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Tackling Uncertainties of Species
Distribution Model Projections with
Package mopa
by M. Iturbide, J. Bedia, and J.M. Gutiérrez

Abstract Species Distribution Models (SDMs) constitute an important tool to assist decision-making
in environmental conservation and planning in the context of climate change. Nevertheless, SDM pro-
jections are affected by a wide range of uncertainty factors (related to training data, climate projections
and SDM techniques), which limit their potential value and credibility. The new package mopa pro-
vides tools for designing comprehensive multi-factor SDM ensemble experiments, combining multiple
sources of uncertainty (e.g. baseline climate, pseudo-absence realizations, SDM techniques, future
projections) and allowing to assess their contribution to the overall spread of the ensemble projection.
In addition, mopa is seamlessly integrated with the climate4R bundle and allows straightforward
retrieval and post-processing of state-of-the-art climate datasets (including observations and climate
change projections), thus facilitating the proper analysis of key uncertainty factors related to climate
data.

Introduction

Species Distribution Models (SDMs) are statistical tools used for the generation of probabilistic
predictions of the presence of biological entities in the geographical space (Guisan and Zimmermann,
2000; Elith and et al, 2006). SDMs operate through the establishment of an empirical link between
known presence locations and the physical characteristics of their environment. A particular case is
that of Climate Envelope Models (CEMs), where appropriate climatic variables are used as predictors
to characterize the climatic conditions where a species can potentially live —typically in the form
of bioclimatic variables (Nix, 1986; Busby, 1991). In the context of climate change, SDMs have
become a valuable tool for the vulnerability and impact assessment community, as a means of
estimating distribution shifts due to climate variations, a problem of current interest in environmental
conservation studies (see e.g.: Araújo et al., 2004; Hamann and Wang, 2006; Jeschke and Strayer, 2008).
These studies require suitable climate products to produce models at an adequate spatial resolution and
varying geographical extents –up to global–, including historical climate databases (i.e. high resolution
gridded observations) and future climate projections for different emission scenarios. However, the
intricacy of climate data retrieval and post-processing of the existing climate products (e.g. the global
and regional climate change projections available from the Earth System Grid Federation, ESGF, Taylor
et al., 2011) has resulted in a wide use of ready-to-use products without considering their limitations
for a particular case study (see Bedia et al., 2013). In this paper we fill this gap with the package
mopa (Species Distribution MOdeling with Pseudo-Absences), which has been developed in the
framework of the climate4R bundle for climate data access and post-processing, thus facilitating the
use of state-of-the-art global and regional climate data for SDM projections.

Despite the increased use of future SDM projections as a support tool for decision-making in
biological conservation, the communication of the inherent uncertainties of these products remains
as an ongoing challenge (see, e.g. Araújo et al., 2005; Beaumont et al., 2008; Fronzek et al., 2011). A
common approach to tackle different sources of uncertainty is based on producing ensembles of future
SDM projections that encompass a wide range of variability by considering multiple choices of each
of the factors/components involved in the modeling and projection chain (Araújo and New, 2007;
Buisson et al., 2010; Bagchi et al., 2013). However, there are important sources of uncertainty that
are rarely quantified, yet crucial, in order to assess the credibility of the future distributions, such as
the training data (including the baseline climate) used to fit the SDMs characterizing the ecological
niche (Mateo et al., 2010; Bedia et al., 2013; Baker et al., 2016), the varying extrapolation ability outside
the training period/spatial extent of the different SDM techniques (known as SDM transferability in
time/space; Bedia et al., 2011; Fronzek et al., 2011), the Global/Regional Climate Model (GCM/RCM)
projections and biases (Turco et al., 2013) and others (see e.g.: Falloon et al., 2014, for an overview).
Moreover, the ensemble approach has also limitations, since it assumes that all SDMs are equally
transferable to climate change conditions, thus posing the risk of diluting insightful model signals
with noise and error from less useful or defective SDMs forming the ensemble (Thuiller et al., 2004;
Peterson et al., 2011).

The package mopa here presented has been designed to facilitate the design and analysis of
comprehensive multi-factor SDM ensemble experiments, exploring different uncertainty factors such
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as presence data sets, pseudo-absence realizations, baseline climate, modeling algorithms, and future
climate projections. Moreover, mopa provides variance partition tools to assess the contribution of
the different factors to the overall uncertainty/spread of the ensemble projection. We illustrate the
functionality of the package with the case-study presented in Iturbide et al. (2018), focusing on the
impact of the pseudo-absence data in the future distribution of a specific Oak phylogenetic group in
Europe resulting from an ensemble of SDM projections considering three factors: 1) different SDMs
techniques, 2) different realizations of randomly generated pseudo-absence data and 3) different
climate projections produced over Europe from an ensemble of RCMs. The analyses undertaken with
mopa reveal the sensitivity of SDMs to the pseudo-absence samples, affecting model stability and
transferability to new climate conditions, with important implications for the construction of the final
ensemble projections. We use and provide publicly available data to guarantee the reproducibility of
the results.

mopa and the climate4R bundle for climate data access

The numerous climate databases available (both baselines and future projections) are scattered across
many different repositories with various file formats, variable naming conventions, etc. sometimes
requiring relatively complex, time-consuming data downloads and error-prone processing steps (e.g.
bias correction) prior to SDM development. This is also a major barrier for research reproducibility
and data exchange. The climate4R bundle is a set of R packages specifically designed to ease climate
data access, analysis and processing in a straightforward manner, tailored to the needs of the impacts
and vulnerability assessment community. Further details and references to worked examples and
tutorials can be found for instance in Cofino et al. (2017), Bedia et al. (2017) and Frías et al. (2018).
With this regard, mopa was developed as part of the climate4R ecosystem, so that typical climate
data operations for SDM applications and conversion features to the data type handled by mopa are
provided. Additionally, mopa includes a user guide with an end-to-end worked example of climate
data retrieval, transformation and SDM development: help(package = "mopa").

The “niche” of mopa within the “SDM ecosystem” in R

The popularity of R and its excellent statistical modeling and spatial analysis support has favored the
development of specific, well-established and actively maintained packages for SDM construction and
analysis, such as sdm (Naimi and Araújo, 2016), biomod2 (Thuiller et al., 2016), dismo (Hijmans et al.,
2017) and SDMTools (Van der Wal et al., 2014), some of them also implementing pseudo-absence data
generation and ensemble building utilities. For instance, both sdm and biomod2 implement methods
for building ensemble projections based on model performance in the calibration phase —e.g. by
discarding or weighting the obtained results—. On the contrary, mopa is oriented towards the design
and analysis of multi-factor ensembles of future SDM projections (considering as potential factors the
presence data sets, the pseudo-absence realizations, the baseline climate, the modeling algorithms, and
the future climate projections). The analysis of the resulting ensemble allows, for instance, assessing
the problem of SDM transferability, which can not be properly evaluated during model calibration.

Besides, unlike previously existing packages, mopa allows pseudo-absence data generation as an
independent step prior to model fitting, thus providing a finer control to the user for the analysis of
several alternative methods and specific tuning options. In addition, the novel Three-Step method for
pseudo-absence data generation is implemented (TS hereafter, Senay et al., 2013; Iturbide et al., 2015),
providing a convenient interface that allows a fine tuning of the technique with simple arguments.
Furthermore, mopa is also seamlessly integrated with standard R packages for spatial data manipula-
tion like raster (Hijmans, 2015) and sp (Pebesma and Bivand, 2005; Bivand et al., 2013), allowing their
usage at any stage of the modeling process (e.g. for data visualization and post-processing), and also
extensibility to other SDM tools available in sdm, biomod2, . . . , also handling the same spatial data
classes.

Input data pre-processing

Climate data

SDM predictor variables (in this case-study a number of bioclimatic variables, but not necessar-
ily so) are introduced in the analysis as collections of raster objects of the classes rasterBrick or
rasterStack, similarly as other SDM-oriented packages. For instance, here we use a set of present
and future bioclimatic variables widely used in SDM applications based on precipitation and tem-
perature climatologies (Busby, 1991), using the function biovars of package dismo. To this aim,
we first exploit the climate4R functionalities to load and post-process observed precipitation and
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temperature climatologies from the E-OBS gridded observational dataset (Haylock et al., 2008) and
the simulations of 7 Regional Climate Model (RCMs) of the project ENSEMBLES (van der Linden and
Mitchell, 2009, http://www.ensembles-eu.org) for the control (20C3M, 1971-2000) and future (A1B,
2071-2100) scenarios, including the application of bias-correction ("delta" method, e.g. Winkler et al.,
1997; Zahn and von Storch, 2010).

> install.packages("mopa")
> library(mopa)

> destfile <- tempfile()
> url <- paste0("https://raw.githubusercontent.com/SantanderMetGroup/",
+ "mopa/master/data/biostack.rda")
> download.file(url, destfile)
> load(destfile, verbose = TRUE)

Species distribution data

Several impact studies indicate that species should be modeled by treating sub-specific groups of
organisms independently (e.g.: distinct genetic linages) due to their differing adaptive responses
to changes in their environment (Hernandez et al., 2006; Beierkuhnlein et al., 2011; Serra-Varela
et al., 2015). Although this is not always possible, due to the rare availability of information on the
distribution of sub-specific groups for most of species, mopa has been conceived with this idea in mind,
being able to deal with several sets of presences simultaneously. This adds flexibility to the modeling
process in order to carry out experiments considering different sub-collections of presences, not only
for sub-specific analyses (Iturbide et al., 2015), but also to address the sensitivity of the modeled
distributions to different characteristics of the training sample (e.g. the sample size, Hernandez et al.,
2006; Mateo et al., 2010). Thus, the Oak_phylo2 mopa dataset contains a named list of length two,
containing the geographical coordinates of presence localities for two different Oak phylogenies (H01
and H11, Petit et al., 2002). More details about the source data are provided in the help file of the
dataset.

> data(Oak_phylo2)
> help(Oak_phylo2)
> presences <- Oak_phylo2$H11

Geographic background

The geographic background is often defined as the spatial extent of the area considered in the SDM
calibration stage. Here, we refer to the background as a regular, geo-referenced grid with a specific size
and resolution, in which both the environmental variables and the presence localities are located, so
its grid-points are the sampling units. Function backgroundGrid provides a simple way of generating
a backgroud using a raster-class object as reference. It also includes an additional argument
(spatial.subset) for spatial subsetting, set by a raster::extent object or by one or several sets of
bounding-box coordinates, providing great flexibility and ease of use for the analysis of SDM spatial
aspects. For instance, it allows straightforward exploration of SDM geographical transferability or
performing cross-validation experiments based on spatial folds (e.g.: Randin et al., 2006). As a result,
when the object Oak_phylo2 is passed to backgroundGrid, two different backgrounds are created by
default, each one spatially restricted by its phylogeny distribution (H11 and H01).

> bg <- backgroundGrid(raster = biostack$baseline$bio1)

A smaller domain than the previous one can be arbitrarily indicated by the user by providing a
specific spatial extent:

> bg.subdomain <- backgroundGrid(raster = biostack$baseline$bio1,
spatial.subset = extent(c(-10, 35, 45, 65)))

Similarly, the user might be interested in a background strictly constrained by the bounding box of
the actual species localities, by just passing to spatial.subset their coordinates:

> bg.species <- backgroundGrid(raster = biostack$baseline$bio1,
spatial.subset = presences)

Thus, the user has flexibility to perform further modifications of the background, so it would be
also possible to discard specific areas based on expert knowledge (e.g. Serra-Varela et al., 2015). In
this case study, we will retain the full background (bg) for further analyses.
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Pseudo-absence generation

Most of SDMs require data not only from known presences of the biological entity, but also absence data
in order to model the binary response presence/absence as a function of the different environmental
variables. While the sampling efforts are typically focused on recording presence localities (atlases,
natural history collections, targeted samplings, . . . ), in most cases there is no explicit information
about the absence of the species. Therefore pseudo-absence generation is often required for SDM
construction, by sampling the background of the study domain. Different methods have been proposed
to this aim, whose choice has an important effect on the final SDM results, as highlighted in different
previous studies (e.g.: Wisz and Guisan, 2009; Iturbide et al., 2015). However, there is no consensus on
the best sampling design for generating pseudo–absences.

Pseudo-absence sampling in mopa is performed by the pseudoAbsence function. It implements
a wide range of methodologies described in the literature (see Iturbide et al., 2015, for an overview
and comparison of methods) for maximum user flexibility, but at the same time its arguments have
been kept as simple as possible to ease its application (Table 1). Here, three methods are described:
random sampling, random sampling with environmental profiling and the three-step method. Their
main characteristics are next briefly described. A more extended explanation can be found in (Iturbide
et al., 2015) and reference therein.

Argument Description

realizations Number of realizations of pseudo-absence generation
exclusion.buffer Minimum distance to be kept between presence data and pseudo-

absence data
prevalence Proportion of presences against absences
kmeans Performs a k-means clustering of the background to extract the

pseudo-absences instead of sampling at random
varstack RasterStack of variables for computing the k-means clustering

Table 1: Arguments of function pseudoAbsences controlling the parameter values involved in pseudo-
absence generation.

Random Sampling (RS). The RS method is the simplest and most frequent way of generating
pseudo-absences (Iturbide et al., 2015). In the next example three times more pseudo-absences than
presences are generated at random, keeping a 0.249◦ (' 30 km) exclusion buffer around known
presence localities. Ten pseudo-absence realizations are considered:

> pa_RS <- pseudoAbsences(xy = presences, background = bg$xy,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

As an alternative to random sampling, a stratified sampling approach can be performed, based on
homogeneous environmental conditions. To this aim, a clustering of the environmental space is
applied following Senay et al. (2013) by setting argument kmean to TRUE:

> pa_kmeans <- pseudoAbsences(xy = presences, background = bg$xy,
exclusion.buffer = 0.249,
prevalence = -0.5,
kmeans = TRUE, varstack = biostack$baseline)

Random Sampling with Environmental Profiling (RSEP). The RSEP method imposes restrictions
on the environmental range of the background to be sampled for pseudo-absences. In mopa this
is done by performing an environmental profiling of the background (function OCSVMprofiling)
that, following Senay et al. (2013), applies a one-class support vector machine algorithm (OCSVM,
implemented in package e1071, Meyer et al., 2017) returning a binary (presence/absence) classification
of the background gridboxes based solely on the presence information (bg.profiled$presence and
bg.profiled$absence in the example below). Only the predicted absence background is then retained
for pseudo-absence generation.

> bg.profiled <- OCSVMprofiling(xy = presences, varstack = biostack$baseline,
background = bg$xy)
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> pa_RSEP <- pseudoAbsences(xy = presences, background = bg.profiled$absence,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

Three-step method (TS). TS is based on imposing restrictions to both the environmental range and
the spatial extent of the background from which pseudo-absences are sampled. This method has been
shown to outperform other common approaches in terms of resulting SDM robustness (Iturbide et al.,
2015). The TS method adds an additional step to the RSEP method, consisting on the partition of
the background space (as yielded by RSEP) in multiple bands using different radius from presence
localities. In the example below, multiple distance bands with an increasing radius of 30 km between
each other are created (argument by = 0.249, in degrees). The first one (with the shortest radius from
presence localities) is at 30 km from the closest presence point (start = 0.249), and the largest one
(the longest radius from presences) is set by default to half the length of the diagonal of the background
bounding-box (see Iturbide et al., 2015, for more details).

> bg.radius <- backgroundRadius(xy = presences,
background = bg.profiled$absence,
start = 0.249, by = 0.249, unit = "decimal degrees")

> pa_TS <- pseudoAbsences(xy = presences,
background = bg.radius, realizations = 10,
exclusion.buffer = 0.249, prevalence = -0.5)

A spatial representation of the results yielded by the pseudo-absence methods described is next
generated (Fig. 1):

> # Generates Fig. 1
> par(mfrow = c(2, 2), mar = c(2, 2, 2, 1.2))
> # Panel 1a (Presence data)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1b (RS method)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(pa_RS$species1$PA01[[1]], pch = 18, col = "darkviolet", cex = .6)
> points(pa_kmeans$species1$PA01[[1]], pch = 18, col = "yellow", cex = .6)
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1c (RSEP method)
> plot(bg.profiled$absence, pch = 18, cex = 0.4, col = "gray", asp = 1)
> points(bg.profiled$presence, pch = 18, cex = 0.4, col = "aquamarine")
> points(pa_RSEP$species1$PA01[[1]], pch = 18, cex = 0.6, col = "darkviolet")
> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1d (TS method)
> plot(bg.radius[[1]]$km3120, col = "gray", asp = 1, pch = 18, cex = 0.4)
> points(bg.profiled$presence, pch = 18, cex = 0.4, col = "aquamarine")
> for (i in 1:10) {

l <- (11 - i) * 10
points(bg.radius[[1]][[l]],
col = gray.colors(10, start = .9,end = 0.1)[i],
pch = 18, cex = 0.4)

}
> points(pa_TS$species1$PA01[[50]], pch = 18, cex = 0.6, col = "darkviolet")
> points(presences, pch = 18, cex = 0.6, col = "red")

Thus, mopa allows for the generation of a wide range of combinations of environmental restriction
criteria (using OCSVMprofiling) and spatial extent constraints (using backgroundRadius, see Table 2),
providing unrivalled functionality for the development and inter-comparison of multiple pseudo-
absence setups for SDM refinement and ensemble prediction generation.

SDM fitting and prediction

Model fitting

Once the pseudo-absence dataset(s) chosen by the user is(are) built, the mopaTrain function performs
SDM fitting. The function is a wrapper for different statistical method implementations commonly

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 127

Figure 1: Pseudo-absence dataset maps, as generated by function pseudoAbsences. (a) Known pres-
ence locations of the Oak phylogeny H1 (red points) and initial background for pseudo-absence
sampling (grey grid points). (b) pseudo-absences generated using the RS method randomly (purple
points) and with k-means clustering (yellow points). (c) Pseudo-absences generated with the RSEP
method (purple), where the turquoise area corresponds to the discarded suitable background space as
identified by the OCSVM profiling approach. (d) TS approach. Environmentally stratified as RSEP
(c), but also spatially stratified background, the different strata (spatial extents) identified by the
different gray-scale colors. Pseudo-absences for one of the background extents (3120 km) are depicted
as example (purple points).

used in SDM applications (see summary in Table 3). Moreover, mopaTrain adds extended functionality
for cross-validation for each set of presence/absence data and for each different species contained in
the presence dataset, as routinely done in SDM applications (see e.g.: Verbyla and Litvaitis, 1989). In
the next line of code, the Oak H1 phylogeny is fitted using a generalized linear model (GLM, Guisan
et al., 2002) and multivariate adaptive regression splines (MARS, Friedman, 1991), applying a 10-fold
cross validation approach. Moreover, equal weighting of presences and pseudo-absences is indicated
with the argument weighting = TRUE (see e.g.: Barbet-Massin et al., 2012).

> trainRS <- mopaTrain(y = pa_RS, x = biostack$baseline, weighting = TRUE,
k = 10, algorithm = c("glm", "mars"))

The special case of model fitting with TS pseudo-absences

After the generation of TS pseudo-absences, multiple background extents exist as a result of the
different distances defined by backgroundRadius. It has been noted that the background extent from
which pseudo-absences are sampled is an important factor affecting not only model performance, but
also its transferability and biological meaning Van der Wal and Shoo (2009). With this regard, Iturbide
et al. (2015) propose a selection criterion based on the response of model performance as a function
of distance radius, that is generalizable to different SDM characteristics and spatial scales. With this
regard, the performance criterion chosen is the Area Under the ROC Curve (AUC), one of the most
widely used accuracy measures of binary classification systems (Swets, 1988). Essentially, the method
performs a non-linear regression of the AUC obtained by each SDM extent against their background
radius, considering three possible asymptotic models (Fig. 2):
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OCSVMprofiling backgroundRadius Method

× × No restriction (RS method)

X × Environmental restriction (RSEP
method)

X X
Environmental and spatial restriction
(TS method)

× X Spatial restriction (Particular case of RS)

Table 2: Combinations of functions OCSVMprofiling and backgroundRadius for background definition.
These are used prior to pseudo-absence data generation with function pseudoAbsences, that controls
the different sampling methods.

SDM technique algorithm value pkg::function Reference

Generalized Linear Model "glm" stats::glm Part of R
Random Forest "rf" ranger::ranger Wright and Ziegler (2017)
Multivariate Adaptive Regression Splines "mars" earth::earth Milborrow (2017)
Maximum Entropy "maxent" dismo::maxent Hijmans et al. (2017)
Support Vector Machine "svm" e1071::best.svm Meyer et al. (2017)
Classification and regression tree (tree) "cart.tree" tree::tree Ripley (2016)
Classification and regression tree (rpart) "cart.rpart" rpart::rpart Therneau et al. (2017)

Table 3: SDM techniques available in mopa through the function mopaTrain. The corresponding
algorithm argument values are also indicated.

1. Michaelis-Menten model: v(x) =
ax

Km + x

2. 2-parameter exponential model: v(x) = a(1− e−bx)

3. 3-parameter exponential model: v(x) = a− be−cx

, where v and x represent the AUC and the background extent respectively. a is the asymptotic
AUC value achieved by the system and a− b is the intercept. Km is the Michaelis constant (i.e. the
extent at which the AUC is half of a, and c is the coefficient of the point where the curve is most
pronounced. The asymptotic model that better fits the AUC response to the different background
extents is automatically selected to extract the AUC asymptotical value. The minimum extent at which
the AUC lies above the asymptote is retained as the optimal threshold radius, being the corresponding
fitted SDM returned. The asymptotic models are fitted internally by mopaTrain via the nls function
from package stats always the TS method is used (this is automatically detected by the function).
Optionally, a diagram displaying the results is also returned by setting the argument diagrams=TRUE
(Fig. 2).

> # Train TS model and generate Fig. 2
> trainTS <- mopaTrain(y = pa_TS, x = biostack$baseline, weighting = TRUE,

k = 10, algorithm = c("glm", "mars"), diagrams = TRUE)

Model assessment

The object returned by mopaTrain is a list of several components generated in the model calibration
and evaluation process. Several performance measures are included apart from the AUC, like the
True Skill Statistic (TSS) and Cohen’s Kappa obtained in the cross-validation, frequently use for the
assessment in SDMs (Allouche et al., 2006). These and other ocmponents of the SDM fitted object can
be accessed using extractFromModel. For, instance, to extract the TSS:

> tss.RS <- extractFromModel(models = trainRS, value = "tss")

However, and for maximum user flexibility, a matrix containing the observed and predicted
probability values for each calibration point is returned, allowing other types of user-tailored model
performance assessments.

> ObsPred.RS <- extractFromModel(models = trainRS, value = "ObsPred")
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Figure 2: Asymptotic model fitting in SDMs using the TS approach for pseudo-absence generation.
The blue points are the AUC values (y-axis) obtained by the SDMs for different background radius
extents (x axis). Non-linear fits to the three asymptotic models considered (Michaelis Menten, 2 and
3-parameter exponential). The vertical and horizontal lines indicate the optimal radius and resulting
AUC value of the final mopaTrain SDM output.

The fitted models are stored in the "model" (or "fold.models") component, required for subse-
quent model prediction.

> models.RS <- extractFromModel(models = trainRS, value = "model")

Additionally, variable importance may be also estimated. One straightforward possibility is to
pass the fitted models to function varImp from package caret (Kuhn, 2017).

Model predictions

SDM predictions are obtained by passing a new set of predictors (e.g.: future bioclimatic variables) to
the generated models. The model component corresponds to the models fitted using all available data
for model training, while the SDM predictions for the k-cross-validation setup are generated from the
component fold.models –instead of model–. Thus, mopa allows handling both the cross-fitted models
for flexible model performance assessment and the global model –fitted with all presences and pseudo-
absences– for predicting distributions, accomplished through the use of the function mopaPredict. In
the following example, models corresponding to the RS method are projected to reference climate
conditions (biostack$baseline) and to 7 future climate projections (biostack$future):

> ensemble.present <- mopaPredict(models = models.RS,
newClim = biostack$baseline)

> ensemble.future <- mopaPredict(models = models.RS,
newClim = biostack$future)

Exploring the uncertainty in SDM projections

Projections returned by mopaPredict are structured in a nested list. Each depth or level in the list
corresponds to a different component. These are: presence data sets (SP), pseudo-absence realiza-
tions (PA), modeling algorithms (SDM), baseline climate (baseClim), and the new climate (newClim)
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used to project models (e.g. future climate projections). The function used to extract components is
extractFromPrediction. In the next example, projections corresponding to the first pseudo-absence re-
alization (object rcms_run1) and to the future climate projection from the MPI RCM (object runs_rcm1)
are extracted:

> rcms_run1 <- extractFromPrediction(ensemble.future, "PA01")
> runs_rcm1 <- extractFromPrediction(ensemble.future, "MPI")

Then, the function is again applied to object runs_rcm1 to extract the SDM results for MPI and
GLM. The resulting object is of S4-class raster*, thus being straightforward to apply any of the
plotting/analysis methods for spatial objects. Here, we use spplot from sp for output visualization
(Fig. 3).

> glm_runs_rcm1 <- extractFromPrediction(runs_rcm1, "glm")
> # Generates Fig. 3
> data(wrld)
> spplot(glm_runs_rcm1, layout = c(5, 2), at = seq(0, 1, 0.1),

col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 3: Future species distribution projections (2071-2100) according to the MPI RCM projec-
tions, considering 10 different pseudo-absence realizations of the RS method, as stored in the object
glm_runs_rcm1.

Thus, it is easy to explore the results by inspecting the different components of the mopaPredict
outputs. For instance, the raster package can be particularly useful this aim allowing for a wide
variety of map algebra operations through the function stackApply over user-defined subsets of SDM
projections.

Partition of the uncertainty into components using ANOVA

The relative contribution of each component to the total ensemble spread/variability is implemented
in mopa using an ANOVA approach, through the function varianceAnalysis, following the method
in Déqué et al. (2012), also applied by San-Martín et al. (2016). For instance, in this example, the total
variance V can be decomposed as the summation of the variance explained by the pseudo-absence
realization P, the RCM R and the combination of both PR, so V = P + R + PR. Let i be the index of
the pseudo-absence realization (i = 1, . . . , 10), j the index of the RCM (j = 1, . . . , 7), and Xij is the
response (e.g.: the predicted distribution for the particular realization and climate projection). Then:

P =
1

10

10

∑
i=1

(Xi − X̄)2 and R =
1
7

7

∑
j=1

(Xj − X̄)2 (1)

are the terms resulting from the realization alone (P), and RCM alone (R), and

PR =
1

10

10

∑
i=1

1
7

7

∑
j=1

(Xij − Xi − Xj + X̄)2 (2)

is the interaction term of the realization with the RCM (PR). The following example shows the analysis
performed for the pseudo-absence realizations (component1 = "PA") and the climate projections
(component2 = "newClim") in GLM projections (fixed = "glm"). In order to illustrate thoroughgoing
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information on the spread in the projected potential distributions, variance percentage maps are
returned together with the maps of the mean and standard deviation. Again, the results can be
conveniently visualized with function spplot (Figs. 4 and 5).

> var.glm <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim", fixed = c("glm"))

> # Generates Fig. 4
> spplot(var.glm$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 5
> spplot(var.glm$variance,

col.regions = rev(gray.colors(10, end = 1)),
at = seq(0, 100, 10),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 4: Mean and standard deviation of the SDM ensemble projections (GLM), formed by 7 RCMs
× 10 pseudo-absence realizations (RS method, object var.glm$mean).

Figure 5: Variance percentage explained by each component: pseudo-absence realization (PA), RCM
future climate projections (newClim) and their joint contribution (PA.and.newClim), considering GLM
projections (object var.glm$var).

Figures 4 and 5 depict the ensemble SDM projections and the variance analysis results, applied to
the set of projections that correspond to the 10 pseudo-absence realization and 7 climate projections
(10 realizations x 7 RCMs). The mean suitability map and the standard deviation are shown in Figure
4, while Figure 5 are the variance fraction maps (%), depicting the contribution of each component
(realization, RCM and realization & RCM) to the overall variance. For instance, the results displayed
in Figure 5 unveil that the RCM choice (component newClim) is by far the most important factor
contributing to the ensemble spread, while pseudo-absence realization has some impact in areas that
are outside the current domain of the Oak phylogeny H1 (e.g. Scandinavia).

Similarly, the next lines perform the same analysis, but considering MARS instead of GLM as the
statistical modeling technique (Figs. 6 and 7):

> var.mars <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim", fixed = c("mars"))
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> # Generates Fig. 6
> spplot(var.mars$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 7
> spplot(var.mars$variance,

at = seq(0, 100, 10),
col.regions = rev(gray.colors(10, end = 1)),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 6: Same as Fig. 4, but considering MARS instead of GLM as statistical modeling technique for
SDM production (object var.mars$mean).

Figure 7: Same as Fig. 5, but considering MARS instead of GLM as the statistical modeling technique
for SDM production (object var.mars$var).

Unlike GLM, in the case of MARS the ensemble spread (Fig. 6) is greatly affected by the pseudo-
absence realization in a wide area of the study domain (Fig. 7), specially in peripheral regions. This
is unequivocally diagnosed after applying function varianceSummary, which provides a summary
of the results, including a graph (Fig. 8) and allowing the comparison of multiple results for a
particular uncertainty component. This summary is based on the spatial subsetting of the study area,
by specifying the number of subsets with argument regions. The output boxplot (Fig. 8) shows the
spatial spread of the results (variance proportion explained by a component and the total standard
deviation) in each region.

As a result, in Figure 8, we compare GLM and MARS (var.glm and var.mars) with regard to
the variance proportion explained by the RCM choice (component = 2L), so that the percentage not
explained by it, is associated to the pseudo–absence realization. From this summary, we can confirm a
significantly higher sensitivity of MARS to the pseudo–absence sample across all regions.

> # Generates Fig. 8
> varianceSummary("glm" = var.glm, "mars" = var.mars,

component = 2L, regions = c(6, 6), drawBoxplot = TRUE)

Alternatively, a SpatialPolygons object (package sp) can be passed to argument regions in order
to focus the analysis on specific areas of interest. For illustrative purposes, in this example we use the
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Figure 8: Summary of the variance analysis results generated with function varianceSummary, where
GLM and MARS techniques (brown and blue respectively) are compared. Boxes account for the spatial
spread of the results in each region. Empty boxes show the variance proportion explained by the RCM
choice (component newClim) and filled boxes show the overall spread, this is, the standard deviation of
the predicted probability expressed as a percentage. Thus, empty boxes show how is the total spread
(filled boxes) distributed between components (PA and newClim). The x-axis corresponds to the regions
shown in the map at the top.
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climatic regions defined in the EU-funded PRUDENCE project (Christensen and Christensen, 2007),
which is available at the climate4R package visualizeR (Frías et al., 2018):

> regiondir <- tempfile()
> download.file(paste0("https://github.com/SantanderMetGroup/",
+ "visualizeR/raw/devel/data/PRUDENCEregions.rda"), destfile = regiondir)
> load(regiondir)
> varianceSummary("glm" = var.glm, "mars" = var.mars,

component = 2L, drawBoxplot = FALSE, regions = PRUDENCEregions)

Additionally, if argument drawBoxplot is set as FALSE, a simpler graph is obtained displaying the
points of the spatial mean. This might be useful when multiple results are being compared in the same
graph.

The much higher sensitivity of MARS to the pseudo–absence sample warns about its instability,
while GLM reveals much better properties in terms of model stability and transferability. These
findings are possible after ANOVA analysis thanks to the utilities included in mopa, enabling a flexible
experimental setup with a simple user interface. Model transferability is thus not apparent during
the SDM calibration stage and is not coupled to model performance (even with the application of
the 10-fold cross validation approach), so for instance TSS among realizations was 0.82 for GLM and
0.85 for MARS, and the mean AUC, 0.91 and 0.92 respectively. The uncertainty analysis results are
extremely valuable for the construction of an ensemble of SDM projections that minimizes the risk of
including unuseful realizations, thus yielding more plausible results.

In the same vein, the contribution of pseudo–absences in front SDM techniques to the overall
spread is achieved by adding a new component argument to varianceAnalysis, while the RCM
projection (MPI in this example) is kept as a fixed factor:

> MPI.var <- varianceAnalysis(ensemble.future,
component1 = "PA", component2 = "SDM", fixed = c("MPI"))

In case further uncertainty components are considered for predicting distributions (named in
mopa as SP, baseClim and foldModels), these could also be analyzed by keeping several fixed factors,
each corresponding to a component that is not being analyzed. This is explained in detail in the help
document of function "varianceAnalysis".

> help(varianceAnalysis)

SDM ensemble building

Finally, the ensemble forecast is built. In this particular example, we could discard those MARS
projections that we consider are the result of bad transferability, e.g. corresponding to the pseudo-
absence realizations that resulted in unrealistic predictions. Let us consider the simplified case where,
after a more detailed analysis of the results, we conclude that MARS projections corresponding to
pseudo–absence realization 8 along with GLM projections, are valid forecasts, then, as shown in the
next example, the definitive ensemble is easily built with function extractFromPrediction and the
utilities of the raster package. Here we calculate and plot the ensemble mean and standard deviation
of the final SDM ensemble projections (Fig. 9):

> marsEns <- extractFromPrediction(ensemble.future, value = "mars")
> marsEnsPA08 <- extractFromPrediction(marsEns, value = "PA08")
> glmEns <- extractFromPrediction(ensemble.future, value = "glm")

> ensemble.future.def <- stack(list(glmEns, marsEnsPA08))
> mean.ensemble <- stackApply(ensemble.future.def, fun = mean,

indices = rep(1, nlayers(ensemble.future.def)))
> sd.ensemble <- stackApply(ensemble.future.def, fun = sd,

indices = rep(1, nlayers(ensemble.future.def)))
> forecast.future <- stack(mean.ensemble, sd.ensemble)
> names(forecast.future) <- c("ensemble mean", "ensemble sd")
> # Generates Fig. 9
> spplot(forecast.future, at = seq(0,1,0.1),

col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Basically, this is a weighting exercise that favors GLM predictions in front of those of MARS,
beyond the performance shown in the calibration phase.
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Figure 9: Future ensemble forecast (mean and standard deviation) of the suitability of the oak phy-
logeny H11 under climate conditions given by 7 different RCMs.

Summary

The impacts of climate change on the biological systems are of current concern worldwide, and future
SDMs have become a key tool for the vulnerability and impact assessment community. Thus, the
utilities in package mopa can help in the SDM production chain since the early stage (climate data
retrieval and post-processing) to the ultimate phase in which a final set of models is retained for
ensemble generation and map production.

In this case-study, we illustrate the development of a set of SDM projections considering multiple
combinations of climate change projections from a set of state-of-the-art RCMs, two popular statistical
modeling methods (GLM and MARS) and different pseudo-absence realizations, enabling the identifi-
cation of those members of the ensemble yielding consistent and plausible future estimates for final
SDM building. With this regard, the ability to quantitatively assess the individual contribution of each
factor to the overall SDM spread, as implemented in function varianceAnalysis proved crucial in the
evaluation. While previously existing R packages already provide functionality for SDM building and
their assessment during the calibration stage, we have shown that model performance, as evaluated
by ordinary cross-validation, is not coupled to model transferabilty into future climate, being therefore
this essential feature specific of mopa. Other characteristic aspects introduced by the package consist
of the novel methods for pseudo-absence generation, and the ability to perform a fine-tuning of these
methods prior to model fitting. Furthermore, the inter-operability of mopa with other SDM-related R
packages enables maximum flexibility and eases the use of R for SDM applications in the framework
of complex modeling exercises, for which multiple aspects have a varying contribution to the overall
uncertainty.
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