
CONTRIBUTED RESEARCH ARTICLE 140

FHDI: An R Package for Fractional Hot
Deck Imputation
by Jongho Im, In Ho Cho, and Jae Kwang Kim

Abstract Fractional hot deck imputation (FHDI), proposed by Kalton and Kish (1984) and investigated
by Kim and Fuller (2004), is a tool for handling item nonresponse in survey sampling. In FHDI,
each missing item is filled with multiple observed values yielding a single completed data set for
subsequent analyses. An R package FHDI is developed to perform FHDI and also the fully efficient
fractional imputation (FEFI) method of (Fuller and Kim, 2005) to impute multivariate missing data
with arbitrary missing patterns. FHDI substitutes missing items with a few observed values jointly
obtained from a set of donors whereas the FEFI uses all the possible donors. This paper introduces
FHDI as a tool for implementing the multivariate version of fractional hot deck imputation discussed
in Im et al. (2015) as well as FEFI. For variance estimation of FHDI and FEFI, the Jackknife method is
implemented, and replicated weights are provided as a part of the output.

Introduction

Incomplete data are common in survey sampling, biomedical, and social sciences. Naive analysis
with only complete cases, conducted by removing all the cases with any missing items, is exposed to
nonresponse bias unless the missing data mechanism is missing completely at random (Rubin, 1976).
Even if the complete cases can be treated as a complete random sample, the complete case analysis is
inefficient, as all the partially observed cases are ignored. To incorporate these partial observations, we
may consider an imputation technique in which the missing items are filled in with plausible values.

Imputation is often classified into single imputation and repeated imputation on the basis of
the number of imputed values per each missing value. Several values are assigned to each missing
value in repeated imputation, while a single value is imputed in single imputation. Although single
imputation is often preferred in practice, due to its convenience, it does not necessarily preserve the
distribution of the original data. Thus, single imputation is inadequate for general purpose estimation.

There are two popular methods in the repeated imputation: multiple imputation and fractional
imputation. Multiple imputation, proposed by Rubin (1987, 1996) produces multiply imputed data
sets as imputation output. Many multiple imputation methods are already available in R, for example,
mice (van Buuren and Groothuis-Oudshoorn, 2011), mi (Su et al., 2011), Amelia (Honaker et al., 2011),
and VIM (Kowarik and Templ, 2016). Fractional imputation, initially proposed by Kalton and Kish
(1984) and extensively discussed in Fay (1996), Kim and Fuller (2004), Durrant and Skinner (2006), and
Kim (2011), creates a single completed data set with fractional weights after imputation. The size of
the imputed data is always larger than that of the incomplete input data. However, there is no suitable
R package for implementing fractional imputation. So far, the only publicly available software for
doing fractional imputation is the SAS procedure SURVEYIMPUTE (SAS Institue Inc., 2015), which partly
covers some fractional imputation methods.

Fractional imputation is yet to be widely used in practice other than survey sampling possibly
because it is relatively new and there is more complexity involved in implementing variance estimation
compared to multiple imputation. However, fractional imputation has its own advantages. For
instance, in the case of using a method-of-moment estimator, fractional imputation provides consistent
variance estimation while the multiple imputation variance estimator is inconsistent (Yang and Kim,
2016).

Imputing multivariate missing data is challenging for both multiple imputation and fractional
imputation. In practice, a full conditional specification of the joint model can be used to fill in several
missing items. One popular method is multiple imputation using chained equations, also named
mice (van Buuren and Groothuis-Oudshoorn, 2011) as in the name of its R package. This multiple
imputation procedure by chained equation (MICE) involves a variable-by-variable approach using
chained equations, whereby the imputation model for each missing item is separately specified with
the other items as predictors. A linear regression model or predictive mean matching is used for
continuous variables, and a logistic regression is used for categorical variables. Once all the conditional
distributions are specified, the multiple imputation procedure is repeated until convergence.

However, full conditional specification is subject to model mis-specifications and model compat-
ibility problems (Chen, 2010), and the parameter estimation procedure is sometimes cumbersome.
As an alternative, we employ the fractional hot deck imputation (FHDI) proposed by Im et al. (2015),
which is a nonparametric imputation approach using a two-phase sampling idea. To apply FHDI in
multivariate missing data, Im et al. (2015) first created imputation cells to match donors and recipients

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=mice
http://CRAN.R-project.org/package=mi
http://CRAN.R-project.org/package=Amelia
http://CRAN.R-project.org/package=VIM

CONTRIBUTED RESEARCH ARTICLE 141

in a nonparametric way, where units with complete data serve as donors and units with at least one
missing item serve as recipients. Once the imputation cells are created, multiple donors are assigned
to each recipient with the probability proportional to fractional weights, which can be understood as
the conditional probability of obtaining the imputed values given the partial observation. After that,
the observed values of each donor are jointly imputed to fill the missing parts of the recipient.

The complete R package FHDI and entire source codes are available in Im et al. (2018), and can be
installed with R 3.4.0 or higher. The package basically includes three main functions with separate
purposes. The function FHDI_CellMake() converts continuous data into categorical data which can
be used as imputation cells. The function FHDI_CellProb() is provided to estimate the imputation
cell probability using a version of the expectation maximization (EM) algorithm. This function can be
used to get the maximum likelihood estimates of the cell probabilities from multivariate, incomplete,
categorical data under the missing at random assumption. The function FHDI_Driver() performs
fractional hot deck imputation, and also provides a set of replicated fractional weights for variance
estimation.

FHDI

Fractional hot deck imputation (FHDI), proposed by Kim and Fuller (2004), replaces each missing
value with a set of imputed values. Those imputed values are selected at random from values of the
donors in the same imputation cell, with the cells constructed to achieve within-cell data homogeneity.
Fractional weights are assigned to each imputed value to preserve the original data structure, and a
singly imputed data set is obtained as the output of the FHDI.

Im et al. (2015) extended Kim and Fuller (2004)’s idea in two ways. First, the new FHDI does not
require imputation cells to be made in advance. Imputation cells are determined as a by-product of the
imputation procedure, and are generally created to preserve the most of the correlations among survey
items. Second, the new FHDI method is now applied to multivariate missing data with arbitrary
missing patterns.

The FHDI of Im et al. (2015) can be understood as an imputation method using two-phase
sampling for stratification. In phase one, the imputation cells are determined so that the survey values
are homogeneous within cells and each missing unit has at least two possible donors within each
imputation cell. The cell probabilities are estimated using the EM by weighting method (Ibrahim,
1990). Once imputation cells are fixed, then the fully efficient fractional imputation (FEFI), named by
Fuller and Kim (2005), is implemented by replacing each missing value with all observed values within
the imputation cell. The FEFI fractional weights are obtained during this FEFI procedure. However, in
general, the size of imputed data from the FEFI procedure can be too large to handle for statistical
analysis. To avoid this size issue, we may select M(≥ 2) donors on each missing unit instead of taking
all possible donors. In phase two, a set of donors are assigned to each recipient with the probability
proportional to their FEFI fractional weights. A vector of missing values is jointly imputed with the
observed values of assigned donors.

Basic setup

For a description of the FHDI procedure, suppose that we have a finite population of size N, indexed
by U = {1, 2, . . . , N}, with two continuous variables y1 and y2. Let z1 and z2 be discretized values of
y1 and y2, respectively. Assume that z1 takes values in {1, . . . , G} and z2 takes values in {1, . . . , H}.
Let δp (p = 1, 2), a response indicator function of yp, take a value of one if yp is observed and zero
otherwise. Note that if yp has a missing value, then zp is also missing.

The finite population U can be subdivided into G× H cells based on z1 and z2, and we assume a
cell mean model on the cells such that

y | (z1 = g, z2 = h) ∼ (µgh, Σgh), g = 1, . . . , G, h = 1, . . . , H, (1)

where y = (y1, y2), µgh = (µ1,gh, µ2,gh) is a vector of cell means and Σgh is the variance-covariance
matrix of y in cell (gh).

Let yobs and ymis be the observed and missing part of y, respectively. We assume that the data are
missing at random (MAR) in the sense that

P(δ | y) = P(δ | yobs), (2)

where δ = (δ1, δ2). The MAR condition (2) implies that the imputation model (1) also holds for the
respondents.

Let A be the index set of the sample elements selected from the finite population U. Let AR be the

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=FHDI

CONTRIBUTED RESEARCH ARTICLE 142

index set of the respondents who answered both items y1 and y2, that is, AR = {j ∈ A; δ1jδ2j = 1}.
Similarly, define AM to be the set of the nonrespondents who have at least one missing value. That is,
AM = {j ∈ A; δ1jδ2j = 0}. Denote nR and nM as the size of AR and AM, respectively. We assume that
AR is non-empty and there exists enough donors in AR, that is,

nR ≥ n∗R (3)

for some n∗R. The value of n∗R is determined by the size of the imputation cells.

Imputation

The FHDI procedure in Im et al. (2015) consists of the following four steps: (i) Cell construction by
discretization, (ii) Estimating cell probabilities, (iii) Constructing FEFI fractional weights, and (iv)
Imputation. A detailed step-by-step description is provided below.

(Step 1): Cell construction by discretization

We wish to construct imputation cells satisfying (1). The imputation cell variable z can be given
in advance, or can be obtained using the estimated sample quantiles. To discuss the latter case, let
{a1, . . . , aG} be a set of cumulative proportions such that 0 = a0 < a1 < · · · < aG−1 < aG = 1. We can
choose ai so that each cell contains an equal number of respondents. Let

F̂(t) = ∑i∈A δ1iwi I(y1i ≤ t)
∑i∈A δ1iwi

(4)

be the estimated distribution function for y1, where wi is the sampling weight of unit i; I(S) is an
indicator function that takes value of one if S is true and zero otherwise; and q̂(ak) be the estimated
sample quantile corresponding to ak, defined by q̂(ak) = min{t; F̂(t) ≥ ak}. Once we have the
estimated sample quantiles, we can construct z1i from y1i. For instance, z1i = g if q̂(ag−1) < y1i ≤
q̂(ag). If y1i is missing, then z1i has a ‘NA’ value. Similarly, we can construct z2 with the range from 1
to H.

From the realized values of z1i and z2i in the sample, we can construct two sets of observed patterns
of (z1, z2) for AR and AM. Let VR be the set of all observed combinations of z1 and z2 in AR. A size of
VR is G× H at maximum, but it can be smaller in the realized samples. Similarly we obtain VM based
on the observed parts of nonrespondents. For example, we may have VM = {(NA, NA), (NA, z2 =
1), (NA, z2 = 2), (z1 = 1, NA), (z1 = 2, NA)} in the case of two binary outcomes.

For the proposed FHDI, we need at least two donors for each recipient to capture the variability
from imputation. However, an initial discretization may not give enough donors for some recipients.
In this case, we apply a cell collapsing procedure to have at least two donors to each recipient. During
the cell collapsing, the dimension of the cell variable z can be adjusted to have larger samples within
the cells. However, each cell variable z should have at least two distinct values marginally for its
validity in the construction of imputation cell. The cell collapsing procedure is designed to be stopped
if any cell variable has a single observation. In the left panel of Table 1, we only have one possible
donor for recipients with (z1 = NA, z2 = 1). In the right panel of Table 2, two cells, (z1 = 1, z2 = 1)
and (z1 = 1, z2 = 2), are merged into a single cell to guarantee a larger size of donors to the recipients.
As the result of cell collapsing, recipients who have observed values in z2 with z2 = 1 or z2 = 2 share
the same donors if they have z1 = 1. Since the cell variables z2 have two distinct values given z1 = 2,
the cell collapsing result does not contradict the overall size assumption of H ≥ 2.

z1\z2 1 2
1 0 3
2 1 4

z1\z2 1 2
1 3
2 1 4

Table 1: An illustrative example for the number of donors in cell with G = 2 and H = 2. Left panel:
initial imputation cell; right panel: final cell subdivision after cell collapsing.

(Step 2): Estimating of cell probabilities

Once the imputation cells are finalized from the above discretization, we need to estimate the cell
probabilities defined by

πgh = P(z1 = g, z2 = h), g = 1, . . . , G; h = 1, . . . , H.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 143

The initial cell probabilities are obtained using only the respondents in AR. These initial cell proba-
bilities are updated using the following EM method, modified from the EM by weighting (Ibrahim,
1990):

E-step: Let zobs and zmis be observed and missing part of z, respectively. Then, the conditional
probability of zmis = b∗ given zobs = a, denoted by π̂b∗ |a, is computed using the current t-th
estimate of the joint probability, where a is the observed value in zobs, b∗ is one possible value
for z∗mis, and

π̂
(t)
b∗ |a =

P̂(t)(zi,obs = a, zi,mis = b∗)

∑b P̂(t)(zi,obs = a, zi,mis = b)
. (5)

M-step: Updates the joint probability of a particular combination z∗ = (zobs = a, z∗mis = b∗) by

P̂(t+1)(z∗) =

(
n

∑
i∈A

wi

)−1 n

∑
i∈A

wiπ̂
(t)
b∗ |a I(zi,obs = a). (6)

(Step 3): Constructing FEFI fractional weights

The key point of the approach in Im et al. (2015) is to approximate the FEFI by the FHDI method
with a smaller size of donors. To achieve this goal, we first need to compute the FEFI fractional weights
for all possible donors assigned to each recipient. Let w∗ij be the j-th fractional weights for the recipient
i corresponding to donor j given by

w∗ij = π̂z∗i,mis |zi,obs

wj I{(zi,obs, z∗i,mis(i)) = (zj,obs(i), zj,mis(i))}
∑k∈AR

wk I{(zi,obs, z∗i,mis(i)) = (zk,obs(i), zk,mis(i))}
, (7)

where z∗i,mis is an imputed value for the missing part of recipient i and (zk,obs(i), zk,mis(i)) denotes the
values of unit k corresponding to the observed and missing part of recipient i in the sample imputation
cell. Here, the FEFI fractional weights are constructed using the cell conditional probability of zi,mis in
the missing part given the observed part zi,obs. Note that the sum of w∗ij over all j is equal to one by
construction.

(Step 4): Imputation

In FEFI, we employed all respondents as donors to each recipient in the same cell, and then assign
the FEFI fractional weights to each donor. However, this FEFI may not be attractive in practice due to
its huge size. Instead of using all the respondents, we can select just M donors among the FEFI donors
with the selection probability proportional to FEFI fractional weights and then assign equal fractional
weights. As for donor selection, we used a tailored systematic sampling method given below:

(a) Sort all FEFI donors in y values by the half-ascending half-descending order. That is, for example,
{1, 2, . . . , 8} is sorted as follows: 1,3,5,7,8,6,4,2.

(b) Let k ∈ ARd, where ARd is a set of the FEFI donors, be the FEFI donors after the sorting algorithm
in (a). Let (Lk, Uk) be the interval for the following systematic sampling scheme:

(b1) L1 = 0. Set k = 1.

(b2) For current k, Uk = Lk + w∗ik.

(b3) Set k = k + 1 and Lk = Uk−1 then go to Step (b2) until k = nRd, where nRd is a size of ARd.

(c) Let AMr be a subset of AM who has the same values in the observed part and nMr be the size
of AMr. Let RN be a random number generated from a uniform distribution U(0, 1). For each
l ∈ AMr, we select M donors as follows: for j = 1, . . . , M, if

Lk ≤
RN + (l − 1)

nMr
+ (j− 1) ≤ Uk

for some k, then a donor k is selected as the j-th donor for recipient l.

This tailored systematic sampling is designed to select the FEFI donors efficiently within imputa-
tion cells. If nRd is less than M, we select all donors and then assign the FEFI fractional weights instead
of assigning equal weights M−1.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 144

Analysis

After imputation, we obtain the imputed data in the size of nR + nM ×M. On the imputed data, we
can conduct statistical analysis such as mean estimation, regression analysis, and so on. The FHDI
mean estimator is

ȳ =
∑i∈A ∑M

j=1 wiw∗ijy
∗
ij

∑i∈A wi
, (8)

where y∗ij and w∗ij are the imputed values and the fractional weights for unit i ∈ AM, but y∗ij = yi for
all j and w∗ij = 1 for i = j and w∗ij = 0 for all i 6= j if unit i ∈ AR.

Similarly, the regression coefficient for the regression of y1 given y2 can be written as a classical
weighted regression in the form,

β̂ = (X
′
WX)−1X

′
Wy∗1 , (9)

where X is a design matrix including a vector of y∗2,ij, and W is a weighting matrix whose diagonal
elements are wiw∗ij and non-diagonal elements are all zeros.

The replication method is considered for variance estimation of the FHDI estimator. For L replicates,
the replication variance estimator for the FEFI estimator is

θ̂FHDI =
L

∑
k=1

ck

(
θ̂
(k)
FHDI − θ̂FHDI

)2
, (10)

where ck is a replicate factor associated with θ̂
(k)
FHDI and θ̂

(k)
FHDI is the the k-th replicate estimate obtained

using the k-th fractional weights replicate denoted by w(k)
i × w∗(k)ij . The current version of the FHDI

package provides a set of replication fractional weights using a jackknife method. See Im et al. (2015)
for details in computation of the replication fractional weights.

Implementation of FHDI

In the FHDI package, we have three main functions: (i) FHDI_CellMake, (ii) FHDI_CellProb, and
(iii) FHDI_Driver. The function FHDI_CellMake() is used to create the imputation cell variable z.
The EM algorithm introduced in Section 2.2 is built into the function FHDI_CellProb(). The main
function FHDI_Driver() conducts imputation and variance estimation including cell construction and
estimating cell probabilities. We used simulated data to describe these components of the package
FHDI. All results in this section are obtained from a Microsoft Windows 64 bit operation system. The
FEFI results should be the same without reference to the underlying operating system, while the FHDI
results using other platforms (e.g., Linux) may be slightly different, as FHDI selects donors using a
standard random number library which is generally platform-dependent.

DATA

We have n = 100 sample observations for the multivariate data vector yi = (y1i, y2i, y3i, y4i), i =
1, . . . , n, generated from

Y1 = 1 + e1,

Y2 = 2 + ρe1 +
√

1− ρ2e2,

Y3 = Y1 + e3,

Y4 = −1 + 0.5Y3 + e4.

We set ρ = 0.5; e1 and e2 are generated from a standard normal distribution; e3 is generated from a
standard exponential distribution; and e4 is generated from a normal distribution N(0, 3/2).

Response indicators are generated from a Bernoulli distribution with different pk,

δk ∼ B(pk),

where (p1, p2, p3, p4) = (0.6, 0.7, 0.8, 0.9). Although the response indicators are generated based on the
missing completely at random (MCAR) assumption for simplicity, the FHDI method also holds for
other response models based on MAR.

Based on the outcome models and the response models above, an example data are generated
using the following R code:

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 145

n = 100
set.seed(1345)
rho = 0.5
e1 = rnorm(n, 0, 1)
e2 = rnorm(n, 0, 1)
e3 = rgamma(n, 1, 1)
e4 = rnorm(n, 0, sd = sqrt(3/2))

y1 = 1 + e1
y2 = 2 + rho * e1 + sqrt(1 - rho^2) * e2
y3 = y1 + e3
y4 = -1 + 0.5 * y3 + e4

r1 = rbinom(n, 1, p = 0.6)
r2 = rbinom(n, 1, p = 0.7)
r3 = rbinom(n, 1, p = 0.8)
r4 = rbinom(n, 1, p = 0.9)

y1[r1 == 0] = NA
y2[r2 == 0] = NA
y3[r3 == 0] = NA
y4[r4 == 0] = NA

Imputation cell

Using the R function summary(), we see missing values in all four variables; realized response rates
are 0.58, 0.66, 0.82, and 0.89, respectively; and sample means for complete cases are 0.98, 1.93, 1.80,
and −0.01, respectively.

> daty = cbind(y1, y2, y3, y4) # data
> datr = cbind(r1, r2, r3, r4) # response (0:mising cell; 1: observed cell)
> summary(daty)

y1 y2 y3 y4
Min. :-1.6701 Min. :0.02766 Min. :-1.4818 Min. :-2.920292
1st Qu.: 0.4369 1st Qu.:1.03796 1st Qu.: 0.9339 1st Qu.:-0.781067
Median : 0.8550 Median :1.79693 Median : 1.7246 Median :-0.121467
Mean : 0.9821 Mean :1.93066 Mean : 1.7955 Mean :-0.006254
3rd Qu.: 1.6171 3rd Qu.:2.71396 3rd Qu.: 2.5172 3rd Qu.: 0.787863
Max. : 3.1312 Max. :5.07103 Max. : 5.3347 Max. : 4.351372
NA's :42 NA's :34 NA's :18 NA's :11

We now use the function FHDI_CellMake() to convert continuous y variables into discretized
variables z. A vector of initial cell dimension k should be given as input information. If the input value
k is a single integer, the same number of category is applied to all variables for initial discretization. The
current version allows up to 35 distinct categories for each variable. When the variables are specified
as the unordered categorical type through the option, the algorithm excludes those variables from
the discretization procedure. The details are illustrated in the a ppendix along with the application of
mixed data types.

Sample weight and ID are optional for input information. Default values are 1 through n for the ID
while 1.0 for the sample weight. Another option is s_op_merge which controls randomness in the cell
collapsing procedure. There are two possible values for s_op_merge: "fixed" as default and "rand"
as optional. During the cell collapsing, randomness occur if there exists multiple adjacent cells for
a fixed cell, which is required to be merged into another cell. If s_op_merge is set with "rand", then
the matrix of discretized values can be different even for the same incomplete data. The last option is
"categorical" used to denote the data type which has a value 1 if the input variable is unordered
and 0 otherwise. If the input vector for the option "categorical" is not specified by the users, the
algorithm treats all variables as continuous or ordered categorical types.

The main outputs of the function FHDI_CellMake() are (a) incomplete data matrix attached with ID
and sample weight named by “data", (b) matrix for imputation cell variables named by “cell", (c) cell
pattern matrix for respondents named by “cell.resp", and (d) cell pattern matrix for nonrespondents
named by “cell.non.resp". When missing values are recorded with specific numeric values other
than NA, the response indicator matrix (i.e., “datr") should be inserted with the original data matrix.
The indicator matrix “datr" has the same dimension as “daty" contains 0 for missing cell locations and
1 otherwise. For instance, the first six rows of “datr" of the “daty" given above will look like:

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 146

y1 y2 y3 y4
1 1 0 1
0 1 1 1
1 1 1 0
0 1 0 1
1 1 1 1
1 1 1 1

As long as “daty" contains NA at the missing cell locations, automatic detection of missing cell locations
takes place. When one wants to define more missing cell locations, one can override the automatic
detection by separately defining “datr" and including it in the function argument, for example,
‘FHDI_CellMake(daty,datr,k=3)’. We set k = 3 and do not give additional input information on
weights and ID, then the first output is shown as

> cdaty = FHDI_CellMake(daty, k = 3)
> names(cdaty)
[1] "data" "cell" "cell.resp" "cell.non.resp"
[5] "w" "s_op_merge"
> head(cdaty$data)

ID WT y1 y2 y3 y4
[1,] 1 1 1.47963286 2.150860 NA 1.894211796
[2,] 2 1 NA 1.141496 1.6025296 -1.036946859
[3,] 3 1 0.70870936 1.885673 1.2506894 NA
[4,] 4 1 NA 2.753840 NA 1.211049509
[5,] 5 1 0.86273572 2.425549 1.8875492 -0.539284732
[6,] 6 1 0.03460025 1.740481 0.4909525 0.007130484

The observed values are converted to ordered categorical values from 1 to k. Here, missing values
are presented with a common missing value “0". During the discretization procedure, the initial
dimension of k can be down to have larger donors within imputation cells. In our example, the default
value k = 3 was kept for all variables.

> head(cdaty$cell)
y1 y2 y3 y4

[1,] 3 2 0 3
[2,] 0 1 1 1
[3,] 2 2 2 0
[4,] 0 2 0 3
[5,] 2 3 2 2
[6,] 1 2 1 2

> apply(cdaty$cell, 2, table)
y1 y2 y3 y4

0 42 34 18 11
1 26 18 27 30
2 13 36 32 28
3 19 12 23 31

From the output component named by “cell", we can find out whether the cells are merged
during the discretization process. For instance, we have 34 missing values in y2, and this indicates
that 22 (= 66/3) observations are evenly distributed for each category based on the estimated density
function. However, the finalized frequencies for three categories are 18, 36, and 12. This means that
some initial cells are merged to adjacent cells to obtain enough donors for recipients.

It is important to specify the cell patterns to match the respondents and the nonrespondents.
Thus, the cell pattern matrix for respondents and nonrespondents, named by “cell.resp" and
“cell.non.resp", are produced as the outputs of the function FHDI_CellMake(). Note that it is possible
to have 34 = 81 distinct vectors theoretically, but we only have 10 unique patterns in our toy example.

> cdaty$cell.resp
y1 y2 y3 y4

[1,] 1 1 1 1
[2,] 1 1 2 3
[3,] 1 2 1 2
[4,] 1 2 2 1

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 147

[5,] 2 2 2 3
[6,] 2 3 2 2
[7,] 3 1 3 3
[8,] 3 2 3 2
[9,] 3 2 3 3
[10,] 3 3 3 1

Similarly, a set of unique cell patterns for nonrespondents are reported at the fourth output. We
have 47 patterns for nonrespondents in this example. Some patterns are presented below

> head(cdaty$cell.non.resp)
y1 y2 y3 y4

[1,] 0 0 0 2
[2,] 0 0 0 3
[3,] 0 0 1 1
[4,] 0 0 1 2
[5,] 0 0 2 1
[6,] 0 0 2 2

Note that it is possible to have all zero values as a cell pattern, because we allow to have missing
values for all variables. Under the MAR assumption, if there are no additional auxiliary variables,
then the cases with missing values in all items can be safely removed from the original data set.

Cell probability estimation

We now estimate the cell probabilities based on the second output obtained using FHDI_CellMake().
Since the function FHDI_CellProb() is based on the EM algorithm designed to compute cell probabili-
ties for multivariate categorical data, this function can be separately used when we are only interested
in obtaining the maximum likelihood estimates for the cell probabilities.

> datz = cdaty$cell
> jcp = FHDI_CellProb(datz)
> jcp$cellpr
1111 1123 1212 1221 2223 2322
0.18110421 0.05474648 0.12693514 0.07786676 0.17388579 0.08263912
3133 3232 3233 3331
0.02175015 0.10356376 0.08871434 0.08879425
> sum(jcp$cellpr)
[1] 1

Note that the joint cell probabilities are estimated only from observed patterns, not from all possible
values. Overall sum of the joint cell probabilities should be equal to one. All discretized values are
presented by a single values in the order of data columns. For example, a value of “1111" denotes a
vector (z1 = 1, z2 = 1, z3 = 1, z4 = 1). If the number of categories in a variable is larger than 10, the
categories are label with 26 alphabet letters (a-z). If we have a value ‘b2c’, then it denotes the z vector
(11, 2, 12).

Fractional hot deck imputation

We can use the function FHDI_Driver() without searching for a suitable imputation cell matrix in
advance. In short, FHDI_Driver() automatically performs FHDI_CellMake() and FHDI_CellProb()
and then proceeds toward the imputation and/or variance estimation. The main input information is
the matrix of original variables, matrix for response indicators, and the imputation method ("FEFI",
"FHDI"). In the case of ‘s_op_imputation="FHDI"’, the imputation size M should be given as an input
value. For instance, when M = 5, FHDI will randomly select 5 donors from all possible donors. In
the case of "FEFI", the imputation is conducted to assign all possible values to each recipient with the
FEFI fractional weights.

The output consists of four main parts except for input information: (i) imputation results with
fractional weights named by “fimp.data", (ii) an imputed data in format of single imputation result
named by “simp.data", (iii) the FHDI mean estimates with estimated standard error named by
"imp.mean", and (iv) replication fractional weights for variance estimation named by "rep.weight". If
variance estimation option is given by ‘i_op_variance=0’, then third output and fourth output are not
produced as the main output. The default is ‘i_op_variance=1’.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 148

The part of the fractionally imputed data are given below with newly attached variables FID and
FWT, where FID denotes donors’ local serial index and FWT denotes fractional weights assigned to
imputed values:

> FEFI = FHDI_Driver(daty, s_op_imputation = "FEFI", i_op_variance = 1, k = 3)
> names(FEFI)
[1] "fimp.data" "simp.data" "imp.mean"
[4] "rep.weight" "M" "s_op_imputation"
[7] "i_option_merge"

> FEFI$fimp.data[1:20,]
ID FID WT FWT y1 y2 y3 y4

[1,] 1 1 1 0.5000000 1.47963286 2.150860 2.881646 1.8942118
[2,] 1 2 1 0.5000000 1.47963286 2.150860 2.493438 1.8942118
[3,] 2 1 1 0.2000000 -0.09087472 1.141496 1.602530 -1.0369469
[4,] 2 2 1 0.2000000 -1.67006193 1.141496 1.602530 -1.0369469
[5,] 2 3 1 0.2000000 -0.39302750 1.141496 1.602530 -1.0369469
[6,] 2 4 1 0.2000000 0.97612864 1.141496 1.602530 -1.0369469
[7,] 2 5 1 0.2000000 0.21467221 1.141496 1.602530 -1.0369469
[8,] 3 1 1 0.1666667 0.70870936 1.885673 1.250689 0.7770526
[9,] 3 2 1 0.1666667 0.70870936 1.885673 1.250689 1.2839115
[10,] 3 3 1 0.1666667 0.70870936 1.885673 1.250689 0.6309413
[11,] 3 4 1 0.1666667 0.70870936 1.885673 1.250689 0.3232018
[12,] 3 5 1 0.1666667 0.70870936 1.885673 1.250689 0.5848844
[13,] 3 6 1 0.1666667 0.70870936 1.885673 1.250689 1.0342970
[14,] 4 1 1 0.1103616 1.22307261 2.753840 1.923865 1.2110495
[15,] 4 2 1 0.1689153 2.29021618 2.753840 2.881646 1.2110495
[16,] 4 3 1 0.1103616 0.86825894 2.753840 1.086562 1.2110495
[17,] 4 4 1 0.1103616 2.16515160 2.753840 2.311461 1.2110495
[18,] 4 5 1 0.1103616 0.79827971 2.753840 3.040016 1.2110495
[19,] 4 6 1 0.1689153 2.01819696 2.753840 2.493438 1.2110495
[20,] 4 7 1 0.1103616 0.73228949 2.753840 3.422369 1.2110495

The singly imputed data has the same size as the original incomplete data in which missing values
are filled with a single value, essentially the mean of fractionally imputed values. For example, in the
first sample presented at ‘daty[1,]’ below, we have a missing value for y3. The imputed values are
2.881646 and 2.493438 presented above, and the weighted mean of two values 2.6875422, considering
sample weights and fractional weights, replaces the missing value. This second output can be used as
the result for single imputation. However, its uses should be controlled under the limitations of single
imputation. The second output is partially presented below

> daty[1,]
y1 y2 y3 y4

1.479633 2.150860 NA 1.894212

> head(FEFI$simp.data)
y1 y2 y3 y4

[1,] 1.47963286 2.150860 2.6875422 1.894211796
[2,] -0.19263266 1.141496 1.6025296 -1.036946859
[3,] 0.70870936 1.885673 1.2506894 0.772381422
[4,] 1.44470586 2.753840 2.3372705 1.211049509
[5,] 0.86273572 2.425549 1.8875492 -0.539284732
[6,] 0.03460025 1.740481 0.4909525 0.007130484

The component “imp.mean" shows the FEFI mean estimates with the standard errors. The first row
presents the FEFI mean estimates and the second row presents the standard error of the FEFI mean
estimates. In our example, the FEFI mean estimates (standard errors) for variables are approximately
0.90(0.128), 1.87(0.121), 1.82(0.137), and −0.03(0.130), respectively.

> FEFI$imp.mean
[,1] [,2] [,3] [,4]

[1,] 0.9049227 1.8668846 1.8188381 -0.03193875
[2,] 0.1275504 0.1206944 0.1369989 0.12958845

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 149

The standard errors are computed using the variance formula in (10) with the replicated fractional
weights reported in the fourth output. In a random sample, the associate factor ck has the same value
for all replicates. For instance, ck = (n − 1)/n for the jackknife variance estimation. Replication
fractional weights for the imputed data are given below:

> dim(FEFI$rep.weight)
[1] 330 100
> FEFI$rep.weight[1:13, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.0000000 0.5050505 0.5050505 0.5050505 0.5050505 0.5050505
[2,] 0.0000000 0.5050505 0.5050505 0.5050505 0.5050505 0.5050505
[3,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[4,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[5,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[6,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[7,] 0.2020202 0.0000000 0.2020202 0.2020202 0.2020202 0.2020202
[8,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[9,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[10,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[11,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[12,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502
[13,] 0.1683502 0.1683502 0.0000000 0.1683502 0.1683502 0.1683502

Because a jackknife method is used for variance estimation, a matrix of the replication fractional
weights has nI rows and n columns, where nI(> n) denotes the size of the imputed data. By its
construction, the column sums of the replication fractional weights should be the sum of unit weights,

that is, ∑n
i=1 w(k)

i = ∑n
i=1 wi holds for all k.

Instead of the FEFI, we can perform a general FHDI with M(≥ 2). If the imputation method is
chosen to be "FHDI" and an imputation size M is given, then M donors are assigned to each recipients.
If the number of donors for a recipient is smaller than M, all donors are selected and assigned the FEFI
fractional weights.

Note that in the recipient with ID=3 (see ‘FEFI$fimp.data[1:20,]’ results shown above), there are
six donors for FEFI but there are five donors (M = 5) for FHDI (see ‘FHDI$fimp.data[1:14,]’ results
shown below). Five donors are randomly selected among all possible six donors with the probability
proportional to the FEFI fractional weights. This indicates that we have additional randomness due
to donor selection in the FHDI method. As shown in ‘FHDI$imp.mean’ results below, the FHDI mean
estimates (standard errors) are approximately 0.90(0.129), 1.87(0.121), 1.82(0.137), and −0.04(0.131),
respectively. Compared to the FEFI estimates, both point and variance estimates are similar to each
other. This indicates that the FHDI estimator well approximates the FEFI estimator with smaller size
of the imputed data. The results (which can vary slightly between operating systems) are presented
below:

> FHDI = FHDI_Driver(daty, s_op_imputation="FHDI", M=5, i_op_variance=1, k=3)
> FHDI$fimp.data[1:14,]

ID FID WT FWT y1 y2 y3 y4
[1,] 1 1 1 0.5 1.47963286 2.150860 2.881646 1.8942118
[2,] 1 2 1 0.5 1.47963286 2.150860 2.493438 1.8942118
[3,] 2 1 1 0.2 -0.09087472 1.141496 1.602530 -1.0369469
[4,] 2 2 1 0.2 -1.67006193 1.141496 1.602530 -1.0369469
[5,] 2 3 1 0.2 -0.39302750 1.141496 1.602530 -1.0369469
[6,] 2 4 1 0.2 0.97612864 1.141496 1.602530 -1.0369469
[7,] 2 5 1 0.2 0.21467221 1.141496 1.602530 -1.0369469
[8,] 3 1 1 0.2 0.70870936 1.885673 1.250689 0.7770526
[9,] 3 2 1 0.2 0.70870936 1.885673 1.250689 1.2839115
[10,] 3 3 1 0.2 0.70870936 1.885673 1.250689 0.6309413
[11,] 3 4 1 0.2 0.70870936 1.885673 1.250689 0.3232018
[12,] 3 5 1 0.2 0.70870936 1.885673 1.250689 1.0342970
[13,] 4 1 1 0.2 1.22307261 2.753840 1.923865 1.2110495
[14,] 4 2 1 0.2 2.29021618 2.753840 2.881646 1.2110495

> FHDI$imp.mean
[,1] [,2] [,3] [,4]
[1,] 0.9032611 1.865013 1.8204121 -0.03900379
[2,] 0.1291721 0.120509 0.1367363 0.13086824

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 150

Table 2 presents the standard errors of the three mean estimators. Here, the Naive estimator is just
a simple mean estimator computed using only observed values. Since the partially observed values
are used in the mean estimation, the two estimators obtained using fractional hot deck imputation
produce smaller standard errors compared to the Naive estimator.

Estimator y1 y2 y3 y4
Naive 0.135 0.135 0.150 0.138
FEFI 0.128 0.121 0.137 0.130
FHDI 0.129 0.121 0.137 0.131

Table 2: Standard errors of three mean estimators.

It should be noted that the automatically generated “datz" can be replaced with a user-defined
one. If the imputation cell matrix “datz" is separately obtained from FHDI_CellMake() or provided
by the user, it needs to be specified as an option of the function FHDI_Driver(). An example code is
given below:

> FEFI=FHDI_Driver(daty,datz,s_op_imputation="FEFI",i_op_variance=1,k=3)

If survey variables are all categorical, the original data “daty" can be directly used for “datz." In
the case of mixed types including continuous and/or ordered and unordered categorical data, we
need two steps to obtain the imputation cell matrix: (i) discretization procedure for the continuous
parts, and (ii) combining procedure for the converted data and the unordered categorical data. If an
error message is presented due to insufficient of the donors from the function FHDI_CellMake(), then
the cell collapsing procedure has to be engaged manually for the categorical part. We illustrate an
example in Appendix when and how we manually merge categories in practice.

Regression analysis

We now consider a regression analysis using the imputed data. The imputed data can be treated as
complete data with assigned fractional weights. Thus, the regression coefficient estimates of y1 given
y2 can be directly obtained using the lm() function. Compared to using only observed samples, the
fractional weights are given as input information. The estimates are also obtained using a classical
weighted regression estimator presented in Section 2.2. The R codes for obtaining the regression
coefficient estimates for the three estimators are given below:

> reg.naive = lm(y1 ~ y2, data = as.data.frame(daty))
> reg.naive$coeff
(Intercept) y2
-0.07425917 0.58798028
> summary(reg.naive)$coeff[,2]
(Intercept) y2

0.3050262 0.1424451

> i.daty = as.data.frame(FEFI$fimp.data)
> reg.fefi = lm(y1 ~ y2, data = i.daty, weights = FWT)
> reg.fefi$coeff
(Intercept) y2
0.03465671 0.46615949

> i.daty2 = as.data.frame(FHDI$fimp.data)
> reg.fhdi = lm(y1 ~ y2, data = i.daty2, weights = FWT)
> reg.fhdi$coeff
(Intercept) y2

0.0227328 0.4721299

Note that if we directly use lm() on the imputed data, the standard errors are 0.103 and 0.048 for
the FEFI estimator and 0.111 and 0.052 for the FHDI estimator, respectively. However, the standard
errors using the replication method are nearly 0.251 and 0.094 for both the FEFI estimator and FHDI
estimator. Because the variances coming from imputation are not captured with a classical variance
estimator of the regression estimator, variance estimation should be conducted using the replication
variance estimator formula in (10).

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 151

Estimator Intercept (S.E.) Slope (S.E.)
True 0 0.5

Naive -0.074 (0.305) 0.588 (0.142)
FEFI 0.035 (0.103) 0.466 (0.048)
FHDI 0.023 (0.111) 0.472 (0.052)

Table 3: Regression coefficient estimates with standard errors. (S.E.: standard error.)

Table 3 presents the regression coefficient estimates with standard errors for the three estimators.
Point estimates of the FEFI and FHDI estimators are much closer to the true values compared to the
values of the Naive estimator. Also, two fractional imputation estimators have smaller standard errors
than those of the naive estimator. All R codes to obtain these results are given below:

> reg.fefi.coef = reg.fefi$coeff
> reg.est = t(apply(FEFI[[4]], 2, function(s) lm(y1 ~ y2, data = i.daty,

weights = s)$coeff))
> reg.fefi.rep = reg.est - matrix(reg.fefi.coef, n, 2, byrow = TRUE)
> sqrt(apply(reg.fefi.rep^2, 2, sum) * (n - 1)/n)
(Intercept) y2
0.25082547 0.09369202

> summary(reg.fefi)$coeff[,2]
(Intercept) y2
0.10333038 0.04840829

> reg.fhdi.coef = reg.fhdi$coeff
> reg.est2 = t(apply(FHDI[[4]], 2, function(s) lm(y1 ~ y2, data = i.daty2,

weights = s)$coeff))
> reg.fhdi.rep = reg.est2 - matrix(reg.fhdi.coef, n, 2, byrow = TRUE)
> sqrt(apply(reg.fhdi.rep^2, 2, sum) * (n - 1)/n)
(Intercept) y2
0.25165391 0.09524197

> summary(reg.fhdi)$coeff[,2]
(Intercept) y2
0.11149137 0.05230785

Conclusion

FHDI is a useful tool for handling item nonresponse. Since FHDI employs a nonparametric estimation
of the joint distribution and uses observed values as imputed values, it can be widely accepted in
many research and incomplete data analysis. This paper documents the R package FHDI to enable R
users to perform fractional hot deck imputation as well as fully efficient fractional imputation.

The current version of the package FHDI has some limitations. First, the functions within the
package are not always applicable for all types of incomplete data. The current imputation algorithms
cannot be applied to fill in missing values when there is no fully observed units over all variables.
Although the users may assume conditional independence to apply our imputation algorithms, the
imputation on the basis of untestable conditional independence assumption may break the original
data structure. Second, the unordered categorical data should be handled manually for the insufficient
donor cases before the users use FHDI_Driver(). However, overcoming this limitation is identical to
coming up with a way to implement cell collapsing with no regard to the rationality of categorization.
Also, jackknife variance estimation may be not appropriate or efficient for larger or complicated
incomplete data. Algorithm-oriented parallel computing methods and substantial issues including
variable types and variance estimation options will be targeted in the future update.

Bibliography

H. Y. Chen. Compatibility of conditionally specified models. Statistics and Probability Letters, 80:670–677,
2010. [p140]

G. B. Durrant and C. Skinner. Using missing data methods to correct for measurement error in a
distribution function. SM, 32:25–36, 2006. [p140]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 152

R. E. Fay. Alternative paradigms for the analysis of imputed survey data. JASA, 91:490–498, 1996.
[p140]

W. A. Fuller and J. K. Kim. Hot deck imputation for the response model. SM, 31:139–149, 2005. [p140,
141]

J. Honaker, G. King, and M. Blackwell. Amelia ii: A program for missing data. Journal of Statistical
Software, 45:1–47, 2011. [p140]

J. G. Ibrahim. Incomplete data in generalized linear models. JASA, 85:765–769, 1990. [p141, 143]

J. Im, J. K. Kim, and W. A. Fuller. Two-phase sampling approach to fractional hot deck imputation.
In JSM Proceedings of Survey Research Methodology Section, pages 1030–1043, Seattle, WA, 2015. asa.
[p140, 141, 142, 143, 144]

J. Im, I. H. Cho, and J. K. Kim. FHDI: Fractional Hot Deck and Fully Efficient Fractional Imputation, 2018.
URL https://CRAN.R-project.org/package=FHDI. [p141]

G. Kalton and L. Kish. Some efficient random imputation methods. Communications in Statistics-Theory
and Methods, 13:1919–1939, 1984. [p140]

J. K. Kim. Fractional hot deck imputation. BMK, 98:119–132, 2011. [p140]

J. K. Kim and W. A. Fuller. Fractional hot deck imputation. BMK, 91:559–578, 2004. [p140, 141]

A. Kowarik and M. Templ. Imputation with the R package VIM. Journal of Statistical Software, 74:1–16,
2016. [p140]

D. B. Rubin. Inference and missing data. BMK, 63:581–592, 1976. [p140]

D. B. Rubin. Multiple Imputation for Nonresponse in Survey. John Wiley & Sons, New York, 1987. [p140]

D. B. Rubin. Multiple imputation after 18+ years. JASA, 91:473–489, 1996. [p140]

SAS Institue Inc. SAS/STAT 14.1 User’s Guide. SAS Institue Inc., Cary, NC, 2015. URL http://support.
sas.com/documentation/. [p140]

Y. S. Su, A. Gelman, J. Hill, and M. Yajima. Multiple imputation with diagnostics (mice) in r: Opening
windows into the black box. Journal of Statistical Software, 45:1–31, 2011. [p140]

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in R.
Journal of Statistical Software, 45:1–67, 2011. [p140]

S. Yang and J. K. Kim. A note on multiple imputation for method of moments estimation. BMK, 103:
244–251, 2016. [p140]

Jongho Im
Department of Applied Statistics
Yonsei University
South Korea
ijh38@yonsei.ac.kr

In Ho Cho
Department of Civil, Construction and Environmental Engineering
Iowa State University
United States
icho@iastate.edu

Jae Kwang Kim
Center for Survey Statistics and Methodology
Department of Statistics
Iowa State University
United States
jkim@iastate.edu

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=FHDI
http://support.sas.com/documentation/
http://support.sas.com/documentation/
mailto:ijh38@yonsei.ac.kr
mailto:icho@iastate.edu
mailto:jkim@iastate.edu

CONTRIBUTED RESEARCH ARTICLE 153

Appendix

We here present how R users can handle mixed types, combination of continuous and unordered
categorical data, in practice. For illustration purpose, we use the exit poll data collected to predict the
18th South Korean legislative election held in 2008. The exit poll data include data collection channel,
the sampled voters’ gender, age and candidate. We simply assume the MAR mechanism without any
further discussion to guide how the R users handle categorical data or mixed type data in uses of
FHDI_CellMake().

Table A.1 gives a summary of the exit poll results in an example district. The data were collected
from six different channels, denoted by 1, 2, . . . , 6, and the size of exit poll was 2210. Gender was
recorded with 1 (Male) and 2 (Female), and age was recorded as a numerical value. There were
five parties for the voters’ choice, recorded by 1,2,5,6,7. The response rates for the gender, age and
candidate were 98%, 98%, and 80%, respectively.

Variable Type Size of Support Observation Response Rate (%)
Channel Categorical 6 2210 100
Gender Categorical 2 2172 98
Age Numerical 72 2170 98
candidate Categorical 5 1764 80

Table A.1: A summary of the exit poll results in an example district

For imputation, we first consider the case in which the variables are given as their original types
presented in Table A.1. From the input data types, the cell collapsing procedure can be only applied to
the variable ‘age’. Since three variables, ‘channel’, ’gender’ and ’candidate’, require 60 (= 6× 2× 5)
imputation cells, the final size will be 60× Cage, where Cage is the finally discretized cell size of ′age′.
It is easy to fail to have enough donors within each imputation cell due to sparsity problem. When we
type the R codes below,

> cell.election=FHDI_CellMake(election,k=3,categorical=c(1,1,0,1))

we have the following error message:

The current data set does not have enough donors while there is at least one non-collapsible categorical variable!

To make feasible imputation cells, in addition to ‘age’, we want to also merge parties to reduce
the cell dimensions. One possible approach is to un-specify the variable ‘candidate’ as the unordered
categorical values, and the other approach is to merge candidate manually according to the users’
background knowledge of the parties. The results for the first approach are presented below:

> cell.election = FHDI_CellMake(election, k = 3,categorical = c(1, 1, 0, 0))
> apply(cell.election$cell, 2, table)
$channel
1 2 3 4 5 6

396 708 508 276 127 195

$gender
0 1 2

38 1042 1130

$age
0 1 2 3

40 775 672 723

$candidate
0 1 2 3

446 788 864 112

The observed candidates are 1 (788), 2 (864), 5 (73), 6 (27), and 7 (12), and they are merged into three
categories 1 (788), 2 (864), and 3 (112). During the cell collapsing, the initial integer values are changed
to ordered categorical values and then merged to search out the feasible imputation cells. Although
the imputation cells are now well constructed without error message, the cell collapsing results may
not be undesirable in the sense that the automatically merged candidates (parties) using the algorithm

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 154

in the FHDI_CellMake() may have the opposite political positions. Note that even if the size of initial
categories is given as k = 3, the dimension of variables specified as the unordered categorical type is
kept to preserve their original sizes.

To avoid irrational cell collapsing result, the second approach is implemented by manually combin-
ing the candidates’ parties into two groups, 1 (1,6,7) and 2 (2,5), based on their political characteristics.
The results with the R codes are given below:

> election2 <- election
> election2$candidate[election2$candidate == 5] <- 2
> election2$candidate[election2$candidate == 6] <- 1
> election2$candidate[election2$candidate == 7] <- 1
> cell.election2 = FHDI_CellMake(election2, k = 3, categorical = c(1, 1,

0, 1))
> apply(cell.election2$cell, 2, table)
$channel
1 2 3 4 5 6

396 708 508 276 127 195

$gender
0 1 2

38 1042 1130

$age
0 1 2 3

40 775 672 723

$candidate
0 1 2

446 827 937

As discussed above, there is no errors for both automated and manual cell collapsing procedures.
However, the quality of imputation in the automation case can be unsatisfactory due to the inaccuracy
of joint distribution approximation. This implies that it is often required to carefully and/or manually
handle the unordered categorical variables in practice. Also note that we may want to discretize
the variable ‘age’ with a set of fixed distinct points, for example, (19-29, 30-39, 40-49,50-59, 60+) or
(19-39, 40-59, 60+). In this case, the R users also need to manually replace the initial ‘age’ values to the
discretized values in advance of using the function FHDI_CellMake().

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

	FHDI: An R Package for Fractional Hot Deck Imputation
	Introduction
	FHDI
	Basic setup
	Imputation
	Analysis

	Implementation of FHDI
	DATA
	Imputation cell
	Cell probability estimation
	Fractional hot deck imputation
	Regression analysis

	Conclusion

