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Bayesian Testing, Variable Selection and
Model Averaging in Linear Models using
R with BayesVarSel
by Gonzalo Garcia-Donato and Anabel Forte

Abstract In this paper, objective Bayesian methods for hypothesis testing and variable selection in
linear models are considered. The focus is on BayesVarSel, an R package that computes posterior
probabilities of hypotheses/models and provides a suite of tools to properly summarize the results. We
introduce the usage of specific functions to compute several types of model averaging estimations and
predictions weighted by posterior probabilities. BayesVarSel contains exact algorithms to perform
fast computations in problems of small to moderate size and heuristic sampling methods to solve
large problems. We illustrate the functionalities of the package with several data examples.

An illustrated overview of BayesVarSel

Testing and variable selection problems are taught in almost any introductory statistical
course. In this first section we assume such background to present the essence of the
Bayesian approach and the basic usage of BayesVarSel (Garcia-Donato and Forte, 2015)
with hardly any mathematical formulas. Our motivating idea in this first section is mainly to
present the appeal of the Bayesian answers to a very broad spectrum of applied researchers.
This introductory section concludes with a discussion about connections with potentially
related R packages.

The remaining six sections are organized as follows. In the second section, on page 158,
the problem is presented and the notation needed is introduced jointly with the basics of the
Bayesian methodology. Then, two sections follow with explanations of the details concerning
the obtention of posterior probabilities in hypothesis testing and variable selection problems,
respectively, in BayesVarSel. In a later section, on page 163, several tools to describe the
posterior distribution are explained, while the section on page 166 is devoted to model
averaging techniques. The paper concludes with a section with plans for the future of the
BayesVarSel project. This paper is supplemented with an appendix, with formulas for
the most delicate ingredient in the underlying problem in BayesVarSel, namely the prior
distributions for parameters within each model.

The version of BayesVarSel presented here is 1.8.0.

Testing

In testing problems, several competing hypotheses, Hi, about a phenomenon of interest are
postulated. The role of statistics is to provide summaries about the evidence in favor (or
against) the hypotheses once the data, y, have been observed. There are many important
statistical problems with roots in testing like model selection (or model choice) and model
averaging.

The formal Bayesian response to testing problems is based on the posterior probabilities
of the hypotheses that summarize, in a fully understandable way, all the available infor-
mation. In the R package BayesVarSel a number of popular objective priors (in the sense
explained in Berger, 2006) are available. Any of these priors have the great appeal of being
fully automatic for users.

For illustrative purposes consider the nutrition problem in Lee (1997), page 143, with
data:

> weight.gains <- c(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123,
+ 70, 118, 101, 85, 107, 132, 94)

There it is tested, based on the sample of 19 weight gains (expressed in grams) of rats,
whether there is a difference between the population means of the group with a high
proteinic diet (the first 12) or the control group (the rest):
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> diet <- as.factor(c(rep(1,12), rep(0,7)))
> rats <- data.frame(weight.gains = weight.gains, diet = diet)

This problem (usually known as the two-samples t-test) is normally written as H0 : µ1 = µ2
versus H1 : µ1 6= µ2, where it is assumed that the weight gains are normally distributed
with an unknown (but common) standard deviation. The formulas that define each of the
models under the postulated hypotheses are in R language

> M0 <- weight.gains ~ 1
> M1 <- weight.gains ~ diet

The function to perform Bayesian tests in BayesVarSel is Btest which has an intuitive and
simple syntax (see the section on page 160 for a detailed description). In this example

> Btest(models = c(H0 = M0, H1 = M1), data = rats)
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0
1.0000000 0.8040127
---------
Posterior probabilities:

H0 H1
0.554 0.446

From these results, we clearly conclude that both hypotheses are similarly supported by
the data. Hence there is no evidence that the diet has any impact on the average weight.

A useful guide to interpret Bayes factors and probabilities, follows from the categories
proposed by Kass and Raftery (1995), reproduced in Table 1. For the problem above, none of
the hypotheses is worth more than a bare mention.

B10 Probability Evidence against the null

1 to 3 0.5 to 0.75 Not worth more than a bare mention
3 to 20 0.75 to 0.95 Substantial
20 to 150 0.95 to 0.99 Strong
>150 > 0.99 Decisive

Table 1: Interpretation of Bayes factors from Kass and Raftery (1995) (B10 stands for the Bayes factor
of H1 to the null hypothesis H0). The column probability is obtained assuming that both hypotheses
are equally likely a priori.

Another illustrative example concerns the classic dataset savings in Belsley et al. (2005)
considered by Faraway (2002), page 29 and distributed under the package faraway (Faraway,
2016).

> data("savings", package = "faraway")

This dataset contains macroeconomic data on 50 different countries during 1960-1970
and the question posed is to elucidate if dpi (per-capita disposable income in U.S), ddpi
(percent rate of change in per capita disposable income), population under (over) 15 (75)
pop15 (pop75) are all explanatory variables for sr, the aggregate personal saving divided by
disposable income which is assumed to follow a normal distribution. This can be written
as a testing problem about the regression coefficients associated with the variables with
hypotheses

H0 : βdpi = βddpi = βpop15 = βpop75 = 0,

versus the alternative, say H1, that all predictors are needed. The competing models can be
defined as

> fullmodel <- sr ~ pop15 + pop75 + dpi + ddpi
> nullmodel <- sr ~ 1

and the testing problem can be solved with

> Btest(models = c(H0 = nullmodel, H1 = fullmodel), data = savings)
---------
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0
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1.0000 21.46007
---------
Posterior probabilities:

H0 H1
0.045 0.955

Now, the conclusion is that there is strong evidence favoring H1, the hypothesis that all
considered predictors explain the response sr.

Of course, more hypotheses can be tested at the same time. For instance, a simplified
version of H1 that does not include pop15 is

H2 : βdpi = βddpi = βpop75 = 0,

that can be included in the analysis as

> reducedmodel <- sr ~ pop75 + dpi + ddpi
> Btest(models = c(H0 = nullmodel, H1 = fullmodel, H2 = reducedmodel),
+ data = savings)
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0 H2.to.H0

1.0000000 21.4600656 0.7017864
---------
Posterior probabilities:

H0 H1 H2
0.043 0.927 0.030

Obviously, as more hypotheses are considered, the usefulness of Table 1 to interpret posterior
probabilities reduces since it was conceived for two hypotheses. Nevertheless, in this case,
H1 is clearly supported by the data as the best explanation for the experiment among those
considered.

This scenario can be extended to check which subset of the four covariates is the most
suitable one to explain sr. In general, the problem of selecting the best subset of covariates
from a group of potential ones is better known as variable selection.

Variable selection

Variable selection is a multiple testing problem where each hypothesis proposes a possible
subset of the p potential explanatory variables initially considered. Notice that there are
2p hypotheses, including the simplest one (the null hypothesis) stating that none of the
variables should be used.

A variable selection approach to the economic example above with p = 4 has 16 hypothe-
ses and can be solved using the Btest function. Nevertheless, BayesVarSel has specific
facilities to handle the specificities of variable selection problems. A main function for
variable selection is Bvs, fully described in the section on page 161. It has a simple syntax
inspired by the well-known lm function. The variable selection problem in this economic
example can be solved by executing:

> Bvs(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)
The 10 most probable models and their probabilities are:

pop15 pop75 dpi ddpi prob
1 * * * * 0.297315642
2 * * * 0.243433493
3 * * 0.133832367
4 * 0.090960327
5 * * * 0.077913429
6 * * 0.057674755
7 * * 0.032516780
8 * * * 0.031337639
9 0.013854369
10 * * 0.006219812

With a first look at these results, we can see that the most probable model is the model with
all covariates (probability 0.30), which is closely followed by the one without dpi with a
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posterior probability of 0.24. Note that the results are sensitive to the choice of parameter
priors (see the appendix for more details on the priors).

As we will see later, a variable selection exercise generates a lot of valuable information
of which the above printed information is only a very reduced summary. This additional
information can be accessed with specific methods that explore the characteristics of objects
of the type created by Bvs.

Related packages

In a recent study, Forte et al. (2018) analyse the differences among available R packages
that, according to either title and/or description, perform common variable selection (and
related) tasks. The main underlying motivation in that study was to clarify the commonali-
ties/differences of the different packages available sharing a common theoretical framework
(Bayesian variable selection with a particular type of priors). Five packages turned out to
have these characteristics: BayesFactor (Morey et al., 2015); BayesVarSel; BMS (Zeugner
and Feldkircher, 2015); mombf (Rossell et al., 2014) and BAS (Clyde, 2017). These were
further compared taking into account relevant aspects like flexibility on prior specification,
types of summaries provided, and even computational skills. The main conclusion was
that, despite the connections, there are important differences (e.g., on prior specifications or
implemented summaries) that will dictate the choice of package (for more details see Forte
et al., 2018).

Another package worth mentioning is BMA (Raftery et al., 2015). This is one of the most
downloaded packages for variable selection in CRAN. BMA performs variable selection
based on the (BIC) Bayesian Information Criterion (which was developed as an asymptotic
approximation to Bayes factors).

Basic formulae

The problems considered in BayesVarSel concern Gaussian linear models. Consider a
response variable y, size n, assumed to follow the linear model (the subindex F refers to the
full model)

MF : y = X0α + Xβ + ε, ε ∼ Nn(0, σ2 In), (1)

where the matrices X0 : n × p0, X : n × p and the regression vector coefficients are of
conformable dimensions. Suppose you want to test H0 : β = 0 versus HF : β 6= 0, that is, to
decide whether the regressors in X actually explain the response. This problem is equivalent
to the model choice (or model selection) problem with competing models MF and

M0 : y = X0α + ε, ε ∼ Nn(0, σ2 In), (2)

and we will refer to models or hypotheses indistinctly.
Posterior probabilities are based on the Bayes factors (see Kass and Raftery, 1995), a

measure of evidence provided by BayesVarSel when solving testing problems. The Bayes
factor of HF to H0 is

BF0 =
mF(y)
m0(y)

,

where mF is the integrated likelihood or prior predictive marginal for the full model:

mF(y) =
∫

MF(y | α, β, σ)πF(α, β, σ)dβ dα dσ,

and, similarly:

m0(y) =
∫

M0(y | α, σ)π0(α, σ)dα dσ.

Above, π0 and πF are the prior distributions for the parameters within each model. The
assignment of such priors (which we call model selection priors) is quite a delicate issue (see
Berger and Pericchi, 2001) and has inspired many important contributions in the literature,
particularly from an objective point of view. Of these, the package BayesVarSel allows using
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many of the most important proposals, which are fully detailed in the appendix. The prior
implemented by default is the robust prior by Bayarri et al. (2012), as it can be considered
optimal in many senses and is based on a foundational basis.

Posterior probabilities can be obtained as

Pr(HF | y) =
BF0Pr(HF)

(Pr(H0) + BF0Pr(HF))
, Pr(H0 | y) = 1− Pr(HF | y),

where Pr(HF) is the probability, a priori, that hypothesis HF is true.
Similar formulas can be obtained when more than two hypotheses, say H1, . . . , HN , are

tested. In this case

Pr(Hi | y) =
Bi0(y)Pr(Hi)

∑N
j=1 Bj0(y)Pr(Hj)

, i = 1, . . . , N, (3)

which is the posterior distribution over the model space (the set that contains all competing
models). For simplicitly, the formula in (3) has been expressed, without any loss of generality,
using Bayes factors to the null model but the same results would be obtained by fixing any
other model. The default definition for Pr(Hi) in testing problems is to use a constant prior,
which assigns the same probability to all models, that is, Pr(Hi) = 1/N.

For instance, within the model

M3 : y = α1n + β1x1 + β2x2 + ε,

we cannot test the hypotheses H1 : β1 = 0, β2 6= 0, H2 : β1 6= 0, β2 = 0, H3 : β1 6= 0, β2 6= 0
since neither M1 (the model defined by H1) nor M2 are nested in the rest. Nevertheless, it is
perfectly possible to test the problem with the four hypotheses H1, H2, H3 (as just defined)
plus H0 : β1 = 0, β2 = 0, but of course H0 must be, a priori, a plausible hypothesis. In this
last case H0 would take the role of null model.

Hypotheses do not have to be necessarily of the type β = 0 and, if testable (see Ravis-
hanker and Dey, 2002, for a proper definition), any linear combination of the type Ctβ = 0
can be considered a hypothesis. For instance one can be interested in testing β1 + β2 = 0.
In Bayarri and García-Donato (2007) it was formally shown that these hypotheses can be,
through reparameterizations, reduced to hypotheses like β = 0. In next section we show
examples of how to solve these testing problems in BayesVarSel .

Variable selection is a multiple testing problem but is traditionally presented with
convenient specific notation that uses a p dimensional binary vector γ = (γ1, . . . , γp) to
identify the models. Consider the full model in (1), and suppose that X0 contains fixed
covariates that are believed to be sure in the true model (by default X0 = 1n that would
make the intercept present in all the models). Then each γ ∈ {0, 1}p defines a hypothesis
Hγ stating which β’s (those with γi = 0) corresponding to each of the columns in X are zero.
Then, the model associated with Hγ is

Mγ : y = X0α + Xγβγ + ε, ε ∼ Nn(0, σ2 In), (4)

where Xγ is the matrix with the columns in X corresponding to the ones in γ. Notice that
Xγ is a n× pγ matrix where pγ is the number of 1’s in γ.

Clearly, in this variable selection problem there are 2p hypotheses or models and the null
model is (2) corresponding to γ = 0.

A particularity of variable selection is that it is affected by multiplicity issues. This is
because, and specially for moderate to large p, the possibility of a model showing spurious
evidence is high (just because many hypotheses are considered simultaneously). As con-
cluded in Scott and Berger (2006) multiplicity must be controlled with the prior probabilities
Pr(Hγ) and the constant prior does not control for multiplicity. Instead, these authors
propose using

Pr(Hγ) =
(
(p + 1)

(
p

pγ

))−1. (5)
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The assignment above states that models of the same dimension (the dimension of Mγ is
pγ + p0) should have the same probability which must be inversely proportional to the
number of models of that dimension. In the sequel we refer to this prior as the ScottBerger
prior.

Both the ScottBerger prior and the Constant prior for Pr(Hγ) are particular cases of the
very flexible prior

Pr(Mγ | θ) = θpγ(1− θ)p−pγ , (6)

where the hyperparameter θ ∈ (0, 1) has the interpretation of the common probability that a
given variable is included (independently of all others).

The Constant prior corresponds to θ = 1/2 while the ScottBerger to θ ∼ Unif(0, 1). Ley
and Steel (2009) study priors for θ of the type

θ ∼ Beta(θ | 1, b). (7)

They argue that, on many occasions the user has, a priori, some information regarding
the number of covariates (among the p initially considered) that are expected to explain
the response, say w?. As they explain, this information can be translated into the analysis
assigning in (7) b = (p− w?)/w?. The resulting prior specification has the property that the
expected number of covariates is precisely w?.

Straightforward algebra shows that assuming (7) into (6) is equivalent to (integrating
out θ)

Pr(Mγ | b) ∝ Γ(pγ + 1)Γ(p− pγ + b). (8)

The prior over the model space implemented by default in BayesVarSel is the ScottBerger
prior.

Hypothesis testing with BayesVarSel

Tests are solved in BayesVarSel with Btest which, in its default usage, only depends on
two arguments: models a named list of formula-type objects defining the models compared
and data the data frame with the data.

The prior probabilities assigned to the hypotheses is constant, that is, Pr(Hi) = 1/N.
This default behavior can be modified specifying prior.models = "User" jointly with the
argument priorprobs that must contain a named list (with names as specified in the main
argument models) with the prior probabilities to be used for each hypotheses.

Suppose that in the last example of first subsection, we establish a priori that the simpler
model is twice as likely as the other two. This can be specified as:

> Btest(models = c(H0 = nullmodel, H1 = fullmodel, H2 = reducedmodel),
+ data = savings, prior.models = "User",
+ priorprobs = c(H0 = 1/2, H1 = 1/4, H2 = 1/4))
---------
Bayes factors (expressed in relation to H0)
H0.to.H0 H1.to.H0 H2.to.H0

1.0000000 21.4600656 0.7017864
---------
Posterior probabilities:

H0 H1 H2
0.083 0.888 0.029

Notice that the Bayes factor remains the same, and the change is in posterior probabilities.
Btest tries to identify the null model (i.e. the model nested in all the others) using the

names of the variables. If such a model does not exist, the execution of the function stops
with an error message. Nevertheless, there are important situations where the simplest (null)
hypothesis is defined through linear restrictions (sometimes known as ‘testing a subspace‘)
making it very difficult to determine its existence just using the names. In this situation, the
user must provide the name of the simplest model in the argument null.model.

To illustrate this case, consider for instance the extension of the savings example in
Faraway (2002), page 32 where Heqp : βpop15 = βpop75 is tested against the full alternative.
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This null hypothesis states that the effect on personal savings, sr, of both segments of
populations is similar. The model under Heqp can be specified as:

> equalpopmodel <- sr ~ I(pop15 + pop75) + dpi + ddpi

but the command

> Btest(models = c(Heqp = equalpopmodel, H1 = fullmodel), data = savings)

produces an error, although it is clear that Heqp is nested in H1. To overcome this error, the
user must make the name of the null model explicit. In our example:

> Btest(models = c(Heqp = equalpopmodel, H1 = fullmodel), data = savings,
+ null.model = "Heqp")
Bayes factors (expressed in relation to Heqp)
Heqp.to.Heqp H1.to.Heqp
1.0000000 0.3336251

---------
Posterior probabilities:
Heqp H1
0.75 0.25

Still, the code would produce an error if it detects that the model defined as the null model
does not have the largest sum of squared errors or if it is not of a smaller dimension than all
the others.

Variable selection with BayesVarSel

The number of entertained hypotheses in a variable selection problem, 2p, can range from
a few to an extremely large number. This makes it necessary to program specific tools to
solve the multiple testing problem in variable selection problems. BayesVarSel provides
two different functions for variable selection

• Bvs performs exhaustive enumeration of hypotheses and hence the size of problems
must be small or moderate (say p ≤ 25),

• GibbsBvs simulates from the posterior distribution over the model space using a Gibbs
sampling scheme (intended to be used for large problems, with p > 25).

Except for a few arguments that are specific to the algorithm implemented (e.g., the
number of cores in Bvs or the number of simulations in GibbsBvs) the usage of the two
functions is very similar. We describe the common use in the first of the following sub-
sections and the function-specific arguments in the second.

Bvs and GibbsBvs return objects of class "Bvs" which are a list with relevant information
about the posterior distribution. For these objects, BayesVarSel provides a number of func-
tions, based on the tradition of model selection methods, to summarize the corresponding
posterior distribution (e.g., what is the hypothesis most probable a posteriori) and for its
posterior usage (e.g., to obtain predictions or model averaged estimates). These capabilities
are described in next two sections.

For illustrative purposes we use the following datasets:

UScrime data. The US crime data set was first studied by Ehrlich (1973) and is available
from the package MASS (Venables and Ripley, 2002). This data set has a total of n = 47
observations (corresponding to states in the US) of p = 15 potential covariates aimed at
explaining the rate of crimes in a particular category per head of population (labelled y in
the data).

SDM data. This dataset has a total of p = 67 potential drivers for the annual GDP growth
per capita between 1960 and 1996 for n = 88 countries (response variable labelled y in the
data). This data set was initially considered by Sala-I-Martin et al. (2004) and revisited by
Ley and Steel (2007).
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Common arguments

The customary arguments in Bvs and GibbsBvs are formula, with a definition of the most
complex model considered (the full model in (1)) and data (a data frame with the data). The
default execution setting corresponds to a problem where the null model (2) contains just
the intercept (i.e. X0 = 1n) and prior probabilities for models are defined as in (5).

A different null model can be specified with the optional argument null.model, that
must take the value of the formula of the the null model (a model that should be nested in
the full model).

Suppose for example that in the UScrime dataset and apart from the constant, theory
suggests that the covariate Ed must be used to explain the dependent variable. To consider
these conditions we execute the command

> crime.Edfix <- Bvs(formula = y ~ ., data = UScrime,
+ null.model = y ~ Ed)
Info. . . .
Most complex model has 16 covariates
From those 2 are fixed and we should select from the remaining 14
M, So, Po1, Po2, LF, M.F, Pop, NW, U1, U2, GDP, Ineq, Prob, Time
The problem has a total of 16384 competing models
Of these, the 10 most probable (a posteriori) are kept
Working on the problem...please wait.
> crime.Edfix

During the execution (which takes about 0.22 seconds in a standard laptop) the function
informs which variables take part of the selection process. The number of these defines p
which in this problem is p = 14 (and the model space has 214 models). In what follows, and
unless otherwise stated we do not reproduce this informative output to save space.

The assignment of priors probabilities, Pr(Hi), is regulated with prior.models, an argu-
ment that by default takes the value ‘"ScottBerger"’ corresponding to the proposal in (5).
Other options for this argument are ‘"Constant"’, which stands for Pr(Hi) = 1/2p, and the
more flexible value, ‘"User"’, under which the user must specify the prior probabilities with
the extra argument priorprobs.

The argument priorprobs is a p + 1 numeric vector, which in its i-th position defines the
probability of a model of dimension p0 + i− 1 (these probabilities can be specified except
for the normalizing constant).

Suppose that in the UScrime dataset with null model just the intercept, we want to specify
the prior in eq (6) with θ = 1/4, this can be done as (notice that here p = 15)

> theta <- 1/4; pgamma <- 0:15
> crime.thQ <- Bvs(formula = y ~ ., data = UScrime, prior.models = "User",
+ priorprobs = theta^pgamma*(1-theta)^(15-pgamma))
> crime.thQ

In variable selection problems it is quite standard to have the situation where the number
of covariates is large (say larger than 30) preventing the exhaustive enumeration of all the
competing models. The SDM dataset is an example of this situation with p = 67. In these
contexts, the posterior distribution can be explored using the function GibbsBvs. To illustrate
the elicitation of prior probabilities as well, suppose that the number of expected covariates
to be present in the true model is w? = 7. This situation is considered in Ley and Steel (2009)
and can be implemented as (see (8))

> set.seed(1234)
> data(SDM)
> p <- ncol(SDM) - 1; wstar <- 7;
> b <- (p-wstar)/wstar; pgamma <- 0:p
> growth.wstar7 <- GibbsBvs(formula = y ~ ., data = SDM, prior.models = "User",
+ priorprobs = gamma(pgamma+1)*gamma(p-pgamma+b), n.iter = 10000, n.thin = 1,
+ time.test = FALSE)
> growth.wstar7

The above code took 18 seconds to run.
One last common argument to Bvs and GibbsBvs is time.test. If it is set to TRUE and

the problem is of moderate size (p ≥ 18 in Bvs and p ≥ 21 in GibbsBvs), an estimation of
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computational time is calculated and the user is asked about the possibility of not executing
the command.

Specific arguments

In Bvs The algorithm implemented in Bvs is exact in the sense that the information collected
about the posterior distribution takes into account all competing models as these are all
computed. The logical parameter parallel, if set to TRUE, distributes the task among the
number of processors specified in the argument n.nodes. By default the parameter parallel
is set to FALSE. To save computational time and memory it is quite appropriate to keep only
a moderate number of the best (most probable a posteriori) models. This number can be
specified with the argument n.keep which must be an integer number between 1 (only the
most probable model is kept) and 2p (a full ordering of models is kept) (or 2p divided by
n.nodes in the case of parallel computation). The default value for n.keep is 10.

The argument n.keep is not of great importance to analyze the posterior distribution over
the model space. Nevertheless, it has a more relevant effect if model averaging estimates
or predictions are to be obtained (see the corresponding section on page 166) since, as
BayesVarSel is designed, only the n.keep retained models are used for these tasks.

In GibbsBvs The algorithm in GibbsBvs samples models from the posterior over the model
space and this is done using a simple (yet very efficient) Gibbs sampling scheme introduced
in George and McCulloch (1997), later studied in Garcia-Donato and Martinez-Beneito (2013)
in the context of large model spaces. The type of default arguments that can be specified in
GibbsBvs are typical in any Monte Carlo Markov Chain scheme (as usual the default values
are given in the assignment)

• init.model = "Full" The model at which the simulation process starts. Options
include ‘"Null"’ (the model only with the covariates specified in null.model), ‘"Full"’
(the model defined by formula), and ‘"Random"’ (a randomly selected model) a vector
with p zeros and ones defining a model.

• n.burnin = 500 Length of burn in, i.e. the number of iterations to discard at the start
of the simulation process.

• n.iter = 10000 The total number of iterations performed after the burn in process.

• n.thin = 1 Thinning rate that must be a positive integer. Set n.thin > 1 to save
memory and computation time if n.iter is large.

• seed = runif(1,0,16091956) A seed to initialize the random number generator.

Notice that the number of total iterations is n.burnin+n.iter but the number of models
that are used to collect information from the posterior is, approximately, n.iter/n.thin.

Summaries of the posterior distribution

In this section we describe the tools implemented in BayesVarSel conceived to summarize
(in the tradition of the relevant model selection literature) the posterior distribution over the
model space. In R, this corresponds to describing methods to explore the content of objects
of class "Bvs".

Printing a "Bvs" object created with Bvs shows the best 10 models with their associated
probability (see examples in first section). If the object was built with GibbsBvs the 10
most probable a posteriori models among the visited ones are shown. Though, in this case,
posterior probabilities of models are not provided, as these are unknown.

The rest of the summaries are very similar, independent of the routine used to create it,
but recall that if the object was obtained with Bvs (likely because p is small or moderate)
the given measures here explained are exact. If instead GibbsBvs was used, the reported
measures are approximations of the exact ones (that likely cannot be computed due to
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the huge size of the model space). In BayesVarSel these approximations are based on the
frequency of visits of Mγ as an estimator since, as studied in Garcia-Donato and Martinez-
Beneito (2013), these provide quite accurate summaries.

The HPM is returned when an object of class "Bvs" is summarized (via summary) jointly
with the inclusion probabilities for each competing variable, Pr(xi | y). These are the sum
of the posterior probabilities of models containing that covariate and provide evidence
about the individual importance of each explanatory variable. The model defined by those
variables with an inclusion probability greater than 0.5 is called a Median Probability Model
(MPM), which is also included in the summary. Barbieri and Berger (2004) show that, under
general conditions, if a single model has to be utilized with predictive purposes, the MPM is
optimal.

For instance, if we summarize the object crime.Edfix1 of the fourth section, we obtain:

> summary(crime.Edfix)

Inclusion Probabilities:
Incl.prob. HPM MPM

M 0.6806 *
So 0.2386
Po1 0.8489 * *
Po2 0.3663
LF 0.2209
M.F 0.3184
Pop 0.2652
NW 0.2268
U1 0.2935
U2 0.4765
GDP 0.3204
Ineq 0.9924 * *
Prob 0.6174 *
Time 0.2434

Inclusion probabilities implicitly answer a testing problem with two hypotheses, namely
if the variable should or should not be included. This is made sensible (and practical) using
the categorization in Table 1 to interpret them. With this guide, the importance of Ineq is
decisive followed by Po1, M and Prob with a substantial evidence in favour of their relevance
in explaining the response.

Graphical summaries and jointness The main graphical support in BayesVarSel is con-
tained in the S3 function plot2 which depends on x (an object of class "Bvs") and the
argument option specifying the type of plot to be produced:

• option="joint" A matrix plot with the joint inclusion probabilities, Pr(xi, xj | y)
(marginal inclusion probabilities in the diagonal).

• option="conditional" A matrix plot with Pr(xi | xj, y), the conditional inclusion
probabilities (ones in the diagonal).

• option="not" A matrix plot with Pr(xi | Not xj, y), the conditional inclusion probabil-
ities (zeroes in the diagonal).

• option="dimension" A bar plot representation of the posterior distribution of the
dimension of the true model (number of variables, ranging from p0 to p0 + p).

• option="trace" A trace plot with the evolution of the inclusion probabilities with
the iterations in Gibbs sampling (useful to check convergence; only available for
GibbsBvs).

1Notice that variable Ed is not on the list as it was assumed to be fixed.
2Depending on p, this function may produce very large plots causing margin-type errors to be thrown if either

the device or the active graphical window are too small. In these cases the user must consider ways of enlarging
the graphical output recipient.
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The first three options above are basic measures describing aspects of the joint effect of
two given variables, xi and xj, and can be understood as natural extensions of the marginal
inclusion probabilities. In Figure 1, we have reproduced the first three plots (from left to
right) obtained with the following lines of code:

> mj <- plot(crime.Edfix, option = "joint")
> mc <- plot(crime.Edfix, option = "conditional")
> mn <- plot(crime.Edfix, option = "not")

Apart from the plot, these functions return (invisibly) the matrix represented for futher
study. For the conditional probabilities (conditional and not) the variables in the row are
the conditioning variables (e.g., in mc above, the position (i, j) is the inclusion probability of
variable in j-th column conditional on the variable in i-th row).

Within these matrices, the most interesting results correspond to variations from the
marginal inclusion probabilities (represented in the top of the plots as a separate row for
reference). Our experience suggests that the most valuable of these is option="not", as it
can reveal key details about the relations between variables in relation with the response.
For instance, take that plot in Figure 1 (plot on the left of the second row) and observe that
while variable Po2 barely has any effect on y (crime), it becomes relevant if Po1 is removed.
This is the probability Pr(Po2 | Not Po1, y) with value

> mn["Not.Po1", "Po2"]
[1] 0.9996444

which, as we observed in the graph, is substantially large compared with the inclusion
probability of Po2

> crime.Edfix$inclprob["Po2"]
Po2

0.3662537

Similarly, we observe that Po1 is of even more importance if Po2 is not considered as a
possible explanatory variable. All this implies that, in relation with the dependent variable,
both variables contain similar information and one can act as proxy for the other.

We can further investigate this idea of a relationship between two covariates with respect
to the response using the jointness measures proposed by Ley and Steel (2007). These
are available using a function Jointness that depends on two arguments: x, an object of
class "Bvs" and covariates, a character vector indicating which pair of covariates we are
interested in. The default covariates="All" will output the matrices with the jointness
measurement for every pair of covariates. In particular, three jointness measures relative to
two covariates are reported by this function: i) the joint inclusion probability, ii) the ratio
between the joint inclusion probability and the probability of including at least one of them,
and iii) the ratio between the joint inclusion probability and the probability of including one
of them alone.

For instance:

> joint_measures <- Jointness(crime.Edfix, covariates = c("Po1" , "Po2"))
> joint_measures
---------
The joint inclusion probability for Po1 and Po2 is: 0.22
---------
The ratio between the probability of including both covariates and the probability of
including at least one of then is: 0.22
---------
The probability of including both covariates together is 0.27 times the probability of
including one of them alone

Alternatively, the single numbers can be accessed using:

> joint_measures$prob_joint
[1] 0.215181
> joint_measures$joint_LS1
[1] 0.2151926
> joint_measures$joint_LS2
[1] 0.274198
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Figure 1: Plots corresponding to the four possible values of the argument option in plot over the
object crime.Edfix of section four. From left to right: joint, conditional, not, and dimension.

With these results we must conclude that it is unlikely that both variables, Po1 and Po2,
are to be included together in the true model.

Finally, within plot, the assignment option="dimension" produces a plot that speaks
about the complexity of the true model in terms of the number of covariates that it contains.
The last plot in Figure 1 is the output of executing:

> plot(crime.Edfix, option = "dimension")

From this plot we conclude that the number of covariates is about 7 but with a high variability.
The exact values of this posterior distribution are in the component postprobdim of the Bvs
object.

The last possibility for the plot method corresponds to option="trace" which produces
a trace plot of the inclusion probabilities. The resulting graph is useful to asses the conver-
gence of the posterior inclusion probabilities when Gibbs sampling was used and we can
informally check if the number of iterations is enough. For instance, Figure 2 shows how
the posterior inclusion probabilities in this setting stabilize after roughly 8000 iterations.

> plot(growth.wstar7, option = "trace")

Model averaged estimations and predictions

In a variable selection problem it is explicitly recognized that there is uncertainty regarding
which variables make up the true model. Obviously, this uncertainty should be propagated
in the inferential process (as opposed to inferences using just one model) to produce more
reliable and accurate estimations and predictions. These type of procedures are normally
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Figure 2: Plot corresponding to the “trace” option in plot over the object growth.wstar7.

called model averaging (Madigan and Raftery, 1994; Raftery, 1995) and are performed once
the model selection exercise is performed (that is, the posterior probabilities have been
already obtained). In BayesVarSel these inferences can be obtained acting over objects of
class "Bvs".

Suppose that Λ is a quantity of interest and that under model Mγ it has a posterior
distribution πN(Λ | y, Mγ) with respect to certain non-informative prior πN

γ . Then, we can
average over all entertained models using the posterior probabilities in (3) as weights to
obtain

f (Λ | y) = ∑
γ

πN(Λ | y, Mγ) Pr(Mγ | y). (9)

In BayesVarSel for πN
γ we use the reference prior developed in Berger and Bernardo (1992)

and further studied in Berger et al. (2009). This is an objective prior with very good
theoretical properties. The formulas for the posterior distribution with a fixed model are
known (Bernardo and Smith, 1994). These priors are different from the model selection priors
used to compute the Bayes factors (see the second section), but, as shown in Consonni
and Deldossi (2016), the posterior distributions approximately coincide, and so f (Λ | y)
basically can be interpreted as the posterior distribution of Λ.

There are two different quantities, Λ, that are of main interest in variable selection
problems. First is a regression parameter βi and second is a future observation y? associated
with known values of the covariates x?. In what follows we refer to each of these problems
as (model averaged) estimation and prediction, respectively, to which we devote the next
subsections.

Estimation

Inclusion probabilities Pr(xi | y) can be roughly interpreted as the probability that βi is
different from zero. Nevertheless, it does not say anything about the magnitude of the
coefficient βi nor anything about its sign.

Such type of information can be obtained from the distribution in (9) which in the case
of Λ ≡ (α, β) is

f (α, β | y) = ∑
γ

Stpγ+p0((α, βγ) | (α̂, β̂γ), (Z>γ Zγ)
−1 SSEγ

n− pγ − p0
, n− pγ − p0) Pr(Mγ | y),

(10)
where α̂, β̂γ is the maximum likelihood estimator under Mγ (see (4)), Zγ = (X0, Xγ) and
SSEγ is the sum of squared errors in Mγ. St above refers to the multivariate student
distribution:

Stk(x | µ, Σ, d f ) ∝
(
1 +

1
d f

(x− µ)>Σ−1(x− µ)
)−(d f+k)/2.
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In BayesVarSel the whole model averaged distribution in (10) is provided in the form
of a random sample through the function BMAcoeff which depends on two arguments:
x, a "Bvs" object and n.sim, the number of observations to be simulated (with default
value of 10000). The returned object is an object of class "bma.coeffs" which is a column-
named matrix with n.sim rows (one per each simulation) and p + p0 columns (one per each
regression parameter). The way that BMAcoeff works depends on whether the object was
created with Bvs or with GibbsBvs. This is further explained below.

If the Bvs object was generated with Bvs In this case the models over which the average
is performed are the n.keep (previously specified) best models. Hence, if n.keep equals 2p

then all competing models are used; while, if n.keep<2p, only a proportion of them are used
and posterior probabilities are re-normalized to sum to one.

On many occasions where estimations are required, the default value of n.keep (which
we recall is 10) is small and should be increased. Ideally 2p should be used but, as noticed
by Raftery et al. (1997) this is normally unfeasible and commonly it is sufficient to average
over a reduced set of good models that accumulate a reasonable posterior mass. This set is
what Raftery et al. (1997) call the “Occam’s window.” The function BMAcoeff informs about
the total probability accumulated in the models that are used.

For illustrative purposes, let us retake the UScrime dataset and, in particular, the example
in first section in which, apart from the constant, the variable Ed was assumed as fixed. The
total number of models is 214 = 16384 and we execute Bvs again but now with n.keep=2000:

> crime.Edfix <- Bvs(formula = y ~ ., data = UScrime,
+ null.model = y ~ Ed, n.keep = 2000)
> crime.Edfix

(This takes about 1.9 seconds). The crime.Edfix object contains identical information as the
one previously created with the same name, except for the models retained, which in this
case are the best 2000. These models accumulate a probability3 of roughly 0.90, which seems
quite reasonable to derive the estimates. We do so executing the second command of the
following script (the seed is fixed for the sake of reproducibility).

> set.seed(1234)
> bma.crime.Edfix <- BMAcoeff(crime.Edfix)
Simulations obtained using the best 2000 models
that accumulate 0.9 of the total posterior probability

The distribution in (10) and hence the simulations obtained can be highly multimodal and
providing default summaries of it (like the mean or standard deviation) is potentially mis-
leading. For a first exploration of the model averaged distribution, BayesVarSel comes
armed with a plotting function, histBMA, that produces a histogram-like representation bor-
rowing ideas from Scott and Berger (2006) and placing a bar at zero with height proportional
to the number of zeros obtained in the simulation.

The function histBMA depends on several arguments:

• x An object of class bma.coeffs.

• covariate A string specifying the name of an explanatory variable whose accompany-
ing coefficient is to be represented. This must be the name of one of the columns in
x.

• n.breaks The number of equal width bars for the histogram. Default value is 100.

• text If set to TRUE (default value) the frequency of zeroes is added at the top of the bar
at zero.

• gray.0 A numeric value between 0 and 1 that specifies the darkness, in a gray scale (0
is white and 1 is black) of the bar at zero. Default value is 0.6.

• gray.no0 A numeric value between 0 and 1 that specifies the darkness, in a gray scale
(0 is white and 1 is black) of the bars different from zero. Default value is 0.8.

3sum(crime.Edfix$modelsprob$prob)
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Figure 3: Representation provided by the function histBMA of the Model averaged posterior distribu-
tions of β Ineq, βTimeand βProb for the UScrime dataset with a constant and Ed considered as fixed in the
variable selection exercise.

For illustrative purposes let us examine the distributions of β Ineq (inclusion probability
0.99); βTime (0.24) and βProb (0.62) using histBMA

> histBMA(bma.crime.Edfix, covariate = "Ineq", n.breaks = 50)
> histBMA(bma.crime.Edfix, covariate = "Time", n.breaks = 50)
> histBMA(bma.crime.Edfix, covariate = "Prob", n.breaks = 50)

The plots obtained are reproduced in Figure 3. We can see that Ineq has a positive effect.
This distribution is unimodal so there is no drawback to summarizing the effect of the
response Ineq over y (crime) using say, the mean or quantiles, For example:

> quantile(bma.crime.Edfix[, "Ineq"], probs = c(0.05, 0.5, 0.95))
5% 50% 95%

4.075685 7.150184 10.326606

This implies an estimated effect of 7.2 with a 90% credible interval [4.1,10.3]. The situation
of Time is clear and its estimated effect is basically null (in agreement with a low inclusion
probability).

Much more problematic is reporting estimates of the effect of Prob with a highly polarized
estimated effect being either very negative (around -4100) or zero (again in agreement with its
inconclusive inclusion probabilty of 0.62). Notice that, in this case, the mean (approximately
-2500) should not be used as a sensible estimation of the parameter βProb.

If the Bvs object was generated with GibbsBvs In this case, the average in (10) is per-
formed over the n.iter (an argument previously defined) models sampled in the MCMC
scheme. Theoretically this corresponds to sampling over the whole distribution (all models
are considered) and leads to the approximate method pointed out in Raftery et al. (1997). All
previous considerations regarding the difficult nature of the underlying distribution apply
here.

Let us consider again the SDM dataset in which analysis we created growth.wstar7 in the
fourth section. Suppose we are interested in the effect of the variable P60 on the response
GDP. The summary method informs that this variable has an inclusion probability of 0.77.

> set.seed(1234)
> bma.growth.wstar7 <- BMAcoeff(growth.wstar7)
Simulations obtained using the 10000 sampled models.
Their frequencies are taken as the true posterior probabilities
> histBMA(bma.growth.wstar7, covariate = "P60", n.breaks=50)

The distribution is bimodal (graph not shown here to save space) with modes at zero and
2.8, approximately. Again, it is difficult to provide simple summaries to describe the model
averaged behaviour of P60. Nevertheless, it is always possible to answer relevant questions
such as: what is the probability that the effect of P60 over savings is greater than one?

> mean(bma.growth.wstar7[, "P60"] > 1)
[1] 0.7511

Prediction

Suppose we want to predict a new observation y? with associated values of covariates
(x?)> ∈ Rp0+p (in what follows, the product of two vectors corresponds to the usual scalar
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Figure 4: For SDM data and related Bvs object growth.wstar7, model averaged prediction of the
“mean” case (predicting the output associated with the mean of observed covariates)

product). In this case, the distribution (9) adopts the form

f (y? | y, x?) = ∑
γ

St(y? | x?γ (α̂, β̂γ),
SSEγ

hγ
, n− pγ − p0) Pr(Mγ | y), (11)

where
hγ = 1− x?γ

(
(x?γ)

>x?γ + Z>γ Zγ

)−1
(x?γ)

>.

As with estimations, BayesVarSel has implemented a method for the S3 function predict,
designed to simulate a desired number of observations from (11). A main difference with
model averaged estimations is that, typically, the above predictive distribution is unimodal.

The predict method depends on object, an object of class "Bvs", newdata, a data frame
with the values of the covariates (the intercept, if needed, is automatically added) and n.sim
the number of observations to be simulated. The considerations about the calculation of the
probabilities described in the previous section for the Bvs object depending on the type of
function originally used apply here.

The predict method returns a matrix with n.sim rows (one per each simulated observa-
tion) and with the number of columns being the number of cases (rows) in the data frame
newdata.

For illustrative purposes, consider the "Bvs" object named growth.wstar7 from the
analysis of the SDM dataset. Simulations from the predictive distribution (11) associated
with values of the covariates fixed at their means can be obtained with the following code.
Here, a histogram is produced (see Figure 4) as a graphical approximation of the underlying
distribution.

> set.seed(1234)
> pred.growth.wstar7 <- predict(object = growth.wstar7,
+ newdata = data.frame(t(colMeans(SDM))))
> hist(pred.growth.wstar7[, 1], main = "SDM",
+ border = gray(0.6), col = gray(0.8), xlab = "y")

Future work

The first version of BayesVarSel was released on December 2012 with the main idea of
making available the C code programmed for the work Garcia-Donato and Martinez-Beneito
(2013) to solve exactly moderate to large variable selection problems. Since then, seven
versions have followed with new abilities that make up the complete toolbox that we have
described in this paper.

Nevertheless, BayesVarSel is an ongoing project that we plan to continue in the fu-
ture as solid and contrasted methods become available. The emphasis is placed on the
prior distribution that should be used, since this is a particularly relevant aspect of model
selection/testing problems.

New functionalities that we expect to incorporate in the future are:
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• The case where n < p + p0 and possibly n << p + p0,

• specific methods for handling factors,

• heteroscedastic errors,

• other types of error distributions.
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Appendix: Model selection priors for parameters within models

A key technical component of Bayes factors and hence of posterior probabilities is the prior
distribution for the parameters within each model. That is, the prior πγ(α, βγ, σ) for the
specific parameters of the model

Mγ : y = X0α + Xγβγ + ε, ε ∼ Nn(0, σ2 In). (12)

In BayesVarSel the prior used is specified in main functions Btest, Bvs, and GibbsBvs with
the argument prior.betas with default value ‘"Robust"’ that corresponds to the proposal
the same name in (Bayarri et al., 2012). It is argued in this paper, based on foundational
arguments, that the robust prior is an optimal choice for testing in linear models.
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The robust prior for Mγ can be specified hierarchically as

πR
γ (α, βγ, σ) = σ−1 Npγ(βγ | 0, g Σγ), (13)

where Σγ = σ2 (V>γ V γ)−1, with

V γ = (In − X0(X>0 X0)
−1X>0 )Xγ, (14)

and

g ∼ pR
γ (g) =

1
2

√
1 + n

pγ + p0
(g + 1)−3/2, g >

1 + n
pγ + p0

− 1. (15)

For the null model, the prior assumed is π0(α, σ) = σ−1.
The idea of using the matrix Σγ to scale variable selection priors dates back to Zellner

and Siow (1980) and is present in other very popular proposals in the literature. As we
next describe, these proposals differ about which distribution should be used for the hy-
perparameter g. Many of these can be implemented in BayesVarSel through the argument
prior.betas.

• prior.betas="ZellnerSiow" (Jeffreys (1961); Zellner and Siow (1980, 1984)) corre-
sponds to g ∼ IGa(1/2, n/2) (leading to the very famous proposal of using a Cauchy).

• prior.betas="gZellner" (Zellner (1986); Kass and Wasserman (1995)) corresponds to
fixing g = n (leading to the so called Unit Information Prior).

• prior.betas="FLS" (Fernández et al. (2001)) corresponds to fixing g = max{n, p2}.

• prior.betas="Liangetal" (Liang et al. (2008)) corresponds to g ∼ π(g) ∝ (1 +
g/n)−3/2.
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