to vector output more
generally.

Gaussian processes (Kennedy and O’Hagan, 2001; Rasmussen and Williams, 2006; Higdon et al.,
2008; Rougier, 2008) are a very useful methodology for such emulation. Gaussian processes provide
the best linear unbiased prediction under highly general conditions (Stein, 1999). This methodology
assumes that model response is a smooth function of parameter settings. Central to the method is
formulation of the covariance function, which quantifies the covariance between model output as
a function of distance in each model input parameter. This covariance is typically parametrized by
parameters controlling, for example, magnitude or the correlation ranges in each coordinate dimension.
Associated with emulator parameters is a likelihood function given the model output. There are two
main approaches: (i) find the “best” parameter setting that maximizes this likelihood, or (ii) find the
full probability distribution of the parameters. The next step is prediction at new parameter settings.
The former approach ignores the uncertainty in emulator parameters during the prediction, while the
latter approach accounts for it. The prediction is probabilistic as it includes the predictive mean and
the uncertainty around it.

There are many existing R packages to perform Gaussian process emulation for vector and time
series output. In particular, they include gstat (Gräler et al., 2016), mlegp (Dancik and Dorman, 2008;
Dancik, 2013), spBayes (Finley et al., 2015), ramps (Smith et al., 2008), spTimer (Bakar and Sahu,
2015a,b), and RandomFields (Schlather et al., 2015). These spatio-temporal packages are usually
general and do not focus on time series specifically. Moreover, they are usually presented in context
of spatial interpolation (“kriging”) rather than emulation. They may provide flexible functionality
in terms of covariance functions (RandomFields), handling replicates (mlegp), dealing with missing
observations (spTimer), or considering both areal as well as point observations (ramps). The procedure
for fitting emulator parameters differs between packages. Some packages use maximum likelihood or
another form of optimization to find the best parameters, while others use Bayesian analysis.

Due to their statistical complexity, the broad scientific community may find it challenging to use
existing software. Particularly, the concept of Markov chain Monte Carlo (MCMC) employed in some
work may be unfamiliar to some scientists. In addition, a large variety of modeling or prior choices
may leave a user struggling with which model or prior they should employ and why. Many packages
appear to be tailored to a statistical audience, and elaborate statistical terminology may be beyond the
grasp for some scientists. Second, the packages do not usually focus on the spatio-temporal output
ubiquitous in computer modelling. Thus, scientists may invest substantial time in finding the right
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function among the plethora available. Finally, there is an issue of terminology: many scientists may
not realize that “spatio-temporal modeling” may disguise the same technique as “emulation” and
hence, may be oblivious to the applicability of these packages.

We introduce the R package stilt version 1.3.0 for simplified Gaussian Process AR(1) time series
emulation with a focus on climate modeling (Olson et al., 2017). The package is available on Compre-
hensive R Archive Network (CRAN). The main differences from prior approaches are: (i) a simplified
framework with fewer modeling choices and no MCMC that is still applicable to real-life problems,
and (ii) a focus on emulation of time-series in parameter space. Specifically, there is only one function
to fit the emulator to model output and only one function for prediction. Statistical modeling accounts
for random noise in the model output through the nugget term, and also allows for user-chosen linear
terms in model parameters and/or time. Mathematically, this is the first public implementation of
a separable covariance model of Rougier (2008). In this model, space-time covariance between two
locations is a product of a space covariance and a time covariance term. This allows the use of matrix
algebra to achieve considerable computational gains. We include useful utility functions for extensive
cross-validation, 2D response surface plotting, and empirical 95% prediction interval coverage. In
three examples, we apply stilt to emulation in spaces ranging from one- to five-dimensional. Note that
whilst the software is for emulation of time series output in parameter space, the package is general
and can be used for interpolation of observations (or model output) in geographical coordinates (e.g.,
Cressie and Johannesson, 2008; Jones et al., 2009; Hansen et al., 2010; Bhat et al., 2012; Hirahara et al.,
2014).

In the rest of the paper we first outline the statistical approach, then give three examples in 1D,
2D, and 5D parameter space, then present some concluding remarks. We provide technical details in
the Appendix.

Statistical approach

Overview of Approach

Here, we briefly describe our statistical approach. Our statistical model includes optional linear terms
in parameters and/or time, a smooth Gaussian process, and a purely random nugget term. The
Gaussian process represents smooth non-linear effects of parameters or time on the model output. The
nugget term represents purely random effects. For climate model output, this corresponds to internal
climate variability.

The first step is fitting the Gaussian process statistical model to the computer model output. Specif-
ically, the statistical model has several parameters. They control the linear slopes in parameters and
time, the correlation ranges of the field in each of the input parameters, the temporal autocorrelation,
the overall magnitude of the covariance, and the nugget strength. Associated with the emulator
parameters is the likelihood which quantifies how likely the emulator parameter values are given
the model output. During the emulator fitting, we vary the parameters so that this likelihood is
maximized to obtain the optimized emulator. We use this optimized emulator for prediction. The
prediction follows the standard Gaussian process theory. The rest of the section describes the details
of the statistical methodology.

Statistical model

We base our implementation on standard Gaussian process theory (Cressie, 1993; Stein, 1999; Ras-
mussen and Williams, 2006). Consider the case of interpolating spatio-temporal model output of
a perturbed parameter model ensemble in parameter space. Let yi,j ∈ R be physical model output
at a parameter setting θi and a time tj. Time values form an n-dimensional regularly spaced vector
t = (t1, . . . , tn)T .

Each parameter setting is an m-dimensional vector: θi = (θ1,i, . . . , θm,i). For all p model runs, the
parameter settings θi form a p×m parameter matrix Θ. Let yj = (y1,j, . . . , yp,j)

T be a p-dimensional
vector of model outputs for all p parameters for time tj. Consecutively, the stacked pn× 1 column
matrix of all model output for times from 1 through n is Y = (y1

T , . . . , yn
T)T . Associated with Y is the

pn× (m + 1) design matrix D. Its columns represent parameters and time, whereas rows correspond
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to elements of Y. We calculate the design matrix D as:

D =




1
1
...
1


n×1

⊗ Θ t⊗


1
1
...
1


p×1

 , (1)

where ⊗ is the Kronecker product. We model the output as a Gaussian process such that

Y ∼ N(µβ, Σ(ξy)), (2)

where µβ is a mean function that is either constant or linear in any combination of parameters and/or
time, and ξy is a vector of covariance matrix parameters. We assume that µβ = Xβ, where β is a
column vector of regression coefficients, and X is a matrix of covariates. It always includes a column
of ones as its first column to represent the intercept. Depending on the number of regressors, it can
additionally have corresponding columns of the design matrix D. As an example, for a mean function
that is linear in time, β has dimensions of 2× 1, and X is pn× 2:

X =


1 t1
1 t2
...

...
1 tn


n×2

⊗


1
1
...
1


p×1.

(3)

Under the assumption of separability (see Rougier, 2008), we can represent the covariance matrix
Σ as a Kronecker product of a separate covariance matrix in time Σt and in parameters Σθ :

Σ = Σt ⊗ Σθ . (4)

This means that the covariance between any two locations in time and parameter space is a product
of the time covariance term, and the parameter covariance term. This is a different approach to speed
up the computation, compared to performing singular value decomposition (SVD) of model output
(Dancik and Dorman, 2008; Dancik, 2013; Higdon et al., 2008; Chang et al., 2014b). We assume that
the time covariance matrix Σt (n× n) has an AR(1) structure. AR(1) dependence in time is a feature
of many environmental processes (e.g., Hasselmann, 1976; Keller and McInerney, 2008; Olson et al.,
2013). To avoid identifiability issues, we do not use any multipliers for this matrix. Specifically, its
(j, k) element is:

ςt,jk =
ρ|tj−tk |

1− ρ2 , (5)

where ρ is the lag-1 autocorrelation parameter. We assume that the parameter covariance Σθ (p× p) is
squared exponential, as in the package mlegp (Dancik and Dorman, 2008; Dancik, 2013). The squared
exponential covariance function is frequently used in computer model emulation, as computer model
outputs can be often represented using a highly smooth Gaussian process. The (i, j) element of Σθ is:

ςθ,ij = κ exp(−
m

∑
k=1

|θk,i − θk,j|2
φ2

k
) + ζ1(i = j) (6)

where κ is the partial sill, ζ is the nugget, and φk is the range parameter for the kth model input
parameter. The range parameters form a vector φ = φ1, . . . , φm. We construct the total covariance
matrix (np× np) as:

Σ =

ςt,11Σθ · · · ςt,1nΣθ
...

. . .
...

ςt,n1Σθ · · · ςt,nnΣθ

 . (7)

Hence, the covariance parameters are ξy = (ρ, κ, φ, ζ)T . The emulator parameters are ψ =

(βT , ξy
T)T . The actual number of emulator parameters will be different depending on the number of

model parameters that the ensemble varies and on the number of covariates.
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Estimating emulator parameters

We can write the log-likelihood for the model output Y given the emulator parameters ψ as (see, e.g.,
Rasmussen and Williams, 2006):

ln L(Y|ψ) = −1
2
(Y− µβ)

TΣ−1(Y− µβ)−
1
2

ln |Σ| − np
2

ln 2π. (8)

Under the uniform priors for the emulator parameters,

L(ψ|Y) ∝ L(Y|ψ). (9)

Consequently, maximizing the log-likelihood for the model output also maximizes the likelihood for
the parameters. Note that this likelihood evaluation involves a computationally expensive inverse of
an np× np matrix. However, we can reduce the dimension of the inverted matrices to p× p and n× n,
and speed up the computation (see Appendix). Thus, the computational cost of inversion becomes
O(p3) or O(n3), as opposed to O([pn]3). Further computational savings accrue when calculating |Σ|,
considering that Σ is a Kronecker product of two positive definite matrices (see Appendix).

We optimize the emulator parameters ψ by maximizing the likelihood function over a reasonable
parameter range using a local optimization routine. Specifically, stilt uses the nlminb function which
calls FORTRAN code (Gay, 1990). In the package, there is an option to either fix β parameters at their
multiple linear regression estimates or to optimize them along with other emulator parameters.

Prediction

We are interested in predicting model output for all times for a new parameter setting θ∗. We denote
the n-dimensional vector output as y∗ = (yθ∗ ,1, . . . , yθ∗ ,n)

T . Associated with the prediction parameter
setting is an n× 1 prediction design matrix D∗ and a matrix of covariates X∗ evaluated at predictions
points. It is constructed similarly to X. For a mean function that is linear in time, X∗ is:

X∗ =


1 t1
1 t2
...

...
1 tn


n×2

. (10)

The prediction is given by the following multivariate normal distribution (Rasmussen and Williams,
2006):

y∗ ∼ N(µ∗β, Σ∗). (11)

Here,
µ∗β = X∗β + (Σt ⊗ Σθ∗θ)Σ

−1(Y− µβ), (12)

where Σθ∗θ is a 1× p cross-covariance matrix between the prediction parameter setting and all the
ensemble parameters settings. For this matrix, we use the same covariance function as for Σθ . To
evaluate the mean function, we need the inverse of the Σ matrix (np× np). However, using matrix
algebra (Golub and Van Loan, 1996; Rougier, 2008), we can reduce the dimension to p× p by writing
µ∗β in the following way:

µ∗β = X∗β + (In×n ⊗ Σθ∗θΣ−1
θ )(Y− µβ). (13)

The predictive covariance also requires an inversion of a p× p matrix only:

Σ∗ = (κ + ζ)Σt − Σt ⊗ Σθ∗θΣ−1
θ ΣT

θ∗θ . (14)

Prediction for many points uses the same inverse parameter covariance. Hence, we can calculate
the inverse once and recycle it for prediction at many points. This further enhances computational
savings.

Examples using stilt

Preparing model output

Here, we describe how to prepare model output for use with the stilt emulator. Two R list objects are
required. These objects can be easily prepared by the user before the start of the analysis. The first,
mpars, contains information on parameter settings in the ensemble. It has the following components:
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• par is the actual matrix of parameter settings, with rows corresponding to parameter index, and
columns to the model run index.

• parnames is a vector of parameter names corresponding to the rows of par,

• parunits is a vector of units.

The second object, moutput has information on model output. It also has several components, the
most important being out which is the output model matrix with rows referencing time and columns
referencing model run. Other elements contain metadata: t is the corresponding time vector, tunuts
are time units, outname is the name of the modeled variable, and outunits are the corresponding units.

Simple 1D example

This and the following examples are based on running stilt version 1.3.0 on R version 3.3.3 using a 3
Ghz Intel core i5 16GB 2400 MHz DDR4 Macintosh 10.13.6 computer. The following versions were
used for other required packages: fields (9.0), maps (3.3.0), spam (2.1-2), and dotCall64 (0.9-5). The
results were observed to differ slightly according to the programming environment and the operating
system.

We first consider interpolating a toy model dataset consisting of a simple time-series output for
one parameter with a total of 21 parameter settings and 11 time points. The output of this simple
model as a function of time t and parameter θ is: y = sin(θ)(1 + 2t + t2). The model is evaluated for
θ = (0, 1, . . . , 20), and each run produces a time series for times t = (0, 1, . . . , 10). First, we can plot
model output for all parameters:

R> data("Data.1D.model")
R> data("Data.1D.par")
R> plot(NA, xlim=c(0, 11), ylim=c(-150, 150), xlab="Time", ylab="Model output")
R> for (c in 1:21) {lines(Data.1D.model$t, Data.1D.model$out[,c])}

The output of this code is shown in Figure 1.

Now, we fit a Gaussian process emulator to these data. While we do not use any parameter
covariances (par.reg=FALSE), we do use a linear time covariate (time.reg=TRUE). The optimization
follows the default behavior of fixing the linear regressors at the multiple linear regression estimates.
We select 100 as the starting values for both κ and ζ because this leads to reasonable optimization
results.

R> emul1D = emulator(Data.1D.par, Data.1D.model, par.reg=FALSE, time.reg=TRUE,
kappa0=100, zeta0=100)
Initializing the emulator...

Initial regression parameters:
-0.665481 0.570413

Initial emulator likelihood is: -960.2755

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-10

Option 'fix.betas': during optimization beta parameters are going to be
fixed at the following values:
-0.665481 0.570413

------------------------------------
Starting parameter optimization...
-------------------------------------
0: 960.27550: 0.900000 100.000 100.000 10.0000
1: 947.88498: 0.903188 72.2395 233.781 10.1709
2: 898.20175: 0.957801 0.00240862 151.661 13.5627
3: 889.24528: 0.977342 0.00240862 131.201 13.4426

48: 464.48240: 0.982420 1076.06 0.00240862 3.93464
Optimization SUCCESSFUL! Optimization message below:
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Figure 1: Sample time series output of the toy model for different parameter settings

relative convergence (4)

Final parameterss
rho kappa zeta phi
0.98242004 1076.05714589 0.00240862 3.93464218

48 iterations were performed
Final likelihood = -464.4824

CAUTION! The optimization might only find a local minimum.

The package informs us of key emulator parameter settings, and of optimization results. (For
brevity, only the start and the end of optimization process are shown above.) The list of parameters to
be optimized is ρ, κ, ζ, and φ1 in this case. The final emulator is a highly autocorrelated process with a
large partial sill, but a very low nugget. The emulator object emul1D is a list with many components,
with a secondary custom "emul" class. The components include information on the data used to fit
the emulator, optimized emulator parameters, some settings used during optimization, time and
parameter covariance matrices, and the inverse of the parameter covariance matrix. Now, we validate
the emulator using one-at-a-time cross-validation for time index 9 (close to the end of the time series).
Specifically, we remove each parameter setting from the ensemble one at a time, and use the emulator
to predict the output at the excluded parameter setting, given the output at other parameter settings.

R> test.all(emul1D, 9)

The emulator mean prediction shows a remarkable accuracy at predicting actual model response:
the two fall almost perfectly on the 1:1 line of a reliability diagram (Figure 2). The emulator prediction
error is much less than 1% for almost all runs (Figure 2). Note that the emulator does not extrapolate
beyond the ensemble parameter range.

The emulator predicts at new parameter settings using the function predict.emul. This is im-
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Figure 2: Toy example emulator one-at-a-time cross-validation results: (left) predicted vs. actual
model output (black dots) and a 1:1 line; (right) relative prediction error as a function of the excluded
model run number.

plemented using the generic S3 predict function that dispatches to the predict.emul() method
for objects of class "emul". This function returns an object with components mean and covariance
representing the mean and the covariance of the prediction.

A more challenging test case: 2D Korean summer mean maximum temperature variabil-
ity and change

Next, we consider Korean summer mean maximum temperature output from 29 Coupled Model
Intercomparison Project phase 5 (CMIP5) climate models (Taylor et al., 2012) for years 2081-2100 for
the RCP8.5 forcing scenario (Moss et al., 2010). All of the models and calculations used here follow
Shin et al. (2018), however here we exclude the model IPSL_CM5A_LR from the analysis. Of interest
is the relationship between the present-day (years 1973-2005) sample red noise properties for annual
temperature time-series, and the future mean maximum summer temperature changes in these climate
models. Hence, each model i is associated with θi = (σi, ρi), where σi is sample innovation standard
deviation, and ρi is sample first-order autocorrelation. In this case, m = 2, p = 29, and n = 20.

First, we load the relevant datasets and plot the temperature time series for all models.

R> data("Data.AR1Korea.model")
R> data("Data.AR1Korea.par")
R> mycolors = rainbow(29)
R> plot.default(NA, xlim=c(2081, 2100), ylim=c(0,10), xlab="Year",

ylab="JJA Mean Max Temp Anomaly wrt. 1973-2005 [K]")
R> for (c in 1:29) {lines(Data.AR1Korea.model$t, Data.AR1Korea.model$out[,c],

col=mycolors[c])}

We note that the models show a considerable internal variability superimposed on a trend of slow
warming (Figure 3). Next, we fit an emulator while also allowing for optimization of regression slopes
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Figure 3: Korean summer mean maximum temperature change in years 2081-2100 with respect to
period 1973-2005 for 29 CMIP5 climate models.

in innovation standard deviation and time. We also use a custom relative tolerance to illustrate how
this parameter may be changed to fit user needs.

R> emul = emulator(Data.AR1Korea.par, Data.AR1Korea.model, par.reg=c(TRUE,
FALSE), time.reg=TRUE, kappa0=1, zeta0=1, myrel.tol=1E-9, fix.betas=FALSE)

Initializing the emulator...

Initial regression parameters:
-116.0626827 3.8544881 0.0563853

Initial emulator likelihood is: -937.479

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-09
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------------------------------------
Starting parameter optimization...
-------------------------------------
0: 937.479: 0.900000 1.00000 1.00000 -116.063 3.85449 0.0563853 0.322532 0.257
1: 923.956: 0.899929 0.468880 1.36686 -116.087 3.85444 0.0563734 0.322768 0.257
2: 901.460: 0.899874 9.24879e-05 1.05990 -116.096 3.85442 0.0563689 0.322900 0.257
3: 900.363: 0.899860 0.0377996 1.17131 -116.068 3.85445 0.0563831 0.322900 0.257

54: 858.446: 0.616698 9.24879e-05 1.10326 -123.432 3.86546 0.0599039 6.45065 4.396
Optimization SUCCESSFUL! Optimization message below:

relative convergence (4)

Final parameterss
rho kappa zeta beta beta beta phi phi
0.616698 9.24879e-05 1.10326 -123.432 3.86546 0.0599039 6.45065 4.396

54 iterations were performed
Final likelihood = -858.4463

CAUTION! The optimization might only find a local minimum.

Note that we have formatted the output slightly to fit the page width.

We see that the initial multiple regression provides reasonable mean and parameter slopes. They
are close to the final optimized results (fourth through sixth elements of the optimized parameter
vector called "Final parameters" above). There is a considerable linear dependence on both time and
innovation standard deviation. The non-linear part of the emulator has a strong random component,
and a very weak Gaussian process component. This suggests no systematic dependence of the model
output on the present-day autocorrelation. We can predict the temperature response at an arbitrary
setting of the parameters using the predict function. We do this for σ = 1 and ρ = 0:

R> pred = predict(emul, c(1, 0))
R> plot.default(NA, xlim=c(2081, 2100), ylim=c(3.5,7.5), xlab="Year",

ylab="JJA Mean Max Temp Anomaly wrt. 1973-2005 [K]")
R> lines(emul$t.vec, pred$mean)
R> lines(emul$t.vec, pred$mean + sqrt(diag(pred$covariance)), col="brown")
R> lines(emul$t.vec, pred$mean - sqrt(diag(pred$covariance)), col="brown")

The mean vector of the prediction is the mean component of pred, and the variance vector is
composed of the diagonal entries of covariance. Figure 4 shows the predicted response, with the
associated 1-std uncertainty. We note the linearity of the warming in time. This illustrates the ability of
the emulator to identify fluctuations of temperature in the models around the linear trend as random,
and not to include them into the emulated response.

An even more challenging test case: Five-dimensional ice sheet model output

Next, we consider a 5D emulator for the SICOPOLIS ice sheet model output (Greve, 1997; Greve
et al., 2011) for Greenland ice mass loss relative to the year 2003. This is a perturbed parameter
100-member ensemble which varies five model parameters: flow enhancement factor, basal sliding
factor, geothermal heat flux, snow positive degree-day (PDD) factor, and ice PDD factor. The future
forcing scenario is that of a gradual temperature increase stabilizing at approximately 5 K warmer
than present (Applegate et al., 2012). Output is available annually between years 1840 and 2500.

We load relevant data and fit an emulator to the ensemble using all five parameters and time
as covariates. For computational expediency, we fix slope parameters at their multiple regression
estimates.

R> data(Data.Sicopolis.par)
R> data(Data.Sicopolis.model)
R> emul.Sicopolis = emulator(Data.Sicopolis.par, Data.Sicopolis.model,

par.reg=c(TRUE, TRUE, TRUE, TRUE, TRUE),
time.reg=TRUE, kappa0=1000000, zeta0=50000)

Initializing the emulator...

Initial regression parameters:
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Figure 4: Emulated Korean summer mean maximum temperature change projections with respect to
1973-2005 at σ = 1 K and ρ = 0. Solid and dashed lines: mean response ± standard errors.

5154878.375 171.401 8590.267 -182.659 49920.313 1300.488 -2725.378

Initial emulator likelihood is: -10782007

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-10

Option 'fix.betas': during optimization beta parameters are going to be
fixed at the following values:
5154878.375 171.401 8590.267 -182.659 49920.313 1300.488 -2725.378

------------------------------------
Starting parameter optimization...
-------------------------------------
0: 10782007.: 0.900 1.00e+06 50000.0 1.97305 9.84502 19.9205 1.98380 7.45
1: 672836.29: 1.00 3.29e+07 7.05408e+07 2.83691 8.68834 27.1292 2.24728 0.00149
2: 672613.27: 0.999 3.29e+07 7.05341e+07 2.83691 8.68834 27.1292 2.24728 0.0537
3: 667210.63: 0.997 3.20e+07 7.08502e+07 2.86488 8.69561 27.3808 2.26410 14.54

79: 485611.17: 0.999989 5.83e+06 41529.0 13.4764 20.1003 199.578 5.72313 10.9
Optimization SUCCESSFUL! Optimization message below:

relative convergence (4)

Final parameters
rho kappa zeta phi phi phi phi phi
0.999989 5829746.770135 41528.993339 13.476403 20.100261 199.578404 5.723128 10.901509
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79 iterations were performed
Final likelihood = -485611.2

CAUTION! The optimization might only find a local minimum.

The emulator takes roughly 3 minutes to fit on a 3 Ghz Intel core i5 16GB 2400 MHz DDR4
Macintosh computer. The final emulator is very smooth as evidenced by the relatively high range
parameters compared to the ensemble parameter range, and has an extremely low nugget compared
to the partial sill parameter.

Next, we perform cross-validation of the emulator for the entire time series. We withhold three
ensemble members, and predict at withheld parameters using the model output at the remaining 97
parameter settings.

R> test.csv(emul.Sicopolis, num.test=3, plot.std=TRUE, theseed=13241240)
Predicting for run number: 3
Predicting for run number: 26
Predicting for run number: 93

Here, we have specified a random seed, and the output tells us which model runs were excluded.
Alternatively, we can select the runs to withhold via the test.runind argument. We present the results
in Figure 5. The emulator has remarkable skill at recovering the output of the withheld models.

Now, we withhold more runs and perform a more systematic analysis of emulator behavior:

R> mytest = test.csv(emul.Sicopolis, num.test=10, plot.std=FALSE, theseed=13241240,
make.plot=FALSE)

Predicting for run number: 3
Predicting for run number: 7
Predicting for run number: 26
Predicting for run number: 34
Predicting for run number: 37
Predicting for run number: 43
...Prediction error. Likely because prediction parameters are out of bounds

Predicting for run number: 91
Predicting for run number: 93
Predicting for run number: 99
Predicting for run number: 100
NOTE: 1 prediction points were omitted

R> cat("95% CI coverage:", mytest$coverage, "\n")
95% CI coverage: 0.9768028

Note that stilt does not extrapolate beyond the parameter range of the ensemble. Since one of the
parameters is at its maximum among the ensemble for the 43rd run, this run is skipped during the
cross-validation. We disable the plotting since our main interest here is empirical coverage of the 95%
prediction interval. The coverage (0.977) is relatively close to the ideal theoretical value of 0.95, which
suggests that the emulator is relatively well calibrated.

We finish by plotting the response surface of the emulator for parameters 4 (snow PDD factor),
and 5 (ice PDD factor). We fix flow enhancement factor, basal sliding factor, and geothermal heat flux
at values of 3.0, 10.0 m y−1 Pa−1, and 45.0 m W m−2, respectively.

R> rsurface.plot(emul.Sicopolis, parind=c(4,5), parvals=c(3, 10, 45, NA, NA),
tind=600, n1=10, n2=10)

We look at the 600th time index (year 2439), where n1 and n2 are the number of grid points to use
in the x and y directions, respectively. Figure 6 shows the response surface. A monotonic positive
relationship exists between the ice mass anomaly as a function of the snow PDD factor across most of
the ice PDD factor range. However, the relationship between the ice mass loss and the ice PDD factor
appears to be non-monotonic.

Concluding remarks

Here, we present stilt - a package for simplified Gaussian process emulation. The package is designed
for emulation of time series model output in parameter space, although it can be applied for kriging
more generally. The focus is on simplicity, so the package could be easily applied to many challenging
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Figure 5: Cross-validation of Greenland Ice Sheet anomaly with respect to year 2003 [Gt] from the
SICOPOLIS ensemble. Thick beige lines: actual model output. Brown lines: emulator predictions with
standard error confidence intervals.

problems by users outside of the statistics research community. The streamlined emulator fitting and
prediction means the package is also useful pedagogically in demonstrating the Gaussian process
emulation. We assume separability in space and time for the Gaussian process. This allows us to
reduce computational burden using matrix algebra, and makes it possible to apply the package to
moderately large datasets, especially in the time dimension. We showcase package capabilities on
three examples which differ in the amount of parameters in the model ensemble. Specifically, we
use a 1D toy dataset, a 2D dataset of Korean summer mean maximum temperatures, and the 5D
SICOPOLIS ice sheet model output. Using cross-validation functions, we show the capability of
the emulator to predict model response at excluded parameter values in up to five dimensions. We
demonstrate the capacity to visualize estimated 2D model response surfaces. The package can be
useful when computational resources are limited, and a relatively fast statistical approximator is
required for a complex model across a range of parameter space. Some limitations of the package
are homoskedasticity, separability, and the fixed covariance structure (e.g., AR(1) and the squared
exponential function). We choose the AR(1) model because it is applicable to data in diverse scientific
fields (Hasselmann, 1976; Keller and McInerney, 2008; Li, 2011; Olson et al., 2013). The disadvantage
is that such an emulator may not handle seasonal or periodic effects that may be present in computer
model output. Extending the package to account for heteroskedasticity (e.g., hetGP package, Binois
and Gramacy, 2017) should be considered in future work.
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Figure 6: Response surface of SICOPOLIS Greenland Ice Sheet anomaly with respect to year 2003 [Gt]
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Appendix

This Appendix describes the technique to reduce computational cost when evaluating the likelihood
(Equation 8). In its original form, it involves a computationally expensive inverse of an np× np matrix.
Consider a p× n matrix C, where Y− µβ = vec(C), and the vec operation stacks columns of a matrix
into a column vector, from left to right (Rougier, 2008). Using properties of Kronecker products (Golub
and Van Loan, 1996), of the vec operator (Magnus and Neudecker, 2007), and other matrix algebra:

(Y− µβ)
TΣ−1(Y− µβ) = (vec(C))T [Σ−1

t ⊗ Σ−1
θ ]vec(C)

= (vec(C))T [(Σ−1
t )T ⊗ Σ−1

θ ]vec(C)

= (vec(C))Tvec(Σ−1
θ CΣ−1

t )

= sum
[
C ∗ (Σ−1

θ CΣ−1
t )
]

,

(15)

where ∗ is the Hadamard product. This reduces the dimension of matrices that are inverted to p× p
and n× n, thus substantially reducing computational burden. We further note that both matrices
Σθ and Σt are positive definite (Wicklin, 2013, and others). Thus, the inverses can be found through
the Cholesky decomposition of Σθ = RT

θ Rθ , where Rθ (called Cholesky factor) is an upper triangular
matrix; and similarly for Σt.

Additionally, determinant computations can be simplified considerably (Gentle, 2007):

|Σ| = |Σt ⊗ Σθ | = |Σt|p|Σθ |n. (16)

Thus, we only need to evaluate the determinants of the individual covariance matrices. Moreover,
since Σθ and Σt are positive definite, |Σθ | = ∏

p
i=1 r2

θ,ii, where rθ,ii are diagonal elements of the Cholesky
factor Rθ . Similar calculations can be performed for |Σt|.
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