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Basis-Adaptive Selection Algorithm in
dr-package

by Jae Keun Yoo

Abstract Sufficient dimension reduction (SDR) turns out to be a useful dimension reduction tool in
high-dimensional regression analysis. Weisberg (2002) developed the dr-package to implement the
four most popular SDR methods. However, the package does not provide any clear guidelines as
to which method should be used given a data. Since the four methods may provide dramatically
different dimension reduction results, the selection in the dr-package is problematic for statistical
practitioners. In this paper, a basis-adaptive selection algorithm is developed in order to relieve this
issue. The basic idea is to select an SDR method that provides the highest correlation between the basis
estimates obtained by the four classical SDR methods. A real data example and numerical studies
confirm the practical usefulness of the developed algorithm.

Introduction

Sufficient dimension reduction (SDR) in the regression of y € R![X € R? = (x1,...,xp)T replaces the
original p-dimensional predictors X with its lower-dimensional linearly transformed predictors MTX
without any loss of information on y|X, which is equivalently expressed:

yIIXMTX, (1)

where II stands for independence, M is a p X g matrix and g < p.

A space spanned by the columns of M to satisfy (1) is called a dimension reduction subspace.
Hereafter, S(M) denotes the column subspace of a p x g matrix M, and M'X is called a sufficient
predictor. The intersection of all possible dimension reduction subspaces is called the central subspace
Sy|x, if it exists. The main goal of SDR is to infer S, x, which is done through the estimations of its
true structural dimension d and orthonormal basis matrix.

According to Cook (1998a), for a non-singular transformation of X such that Z = ATX, the
following relation holds: S,|x = AS,z. Considering a standardized predictor Z = 12X - E(X)},

we have that 5, x = Z’l/ZSy‘Z, where £ = cov(X) and £~1/2271/2 = £~ Typically, SDR methods
estimate S, 7 first, then back-transform it to S;|x. Hereafter kernel matrices to restore S, |z for each
method will be denoted as M., and it will be assumed that M, is exhaustively informative to S,z so
that S(M, ) = Sy|z- With Z-scale predictors, the classical but most popularly used SDR methodologies
include:

(i) sliced inverse regression (SIR; Li, 1991):
Mgr = cov{E(Z|y)}. If y is categorical, a sample version of E(Z|y) is straightforward. If y is
many-valued or continuous, y is categorized by dividing its range into  slices.

(ii) sliced average variance estimation (SAVE; Cook and Weisberg, 1991):
Msave = E[{I, — cov(Z|y) }{I, — cov(Z|y)}T]. The sample version of cov(Z|y) is constructed
in the same way as SIR.

(iii) principal Hessian directions (pHd; Li, 1992; Cook, 1998b):
Mpnd = Zrzz = E[{y — E(y) — BTZ}ZZ7), where B is the ordinary least squares on the regres-
sion of y|Z. The sample version of Mg is constructed by replacing the population quantities
with their usual moment estimators.

(iv) covariance method (covk Yin and Cook, 2002):
Mok = {E(Zw), E(Zw?),...,E(Zw*)}, where w = {y — E(y)}/+/var(y). As can be easily
seen, E(Zw/) in My is the covariance between w/ and Z as well as the ordinary least squares
coefficient of w/|Z forj =1,... k.

These four SDR methods can be implemented in the dr-package. The package provides the basis
estimates and dimension test results. A detailed review on the dr-package is given in Weisberg (2002).
The following question is a critical issue in using dr: which one among the four methods has to be used?
Even with the same data, one can obtain dramatically different dimension reduction results from the
four methods in dr, yet there is no clear and up-to-date guideline on method selection. It is known that
SIR and covk work better when a linear trend exists in regression, while SAVE and pHd are effective
under a nonlinear trend, particularly in the case of a quadratic relationship. However, in practice,
these may not be useful guidelines for choosing an SDR method, because it is not easy to check the
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existence of non/linear trends in regression. Even in the case that a linear trend exists, it is still not
clear which of SIR and covk should be used, as they yield different dimension test results.

The purpose of the paper is to develop a basis-adaptive selection algorithm for selecting an SDR
method. The basic idea is to select the one that gives the highest correlation between the basis estimates
obtained by all possible pairs of the four SDR methods. To measure the correlation, a trace correlation r
(Hooper, 1959) will be used. The algorithm is data-driven and can be enhanced to other SDR methods,
although it is highlighted with the use of the dr-package in this paper.

The organization of this article is as follows. We develop the idea of a basis-adaptive selection
algorithm, and discuss its selection criteria. Next, we present a real data example and simulation
studies. Finally, we summarize our work.

Basis-adaptive selection

Development of algorithm

We begin this section with soil evaporation data in Section 6 of Yin and Cook (2002). The data contains
46 observations of daily soil evaporation, daily air and soil temperature curves, daily humidity curves
and wind speed. For illustration purposes, we consider a regression analysis of daily soil evaporation
given the integrated area of and the range of the daily air and soil temperatures. We will revisit the
data in a later section.

## loading data

evaporat <- read.table("evaporat.txt”, header=T); attach(evaporat)
Rat <- Maxat-Minat; Rvh <- Maxh-Minh; Rst <- Maxst-Minst

w <- c(scale(evaporat$Evap,center=TRUE,scale=TRUE)); detach(evaporat)
evaporat <- data.frame(evaporat, Rat, Rvh, Rst)

w2 <- cbind(w, w*2); w3 <- cbind(w2, w*3); w4 <- cbind(w3, w*4)

## dr-package fitting

library(dr)

sir5 <- dr(Evap~Avat+Rat+Avst+Rst, data=evaporat, method="sir"”, nslice=5)
saveb5 <- update(sir5, method="save"); phdres <- update(sir5, method="phdres")
cov2 <- dr(w2~Avat+Rat+Avst+Rst,data=evaporat, method="o0ls")

cov3 <- dr(w3~Avat+Rat+Avst+Rst,data=evaporat, method="o0ls")

cov4 <- dr(w4~Avat+Rat+Avst+Rst,data=evaporat, method="ols")

## dimension test

round(dr.test(sir5),3)

round(dr.test(saveb),3)

round(dr.test(phdres, numdir=4),3)
set.seed(100);round(dr.permutation.test(cov2,npermute=1000)$summary, 3)
set.seed(100);round(dr.permutation.test(cov3,npermute=1000)$summary, 3)
set.seed(100);round(dr.permutation.test(cov4,npermute=1000)$summary, 3)

Table 1: Dimension test results for soil evaporation data

SIR with 5 slices SAVE with 5slices pHd cov2 cov3 cov4

Hy:d=0 0.000 0.048 0.698 0.000 0.000 0.002
Hy:d=1 0.022 0.261 0.723 0.007 0.001 0.001
Hy:d=2 0.202 0.546 0.751 N/A 0.011 0.001
Hy:d=3 0.814 0.755 0452 N/A N/A 0.004

The p-values for the dimension estimation by the four methods in dr are reported in Table 1. For SAVE
and pHd, the p-values under normal distributions are reported. Since a permutation test should be
used for covk, set.seed(100) was used to have reproducible results. According to Table 1, with level
5%, the SIR and the SAVE determine that d = 2 and d = 1, respectively. The pHd estimates that d = 0,
while the covk estimates that d > 4. In the evaporation data, the dimension estimation results are
completely different for each of the four methods. Then, what methodological result should we use
for the dimension reduction of the data? Unfortunately, there is no clear guidance for this issue.

Before developing selection criteria among the four SDR methods, there are some aspects that
must be considered first. A selection based on the criteria should be data-driven, unless it is purposely
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pre-selected. In addition, the criteria should be generally extended to the other SDR methods, although
the four methods in dr are highlighted in this paper.

In order to have some idea of how to select a method, consider a simulated example of y|X =
(x1,.-., xlO)T = x1 + ¢ The column of = (1,0, ..., 0)T spans Sy|Z, and the sufficient predictor of x;
is well estimated not only by SIR but also by cov2. Therefore, it is expected that the estimates by SIR
and cov2 will be more highly correlated than those of any other pairs of the four methods. Assuming
that X and ¢ are independently normally-distributed with # = 0 and ¢? = 0.1, the averages of the
absolute correlations between the pairs of the estimates from the four methods as well as between x;
and the estimate from each method are computed through 500 iterations.

sir.cov <- sir.save <- sir.phd <- save.cov <- save.phd <- phd.cov <- NULL
sir.eta <- save.eta <- phd.eta <- cov.eta <- NULL

set.seed(1)

## starting loop
for (i in 1:500){

## model construction
X <= matrix(rnorm(100%10), c(100,10)); y <- X[,1]1 + rnorm(100)
w <- c(scale(y,center=TRUE,scale=TRUE)); w2 <- cbind(w, w"2)

## obtaining basis estimates from the SDR methods
dir.sir5<-dr.direction(dr(y~X, method="sir", nslice=5))[,1]
dir.cov2<-dr.direction(dr(w2~X, method="o0ls"))[,1]
dir.save5<-dr.direction(dr(y~X, method="save"”, nslice=5))[,1]
dir.phd <-dr.direction(dr(y~X, method="phdres"))[,1]

## computing the absolute correlation between the pairs of the estimates from the four methods
sir.cov[il<-abs(cor(dir.sir5, dir.cov2)); sir.save[il<-abs(cor(dir.sir5, dir.save5))
sir.phd[i]<-abs(cor(dir.sir5, dir.phd)); save.cov[il<-abs(cor(dir.save5, dir.cov2))
save.phd[iJ<-abs(cor(dir.save5, dir.phd)); phd.cov[iJ<-abs(cor(dir.phd, dir.cov2))

## computing the absolute correlation between the estimate from each method and x1
sir.etali]<-abs(cor(dir.sir5, X[,1])); cov.etal[iJ]<-abs(cor(dir.cov2, X[,1]))
save.etal[il<-abs(cor(dir.save5, X[,1]1)); phd.etal[il<-abs(cor(dir.phd, X[,11))

}

## the averages of the absolute correlations by each pair of the methods
round(apply(cbind(sir.cov, sir.save, sir.phd, save.cov, save.phd, phd.cov), 2,mean),3)
sir.cov sir.save sir.phd save.cov save.phd phd.cov
0.966 0.208 0.257 0.214 0.348 0.288

## the averages of the absolute correlations by each method and x1
round(apply(cbind(sir.eta, cov.eta, save.eta, phd.eta), 2, mean), 3)
sir.eta cov.eta save.eta phd.eta
0.941 0.939 0.215 0.267

The highest average of the six pairwise absolute correlations is highest between SIR and covk; in
addition, either of SIR or covk estimates x; well. If the regression model is changed to y|X = x7 + ¢,
the pair of SAVE and pHd yield the highest averages in the absolute correlations among the six pairs,
and both SAVE and pHd are good SDR methods for the regression.

Let us think about this in a reverse manner. Suppose that the estimates of sufficient predictors by a
pair of SAVE and pHd are more highly correlated than those of any other pairs of the SDR methods.
Then, it would be not bad reasoning to believe that SAVE or pHd should be preferable to the data,
although we do not know what the true model is. That is, the pair of the two methods that gives the
highest correlation would be not a bad choice for estimating Sy| x, although it is not guaranteed to be
the best. We will formalize this idea.

First, we list all six possible pairs of the four methods in the dr-package: (1) (SIR, SAVE); (2) (SIR,
pHd); (3) (SIR, covk); (4) (SAVE, pHd); (5) (SAVE, covk); (6) (pHd, covk). Let 7, and #;, be orthonormal
basis estimates of S,z by any pair among the six under d = m. If d = 1, the correlation between
#1Z and ﬁEZ can be simply computed using the usual Pearson correlation coefficient. However, if
d > 2, the correlation between 77 Z and fng is not straightforward. Now it should be noted that the
correlation between #j} Z and f]ZZ depends on the similarity between 7, and 7, regardless of the value
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of d. The similarity of two matrices with the same column rank is equivalent to the distance between
their column subspaces. Finally, a correlation between of 711 Z and ﬁEZ can be alternatively measured
by a trace correlation ry (Hooper, 1959) between S(ij,) and S(i,):

1 C R
re = \/ —trace{il g7, }-

The trace correlation r, varies between 0 and 1, and higher values indicate that S(7,) and S(fj,) are
closer. If the two subspaces coincide, then we have ry = 1.

The trace correlation is expected to be maximized under the true dimension of d, which is usually
unknown. For a smaller choice of d, the true basis are underestimated, so each method will not
normally estimate the same parts of S, x. This implies that r¢ will be smaller compared to it under
the true dimension. In contrast, in the case of a larger selection of d, the true basis are overestimated.
Then, there is redundancy in the estimates, and the redundancy will be random for each method.
This indicates that smaller correlations should be expected. This discussion is confirmed through the
following simulation example.

sir.cov <- sir.save <- sir.phd <- save.cov <- save.phd <- phd.cov <- NULL
sir.cov2 <- sir.save2 <- sir.phd2 <- save.cov2 <- save.phd2 <- phd.cov2 <- NULL
sir.cov3 <- sir.save3 <- sir.phd3 <- save.cov3 <- save.phd3 <- phd.cov3 <- NULL
sir.eta2 <- save.eta2 <- phd.eta2 <- cov.eta2 <- NULL

set.seed(1)

## true basis matrix of the central subspace
eta <- cbind(c(1, rep(0,9)), c(0, 1, rep(0,8)) )

## starting loop
for (i in 1:500){

## model construction
X <= matrix(rnorm(100*10), c(100,10)); y <- X[,1]1 + X[,11*X[,2]1+ rnorm(100)
w <- c(scale(y,center=TRUE, scale=TRUE)); w2 <- cbind(w, w"2); w3<- cbind(w2, w"3)

## obtaining basis estimates from the four methods
sir5b <- dr(y~X, method="sir", nslice=5)$raw.evectors
cov2b <- dr(w2~X, method="o0ls")$raw.evectors
cov3db <- dr(w3~X, method="ols")$raw.evectors
savebb <- dr(y~X, method="save", nslice=5)$%raw.evectors
phdb <- dr(y~X, method="phdres")$raw.evectors

## computing trace correlations under d=1 for the six pairs
sir.cov[i] <- tr.cor(sir5b[,1], cov2b[,1], 1)
sir.save[i] <- tr.cor(sir5b[,1], savebb[,11, 1)
sir.phd[i] <- tr.cor(sir5b[,1], phdb[,1]1, 1)
save.cov[i] <- tr.cor(save5b[,1], cov2b[,1]1, 1)
save.phd[i] <- tr.cor(savebb[,1], phdb[,1], 1)
phd.cov[i] <- tr.cor(phdb[,1], cov2b[,1], 1)

## computing trace correlations under d=2 for the six pairs
sir.cov2[i] <- tr.cor(sir5b[,1:2], cov2b[,1:2], 2)
sir.save2[i] <- tr.cor(sir5b[,1:2], savebb[,1:2], 2)
sir.phd2[i] <- tr.cor(sir5b[,1:2], phdb[,1:2]1, 2)
save.cov2[i] <- tr.cor(savebb[,1:2], cov2b[,1:2], 2)
save.phd2[i] <- tr.cor(save5b[,1:2], phdb[,1:2], 2)
phd.cov2[i] <- tr.cor(phdb[,1:2], cov2b[,1:2]1, 2)
sir.cov3[i] <- tr.cor(sir5b[,1:3], cov3b[,1:3], 3)

## computing trace correlations under d=3 for the six pairs
sir.save3[i] <- tr.cor(sir5b[,1:3], save5b[,1:3], 3)
sir.phd3[i] <- tr.cor(sir5b[,1:3], phdb[,1:3]1, 3)
save.cov3[i] <- tr.cor(savebb[,1:3], cov3b[,1:3], 3)
save.phd3[i] <- tr.cor(save5b[,1:3], phdb[,1:3], 3)
phd.cov3[i] <- tr.cor(phdb[,1:3], cov3b[,1:3]1, 3)
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## averages of the trace correlations for each pair under d=1,2,3
round(apply(cbind(sir.cov, sir.save, sir.phd, save.cov, save.phd, phd.cov),

2, mean), 3)

round(apply(cbind(sir.cov2, sir.save2, sir.phd2, save.cov2, save.phd2, phd.cov2),
2, mean), 3)

round(apply(cbind(sir.cov3, sir.save3, sir.phd3, save.cov3, save.phd3, phd.cov3),
2, mean), 3)

sir.cov sir.save sir.phd save.cov save.phd phd.cov
0.580 0.224 0.476 0.317 0.451 0.616

sir.cov2 sir.save2 sir.phd2 save.cov2 save.phd2 phd.cov2
0.822 0.397 0.656 0.486 0.606 0.801

sir.cov3 sir.save3 sir.phd3 save.cov3 save.phd3 phd.cov3
0.773 0.517 0.665 0.577 0.679 0.753

In the model, the true structural dimension is equal to two, and Sy‘ z is spanned by the columns of

7=1{(1,0,...,0),(0,1,0,..., O)}T. Ford = 1,2,3, the averages of the trace correlations are computed
for the six pairs. According to the results, the averages are maximized under the true structural
dimension d = 2 for each pair, as expected. In addition, the maximum trace correlation is attained at
the pair of SIR and cov2 under d = 2.

Based on this discussion, the selection algorithm can be developed as follows:
Algorithm
1. Fix the maximum value dmax of d. The value should be less than or equal to min{k, (hgr —

1), (p — 1)}, where k stands for the maximum polynomial in covk and kg is the number slices
in SIR.

2. Compute r¢ between the basis estimates from each pair for m = 1,...,dmax. Ford =1 or 2, the
cov2 is commonly used, and the covd is employed for d > 3.

3. Choose a pair of the methods to provide the maximum r¢ in Step 2. The pair chosen in this step
will be called the initial pair.

4. Remove the initial pair and all of the other pairs not containing one of the methods of the initial
pair for all values of d. After completing this step, the surviving pairs must contain one method
of the initial pair.

5. Search a second pair that has the highest r, among all of the remaining pairs. This pair will be
called the final pair.

6. The common method in the initial and final pairs is the representative SDR method to the data.
Steps 4-5 are required to select one of the methods of the initial pair in Step 2. This approach of
selecting SDR methods through the proposed algorithm is called basis-adaptive selection (BAS). The

BAS is data-driven and not necessarily limited in the four SDR methods of SIR, SAVE, pHd and covk,
as one can extend it to other SDR methods.

The bas1 function

The bas1 function runs the BAS algorithm for SIR, SAVE, pHd and covk. The function requires dr and
has the following arguments:

bas1(formula, data, nsir=5, nsave=4, k=4, plot=TRUE)

The arguments of nsir, nsave and k determine the numbers of slices for SIR and SAVE as well as the
moment for covk, respectively. The default values are 5, 4 and 4, in order. If plot=TRUE, the function
bas1 returns a scatter plot of the trace correlations against the various choices of d, up to min(nsir-1,
k) for the six pairs of the four methods in dr.

The values returned by the bas1 function are selection, sir, save, phd and covk. Their descrip-
tions are as follows:

* selection: a selected method among SIR, SAVE, pHd and covk by the BAS algorithm

* sir: the SIR application object with the number of slices equal to nsir

¢ save: the SAVE application object with the number of slices equal to nsave

* pHd: the pHd application object

® covk: a list type object by the covk application objects with the kth polynomial
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Soil evaporation data: Revisited

We revisit the soil evaporation data. Here, the application of the BAS is more extensively studied
under the cross-combinations of four or five numbers of slices for SIR and SAVE and the third or forth
order of polynomials for covk. We define “BASijk” fori = 3,4,5,j = 4,5and k = 2,...,i. For example,
in BAS453, the numbers of slice for SIR and SAVE are four and five, respectively, and the order of
polynomial for covk is three.

## BAS application

BAS342 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=4, k
BAS343 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=4, k
BAS352 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=5, k=
BAS353 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=5, k

2, plot=FALSE)
=3, plot=FALSE)
2, plot=FALSE)
3, plot=FALSE)

BAS443 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=4, k=3, plot=FALSE)
BAS444 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=4, k=4, plot=FALSE)
BAS453 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=5, k=3, plot=FALSE)
BAS454 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=5, k=4, plot=FALSE)

BAS544 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=4,
BAS545 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=4,
BAS554 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=5,
BAS555 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=5,

4, plot=FALSE)
=5, plot=FALSE)
4, plot=FALSE)
5, plot=FALSE)

## Selection results

BAS342$selection; BAS343$selection; BAS352%selection; BAS353$selection
BAS443$selection; BAS444%$selection; BAS453%$selection; BAS454$selection
BAS544$selection; BAS545%$selection; BAS554%$selection; BAS555%$selection

## dimension test

set.seed(100); round(dr.permutation.test(BAS342$covk$cov2, npermute=1000)$summary, 3)
set.seed(100); round(dr.permutation.test(BAS343$covk$cov3, npermute=1000)$summary, 3)
round(dr.test(BAS443$phd, numdir=4), 3)

round(dr.test(BAS544%$sir), 3)

Both BAS342 and BAS352 recommended cov2, and cov3 was the selection of BAS343 and BAS353. For
the cases of BAS4jk and BAS5jk, pHd and SIR were recommended regardless of the values of j and
k. These selection results are summarized in Table 2. From Table 2, it can be seen that the selection
results are different from the numbers of slices in SIR. For example, if the numbers of slices in SIR was
3, BAS recommended covk. For i = 4 and 5, BAS chose pHd and SIR, respectively. Thus, additional
work needs to be done in order to choose between covk, pHd and SIR in the soil evaporation data.

For this purpose, we considered how reasonably the methods recommended in Table 2 estimated
the true dimension of the central subspace. The dimension estimation results are already summarized
in Table 1, and the nominal level 5% was used. First, the two methods of cov2 and cov3 were inspected.
According to Table 1, cov2 and cov3 determine that d > 2 and d > 3, respectively. This indicates that
the order of polynomial in covk should be bigger than or equal to 4 for further dimension determination.
However, in the case k = 4, covk yields d> 4, so the dimension reduction is meaningless because
p = 4. Therefore, we conclude that covk would not be recommended one for this data. Next we
consider pHd, which infers that d=0 according to Table 1. Therefore, the pHd should also be ruled
out for the final choice. In Table 1, the SIR with 5 slices determines that d = 2, which is the most
reasonable among the three recommendations. Thus, one may continue the regression analysis with
the two-dimensional sufficient predictors from the SIR results.

Table 2: Method selection results by BAS in soil evaporate data

BAS3e2 BAS3e3 BAS4ee BASSee
Recommendation  cov2 cov3 pHd SIR
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Numerical studies

Predictors X = (x1,...,x19)T and a random error e were independently generated from N(0,1). Under
these variable configurations, the following four models were considered:

* Model1: y = x; + ¢

* Model2: y = x%—i—s

* Model 3: y = x1 + x1x2 + ¢

e Model 4: y =1+ x1 + exp(x2)e

In Models 1 and 2, the column of # = (1,0, ..., O)T spans Sy\x/ so d = 1. The structural dimension of

Models 3 and 4 is two, and Sy\x is spanned by the columns of # = {(1,0,...,0),(0,1,0,..., 0)}T. The
four models are commonly used in Cook and Weisberg (1991); Li (1991, 1992); Yin and Cook (2002).
The desired SDR methods for each model are as follows: Model 1: SIR and covk; Model 2: SAVE and
pHd; Model 3: covk and pHd; Model 4: SIR and covk.

Each model was iterated 500 times with n = 100 and n = 200. Throughout all numerical studies,
five slices were commonly used for SIR and SAVE, and four was the maximum polynomial in covk.

As a summary, the selection percentages of the methods by BAS are reported in Table 3.

Table 3: Percentages of the selection of a method among SIR, SAVE, pHd, and covk by BAS

n =100 n =200
SIR SAVE pHd covk SIR SAVE pHd covk
Model1 412 0.6 02 580 494 00 00 506
Model2 10 178 784 28 00 228 772 0.0
Model3 6.4 20 256 660 3.6 12 250 702
Model 4 6.4 0.6 64 866 268 12 14 70.6

According to Table 3, the BAS selects SIR and covk 99.8% of the time for Model 1 and SAVE and
pHd 97.8% of the time for Model 2 with n = 100, respectively. These results are consistent with the
discussion given in the previous section regarding the development of the algorithm. In Model 1, covk
is preferred to SIR with n = 100, but the two are almost equally selected with n = 200. For Model 2,
the pHd is recommended more than SAVE with n = 100 and n = 200. In Model 3, the pHd and the
covk are two dominant methods according to BAS, although the covk is selected more frequently with
n = 100. For Model 4, the covk is recommended most frequently, but the selection percentages of SIR
rapidly grow with n = 200.

set.seed(5); sell <- sel2 <- sel3 <- selq4 <- sell2 <- sel22 <- sel32 <- sel42 <- NULL

## starting loop
for (i in 1:500){

## model construction for n=100
X <- matrix(rnorm(100 * 10), c(100, 10))
y1 <= X[,1]1 + rnorm(100)
y2 <= X[,1]1%2 + rnorm(100)
y3 <= X[,1] + X[,1] * X[,2] + rnorm(100)
y4 <= 1 + X[,1] + exp(X[,2]1) * rnorm(100)

## model construction for n=200
X2 <- matrix(rnorm(200 x 10), c(200,10))
y12 <= X2[,1]1 + rnorm(200)
y22 <- X2[,1]1*2 + rnorm(200)
y32 <= X2[,1]1 + X2[,1]1 * X2[,2] + rnorm(200)
y42 <= 1 + X2[,1] + exp(X2[,2]1) * rnorm(200)

## selection by BAS
sel1[i] <- bas1(y1~X, plot=FALSE)$selection
sel2[i]<-bas1(y2~X, plot=FALSE)$selection
sel3[i] <- bas1(y3~X, plot=FALSE)$selection
sel4[i]J<-bas1(y4~X, plot=FALSE)$selection
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sel12[i] <- bas1(y12~X2, plot=FALSE)$selection
sel22[il<-bas1(y22~X2, plot=FALSE)$selection
sel32[i] <- bas1(y32~X2, plot=FALSE)$selection
sel42[i]<-bas1(y42~X2, plot=FALSE)$selection

}

## computing the selection percentages for model 1

# n=100

c(length(which(sel1=="sir")), length(which(sel1=="save")),
length(which(sel1=="phd")), length(which(sel1=="covk"”))) / 500

# n=200

c(length(which(sel12=="sir")), length(which(sel12=="save")),
length(which(sel12=="phd")), length(which(sel12=="covk"))) / 500

## computing the selection percentages for model 2

# n=100

c(length(which(sel2=="sir")), length(which(sel2=="save")),
length(which(sel2=="phd")), length(which(sel2=="covk"))) / 500

# n=200

c(length(which(sel22=="sir")), length(which(sel22=="save")),
length(which(sel22=="phd")), length(which(sel22=="covk"))) / 500

## computing the selection percentages for model 3

# n=100

c(length(which(sel3=="sir")), length(which(sel3=="save")),
length(which(sel3=="phd")), length(which(sel3=="covk"))) / 500

# n=200

c(length(which(sel32=="sir")), length(which(sel32=="save")),
length(which(sel32=="phd")), length(which(sel32=="covk"))) / 500

## computing the selection percentages for model 4

# n=100

c(length(which(sel4=="sir")), length(which(sel4=="save")),
length(which(sel4=="phd")), length(which(sel4=="covk"))) / 500

# n=200

c(length(which(sel42=="sir")), length(which(sel42=="save")),
length(which(sel42=="phd")), length(which(sel42=="covk"))) / 500

Summary

Sufficient dimension reduction (SDR) is a useful dimension reduction method in regression. The
popularly used SDR methods among the others include sliced inverse regression (Li, 1991), sliced
average variance estimation (Cook and Weisberg, 1991), principal Hessian directions (Li, 1992) and
covariance method (Yin and Cook, 2002). Currently, the dr-package is the only one to cover the four
sufficient dimension reduction methods in R. However, users were left without practical guidelines as
to which SDR method should be chosen. To remedy this, we developed the basis-adaptive selection
(BAS) algorithm to recommend a SDR method in dr by maximizing a trace correlation (Hooper, 1959).
A real data example and numerical studies confirm its potential usefulness in practice.

The BAS algorithm requires the two parts. The first is the basis estimates of the dimension
reduction subspace, and the second is a quantity to measure the distances between the subspaces
spanned by the columns of the estimates. For non-linear feature extractions through different kernel
methods, there is no reason why the BAS algorithm cannot be applied if some quantity to measure the
distance between the non-linear subspaces defined in different kernels is feasible.

If the sliced inverse regression applications with various numbers of slices replaces the other three
methods in the BAS, the BAS algorithm can be utilized to find a good number of slices for this method.

The code for BAS is available through the personal webpage of the author: http://home.ewha.ac.
kr/~yjkstat/bas.R
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