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Advanced Bayesian Multilevel Modeling
with the R Package brms
by Paul-Christian Bürkner

Abstract The brms package allows R users to easily specify a wide range of Bayesian single-level
and multilevel models which are fit with the probabilistic programming language Stan behind the
scenes. Several response distributions are supported, of which all parameters (e.g., location, scale, and
shape) can be predicted. Non-linear relationships may be specified using non-linear predictor terms
or semi-parametric approaches such as splines or Gaussian processes. Multivariate models can be fit
as well. To make all of these modeling options possible in a multilevel framework, brms provides an
intuitive and powerful formula syntax, which extends the well known formula syntax of lme4. The
purpose of the present paper is to introduce this syntax in detail and to demonstrate its usefulness
with four examples, each showing relevant aspects of the syntax.

Introduction

Multilevel models (MLMs) offer great flexibility for researchers across sciences (Brown and Prescott,
2015; Demidenko, 2013; Gelman and Hill, 2006; Pinheiro and Bates, 2006). They allow modeling of data
measured on different levels at the same time – for instance students nested within classes and schools
– thus taking complex dependency structures into account. It is not surprising that many packages
have been developed to fit MLMs in R. Usually, the functionality of these implementations is limited
insofar as they only predict the mean of the response distribution. Other parameters of the response
distribution, such as the residual standard deviation in linear models, are assumed constant across
observations, an assumption which may be violated in many applications. Accordingly, it is desirable
to allow prediction of all response parameters at the same time. Models that perform simultaneous
estimation are often referred to as distributional models or, more verbosely, as models for location, scale,
and shape (Rigby and Stasinopoulos, 2005).

Another limitation of basic MLMs is that they only allow for linear predictor terms. While linear
predictor terms already offer good flexibility, they are of limited use when relationships are inherently
non-linear. Such non-linearity can be handled in at least two ways: (1) by fully specifying a non-
linear predictor term with corresponding parameters, each of which can be predicted using MLMs
(Lindstrom and Bates, 1990); or (2) estimating the form of the non-linear relationship on-the-fly using
splines (Wood, 2004) or Gaussian processes (Rasmussen and Williams, 2006). The former are often
simply called non-linear models, while models applying splines are referred to as generalized additive
models (GAMs, see Hastie and Tibshirani, 1990).

Combining all of these modeling options into one framework is a complex task, both conceptually
and with regard to model fitting. Maximum likelihood methods, typically applied in classical ’fre-
quentist’ statistics, can reach their limit at some point such that fully Bayesian methods become the
go-to solutions to fit such complex models (Gelman et al., 2014). In addition to being more flexible, the
Bayesian framework comes with other advantages, such as the ability to derive probability statements
for every quantity of interest or explicitly incorporate prior knowledge about parameters into the
model. The former is particularly relevant in non-linear models, for which classical approaches strug-
gle more often than not in propagating all the uncertainty in the parameter estimates to non-linear
functions such as out-of-sample predictions.

Possibly the most powerful program for performing full Bayesian inference available to date
is Stan (Stan Development Team, 2017c; Carpenter et al., 2017), which implements Hamiltonian
Monte Carlo (Duane et al., 1987; Neal, 2011; Betancourt et al., 2014) and its extension, the No-U-
Turn (NUTS) Sampler (Hoffman and Gelman, 2014). These algorithms converge much more quickly
than other Markov-Chain Monte-Carlo (MCMC) algorithms, especially for high-dimensional models
(Hoffman and Gelman, 2014; Betancourt et al., 2014; Betancourt, 2017). An excellent non-mathematical
introduction to Hamiltonian Monte Carlo can be found in Betancourt (2017).

Stan comes with its own programming language, allowing for great modeling flexibility (Stan
Development Team, 2017c; Carpenter et al., 2017). Many researchers may still be hesitant to use Stan
directly, as every model has to be written, debugged, and possibly also optimized, which may be a
time-consuming and error-prone process even for researchers familiar with Bayesian inference. The
brms package (Bürkner, 2017) presented in this paper aims to remove these hurdles for a wide range of
regression models by allowing the user to benefit from the merits of Stan by using extended lme4-like
formula syntax (Bates et al., 2015), with which many R users are familiar. The brms package offers
much more than writing efficient and human-readable Stan code. It comes with many post-processing
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and visualization functions, including functions for posterior predictive checks, leave-one-out cross-
validation, visualization of estimated effects, and prediction of new data. The overarching aim is
to have one general framework for regression modeling, which offers everything required to apply
regression models to complex data. To date, it replaces and extends the functionality of dozens of other
R packages, each of which is restricted to specific regression models. Users may even define their own
response distributions and run them via brms (for details, see vignette("brms_customfamilies")).

The purpose of the present article is to provide an introduction to the advanced multilevel formula
syntax implemented in brms, which fits a wide and growing range of non-linear distributional
multilevel models. A general overview of the package is given in Bürkner (2017). Accordingly, the
present article focuses on more recent developments. We begin by explaining the underlying structure
of distributional models. Next, the formula syntax of lme4 and the extensions implemented in brms
are explained. Four examples that demonstrate the use of the new syntax are discussed in detail.
Afterwards, the functionality of brms is compared with that of rstanarm (Stan Development Team,
2017a) and MCMCglmm (Hadfield, 2010). We end by describing future plans for extending the
package.

Model description

The core model implemented in brms is the prediction of the response y through predicting all
parameters θp of the response distribution D, which is also called the model family in many R
packages. We write

yi ∼ D(θ1i, θ2i, . . . )

to stress the dependency on the ith observation. If desired, every parameter θp may be regressed on
its own predictor term ηp, transformed by the inverse link function fp that is θpi = fp(ηpi). Such
models are typically referred to as distributional models. The models described in Bürkner (2017) are a
sub-class of the models described here. Details about the parameterization of each family are given in
vignette("brms_families").

Suppressing the index p for simplicity, a predictor term η can generally be written as

η = Xβ + Zu +
K

∑
k=1

sk(xk)

where β and u are the respective coefficients at the population-level and group-level, and X, Z are the
corresponding design matrices. The terms sk(xk) symbolize optional smooth functions of unspecified
form based on covariates xk fitted via splines (see Wood, 2011, for the underlying implementation in
the mgcv package) or Gaussian processes (Williams and Rasmussen, 1996). The response y as well as
X, Z, and xk make up the data, whereas β, u, and the smooth functions sk are the model parameters
being estimated. The coefficients β and u may be more commonly known as fixed and random effects,
but we avoid theses terms following the recommendations of Gelman and Hill (2006). Details about
prior distributions for β and u can be found in Bürkner (2017) and under help("set_prior").

As an alternative to the strictly additive formulation described above, predictor terms may also
have any form specifiable in Stan. We call it a non-linear predictor and write

η = f (c1, c2, . . . , φ1, φ2, . . . )

The structure of the function f is given by the user, cr are known or observed covariates, and φs are
non-linear parameters, each having its own linear predictor term ηφs of the form specified above. In
fact, we should think of non-linear parameters as placeholders for linear predictor terms rather than as
parameters themselves. A frequentist implementation of such models, which inspired the non-linear
syntax in brms, can be found in the nlme package (Pinheiro et al., 2016).

Extended multilevel formula syntax

The formula syntax applied in brms builds upon the syntax of the R package lme4 (Bates et al., 2015).
First, we will briefly explain the lme4 syntax used to specify multilevel models and then introduce
certain extensions that allow specifying much more complicated models in brms.

An lme4 formula has the general form

response ~ pterms + (gterms | group)

The pterms contain population-level effects, assumed to be the same across observations. The gterms
contain so called group-level effects, assumed to vary across the grouping variables specified in group.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=rstanarm
http://CRAN.R-project.org/package=MCMCglmm
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=nlme


CONTRIBUTED RESEARCH ARTICLE 397

Multiple grouping factors each with multiple group-level effects are possible. Usually, group contains
only a single variable name pointing to a factor, but users may also use g1:g2 or g1/g2 if both g1 and
g2 are suitable grouping factors. The : operator creates a new grouping factor that consists of the
combined levels of g1 and g2. The / operator indicates nested grouping structures and expands one
grouping factor into two or more when using multiple / within one term. For instance, if the user
were to write (1 | g1/g2), brms will expand this to (1 | g1) + (1 | g1:g2). Instead of |, users
may use || in grouping terms to prevent group-level correlations from being modeled. This may be
used to reduce model complexity if convergence of the sampler is an issue. One limitation of the ||
operator in lme4 is that it only splits up terms so that columns of the design matrix originating from
the same term are still modeled as correlated (e.g., when coding a categorical predictor; see the mixed
function of the afex package by Singmann et al., 2015, for a way to avoid this behavior).

While intuitive and visually appealing, the classic lme4 syntax is not flexible enough to specify the
more complex models supported by brms. In non-linear or distributional models, multiple parameters
are predicted, each having their own population and group-level effects. Hence, multiple formulas are
necessary to specify such models.1 Specifying group-level effects of the same grouping factor to be
correlated across formulas becomes complicated. The solution implemented in brms (and currently
unique to it) expands the | operator into |<ID>|, where <ID> can be any value. Group-level terms with
the same ID will then be modeled as correlated if they share same grouping factor(s). For instance, if
the terms (x1|ID|g1) and (x2|ID|g1) appear somewhere in the same or different formulas passed to
brms, they will be modeled as correlated.

Further extensions of the classical lme4 syntax refer to the group component. In the lme4 version,
the group component is rather limited in its flexibility since only variable names combined by : or /
are supported. We propose two extensions of this syntax.

The first extension concerns the group element. We propose that group can generally be split up
in its terms so that, for example, (1 | g1 + g2) is expanded to (1 | g1) + (1 | g2). This is fully
consistent with the way / is handled and provides a natural generalization to the existing syntax.

The second extension concerns special grouping structures that cannot currently be expressed by
simply combining grouping variables. For instance, multi-membership models cannot be expressed
this way. To overcome this limitation, we propose wrapping terms in group within special functions
that allow specifying alternative grouping structures: (gterms | fun(group)). In brms, there are
currently two such functions implemented: gr for the default behavior, and mm for multi-membership
terms. To be compatible with the original syntax and to keep formulas short, gr is automatically added
internally if no function is specified.

While some non-linear relationships, such as quadratic relationships, can be expressed within
the basic R formula syntax, more complicated ones cannot. Thus, we have made it possible in brms
to specify non-linear predictor terms. Similar to the implementation in nlme, our extension is fully
compatible with the extended multilevel syntax described above. Suppose, for instance, we want to
model the non-linear growth curve

y = b1(1 − exp(−(x/b2)
b3 )

between y and x with parameters b1, b2, and b3 (see Example 3 in this paper for an implementation of
this model with real data). Furthermore, we want all three parameters to vary by a grouping variable
g and wish to model the group-level effects as correlated. Additionally, b1 should be predicted by a
covariate z. We can express this in brms using multiple formulas, one for the non-linear model itself
and one per non-linear parameter:

y ~ b1 * (1 - exp(-(x / b2) ^ b3)
b1 ~ z + (1|ID|g)
b2 ~ (1|ID|g)
b3 ~ (1|ID|g)

The first formula will not be evaluated using standard R formula parsing, but is instead taken literally.
In contrast, the formulas for the non-linear parameters will be evaluated in the usual way and are
compatible with all terms supported by brms. Note that we have used the above described ID-syntax
to model group-level effects correlated across formulas.

There are other syntax extensions implemented in brms that do not directly target grouping terms.
First, there are terms formally included in the pterms part that are handled separately. The most
prominent examples are smooth terms specified using the s and t2 functions of the mgcv package
(Wood, 2011). Other examples are category specific effects cs, monotonic effects mo, noise-free effects

1Actually, it is possible to specify multiple model parts within one formula using interactions terms, as imple-
mented in MCMCglmm (Hadfield, 2010). However, this syntax is limited in flexibility and requires a rather deep
understanding of the way R parses formulas, thus often being confusing to users.
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me, or Gaussian process terms gp. The first is explained in Bürkner (2017), while the latter three
are documented in help(brmsformula). Internally, these terms are extracted from pterms and not
included in the construction of the population-level design matrix.

Second, since the | operator is unused on the left-hand side of ∼ in the formula, additional
information on the response variable may be specified via

response | aterms ~ <predictor terms>

The aterms part may contain multiple terms of the form fun(<variable>), each separated by + and
providing special information on the response variable, including weighting observations, providing
known standard errors for meta-analysis, or modeling censored or truncated data. As it is not the
main topic of the present paper, we refer users to help("brmsformula") and help("addition-terms")
for more details.

To set up the model formulas and combine them into one object, brms defines the brmsformula
function, or bf for short. Its output can then be passed to the parse_bf function, which splits up the
formulas into separate parts and prepares them for the generation of design matrices and related data.
Other packages may re-use these functions in their own routines, making it easier to offer support for
the above described multilevel syntax.

Examples

The idea of brms is to provide one unified framework for multilevel regression models in R. The
above described formula syntax and all of its variations can be applied in combination with all
response distributions supported by brms. Currently about 35 response distributions are supported;
see help("brmsfamily") and vignette("brms_families") for an overview.

In this section, we will discuss four examples in detail, each focusing on certain aspects of the
syntax. These examples are chosen to provide a broad overview of the modeling options. The first
is about the number of fish caught by different groups of people. It does not actually contain any
multilevel structure, but helps to understand how to set up formulas for different model parts. The
second example is about housing rents in Munich. We model the data using splines and a distributional
regression approach. The third example is about cumulative insurance loss payments across several
years, which is fitted using a rather complex non-linear multilevel model. Finally, the fourth example
is about the performance of school children who change school during the year, thus requiring a
multi-membership model.

In addition to the four examples, we wish to discuss briefly a few more modeling options. First,
brms allows fitting of so-called phylogenetic models. These models are relevant in evolutionary
biology when data of many species are analyzed at the same time. Species are not independent if they
come from the same phylogenetic tree, implying that different levels of the same grouping-factor (i.e.,
species) are likely correlated. See vignette("brms_phylogenetics") for an example. Second, there is
a canonical way to handle ordinal predictors without falsely assuming they are either categorical or
continuous. We call them monotonic effects and discuss them in vignette("brms_monotonic"). Last
but not least, it is possible to account for measurement error in both response and predictor variables.
Although often ignored in applied regression modeling (Westfall and Yarkoni, 2016), measurement
error is common in all scientific fields that employ observational data. There is no vignette yet for this
topic, but one will be added in the future. In the meantime, help("brmsformula") is the best place to
start learning about such models as well as about other details of the brms formula syntax.

Example 1: Catching fish

An important application of the distributional regression framework of brms are zero-inflated and
hurdle models. These models are helpful whenever there are more zeros in the response variable than
one would naturally expect. Here, we consider an example dealing with the number of fish caught by
various groups of people. On the UCLA website (https://stats.idre.ucla.edu/stata/dae/zero-
inflated-poisson-regression), the data are described as follows: “The state wildlife biologists want
to model how many fish are being caught by fishermen at a state park. Visitors are asked how long
they stayed, how many people were in the group, were there children in the group and how many fish
were caught. Some visitors do not fish, but there is no data on whether a person fished or not. Some
visitors who did fish did not catch any fish so there are excess zeros in the data because of the people
that did not fish.”

zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
zinb$camper <- factor(zinb$camper, labels = c("no", "yes"))
head(zinb)
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nofish livebait camper persons child xb zg count
1 1 0 no 1 0 -0.8963146 3.0504048 0
2 0 1 yes 1 0 -0.5583450 1.7461489 0
3 0 1 no 1 0 -0.4017310 0.2799389 0
4 0 1 yes 2 1 -0.9562981 -0.6015257 0
5 0 1 no 1 0 0.4368910 0.5277091 1
6 0 1 yes 4 2 1.3944855 -0.7075348 0

For predictors, we choose the number of people per group, the number of children, and whether or
not the group consists of campers. Many groups may not catch any fish because they do not try and so
we fit a zero-inflated Poisson model. For now, we assume a constant zero-inflation probability across
observations.

fit_zinb1 <- brm(count ~ persons + child + camper, data = zinb,
family = zero_inflated_poisson("log"))

The model is readily summarized via

summary(fit_zinb1)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

Data: zinb (Number of observations: 250)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.01 0.17 -1.34 -0.67 2171 1
persons 0.87 0.04 0.79 0.96 2188 1
child -1.36 0.09 -1.55 -1.18 1790 1
camper 0.80 0.09 0.62 0.98 2950 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

zi 0.41 0.04 0.32 0.49 2409 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Figure 1 shows the graphical summary output by

marginal_effects(fit_zinb1)
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Figure 1: Marginal effects plots of the fit_zinb1 model.

According to the parameter estimates, larger groups catch more fish, campers catch more fish than
non-campers, and groups with more children catch less fish. The zero-inflation probability zi is pretty
large with a mean of 41%. Note that the probability of catching no fish is actually higher than 41%,
since parts of this probability are already modeled by the Poisson distribution itself (hence the name
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zero-inflation). If the user wants to treat all zeros as originating from a separate process, hurdle models
are also supported by brms (not shown here).

Since we expect groups with more children to avoid fishing, we next try to predict the zero-inflation
probability using the number of children. From a purely statistical perspective, zero-inflated and
hurdle distributions are a mixture of two processes. Predicting both parts of the model is natural and
often very reasonable to make full use of the data.

fit_zinb2 <- brm(bf(count ~ persons + child + camper, zi ~ child),
data = zinb, family = zero_inflated_poisson())

To transform the linear predictor zi into a probability, brms applies the logit-link, which takes values
in [0, 1] and returns values on the real line. Thus, it allows the transition between probabilities and
linear predictors.

summary(fit_zinb2)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

zi ~ child
Data: zinb (Number of observations: 250)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000

WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.07 0.18 -1.43 -0.73 2322 1
persons 0.89 0.05 0.80 0.98 2481 1
child -1.17 0.10 -1.37 -1.00 2615 1
camper 0.78 0.10 0.60 0.96 3270 1
zi_Intercept -0.95 0.27 -1.52 -0.48 2341 1
zi_child 1.21 0.28 0.69 1.79 2492 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

According to the model, trying to fish with children decreases the overall number fish caught (as
implied by the Poisson part of the model) and decreases the chance of catching any fish (as implied by
the zero-inflation part).

Next we demonstrate how to comparing model fit via leave-one-out cross validation as imple-
mented in the loo package (Vehtari et al., 2016a,b):

loo(fit_zinb1, fit_zinb2)

LOOIC SE
fit_zinb1 1639.52 363.30
fit_zinb2 1621.35 362.39
fit_zinb1 - fit_zinb2 18.16 15.71

The example above shows that the second model (using the number of children as a predictor) has
better fit. However, when considering the standard error of the LOOIC difference, improvement in
model fit is apparently modest and not substantial. More examples of distributional models can be
found in vignette("brms_distreg").

Example 2: Housing rents

Fahrmeir et al. (2013) use an example about housing rents in Munich. The data contains information on
roughly 3000 apartments, and includes variables such as the absolute rent (rent), rent per square meter
(rentsqm), size of the apartment (area), construction year (yearc), and the district in Munich where
the apartment is located (district). The data can be found in the gamlss.data package (Stasinopoulos
and Rigby, 2016):

data("rent99", package = "gamlss.data")
head(rent99)
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rent rentsqm area yearc location bath kitchen cheating district
1 109.9487 4.228797 26 1918 2 0 0 0 916
2 243.2820 8.688646 28 1918 2 0 0 1 813
3 261.6410 8.721369 30 1918 1 0 0 1 611
4 106.4103 3.547009 30 1918 2 0 0 0 2025
5 133.3846 4.446154 30 1918 2 0 0 1 561
6 339.0256 11.300851 30 1918 2 0 0 1 541

Here, we wish to predict the rent per square meter using the following explanatory variables: size
of the apartment, the construction year, and the district in which the apartment is located. As the
effect of apartment size and construction year predictors is of unknown non-linear form, we model
these variables using a bivariate tensor spline (Wood et al., 2013). The district is accounted for using a
varying intercept.

fit_rent1 <- brm(rentsqm ~ t2(area, yearc) + (1|district), data = rent99,
chains = 2, cores = 2)

We fit the model using just two chains instead of the default of four chains on two processor cores to
reduce the model fitting time for the purpose of the present paper. In general, using the default option
of four chains (or more) is recommended.

summary(fit_rent1)

Family: gaussian(identity)
Formula: rentsqm ~ t2(area, yearc) + (1 | district)

Data: rent99 (Number of observations: 3082)
Samples: 2 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 2000
ICs: LOO = NA; WAIC = NA; R2 = NA

Smooth Terms:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sds(t2areayearc_1) 4.93 2.32 1.61 10.77 1546 1.00
sds(t2areayearc_2) 5.78 2.87 1.58 13.15 1175 1.00
sds(t2areayearc_3) 8.09 3.19 3.66 16.22 1418 1.00

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.48 0.73 494 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 7.80 0.11 7.59 8.02 2000 1.00
t2areayearc_1 -1.00 0.09 -1.15 -0.83 2000 1.00
t2areayearc_2 0.75 0.17 0.43 1.09 2000 1.00
t2areayearc_3 -0.07 0.16 -0.40 0.24 1579 1.00

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 1.95 0.03 1.90 2.01 2000 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

For models including splines, the output of summary gives limited information. First, the credible
intervals of the standard deviations of the coefficients forming the splines (under 'Smooth Terms')
are sufficiently far away from zero to indicate non-linearity in the combined effect of area and yearc.
Second, even after controlling for these predictors, rent per square meter will still vary considerably
by district, as visible under 'Group-Level Effects' in the output. To further understand the effect of
the predictor, we apply graphical methods:

marginal_effects(fit_rent1, surface = TRUE)

In Figure 2, the marginal effect of each predictor is displayed with the other predictor fixed at its mean.
In Figure 3, the combined effect demonstrates the interaction between the variables. In particular,
housing rents appear to be highest for small and relatively new apartments.
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Figure 2: Marginal effects plots of the fit_rent1 model for single predictors.
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Figure 3: Surface plot of the fit_rent1 model for the combined effect of area and yearc.

In the above example, we only consider the mean of the response distribution to vary by area and
yearc, but this may not be a reasonable assumption since the variance might vary with these variables
as well. Accordingly, we fit splines and the effects of district for both the location and scale parameter,
which is called sigma in Gaussian models.

bform <- bf(rentsqm ~ t2(area, yearc) + (1|ID1|district),
sigma ~ t2(area, yearc) + (1|ID1|district))

fit_rent2 <- brm(bform, data = rent99, chains = 2, cores = 2)

If not otherwise specified, sigma is predicted on the log-scale to ensure it is positive no matter how the
predictor term looks. Instead of (1|district) as in the previous model, we now use (1|ID1|district)
in both formulas, which results in modeling the varying intercepts of both model parts as correlated
(see the description of the ID-syntax above). The group-level part of the summary output looks like the
following:

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.49 0.73 744 1.00
sd(sigma_Intercept) 0.11 0.02 0.06 0.15 751 1.00
cor(Intercept,sigma_Intercept) 0.72 0.17 0.35 0.98 648 1.00

As visible from the positive correlation of the intercepts, districts with overall higher rent per square
meter also have higher variance in the outcome.

Lastly, we want to turn our attention to the splines. While marginal_effects is used to visualize
effects of predictors on the expected response, marginal_smooths is used to show just the spline parts
of the model:

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 403

marginal_smooths(fit_rent2)

The plot on the left-hand side of Figure 4 resembles the one in Figure 3, but the scale is different since
only the spline is plotted. The right-hand side of 4 shows the spline for sigma. Since we apply the
log-link on sigma by default, the spline is on the log-scale as well. As visible in the plot, the variation
in the rent per square meter is highest for relatively small and old apartments, while the variation is
smallest for medium to large apartments build around the 1960s.
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Figure 4: Plots showing the smooth terms of the fit_rent2 model.

Example 3: Insurance loss payments

On his blog, Markus Gesmann predicts the growth of cumulative insurance loss payments over time,
originated from different origin years (see http://www.magesblog.com/2015/11/loss-developments-
via-growth-curves-and.html). We will use a slightly simplified version of his model for demonstra-
tion purposes:

cumAY,dev ∼ N(µAY,dev, σ)

µAY,dev = ultAY

(
1 − exp

(
−

(
dev
θ

)ω))
The cumulative insurance payments cum will grow over time, and we model this dependency using
the variable dev. Furthermore, ultAY is the (to be estimated) ultimate loss of accident each year. It
constitutes a non-linear parameter in our framework along with the parameters θ and ω, which are
responsible for the growth of the cumulative loss and are for now assumed to be the same across years.
We load the data

url <- paste0("https://raw.githubusercontent.com/mages/",
"diesunddas/master/Data/ClarkTriangle.csv")

loss <- read.csv(url)
head(loss)

AY dev cum
1 1991 6 357.848
2 1991 18 1124.788
3 1991 30 1735.330
4 1991 42 2182.708
5 1991 54 2745.596
6 1991 66 3319.994

and translate the proposed model into a non-linear brms model.

nlform <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1, nl = TRUE)

nlprior <- c(prior(normal(5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta"))

fit_loss1 <- brm(formula = nlform, data = loss, family = gaussian(),
prior = nlprior, control = list(adapt_delta = 0.9))
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In the above functions calls, quite a few things happen. The formulas are wrapped in bf to combine
them into one object. The first formula specifies the non-linear model and we set argument nl = TRUE
so that brms takes this formula literally, instead of using standard R formula parsing. We specify one
additional formula per non-linear parameter to: (a) clarify which variables are covariates and which
are parameters; and (b) specify the predictor term for the parameters. We estimate a group-level effect
for accident year (variable AY) and ultimate loss ult. This specification nicely shows how a non-linear
parameter is actually a placeholder for a linear predictor, which in the case of ult, contains only a
varying intercept for year. Both omega and theta are assumed to be constant across observations so
we just fit a population-level intercept.

Priors on population-level effects are required and are mandatory to ensure identifiability for
the present model. Otherwise, we may observe that different Markov chains converge to different
parameter regions as multiple posterior distribution are equally plausible. Setting prior distributions
is a difficult task especially in non-linear models because it requires some experience and knowledge
both about the model that is being fitted and about the data at hand. Additionally, there is more
to keep in mind to optimize the sampler’s performance: First, using non- or weakly-informative
priors in non-linear models often leads to problems even if the model is generally identified. For
instance, if a zero-centered and reasonably wide prior such as normal(0,10000) is set for ult, there is
little information about theta and omega for samples of ult being close to zero, which may lead to
convergence problems. Second, Stan works best when parameters are roughly on the same order of
magnitude (Stan Development Team, 2017b). In the present example, ult is three orders larger than
omega. Although the sampler seems to work quite well in this case, it may not work well for other
models. One solution is to rescale parameters before model fitting. For the present example, one could
downscale ult by replacing it with ult * 1000 and correspondingly the normal(5000,1000) prior
with normal(5,1).

In the control argument we increase adapt_delta to get rid of a few divergent transitions (cf. Stan
Development Team, 2017b; Bürkner, 2017). Again the model is summarized via

summary(fit_loss1)

Family: gaussian (identity)
Formula: cum ~ ult * (1 - exp(-(dev / theta)^omega))

ult ~ 1 + (1 | AY)
omega ~ 1
theta ~ 1

Data: loss (Number of observations: 55)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~AY (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(ult_Intercept) 745.74 231.31 421.05 1306.04 916 1

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

ult_Intercept 5273.70 292.34 4707.11 5852.28 798 1
omega_Intercept 1.34 0.05 1.24 1.43 2167 1
theta_Intercept 46.07 2.09 42.38 50.57 1896 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 139.93 15.52 113.6 175.33 2358 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

as well as

marginal_effects(fit_loss1)

which yields Figure 5.

We can also visualize the cumulative insurance loss over time separately for each year, as in Figure
6.
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Figure 5: Marginal effects plots of the fit_loss1 model.

conditions <- data.frame(AY = unique(loss$AY))
rownames(conditions) <- unique(loss$AY)
me_year <- marginal_effects(fit_loss1, conditions = conditions,

re_formula = NULL, method = "predict")
plot(me_year, ncol = 5, points = TRUE)

It is evident that there is some variation in cumulative loss across accident years, for instance due to
natural disasters happening only in certain years. Further, we see that the uncertainty in the predicted
cumulative loss is larger for later years in which there are fewer available data points.

In the above model, we considered omega and delta to be constant across years, which may not
necessarily be true. We can easily investigate this by fitting varying intercepts for all three non-linear
parameters also estimating group-level correlation using the ID syntax:

nlform2 <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|ID1|AY), omega ~ 1 + (1|ID1|AY),
theta ~ 1 + (1|ID1|AY), nl = TRUE)

fit_loss2 <- update(fit_loss1, formula = nlform2,
control = list(adapt_delta = 0.90))

We could have also specified all predictor terms more conveniently with one formula as

ult + omega + theta ~ 1 + (1|ID1|AY)

because the structure of the predictor terms is identical.

To compare model fit, we perform leave-one-out cross-validation.

loo(fit_loss1, fit_loss2)

LOOIC SE
fit_loss1 715.44 19.24
fit_loss2 720.60 19.85
fit_loss1 - fit_loss2 -5.15 5.34

Since smaller values indicate better expected out-of-sample predictions and thus a better model fit,
the simpler model that has only a varying intercept over parameter ult is preferred. This result
may not be overly surprising, given that modeling three varying intercepts and three group-level
correlations is probably overkill for data containing only 55 observations. Nevertheless, it nicely
demonstrates how to apply the ID syntax in practice. More examples of non-linear models can be
found in vignette("brms_nonlinear").
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Figure 6: Marginal effects plots of the fit_loss1 model separately for each accident year.

Example 4: Performance of school children

Suppose that we want to predict the performance of students in the final exams at the end of the year.
There are many variables to consider, but one important factor will clearly be school membership.
Schools might differ in the ratio of teachers and students, the general quality of teaching, in the
cognitive ability of the students they draw, or other unobserved factors that may induce dependency
among students in the same school. Thus, it is advisable to apply multilevel modeling techniques by
including school membership as a group-level term. We should account for class membership and
other levels of the educational hierarchy as well, but for the purposes of the present example, we will
focus on schools only.

Usually, accounting for school membership is straight-forward; we simply add a varying intercept
to the formula for each school with (1 | school). However, a non-negligible number of students
might change schools during the year, which would result in a situation where one student is a
member of multiple schools, necessitating a multi-membership model. Specifying such a model not
only requires information on the different schools students attend during the year, but also the amount
of time spent at each school. The time spent can be used to weight the influence each school has on
its students, since more time attending a school will likely result in greater influence. For now, let us
assume that students change schools maximally once a year and spend equal time at each school. We
will later see how to relax these assumptions.

Real educational data are usually relatively large and complex so that we simulate our own data
for the purpose of this example. We simulate 1000 students partitioned into 10 schools of 100 students
each. We model 10% of students as changing schools.

data_mm <- sim_multi_mem(nschools = 10, nstudents = 1000, change = 0.1)
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.5 0.5 16.27422
2 10 9 0.5 0.5 18.71387
3 5 3 0.5 0.5 23.65319
4 3 5 0.5 0.5 22.35204
5 5 3 0.5 0.5 16.38019
6 10 6 0.5 0.5 17.63494
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The code of function sim_multi_mem can be found in the online supplement for this paper. To better
illustrate the multimembership condition, students changing schools appear in the first rows of the
data. Data of students being only at a single school looks as follows:

data_mm[101:106, ]

s1 s2 w1 w2 y
101 2 2 0.5 0.5 27.247851
102 9 9 0.5 0.5 24.041427
103 4 4 0.5 0.5 12.575001
104 2 2 0.5 0.5 21.203644
105 4 4 0.5 0.5 12.856166
106 4 4 0.5 0.5 9.740174

Although school variables s1 and s2 are identical, we still have to specify both in order to pass the
data appropriately. Incorporating no other predictors for simplicity, a multi-membership model is
specified as

fit_mm <- brm(y ~ 1 + (1 | mm(s1, s2)), data = data_mm)

The only new syntax element is that multiple grouping factors s1 and s2 are wrapped in mm. Everything
else remains exactly the same. Note that we did not specify the relative weights of schools for each
student and thus equal weights are assumed by default.

summary(fit_mm)

Family: gaussian (identity)
Formula: y ~ 1 + (1 | mm(s1, s2))

Data: data_mm (Number of observations: 1000)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~mms1s2 (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.76 0.82 1.69 4.74 682 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 19 0.93 17.06 20.8 610 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 3.58 0.08 3.43 3.75 2117 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

With regard to the assumptions made in the above example, it is unlikely that all children who
change schools stay in both schools equally long. To relax this assumption, we have to specify weights.
First, we amend the simulated data to contain non-equal weights w1 and w2 for students changing
schools:

data_mm[1:100, "w1"] <- runif(100, 0, 1)
data_mm[1:100, "w2"] <- 1 - data_mm[1:100, "w1"]
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.3403258 0.65967423 16.27422
2 10 9 0.1771435 0.82285652 18.71387
3 5 3 0.9059811 0.09401892 23.65319
4 3 5 0.4432007 0.55679930 22.35204
5 5 3 0.8052026 0.19479738 16.38019
6 10 6 0.5610243 0.43897567 17.63494

Incorporating these weights into the model is straightforward:
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fit_mm2 <- brm(y ~ 1 + (1 | mm(s1, s2, weights = cbind(w1, w2))),
data = data_mm)

The summary output is similar to the previous, so we omit it for parsimony. The second assumption
that students change schools only once a year, may also easily be relaxed by providing more than two
grouping factors in mm (i.e., mm(s1,s2,s3)).

Comparison between packages

Over the years, many R packages have offered implementations for MLMs, each being more or
less general in their supported models. In Bürkner (2017), I compared brms with lme4 (Bates et al.,
2015), MCMCglmm (Hadfield, 2010), rstanarm (Stan Development Team, 2017a), and rethinking
(McElreath, 2017). Since then, quite a few new features have been added to brms and rstanarm.
Accordingly, in the present paper, I will update these comparisons, focusing on brms, rstanarm,
and MCMCglmm. While brms and rstanarm are both based on the Stan probabilistic programming
language, MCMCglmm implements its own custom MCMC algorithm. Modeling options and other
important information for these packages are summarized in Table 1 and will be discussed in detail
below.

Regarding general model classes, all three packages support common types, including linear,
count, and certain survival models. Currently, brms and MCMCglmm provide more flexibility
when modeling categorical and ordinal data. Additionally, they offer support for zero-inflated
and hurdle models to account for zeros in the data (see Example 1 above). For survival or time-
to-event models, rstanarm offers great flexibility via the stan_jm function, which allows for com-
plex association structures between time-to-event data and one or more models of longitudinal co-
variates (for details see https://cran.r-project.org/web/packages/rstanarm/vignettes/jm.html).
Model classes currently specific to brms are robust linear models using Student’s t-distribution (fam-
ily student), response time models via the exponentially modified Gaussian distribution (family
exgaussian), and the Wiener diffusion model (family wiener). The latter simultaneously mod-
els dichotomous outcomes and their corresponding response times (for a detailed example see
http://singmann.org/wiener-model-analysis-with-brms-part-i/).

All three packages offer many additional modeling options, with brms currently having the
greatest flexibility (see Table 1 for a summary). Moreover, the packages differ in the general framework
in which they are implemented: brms and MCMCglmm each come with a single model fitting
function (brm and MCMCglmm respectively) through which all of their models can be specified. Further,
their framework allows seamless combination of most modeling options in the same model. In contrast,
the approach of rstanarm is to emulate existing functions of other packages, which has the advantage
of an easier transition between classical and Bayesian models. Although the syntax used to specify
models is most similar to that of a classical model, rstanarm comes with the main disadvantage that
many modeling options cannot be used in combination in the same model.

Information criteria are available in all three packages. The advantages of WAIC and LOO
implemented in brms and rstanarm are their less restrictive assumptions, and that their standard
errors can be easily estimated to get a better sense of the uncertainty in the criteria. Comparing the
options for prior distributions, brms offers a little more flexibility than MCMCglmm and rstanarm,
as virtually any prior distribution can be applied on population-level effects as well as on the standard
deviations of group-level effects. In addition, we believe that the way priors are specified in brms
is more intuitive as it is directly evident which prior has been applied. In brms, Bayes factors are
available via both Savage-Dickey ratios (Wagenmakers et al., 2010) and bridge-sampling (Gronau and
Singmann, 2017), while rstanarm only allows for the latter option. For a detailed comparison with
respect to sampling efficiency, see Bürkner (2017).

Conclusion

The present paper is meant to introduce R users and developers to the extended lme4 formula syntax
applied in brms. Four examples are presented to illustrate various features in the brms framework.
For some of the more basic models that brms can fit, see Bürkner (2017). Many more examples can
be found in the growing number of vignettes accompanying the package (see vignette(package =
"brms") for an overview).

To date, brms is already one of the most flexible R packages when it comes to regression modeling
and there are more features in the works (see https://github.com/paul-buerkner/brms/issues for
the current list of issues). In addition to smaller, incremental updates, major planned updates include:
(1) latent variables estimated via confirmatory factor analysis; and (2) extended multilevel and residual
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brms rstanarm MCMCglmm

Model classes

Linear models yes yes yes
Robust linear models yes no no
Count data models yes yes yes
Survival models yes yes1 yes
Response times models yes no no
Beta models yes yes no
Categorical models yes yes2 yes
Multinomial models no no yes
Ordinal models various cumulative2 cumulative
Zero-inflated and hurdle models yes no yes

Modeling options

Variable link functions various various no
Multilevel structures yes yes yes
Multi-membership yes no yes
Multivariate responses yes yes3 yes
Non-linear predictors yes limited4 no
Distributional regression yes no no
Finite mixtures yes no no
Splines (additive models) yes yes yes
Gaussian Processes yes no no
Temporal autocorrelation yes yes2,5 no
Spatial autocorrelation yes yes2,5 no
Monotonic effects yes no no
Category specific effects yes no no
Measurement error yes no no
Weights yes yes no
Offset yes yes using priors
Censored data yes yes1 yes
Truncated data yes no no
Customized covariances yes no yes
Missing value imputation yes no no

Bayesian specifics

Population-level priors flexible flexible normal
Group-level priors normal normal normal
Covariance priors flexible restricted6 restricted7

Bayes factors yes yes8 no
Parallelization yes yes no

Other

Estimator HMC, NUTS HMC, NUTS MH, Gibbs9

Information criterion WAIC, LOO WAIC, LOO DIC
C++ compiler required yes no no

Table 1: Comparison of the capabilities of the brms, rstanarm, and MCMCglmm packages. Notes:
(1) Advanced functionality available via stan_jm. (2) No group-level terms and related functionality
allowed. (3) Cannot be combined with other modeling options such as splines. (4) Functionality limited
to linear Gaussian models and certain pre-specified non-linear functions. (5) Functionality available
only on GitHub branches (https://github.com/stan-dev/rstanarm). (6) For details, see Hadfield
(2010). (7) For details, see https://github.com/stan-dev/rstanarm/wiki/Prior-distributions. (8)
Available via the bridgesampling package (Gronau and Singmann, 2017). (9) Estimator consists of a
combination of both algorithms.
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correlation structures. The brms package is under continuous develepment thanks to constructive
user input. Suggestions for future features may be submitted to https://github.com/paul-buerkner/
brms.
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