
CONTRIBUTED RESEARCH ARTICLE 342

dimRed and coRanking—Unifying
Dimensionality Reduction in R
by Guido Kraemer, Markus Reichstein, and Miguel D. Mahecha

Abstract “Dimensionality reduction” (DR) is a widely used approach to find low dimensional and
interpretable representations of data that are natively embedded in high-dimensional spaces. DR can be
realized by a plethora of methods with different properties, objectives, and, hence, (dis)advantages. The
resulting low-dimensional data embeddings are often difficult to compare with objective criteria. Here,
we introduce the dimRed and coRanking packages for the R language. These open source software
packages enable users to easily access multiple classical and advanced DR methods using a common
interface. The packages also provide quality indicators for the embeddings and easy visualization of
high dimensional data. The coRanking package provides the functionality for assessing DR methods
in the co-ranking matrix framework. In tandem, these packages allow for uncovering complex
structures high dimensional data. Currently 15 DR methods are available in the package, some of
which were not previously available to R users. Here, we outline the dimRed and coRanking packages
and make the implemented methods understandable to the interested reader.

Introduction

Dimensionality Reduction (DR) essentially aims to find low dimensional representations of data
while preserving their key properties. Many methods exist in literature, optimizing different crite-
ria: maximizing the variance or the statistical independence of the projected data, minimizing the
reconstruction error under different constraints, or optimizing for different error metrics, just to name
a few. Choosing an inadequate method may imply that much of the underlying structure remains
undiscovered. Often the structures of interest in a data set can be well represented by fewer dimensions
than exist in the original data. Data compression of this kind has the additional benefit of making the
encoded information better conceivable to our brains for further analysis tasks like classification or
regression problems.

For example, the morphology of a plant’s leaves, stems, and seeds reflect the environmental
conditions the species usually grow in (e.g., plants with large soft leaves will never grow in a desert
but might have an advantage in a humid and shadowy environment). Because the morphology of
the entire plant depends on the environment, many morphological combinations will never occur in
nature and the morphological space of all plant species is tightly constrained. Díaz et al. (2016) found
that out of six observed morphological characteristics only two embedding dimensions were enough
to represent three quarters of the totally observed variability.

DR is a widely used approach for the detection of structure in multivariate data, and has applica-
tions in a variety of fields. In climatology, DR is used to find the modes of some phenomenon, e.g., the
first Empirical Orthogonal Function of monthly mean sea surface temperature of a given region over
the Pacific is often linked to the El Niño Southern Oscillation or ENSO (e.g., Hsieh, 2004). In ecology
the comparison of sites with different species abundances is a classical multivariate problem: each
observed species adds an extra dimension, and because species are often bound to certain habitats,
there is a lot of redundant information. Using DR is a popular technique to represent the sites in few
dimensions, e.g., Aart (1972) matches wolfspider communities to habitat and Morrall (1974) match soil
fungi data to soil types. (In ecology the general name for DR is ordination or indirect gradient analysis.)
Today, hyperspectral satellite imagery collects so many bands that it is very difficult to analyze and
interpret the data directly. Resuming the data into a set of few, yet independent, components is one
way to reduce complexity (e.g., see Laparra et al., 2015). DR can also be used to visualize the interiors
of deep neural networks (e.g., see Han et al., 2017), where the high dimensionality comes from the
large number of weights used in a neural network and convergence can be visualized by means of DR.
We could find many more example applications here but this is not the main focus of this publication.

The difficulty in applying DR is that each DR method is designed to maintain certain aspects
of the original data and therefore may be appropriate for one task and inappropriate for another.
Most methods also have parameters to tune and follow different assumptions. The quality of the
outcome may strongly depend on their tuning, which adds additional complexity. DR methods can
be modeled after physical models with attracting and repelling forces (Force Directed Methods),
projections onto low dimensional planes (PCA, ICA), divergence of statistical distributions (SNE
family), or the reconstruction of local spaces or points by their neighbors (LLE).

As an example for how changing internal parameters of a method can have a great impact, the
breakthrough for Stochastic Neighborhood Embedding (SNE) methods came when a Student’s t-

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=dimRed
http://CRAN.R-project.org/package=coRanking

CONTRIBUTED RESEARCH ARTICLE 343

distribution was used instead of a normal distribution to model probabilities in low dimensional
space to avoid the “crowding problem”, that is, a sphere in high dimensional space has a much larger
volume than in low dimensional space and may contain too many points to be represented accurately
in few dimensions. The t-distribution, allows medium distances to be accurately represented in few
dimensions by larger distances due to its heavier tails. The result is called in t-SNE and is especially
good at preserving local structures in very few dimensions, this feature made t-SNE useful for a wide
array of data visualization tasks and the method became much more popular than standard SNE
(around six times more citations of van der Maaten and Hinton (2008) compared to Hinton and Roweis
(2003) in Scopus (Elsevier, 2017)).

There are a number of software packages for other languages providing collections of methods:
In Python there is scikit-learn (Pedregosa et al., 2011), which contains a module for DR. In Julia
we currently find ManifoldLearning.jl for nonlinear and MultivariateStats.jl for linear DR methods.
There are several toolboxes for DR implemented in Matlab (Van Der Maaten et al., 2009; Arenas-
Garcia et al., 2013). The Shogun toolbox (Sonnenburg et al., 2017) implements a variety of methods
for dimensionality reduction in C++ and offers bindings for a many common high level languages
(including R, but the installation is anything but simple, as there is no CRAN package). However, there
is no comprehensive package for R and none of the former mentioned software packages provides
means to consistently compare the quality of different methods for DR.

For many applications it can be difficult to objectively find the right method or parameterization for
the DR task. This paper presents the dimRed and coRanking packages for the popular programming
language R. Together, they provide a standardized interface to various dimensionality reduction
methods and quality metrics for embeddings. They are implemented using the S4 class system of R,
making the packages both easy to use and to extend.

The design goal for these packages is to enable researchers, who may not necessarily be experts in
DR, to apply the methods in their own work and to objectively identify the most suitable methods for
their data. This paper provides an overview of the methods collected in the packages and contains
examples as to how to use the packages.

The notation in this paper will be as follows: X = [xi]
T
1≤i≤n ∈ Rn×p, and the observations xi ∈ Rp.

These observations may be transformed prior to the dimensionality reduction step (e.g., centering
and/or standardization) resulting in X′ = [x′i]

T
1≤i≤n ∈ Rn×p. A DR method then embeds each vector

in X′ onto a vector in Y = [yi]
T
1≤i≤n ∈ Rn×q with yi ∈ Rq, ideally with q� p. Some methods provide

an explicit mapping f (x′i) = yi. Some even offer a inverse mapping f−1(yi) = x̂′i , such that one
can reconstruct a (usually approximate) sample from the low-dimensional representation. For some
methods, pairwise distances between points are needed, we set dij = d(xi, xj) and d̂ij = d(yi, yj),
where d is some appropriate distance function.

When referring to functions in the dimRed package or base R simply the function name is men-
tioned, functions from other packages are referenced with their namespace, as with package::function.

Dimensionality Reduction Methods

In the following section we do not aim for an exhaustive explanation to every method in dimRed but
rather to provide a general idea on how the methods work. An overview and classification of the most
commonly used DR methods can be found in Figure 1.

In all methods, parameters have to be optimized or decisions have to be made, even if it is just
about the preprocessing steps of data. The dimRed package tries to make the optimization process
for parameters as easy as possible, but, if possible, the parameter space should be narrowed down
using prior knowledge. Often decisions can be made based on theoretical knowledge. For example,
sometimes an analysis requires data to be kept in their original scales and sometimes this is exactly
what has to be avoided as when comparing different physical units. Sometimes decisions based on the
experience of others can be made, e.g., the Gaussian kernel is probably the most universal kernel and
therefore should be tested first if there is a choice.

All methods presented here have the embedding dimensionality, q, as a parameter (or ndim as a
parameter for embed). For methods based on eigenvector decomposition, the result generally does
not depend on the number of dimensions, i.e., the first dimension will be the same, no matter if we
decide to calculate only two dimensions or more. If more dimensions are added, more information is
maintained, the first dimension is the most important and higher dimensions are successively less
important. This means, that a method based on eigenvalue decomposition only has to be run once if
one wishes to compare the embedding in different dimensions. In optimization based methods this is
generally not the case, the number of dimensions has to be chosen a priori, an embedding of 2 and 3
dimensions may vary significantly, and there is no ordered importance of dimensions. This means
that comparing dimensions of optimization-based methods is computationally much more expensive.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 344

Dimensionality
reduction

Convex

Full
spectral

Euclidean
distances

PCA
Classical
scaling

Geodesic
distances

Isomap Kernel-
based

Kernel PCA
MVU

Diffusion
distance

Diffusion maps

Removal of
shared

information
by

regression

DRR

Sparse
spectral

Reconstruction
weights

Local Linear Embedding

Neighborhood
graph

Laplacian

Laplacian Eigenmaps

Local
tangent
space

Hessian LLE
Local tangent

space alignment

Non-
convex Weighted

Euclidean
distances

Non-linear MDS
Sammon’s
mapping
Stochastic

Proximity
Embedding

Alignment
of local
linear
models

LLC
Man. chartingNeural

network

Autoencoder

Discrete
mapping

Self Organizing Maps
Generative
Topographic Mapping
Elastic Net

Stochastic
methods

SNE
t-SNE
NeRV
JNE

Force
directed

Kamada-Kawai
Fruchtermann-
Reingold
DrL

Figure 1: Classification of dimensionality reduction methods. Methods in bold face are implemented
in dimRed. Modified from Van Der Maaten et al. (2009).

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 345

We try to give the computational complexity of the methods. Because of the actual implementation,
computation times may differ largely. R is an interpreted language, so all parts of an algorithm that
are implemented in R often will tend to be slow compared to methods that call efficient implemen-
tations in a compiled language. Methods where most of the computing time is spent for eigenvalue
decomposition do have very efficient implementations as R uses optimized linear algebra libraries.
Although, eigenvalue decomposition itself does not scale very well in naive implementations (O(n3)).

PCA

Principal Component Analysis (PCA) is the most basic technique for reducing dimensions. It dates
back to Pearson (1901). PCA finds a linear projection (U) of the high dimensional space into a low
dimensional space Y = XU, maintaining maximum variance of the data. It is based on solving the
following eigenvalue problem:

(CXX − λk I)uk = 0 (1)

where CXX = 1
n XT X is the covariance matrix, λk and uk are the k-th eigenvalue and eigenvector, and

I is the identity matrix. The equation has several solutions for different values of λk (leaving aside the
trivial solution uk = 0). PCA can be efficiently applied to large data sets, because it computationally
scales as O(np2 + p3), that is, it scales linearly with the number of samples and R uses specialized
linear algebra libraries for such kind of computations.

PCA is a rotation around the origin and there exist a forward and inverse mapping. PCA may
suffer from a scale problem, i.e., when one variable dominates the variance simply because it is in a
higher scale, to remedy this, the data can be scaled to zero mean and unit variance, depending on the
use case, if this is necessary or desired.

Base R implements PCA in the functions prcomp and princomp; but several other implementations
exist i.e., pcaMethods from Bioconductor which implements versions of PCA that can deal with
missing data. The dimRed package wraps prcomp.

kPCA

Kernel Principal Component Analysis (kPCA) extends PCA to deal with nonlinear dependencies
among variables. The idea behind kPCA is to map the data into a high dimensional space using
a possibly non-linear function φ and then to perform a PCA in this high dimensional space. Some
mathematical tricks are used for efficient computation.

If the columns of X are centered around 0, then the principal components can also be computed
from the inner product matrix K = XT X. Due to this way of calculating a PCA, we do not need to
explicitly map all points into the high dimensional space and do the calculations there, it is enough to
obtain the inner product matrix or kernel matrix K ∈ Rn×n of the mapped points (Schölkopf et al.,
1998).

Here is an example calculating the kernel matrix using a Gaussian kernel:

K = φ(xi)
Tφ(xj) = κ(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
, (2)

where σ is a length scale parameter accounting for the width of the kernel. The other trick used is
known as the “representers theorem.” The interested reader is referred to Schölkopf et al. (2001).

The kPCA method is very flexible and there exist many kernels for special purposes. The most
common kernel function is the Gaussian kernel (Equation 2). The flexibility comes at the price that
the method has to be finely tuned for the data set because some parameter combinations are simply
unsuitable for certain data. The method is not suitable for very large data sets, because memory scales
with O(n2) and computation time with O(n3).

Diffusion Maps, Isomap, Locally Linear Embedding, and some other techniques can be seen as
special cases of kPCA. In which case, an out-of-sample extension using the Nystöm formula can be
applied (Bengio et al., 2004). This can also yield applications for bigger data, where an embedding is
trained with a sub-sample of all data and then the data is embedded using the Nyström formula.

Kernel PCA in R is implemented in the kernlab package using the function kernlab::kpca,
and supports a number of kernels and user defined functions. For details see the help page for
kernlab::kpca.

The dimRed package wraps kernlab::kpca but additionally provides forward and inverse meth-
ods (Bakir et al., 2004) which can be used to fit out-of sample data or to visualize the transformation of

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
http://CRAN.R-project.org/package=kernlab

CONTRIBUTED RESEARCH ARTICLE 346

the data space.

Classical Scaling

What today is called Classical Scaling was first introduced by Torgerson (1952). It uses an eigenvalue
decomposition of a transformed distance matrix to find an embedding that maintains the distances of
the distance matrix. The method works because of the same reason that kPCA works, i.e., classical
scaling can be seen as a kPCA with kernel xTy. A matrix of Euclidean distances can be transformed
into an inner product matrix by some simple transformations and therefore yields the same result as a
PCA. Classical scaling is conceptually more general than PCA in that arbitrary distance matrices can
be used, i.e., the method does not even need the original coordinates, just a distance matrix D. Then it
tries to find and embedding Y so that d̂ij is as similar to dij as possible.

The disadvantage is that is computationally much more demanding, i.e., an eigenvalue decomposi-
tion of a n× n matrix has to be computed. This step requires O(n2) memory and O(n3) computation
time, while PCA requires only the eigenvalue decomposition of a d× d matrix and usually n� d. R
implements classical scaling in the cmdscale function.

The dimRed package wraps cmdscale and allows the specification of arbitrary distance functions
for calculating the distance matrix. Additionally a forward method is implemented.

Isomap

As Classical Scaling can deal with arbitrarily defined distances, Tenenbaum et al. (2000) suggested
to approximate the structure of the manifold by using geodesic distances. In practice, a graph is
created by either keeping only the connections between every point and its k nearest neighbors to
produce a k-nearest neighbor graph (k-NNG), or simply by keeping all distances smaller than a value
ε producing an ε-neighborhood graph (ε-NNG). Geodesic distances are obtained by recording the
distance on the graph and classical scaling is used to find an embedding in fewer dimensions. This
leads to an “unfolding” of possibly convoluted structures (see Figure 3).

Isomap’s computational cost is dominated by the eigenvalue decomposition and therefore scales
with O(n3). Other related techniques can use more efficient algorithms because the distance matrix
becomes sparse due to a different preprocessing.

In R, Isomap is implemented in the vegan package. vegan::isomap calculates an Isomap embed-
ding and vegan::isomapdist calculates a geodesic distance matrix. The dimRed package uses its
own implementation. This implementation is faster mainly due to using a KD-tree for the nearest
neighbor search (from the RANN package) and to a faster implementation for the shortest path search
in the k-NNG (from the igraph package). The implementation in dimRed also includes a forward
method that can be used to train the embedding on a subset of data points and then use these points
to approximate an embedding for the remaining points. This technique is generally referred to as
landmark Isomap (De Silva and Tenenbaum, 2004).

Locally Linear Embedding

Points that lie on a manifold in a high dimensional space can be reconstructed through linear combina-
tions of their neighborhoods if the manifold is well sampled and the neighbohoods lie on a locally
linear patch. These reconstruction weights, W, are the same in the high dimensional space as the
internal coordinates of the manifold. Locally Linear Embedding (LLE; Roweis and Saul, 2000) is a
technique that constructs a weight matrix W ∈ Rn×n with elements wij so that

n

∑
i=1

∥∥∥∥xi −
n

∑
j=1

wijxj

∥∥∥∥2

(3)

is minimized under the constraint that wij = 0 if xj does not belong to the neighborhood and the
constraint that ∑n

j=1 wij = 1. Finally the embedding is made in such a way that the following cost
function is minimized for Y,

n

∑
i=1

∥∥∥∥yi −
n

∑
j=1

wijyj

∥∥∥∥2

. (4)

This can be solved using an eigenvalue decomposition.

Conceptually the method is similar to Isomap but it is computationally much nicer because the
weight matrix is sparse and there exist efficient solvers. In R, LLE is implemented by the package lle,
the embedding can be calculated with lle::lle. Unfortunately the implementation does not make

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=RANN
http://CRAN.R-project.org/package=igraph
http://CRAN.R-project.org/package=lle

CONTRIBUTED RESEARCH ARTICLE 347

use of the sparsity of the weight matrix W. The manifold must be well sampled and the neighborhood
size must be chosen appropriately for LLE to give good results.

Laplacian Eigenmaps

Laplacian Eigenmaps were originally developed under the name spectral clustering to separate
non-convex clusters. Later it was also used for graph embedding and DR (Belkin and Niyogi, 2003).

A number of variants have been proposed. First, a graph is constructed, usually from a distance
matrix, the graph can be made sparse by keeping only the k nearest neighbors, or by specifying an ε
neighborhood. Then, a similarity matrix W is calculated by using a Gaussian kernel (see Equation
2), if c = 2σ2 = ∞, then all distances are treated equally, the smaller c the more emphasis is given to
differences in distance. The degree of vertex i is di = ∑n

j=1 wij and the degree matrix, D, is the diagonal
matrix with entries di. Then we can form the graph Laplacian L = D−W and, then, there are several
ways how to proceed, an overview can be found in Luxburg (2007).

The dimRed package implements the algorithm from Belkin and Niyogi (2003). Analogously
to LLE, Laplacian eigenmaps avoid computational complexity by creating a sparse matrix and not
having to estimate the distances between all pairs of points. Then the eigenvectors corresponding to
the lowest eigenvalues larger than 0 of either the matrix L or the normalized Laplacian D−1/2LD−1/2

are computed and form the embedding.

Diffusion Maps

Diffusion Maps (Coifman and Lafon, 2006) take a distance matrix as input and calculates the transition
probability matrix P of a diffusion process between the points to approximate the manifold. Then the
embedding is done by an eigenvalue decompositon of P to calculate the coordinates of the embedding.
The algorithm for calculating Diffusion Maps shares some elements with the way Laplacian Eigenmaps
are calculated. Both algorithms depart from the same weight matrix, Diffusion Map calculate the
transition probability on the graph after t time steps and do the embedding on this probability matrix.

The idea is to simulate a diffusion process between the nodes of the graph, which is more robust
to short-circuiting than the k-NNG from Isomap (see bottom right Figure 3). Diffusion maps in R
are accessible via the diffusionMap::diffuse() function, which is available in the diffusionMap
package. Additional points can be approximated into an existing embedding using the Nyström
formula (Bengio et al., 2004). The implementation in dimRed is based on the diffusionMap::diffuse
function.

non-Metric Dimensional Scaling

While Classical Scaling and derived methods (see section Classical Scaling) use eigenvector decomposi-
tion to embed the data in such a way that the given distances are maintained, non-Metric Dimensional
Scaling (nMDS, Kruskal, 1964a,b) uses optimization methods to reach the same goal. Therefore a
stress function,

S =

√√√√∑i<j (dij − d̂ij)
2

∑i<j d2
ij

, (5)

is used, and the algorithm tries to embed yi in such a way that the order of the dij is the same as the
order of the d̂ij Because optimization methods can fit a wide variety of problems, there are very loose
limits set to the form of the error or stress function. For instance Mahecha et al. (2007) found that nMDS
using geodesic distances can be almost as powerful as Isomap for embedding biodiversity patterns.
Because of the flexibility of nMDS, there is a whole package in R devoted to Multidimensional Scaling,
smacof (de Leeuw and Mair, 2009).

Several packages provide implementations for nMDS in R, for example MASS and vegan with
the functions MASS::isoMDS and vegan::monoMDS. Related methods include Sammons Mapping which
con be found as MASS::sammon. The dimRed package wraps vegan::monoMDS.

Force Directed Methods

The data X can be considered as a graph with weighted edges, where the weights are the distances
between points. Force directed algorithms see the edges of the graphs as springs or the result of
an electric charge of the nodes that result in an attractive or repulsive force between the nodes, the

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=diffusionMap
http://CRAN.R-project.org/package=MASS

CONTRIBUTED RESEARCH ARTICLE 348

algorithms then try to minimize the overall energy of the graph.

E = ∑
i<j

kij(dij − d̂ij)
2
, (6)

where kij is the spring constant for the spring connecting points i and j.
Graph embedding algorithms generally suffer from long running times (though compared to other

methods presented here they do not scale as badly) and many local optima. This is why a number
of methods have been developed that try to deal with some of the shortcomings, for example, the
Kamada-Kawai (Kamada and Kawai, 1989), the Fruchtermann-Reingold (Fruchterman and Reingold,
1991), or the DrL (Martin et al., 2007) algorithms.

There are a number of graph embedding algorithms included in the igraph package, they can
be accessed using the igraph::layout_with_* function family. The dimRed package only wraps the
three algorithms mentioned above; there are many others which are not interesting for dimensionality
reduction.

t-SNE

Stochastic Neighbor Embedding (SNE; Hinton and Roweis, 2003) is a technique that minimizes the
Kullback-Leibler divergence of scaled similarities of the points i and j in a high dimensional space, pij,
and a low dimensional space, qij:

KL(P‖Q) = ∑
i 6=j

pij log
pij

qij
. (7)

SNE uses a Gaussian kernel (see Equation 2) to compute similarities in a high and a low dimensional
space. The t-Distributed Stochastic Neighborhood Embedding (t-SNE; van der Maaten and Hinton,
2008) improves on SNE by using a t-Distribution as a kernel in low dimensional space. Because of
the heavy-tailed t-distribution, t-SNE maintains local neighborhoods of the data better and penalizes
wrong embeddings of dissimilar points. This property makes it especially suitable to represent
clustered data and complex structures in few dimensions.

The t-SNE method has one parameter, perplexity, to tune. This determines the neighborhood size
of the kernels used.

The general runtime of t-SNE isO(n2), but an efficient implementation using tree search algorithms
that scales asO(n log n) exists and can be found in the Rtsne package in R. The t-SNE implementation
in dimRed wraps the Rtsne package.

There exist a number of derived techniques for dimensionality reduction, e.g., NeRV (Venna et al.,
2010) and JNE (Lee et al., 2013), that improve results but for which there do not yet exist packages on
CRAN implementing them.

ICA

Independent Component Analysis (ICA) interprets the data X as a mixture of independent signals,
e.g., a number of sound sources recorded by several microphones, and tries to “un-mix” them to
find the original signals in the recorded signals. ICA is a linear rotation of the data, just as PCA, but
instead of recovering the maximum variance, it recovers statistically independent components. A
signal matrix S and a mixing matrix A are estimated so that X = AS.

There are a number of algorithms for ICA, the most widely used is fastICA (Hyvarinen, 1999)
because it provides a fast and robust way to estimate A and S. FastICA maximizes a measure for non-
Gaussianity called negentropy J (Comon, 1994). This is equivalent to minimizing mutual information
between the resulting components. Negentropy J is defined as follows:

H(u) = −
∫

f (u) log f (Y)du, (8)

J(u) = H(ugauss)− H(u), (9)

where u = (u1, . . . , un)T is a random vector with density f (·) and ugauss is a Gaussian random variable
with the same covariance structure as u. FastICA uses a very efficient approximation to calculate
negentropy. Because ICA can be translated into a simple linear projection, a forward and an inverse
method can be supplied.

There are a number of packages in R that implement algorithms for ICA, the dimRed package

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=igraph
http://CRAN.R-project.org/package=Rtsne

CONTRIBUTED RESEARCH ARTICLE 349

wraps the fastICA::fastICA() function from fastICA.

DRR

Dimensionality Reduction via Regression is a very recent technique extending PCA (Laparra et al.,
2015). Starting from a rotated (PCA) solution X′ = XU, it predicts redundant information from the
remaining components using non-linear regression.

y·i = x′·i − fi(x′·1, x′·2, . . . , x′·i−1) (10)

with x·i and y·i being the loading of observations on the i-th axis. In theory, any kind of regression
can be used. the authors of the original paper choose Kernel Ridge Regression (KRR; Saunders et al.,
1998) because it is a flexible nonlinear regression technique and computational optimizations for a
fast calculation exist. DRR has another advantage over other techniques presented here, because it
provides an exact forward and inverse function.

The use of KRR also has the advantage of making the method convex, here we list it under
non-convex methods, because other types of regression may make it non-convex.

Mathematicaly, functions are limited to map one input to a single output point. Therefore, DRR
reduces to PCA if manifolds are too complex; but it seems very useful for slightly curved manifolds.
The initial rotation is important, because the result strongly depends on the order of dimensions in
high dimensional space.

DRR is implemented in the package DRR. The package provides forward and inverse functions
which can be used to train on a subset.

Quality criteria

The advantage of unsupervised learning is that one does not need to specify classes or a target variable
for the data under scrutiny. Instead the chosen algorithm arranges the input data. For example,
arranged into clusters or into a lower dimensional representation. In contrast to a supervised problem,
there is no natural way to directly measure the quality of any output or to compare two methods by an
objective measure like for instance modeling efficiency or classification error. The reason is that every
method optimizes a different error function, and it would be unfair to compare t-SNE and PCA by
means of either recovered variance or KL-Divergence. One fair measure would be the reconstruction
error, i.e., reconstructing the original data from a limited number of dimensions, but as discussed
above not many methods provide forward and inverse mappings.

However, there are a series of independent estimators on the quality of a low-dimensional embed-
ding. The dimRed package provides a number of quality measures which have been proposed in the
literature to measure performance of dimensionality reduction techniques.

Co-ranking matrix based measures

The co-ranking matrix (Lee and Verleysen, 2009) is a way to capture the changes in ordinal distance.
As before, let dij = d(xi, xj) be the distances between xi and xj, i.e., in high dimensional space and
d̂ij = d(yi, yj) the distances in low dimensional space, then we can define the rank of yj with respect to
yi

r̂ij = |{k : d̂ik < d̂ij or (d̂ik = d̂ij and 1 ≤ k < j ≤ n)}|, (11)

and, analogously, the rank in high-dimensional space as:

rij = |{k : dik < dij or (dik = dij and 1 ≤ k < j ≤ n)}|, (12)

where the notation |A| denotes the number of elements in a set A. This means that we simply replace
the distances in a distance matrix column wise by their ranks. This means, that rij is an integer which
indicates that xi is the rij-th closest neighbor of xj in the set X.

The co-ranking matrix Q then has elements

qkl = |{(i, j) : r̂ij = k and rij = l}|, (13)

which is the 2d-histogram of the ranks. That is, qij is an integer which counts how many points of
distance rank j became rank i. In a perfect DR, this matrix will only have non-zero entries in the
diagonal, if most of the non-zero entries are in the lower triangle, then the DR collapsed far away

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=fastICA
http://CRAN.R-project.org/package=DRR

CONTRIBUTED RESEARCH ARTICLE 350

points onto each other; if most of the non-zero entries are in the upper triangle, then the DR teared
close points apart. For a detailed description of the properties of the co-ranking matrix the reader is
referred to Lueks et al. (2011).

The co-ranking matrix can be computed using function coRanking::coranking() and can be vi-
sualized using coRanking::imageplot(). A good embedding should scatter the values around the
diagonal of the matrix. If the values are predominantly in the lower triangle, then the embedding col-
lapses the original structure causing far away points to be much closer; if the values are predominantly
in the upper triangle the points from the original structure are torn apart. Nevertheless this method
requires visual inspection of the matrix. For an automated assessment of quality, a scalar value that
assigns a quality to an embedding is needed.

A number of metrics can be computed from the co-ranking matrix. For example:

QNX(k) =
1

kn

k

∑
i=1

k

∑
j=1

qij, (14)

which is the number of points that belong to the k-th nearest neighbors in both high- and low-
dimensional space, normalized to give a maximum of 1 (Lee and Verleysen, 2009). This quantity can be
adjusted for random embeddings, giving the Local Continuity Meta Criterion (Chen and Buja, 2009):

LCMC(k) = QNX(k)−
k

n− 1
(15)

The above measures still depend on k, but LCMC has a well defined maximum at kmax. Two measures
without parameters are then defined:

Qlocal =
1

kmax

kmax

∑
k=1

QNX(k) and (16)

Qglobal =
1

n− kmax

n−1

∑
k=kmax

QNX(k). (17)

These measure the preservation of local and global distances respectively. The original authors advised
using Qlocal over Qglobal, but this depends on the application.

LCMC(k) can be normalized to a maximum of 1, yielding the following measure for a quality
embedding (Lee et al., 2013):

RNX(k) =
(n− 1)QNX(k)− k

n− 1− k
, (18)

where a value of 0 corresponds to a random embedding and a value of 1 to a perfect embedding into
the k-ary neighborhood. To transform RNX(k) into a parameterless measure, the area under the curve
can be used:

AUCln k (RNX(k)) =

(
n−2

∑
k=1

RNX(k)

)/(
n−2

∑
k=1

1/k

)
. (19)

This measure is normalized to one and takes k at a log-scale. Therefore it prefers methods that
preserve local distances.

In R, the co-ranking matrix can be calculated using the the coRanking::coranking function. The
dimRed package contains the functions Q_local, Q_global, Q_NX, LCMC, and R_NX to calculate the above
quality measures in addition to AUC_lnK_R_NX.

Calculating the co-ranking matrix is a relatively expensive operation because it requires sorting
every row of the distance matrix twice. It therefore scales with O(n2 log n). There is also a plotting
function plot_R_NX, which plots the RNX values with log-scaled K and adds the AUCln K to the legend
(see Figure 2).

There are a number of other measures that can be computed from a co-ranking matrix, e.g., see
Lueks et al. (2011); Lee and Verleysen (2009), or Babaee et al. (2013).

Cophenetic correlation

An old measure originally developed to compare clustering methods in the field of phylogenetics
is cophenetic correlation (Sokal and Rohlf, 1962). This method consists simply of the correlation
between the upper or lower triangles of the distance matrices (in dendrograms they are called cophe-
netic matrices, hence the name) in a high and low dimensional space. Additionally the distance
measure and correlation method can be varied. In the dimRed package this is implemented in the

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 351

cophenetic_correlation function.

Some studies use a measure called “residual variance” (Tenenbaum et al., 2000; Mahecha et al.,
2007), which is defined as

1− r2(D, D̂),

where r is the Pearson correlation and D, D̂ are the distances matrices consisting of elements dij and
d̂ij respectively.

Reconstruction error

The fairest and most common way to assess the quality of a dimensionality reduction when the method
provides a inverse mapping is the reconstruction error. The dimRed package includes a function to
calculate the root mean squared error which is defined as:

RMSE =

√
1
n

n

∑
i=1

d(x′i , xi)
2 (20)

with x′i = f−1(yi), f−1 being the function that maps an embedded value back to feature space.

The dimRed package provides the reconstruction_rmse and reconstruction_error functions.

Test data sets

There are a number of test data sets that are often used to showcase a dimensionality reduction
technique. Common ones being the 3d S-curve and the Swiss roll, among others. These data sets
have in common that they usually have three dimensions, and well defined manifolds. Real world
examples usually have more dimensions and often are much noisier, the manifolds may not be well
sampled and exhibit holes and large pieces may be missing. Additionally, we cannot be sure if we can
observe all the relevant variables.

The dimRed package implements a number of test datasets that are being used in literature to
benchmark methods with the function dimRed::loadDataSet(). For artificial datasets the number of
points and the noise level can be adjusted, the function also returns the internal coordinates.

The dimRed Package

The dimRed package collects DR methods readily implemented in R, implements missing methods
and offers means to compare the quality of embeddings. The package is open source and available
under the GPL3 license. Released versions of the package are available through CRAN (https:
//cran.r-project.org/package=dimRed) and development versions are hosted on GitHub (https:
//github.com/gdkrmr/dimRed). The dimRed package provides a common interface and convenience
functions for a variety of different DR methods so that it is made easier to use and compare different
methods. An overview of the packages main functions can be found in Table 1.

Function Description

embed Embed data using a DR method.
quality Calculate a quality score from the result of embed.
plot Plot a "dimRedData" or "dimRedResult" object, col-

ors the points automatically, for exploring the data.
plot_R_NX Compares the quality of various embeddings.
dimRedMethodList Returns a character vector that contains all imple-

mented DR methods.
dimRedQualityList Returns a character vector that contains all imple-

mented quality measures.

Table 1: The main interface functions of the dimRed package.

Internally, the package uses S4 classes but for normal usage the user does not need to have any
knowledge on the inner workings of the S4 class system in R (cf. table 2). The package contains
simple conversion functions from and to standard R-objects like a data.frame or a matrix. The
"dimRedData" class provides an container for the data to be processed. The slot data contains a matrix

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://cran.r-project.org/package=dimRed
https://cran.r-project.org/package=dimRed
https://github.com/gdkrmr/dimRed
https://github.com/gdkrmr/dimRed

CONTRIBUTED RESEARCH ARTICLE 352

with dimensions in columns and observations in rows, the slot meta may contain a data frame with
additional information, e.g., categories or other information of the data points.

Class Name Function

"dimRedData" Holds the data for a DR. Fed to embed(). An
as.dimRedData() methods exists for "data.frame",
"matrix", and "formula" exist.

"dimRedMethod" Virtual class, ancestor of all DR methods.
"dimRedResult" The result of embed(), the embedded data.

Table 2: The S4 classes used in the dimRed package.

Each embedding method is a class which inherits from "dimRedMethod" which means that it
contains a function to generate "dimRedResult" objects and a list of standard parameters. The class
"dimRedResult" contains the data in reduced dimensions, the original meta information along with
the original data, and, if possible, functions for the forward and inverse mapping.

From a user-perspective the central function of the package is embed which is called in the form
embed(data,method,. . .), data can take standard R objects such as instances of "data.frame",
"matrix", or "formula", as input. The method is given as a character vector. All available methods can
be listed by calling ‘dimRedMethodList()’. Method-specific parameters can be passed through ...;
when no method-specific parameters are given, defaults are chosen. The embed function returns an
object of class "dimRedResult".

For comparing different embeddings, dimRed contains the function quality which relies on the
output of embed and a method name. This function returns a scalar quality score; a vector that contains
the names of all quality functions is returned by calling ‘dimRedQualityList()’.

For easy visual examination, the package contains plot methods for "dimRedData" and "dimRedResult"
objects in order to plot high dimensional data using parallel plots and pairwise scatter plots. Automatic
coloring of data points is done using the available metadata.

Examples

The comparison of different DR methods, choosing the right parameters for a method, and the
inspection of the results is simplified by dimRed. This section contains a number of examples to
highlight the use of the package.

To compare methods of dimensionality reduction, first a test data set is loaded using loadDataSet,
then the embed function is used for DR (embed can also handle standard R types like matrix and
data.frame). This makes it very simple to apply different methods of DR to the same data e.g., by
defining a character vector of method names and then iterating over these, say with lapply. For
inspection, dimRed provides methods for the plot function to visualize the resulting embedding
(Figure 2 b and d), internal coordinates of the manifold are represented by color gradients. To visualize
how well embeddings represent different neighborhood sizes, the function plot_R_NX is used on a list
of embedding results (Figure 2 c). The plots in figure 2 are produced by the following code:

define which methods to apply
embed_methods <- c("Isomap", "PCA")
load test data set
data_set <- loadDataSet("3D S Curve", n = 1000)
apply dimensionality reduction
data_emb <- lapply(embed_methods, function(x) embed(data_set, x))
names(data_emb) <- embed_methods
figure 2a, the data set
plot(data_set, type = "3vars")
figures 2b (Isomap) and 2d (PCA)
lapply(data_emb, plot, type = "2vars")
figure 2c, quality analysis
plot_R_NX(data_emb)

The function plot_R_NX produces a figure that plots the neighborhood size (k at a log-scale) against
the quality measure RNX(k) (see Equation 18). This gives an overview of the general behavior of
methods: if RNX is high for low values of K, then local neighborhoods are maintained well; if RNX is

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 353

−1.5−1.0−0.5 0.0 0.5 1.0 1.5

−
3

−
2

−
1

 0
 1

 2
 3

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

x

z

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●
● ●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●● ● ●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−4 −2 0 2 4

−1.0

−0.5

0.0

0.5

1.0

iso1

is
o2

b

0.00

0.25

0.50

0.75

1.00

100 101 102

K

R
N

X

0.822 Isomap

0.422 PCA

c

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

−1.0

−0.5

0.0

0.5

1.0

PC1

P
C

2

d

Figure 2: Comparing PCA and Isomap: (a) An S-shaped manifold, colors represent the internal
coordinates of the manifold. (b) Isomap embedding, the S-shaped manifold is unfolded. (c) RNX
plotted agains neighborhood sizes, Isomap is much better at preserving local distances and PCA is
better at preserving global Euclidean distances. The numbers on the legend are the AUC1/K . (d) PCA
projection of the data, the directions of maximum variance are preserved.

high for large values of K, then global gradients are maintained well. It also provides a way to directly
compare methods by plotting more than one RNX curve and an overall quality of the embedding by
taking the area under the curve as an indicator for the overall quality of the embedding (see fig 19)
which is shown as a number in the legend.

Therefore we can see from Figure 2c that t-SNE is very good a maintaining close and medium
distances for the given data set, whereas PCA is only better at maintaining the very large distances.
The large distances are dominated by the overall bent shape of the S in 3D space, while the close
distances are not affected by this bending. This is reflected in the properties recovered by the different
methods, the PCA embedding recovers the S-shape, while t-SNE ignores the S-shape and recovers the
inner structure of the manifold.

Often the quality of an embedding strongly depends on the choice of parameters, the interface of
dimRed can be used to facilitate searching the parameter space.

Isomap has one parameter k which determines the number of neighbors used to construct the
k-NNG. If this number is too large, then Isomap will resemble an MDS (Figure 3 e), if the number is
too small, the resulting embedding contains holes (Figure 3 c). The following code finds the optimal
value, kmax, for k using the Qlocal criterion, the results are visualized in Figure 3 a:

Load data
ss <- loadDataSet("3D S Curve", n = 500)
Parameter space
kk <- floor(seq(5, 100, length.out = 40))
Embedding over parameter space
emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x))

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 354

20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

k

Q
lo

ca
l

a

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
3

−
2

−
1

 0
 1

 2
 3

−0.5
 0.0

 0.5
 1.0

 1.5
 2.0

 2.5

x

z

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

b

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

iso1

is
o2

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

c

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

iso1

is
o2

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

d

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

iso1
is

o2

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

e

Figure 3: Using dimRed and the Qlocal indicator to estimate a good value for the parameter k in
Isomap. (a) Qlocal for different values of k, the vertical red line indicates the maximum kmax. (b) The
original data set, a 2 dimensional manifold bent in an S-shape in 3 dimensional space. Bottom row:
Embeddings and k-NNG for different values of k. (c) When k = 5, the value for k is too small resulting
in holes in the embedding, the manifold itself is still unfolded correctly. (d) Choose k = kmax, the best
representation of the original manifold in two dimensions achievable with Isomap. (e) k = 100, too
large, the k-NNG does not approximate the manifold any more.

Quality over embeddings
qual <- sapply(emb, function(x) quality(x, "Q_local"))
Find best value for K
ind_max <- which.max(qual)
k_max <- kk[ind_max]

Figure 3a shows how the Qlocal criterion changes when varying the neighborhood size k for Isomap,
the gray lines in Figure 3 represent the edges of the k-NN Graph. If the value for k is too low, the inner
structure of the manifold will still be recovered, but it will be imperfect (Figure 3c, note that the holes
appear in places that are not covered by the edges of the k-NN Graph), therefore the Qlocal score is
lower than optimal. If k is too large, the error of the embedding is much larger due to short circuiting
and we observe a very steep drop in the Qlocal score. The short circuiting can be observed in Figure 3e
with the edges that cross the gap between the tips and the center of the S-shape.

It is also very easy to compare across methods and quality scores. The following code produces
a matrix of quality scores and methods, where dimRedMethodList returns a character vector with all
methods. A visualization of the matrix can be found in Figure 4.

embed_methods <- dimRedMethodList()
quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX",

"cophenetic_correlation")
scurve <- loadDataSet("3D S Curve", n = 2000)
quality_results <- matrix(
NA, length(embed_methods), length(quality_methods),
dimnames = list(embed_methods, quality_methods)

)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 355

DrL

LaplacianEigenmaps

LLE

FastICA

HLLE

DiffusionMaps

DRR

MDS

PCA

kPCA

nMDS

FruchtermanReingold

tSNE

KamadaKawai

Isomap

cophenetic_correlation
AUC_lnK_R_NX
Q_global
Q_local

0.0 0.2 0.4 0.6 0.8

Figure 4: A visualization of the quality_results matrix. The methods are ordered by mean quality
score. The reconstruction error was omitted, because a higher value means a worse embedding, while
in the present methods a higher score means a better embedding. Parameters were not tuned for the
example, therefore it should not be seen as a general quality assessment of the methods.

embedded_data <- list()
for (e in embed_methods) {
embedded_data[[e]] <- embed(scurve, e)
for (q in quality_methods)
try(quality_results[e, q] <- quality(embedded_data[[e]], q))

}

This example showcases the simplicity with which different methods and quality criteria can be
combined. Because of the strong dependencies on parameters it is not advised to apply this kind of
analysis without tuning the parameters for each method separately. There is no automatized way to
tune parameters in dimRed.

Conclusion

This paper presents the dimRed and coRanking packages and it provides a brief overview of the
methods implemented therein. The dimRed package is written in the R language, one of the most
popular languages for data analysis. The package is freely available from CRAN. The package is
object oriented and completely open source and therefore easily available and extensible. Although
most of the DR methods already had implementations in R, dimRed adds some new methods for
dimensionality reduction, and coRanking adds methods for an independent quality control of DR
methods to the R ecosystem. DR is a widely used technique. However, due to the lack of easily
usable tools, choosing the right method for DR is complex and depends upon a variety of factors. The
dimRed package aims to facilitate experimentation with different techniques, parameters, and quality
measures so that choosing the right method becomes easier. The dimRed package wants to enable the
user to objectively compare methods that rely on very different algorithmic approaches. It makes the
life of the programmer easier, because all methods are aggregated in one place and there is a single
interface and standardized classes to access the functionality.

Acknowledgments

We thank Dr. G. Camps-Valls and an anonymous reviewer for many useful comments. This study
was supported by the European Space Agency (ESA) via the Earth System Data Lab project (http:
//earthsystemdatacube.org) and the EU via the H2020 project BACI, grant agreement No 640176.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://earthsystemdatacube.org
http://earthsystemdatacube.org

CONTRIBUTED RESEARCH ARTICLE 356

Bibliography

P. J. M. V. D. Aart. Distribution Analysis of Wolfspiders (Araneae, Lycosidae) in a Dune Area By
Means of Principal Component Analysis. Netherlands Journal of Zoology, 23(3):266–329, 1972. ISSN
1568-542X. URL https://doi.org/10.1163/002829673x00076. [p342]

J. Arenas-Garcia, K. B. Petersen, G. Camps-Valls, and L. K. Hansen. Kernel Multivariate Analysis
Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate
Methods. IEEE Signal Processing Magazine, 30(4):16–29, 2013. ISSN 1053-5888. URL https://doi.
org/10.1109/msp.2013.2250591. [p343]

M. Babaee, M. Datcu, and G. Rigoll. Assessment of dimensionality reduction based on communication
channel model; application to immersive information visualization. In Big Data 2013, pages 1–6.
IEEE Xplore, 2013. URL https://doi.org/10.1109/bigdata.2013.6691726. [p350]

G. H. Bakir, J. Weston, and P. B. Schölkopf. Learning to Find Pre-Images. In S. Thrun, L. K. Saul, and
P. B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 449–456. MIT
Press, 2004. URL https://doi.org/10.1007/978-3-540-28649-3_31. [p345]

M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Represen-
tation. Neural Computation, 15(6):1373, 2003. ISSN 08997667. URL https://doi.org/10.1162/
089976603321780317. [p347]

Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learning Eigenfunctions
Links Spectral Embedding and Kernel PCA. Neural Computation, 16(10):2197–2219, 2004. ISSN
0899-7667. URL https://doi.org/10.1162/0899766041732396. [p345, 347]

L. Chen and A. Buja. Local multidimensional scaling for nonlinear dimension reduction, graph
drawing, and proximity analysis. Journal of the American Statistical Association, 104(485):209–219,
2009. URL https://doi.org/10.1198/jasa.2009.0111. [p350]

R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21(1):5–30,
2006. ISSN 10635203. URL https://doi.org/10.1016/j.acha.2006.04.006. [p347]

P. Comon. Independent component analysis, A new concept? Signal Processing, 36(3):287–314, 1994.
ISSN 01651684. URL https://doi.org/10.1016/0165-1684(94)90029-9. [p348]

J. de Leeuw and P. Mair. Multidimensional scaling using majorization: Smacof in r. Journal of
Statistical Software, Articles, 31(3):1–30, 2009. ISSN 1548-7660. doi: 10.18637/jss.v031.i03. URL
https://www.jstatsoft.org/v031/i03. [p347]

V. De Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark points. Technical
report, Stanford University, 2004. [p346]

S. Díaz, J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, M. Kleyer, C. Wirth,
I. Colin Prentice, E. Garnier, G. Bönisch, M. Westoby, H. Poorter, P. B. Reich, A. T. Moles, J. Dickie,
A. N. Gillison, A. E. Zanne, J. Chave, S. Joseph Wright, S. N. Sheremet’ev, H. Jactel, C. Baraloto,
B. Cerabolini, S. Pierce, B. Shipley, D. Kirkup, F. Casanoves, J. S. Joswig, A. Günther, V. Falczuk,
N. Rüger, M. D. Mahecha, and L. D. Gorné. The global spectrum of plant form and function. Nature,
529(7585):167–171, 2016. ISSN 0028-0836. URL https://doi.org/10.1038/nature16489. [p342]

Elsevier. Scopus - Advanced search, 2017. URL https://www.scopus.com/. [p343]

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Softw: Pract.
Exper., 21(11):1129–1164, 1991. ISSN 1097-024X. URL https://doi.org/10.1002/spe.4380211102.
[p348]

Y. Han, J. Kim, and K. Lee. Deep Convolutional Neural Networks for Predominant Instrument Recog-
nition in Polyphonic Music. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE
PROCESSING, 25(1):208–221, 2017. ISSN 2329-9290. [p342]

G. E. Hinton and S. T. Roweis. Stochastic Neighbor Embedding. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 857–864. MIT Press, 2003.
URL http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf. [p343, 348]

W. W. Hsieh. Nonlinear multivariate and time series analysis by neural network methods. Rev. Geophys.,
42(1):RG1003, 2004. ISSN 1944-9208. URL https://doi.org/10.1029/2002rg000112. [p342]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1163/002829673x00076
https://doi.org/10.1109/msp.2013.2250591
https://doi.org/10.1109/msp.2013.2250591
https://doi.org/10.1109/bigdata.2013.6691726
https://doi.org/10.1007/978-3-540-28649-3_31
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1198/jasa.2009.0111
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/0165-1684(94)90029-9
https://www.jstatsoft.org/v031/i03
https://doi.org/10.1038/nature16489
https://www.scopus.com/
https://doi.org/10.1002/spe.4380211102
http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf
https://doi.org/10.1029/2002rg000112

CONTRIBUTED RESEARCH ARTICLE 357

A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE
Transactions on Neural Networks, 10(3):626–634, 1999. ISSN 1045-9227. URL https://doi.org/10.
1109/72.761722. [p348]

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing
Letters, 31(1):7–15, 1989. ISSN 0020-0190. URL https://doi.org/10.1016/0020-0190(89)90102-6.
[p348]

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964a. ISSN 0033-3123, 1860-0980. URL https://doi.org/10.1007/
bf02289565. [p347]

J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2):115–129,
1964b. ISSN 0033-3123, 1860-0980. URL https://doi.org/10.1007/bf02289694. [p347]

V. Laparra, J. Malo, and G. Camps-Valls. Dimensionality Reduction via Regression in Hyperspectral
Imagery. IEEE Journal of Selected Topics in Signal Processing, 9(6):1026–1036, 2015. ISSN 1932-4553.
URL https://doi.org/10.1109/jstsp.2015.2417833. [p342, 349]

J. A. Lee and M. Verleysen. Quality assessment of dimensionality reduction: Rank-based criteria.
Neurocomputing, 72(7–9):1431–1443, 2009. ISSN 0925-2312. URL https://doi.org/10.1016/j.
neucom.2008.12.017. [p349, 350]

J. A. Lee, E. Renard, G. Bernard, P. Dupont, and M. Verleysen. Type 1 and 2 mixtures of Kull-
back–Leibler divergences as cost functions in dimensionality reduction based on similarity preserva-
tion. Neurocomputing, 112:92–108, 2013. ISSN 0925-2312. URL https://doi.org/10.1016/j.neucom.
2012.12.036. [p348, 350]

W. Lueks, B. Mokbel, M. Biehl, and B. Hammer. How to Evaluate Dimensionality Reduction? -
Improving the Co-ranking Matrix. arXiv:1110.3917 [cs], 2011. URL http://arxiv.org/abs/1110.
3917. arXiv: 1110.3917. [p350]

U. v. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, Dec. 2007.
ISSN 0960-3174, 1573-1375. URL https://doi.org/10.1007/s11222-007-9033-z. [p347]

M. D. Mahecha, A. Martínez, G. Lischeid, and E. Beck. Nonlinear dimensionality reduction: Alternative
ordination approaches for extracting and visualizing biodiversity patterns in tropical montane
forest vegetation data. Ecological Informatics, 2(2):138–149, 2007. ISSN 1574-9541. URL https:
//doi.org/10.1016/j.ecoinf.2007.05.002. [p347, 351]

S. Martin, W. M. Brown, and B. N. Wylie. Dr.l: Distributed Recursive (graph) Layout. Technical Report
dRl; 002182MLTPL00, Sandia National Laboratories, 2007. URL http://www.osti.gov/scitech/
biblio/1231060-dr-distributed-recursive-graph-layout. [p348]

R. A. A. Morrall. Soil microfungi associated with aspen in Saskatchewan: Synecology and quantitative
analysis. Can. J. Bot., 52(8):1803–1817, 1974. ISSN 0008-4026. URL https://doi.org/10.1139/b74-
233. [p342]

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(6):
559–572, 1901. URL https://doi.org/10.1080/14786440109462720. [p345]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011. [p343]

S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding.
Science, 290(5500):2323–2326, 2000. ISSN 0036-8075, 1095-9203. URL https://doi.org/10.1126/
science.290.5500.2323. [p346]

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual variables.
In Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98, pages 515–
521, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-556-8. URL
http://dl.acm.org/citation.cfm?id=645527.657464. [p349]

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear Component Analysis as a Kernel Eigenvalue
Problem. Neural Computation, 10(5):1299–1319, 1998. ISSN 08997667. URL https://doi.org/10.
1162/089976698300017467. [p345]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1109/72.761722
https://doi.org/10.1109/72.761722
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1007/bf02289565
https://doi.org/10.1007/bf02289565
https://doi.org/10.1007/bf02289694
https://doi.org/10.1109/jstsp.2015.2417833
https://doi.org/10.1016/j.neucom.2008.12.017
https://doi.org/10.1016/j.neucom.2008.12.017
https://doi.org/10.1016/j.neucom.2012.12.036
https://doi.org/10.1016/j.neucom.2012.12.036
http://arxiv.org/abs/1110.3917
http://arxiv.org/abs/1110.3917
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1016/j.ecoinf.2007.05.002
https://doi.org/10.1016/j.ecoinf.2007.05.002
http://www.osti.gov/scitech/biblio/1231060-dr-distributed-recursive-graph-layout
http://www.osti.gov/scitech/biblio/1231060-dr-distributed-recursive-graph-layout
https://doi.org/10.1139/b74-233
https://doi.org/10.1139/b74-233
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
http://dl.acm.org/citation.cfm?id=645527.657464
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1162/089976698300017467

CONTRIBUTED RESEARCH ARTICLE 358

B. Schölkopf, R. Herbrich, and A. J. Smola. A Generalized Representer Theorem. In Computational
Learning Theory, pages 416–426. Springer-Verlag, 2001. URL https://doi.org/10.1007/3-540-
44581-1_27. [p345]

R. R. Sokal and F. J. Rohlf. The Comparison of Dendrograms by Objective Methods. Taxon, 11(2):33–40,
1962. ISSN 0040-0262. URL https://doi.org/10.2307/1217208. [p350]

S. Sonnenburg, H. Strathmann, S. Lisitsyn, V. Gal, F. J. I. García, W. Lin, S. De, C. Zhang, frx, tklein23,
E. Andreev, JonasBehr, sploving, P. Mazumdar, C. Widmer, P. D. . Zora, G. D. Toni, S. Mahindre,
A. Kislay, K. Hughes, R. Votyakov, khalednasr, S. Sharma, A. Novik, A. Panda, E. Anagnostopoulos,
L. Pang, A. Binder, serialhex, and B. Esser. Shogun-toolbox/shogun: Shogun 6.1.0, 2017. URL
https://doi.org/10.5281/zenodo.1067840. [p343]

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science, 290(5500):2319–2323, 2000. ISSN 0036-8075, 1095-9203. URL
https://doi.org/10.1126/science.290.5500.2319. [p346, 351]

W. S. Torgerson. Multidimensional scaling: I. Theory and method. Psychometrika, 17(4):401–419, 1952.
ISSN 0033-3123, 1860-0980. URL https://doi.org/10.1007/bf02288916. [p346]

L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. J. Mach. Learn. Res., 9:2579–2605, 2008.
ISSN 1532-4435. WOS:000262637600007. [p343, 348]

L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality reduction: a comparative review.
J Mach Learn Res, 10:66–71, 2009. [p343, 344]

J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information Retrieval Perspective to Nonlinear
Dimensionality Reduction for Data Visualization. J. Mach. Learn. Res., 11:451–490, 2010. ISSN
1532-4435. WOS:000277186500001. [p348]

Guido Kraemer
Max Planck Institute for Biogeochemisty
Hans-Knöll-Str. 10, 07745 Jena
Jena
gkraemer@bgc-jena.mpg.de

Markus Reichstein
Max Planck Institute for Biogeochemisty
Hans-Knöll-Str. 10, 07745 Jena
Jena
mreichstein@bgc-jena.mpg.de

Miguel D. Mahecha
Max Planck Institute for Biogeochemisty
Hans-Knöll-Str. 10, 07745 Jena
Jena
mmahecha@bgc-jena.mpg.de

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.2307/1217208
https://doi.org/10.5281/zenodo.1067840
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1007/bf02288916
mailto:gkraemer@bgc-jena.mpg.de
mailto:mreichstein@bgc-jena.mpg.de
mailto:mmahecha@bgc-jena.mpg.de

	dimRed and coRanking—Unifying Dimensionality Reduction in R
	Introduction
	Dimensionality Reduction Methods
	PCA
	kPCA
	Classical Scaling
	Isomap
	Locally Linear Embedding
	Laplacian Eigenmaps
	Diffusion Maps
	non-Metric Dimensional Scaling
	Force Directed Methods
	t-SNE
	ICA
	DRR

	Quality criteria
	Co-ranking matrix based measures
	Cophenetic correlation
	Reconstruction error

	Test data sets
	The dimRed Package
	Examples
	Conclusion
	Acknowledgments

