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Generalized Additive Model Multiple
Imputation by Chained Equations With
Package ImputeRobust
by Daniel Salfran, Martin Spiess

Abstract Data analysis, common to all empirical sciences, often requires complete data sets. Unfortu-
nately, real world data collection will usually result in data values not being observed. We present a
package for robust multiple imputation (the ImputeRobust package) that allows the use of generalized
additive models for location, scale, and shape in the context of chained equations. The paper describes
the basics of the imputation technique which builds on a semi-parametric regression model (GAMLSS)
and the algorithms and functions provided with the corresponding package. Furthermore, some
illustrative examples are provided.

Introduction

A common approach to allow valid inferences in the presence of missing data is “Multiple Imputation”
(MI) introduced by Rubin (1987). Application of MI can be summarized in three steps. The first
step is to create m > 1 sets of completed data sets by replacing each missing value with m values
drawn from an appropriate posterior predictive distribution (“imputations”). In the second step, the
required statistical analysis technique is applied to each of the completed data sets as if it were a
completely observed data set. The third step is the pooling step, where the results from the m analyses
are combined to form the final results, and allows statistical inferences in the usual way.

Basically, there are two ways of specifying imputation models: Joint modelling and fully condi-
tional specification. The joint modelling approach requires specification of a multivariate distribution
for the variables whose values are not observed and drawing imputations from their predictive poste-
rior distribution using Markov Chain Monte Carlo (MCMC) techniques. Within this framework, the
most common assumption is that the data is multivariate normally distributed (Schafer, 1997). Other
alternatives for categorical data are based on the latent normal model (Albert and Chib, 1993) or the
general location model (Little and Rubin, 2002).

This methodology is attractive if the assumed multivariate distribution is an appropriate model for
the data but may lack the flexibility needed to deal with complex data sets encountered in applications.
In such cases, the joint modelling approach may be too restrictive because the typical specification
of a multivariate distribution is not sufficiently flexible to allow different continuous and discrete
distributions (He and Raghunathan, 2009). For example, most of the existing model-based methods
and software implementations assume that the data originate from a multivariate normal distribution
(e.g. Honaker et al., 2011; Templ et al., 2011; van Buuren, 2007). However, the assumption of normality
is inappropriate as soon as there are outliers in the data, or in the case of skewed, heavy-tailed or multi-
modal distributions, potentially leading to deficient results (van Buuren, 2012; He and Raghunathan,
2012).

With the fully conditional specification, also known as multivariate imputation by chained equa-
tions (van Buuren and Groothuis-Oudshoorn, 2011), a univariate imputation model is specified for
each variable with missing values conditional on other variables of the data set. Starting from ini-
tially bootstrapped imputations, subsequent imputations are drawn by iterating over conditional
densities (van Buuren and Groothuis-Oudshoorn, 2011; van Buuren, 2007). This framework splits
high-dimensional imputation models into multiple one-dimensional problems and is appealing as an
alternative to joint modelling in cases where a proper multivariate distribution can not be found. The
choice of imputation models in this setting can vary depending on the type of variable to be imputed,
for example, parametric models like the Bayesian linear regression or logistic regression. Liu et al.
(2013) studied the asymptotic properties of this iterative imputation procedure and provided sufficient
conditions under which the imputation distribution converges to the posterior distribution of a joint
model when the conditional models are compatible.

De Jong (2012) and de Jong et al. (2014) proposed a new imputation technique based on generalized
additive models for location, scale, and shape, GAMLSS, (Rigby and Stasinopoulos, 2005), which is
a class of univariate regression models, where the assumption of an exponential family is relaxed
and replaced by a general distribution family. This allows a more flexible modelling than standard
parametric imputation models, not only based on the location (e.g. the mean), but also the scale
(e.g. variance), and the shape (e.g., skewness and kurtosis) of the conditional distribution of the
dependent variable to be imputed given all other variables. The R package ImputeRobust, described
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in the next section, provides the functions necessary to apply the GAMLSS imputation technique to
missing data problems. It can be used as standalone tool or in combination with mice (van Buuren
and Groothuis-Oudshoorn, 2011). Salfran (2018) provides an extensive comparison study of the new
package and other Multiple Imputation techniques.

Robust imputation with gamlss and mice

The imputation method realized by the package ImputeRobust is based on a generalized additive
model for location, scale and shape of the variable to be imputed. Specifically, we adopt the semi-
parametric additive formulation of GAMLSS described in Stasinopoulos and Rigby (2007).

Let Y = (Yij), i = 1, . . . , n and j = 1, . . . , p be a matrix with n independent observations on p
variables and let yij be the realization of variable Yj with probability function f (yij|θij) conditional on
parameters θij = (θk

ij), k = 1, . . . , 4. Assume that gk are known monotonic link functions relating the

distribution parameters θk
ij to explanatory variables by the following equation:

gk(θ
k
ij) = ηk = Xkβk +

Lk

∑
l=1

hlk(xlk), (1)

where θk
ij for k = 1, 2, 3, 4 are the location, scale and shape parameters of the distribution, Xk is a fixed

known design matrix, βT
k a vector of linear predictors, and hlk(xlk) are unknown smoothing functions

of the explanatory variables.

Not all four parameters may be needed, depending on the conditional distribution f (yij|θij) which
will be denoted as D. The package gamlss (Rigby and Stasinopoulos, 2005) provides a wide range
of possible continuous and discrete conditional distributions with varying number of parameters,
although not all of these distributions have been adopted yet to create imputations (see Table 1 on
section “Main functions”).

The proposed imputation method selects the conditional distribution D for each of the variables to
be imputed with the MICE algorithm (van Buuren and Groothuis-Oudshoorn, 2011). This distribution
defaults to normal for continuous data, but other alternatives may be chosen. Users can take advan-
tage of this option to restrict imputations to a certain range, e.g., by specifying a truncated normal
distribution. Alternatives already included are Logit and Poisson models to handle binary and count
data.

The chosen distribution D defines the type and number of parameters to be modelled, e.g., for the
default normal distribution the mean and variance are estimated (individually for each point), but
other distributions may require the estimation of the skewness and kurtosis in addition. Adopting
models with more parameters increases their flexibility and thus may increase the chance that the
imputation procedure is proper in the sense of Rubin (1987). On the other hand, larger sample sizes
may be needed to identify the larger number of parameters.

Implementation

The implementation of the imputation method for our simulations uses the gamlss package (see Rigby
and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) in R to fit model (1) based on (penalized)
maximum likelihood estimation and adopting the default link functions. Rigby and Stasinopoulos
(2005) and Stasinopoulos and Rigby (2007) provide a description of the fitting algorithms used by
this package. As smoothing functions hjk, we use P-splines with 20 knots, a piecewise polynomial of
degree three, a second order penalty and automatic selection of the smoothing parameter using the
Local Maximum Likelihood criterion (see Eilers and Marx, 1996). To prevent abnormal termination
of the algorithm, for example if samples are too small, the degree of the polynomial, the order of the
penalty, or the stopping time of the fitting algorithm are reduced as a fallback strategies.

Let Yj be one incompletely observed column of Y. The observed and missing parts of Yj are denoted
by Yobs

j and Ymis
j , respectively. Let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the collection of variables

in Y except Yj. The package gamlss does not support Bayesian inference, hence it is not possible to
obtain multiple imputations by drawing from the posterior predictive distribution. However, draws
from the predictive posterior distribution are approximated by the bootstrap predictive distribution
(Harris, 1989):

f ?(Ymis
j |Y

obs
j , Y−j) =

∫
f (Ymis

j |η̃, Ymis
−j ) f (η̃|η̂(Yobs

j , Yobs
−j ))dη̃ , (2)

where η̃ denotes the possible values of the imputation model parameters, η̂(Yobs
j , Yobs

−j ) is an estimator
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of such parameters, and f (η̃|η̂(Yobs
j , Yobs

−j )) is the sampling distribution of the imputation parameters
evaluated at the estimated values. The sampling distribution is simulated with a parametric bootstrap
acting as a replacement for the posterior distribution of the imputation parameters. Algorithm 1
describes the imputation process. For a clear presentation, we drop the index i.

Algorithm 1 GAMLSS imputation

1. Fit model Yj ∼ D(µ̂j, σ̂j, η̂j, τ̂j) using the observed data {Yobs
j , Yobs

−j }

2. Resample Yobs
j as follows:

Yobs
j? ∼ D(µ̂j, σ̂j, η̂j, τ̂j) .

Define a bootstrap sample B = {Yobs
j? , Yobs

−j }

3. Refit the above model using B. This leads to adapted estimators µ̇j, σ̇j, η̇j and τ̇j. Draw
nmis imputations for Ymis

j as follows:

Ỹmis
j ∼ D(µ̇j, σ̇j, η̇j, τ̇j) .

4. Repeat m times steps 2 and 3 to generate m imputed data sets.

Main functions

The two main functions included in the ImputeRobust package are the imputing and fitting functions
mice.impute.gamlss() and ImpGamlssFit(), respectively.

The function ImpGamlssFit() is internal and its job is to read in the data and model parameters
and create a bootstrap predictive sampling function, i.e., it will work through steps 1 to 3 of Algorithm
1. The fitting step depends on the gamlss package, and the same control options described in
Stasinopoulos and Rigby (2007) can be passed to ImpGamlssFit() when calling the mice() function.
By default, ImpGamlssFit() uses P-splines as the smoothers in model (1), which are considered to be
stable in the gamlss package, but sometimes the fitting algorithm may diverge. The implemented
imputation method will catch this event and will try to correct it by automatically cutting down the
complexity of the model.

The necessary formula objects for the model are automatically created by the function during
execution time. The type of imputation model and its parameters, like the degree of the P-splines, can
be controlled with the argument gam.mod. Another way of controlling the complexity of the fitting and
imputation steps is the lin.terms argument. This argument can be used to specify variables by their
name, that should enter model (1) linearly.

The default response distribution family used by the fitting and imputation methods is the normal
distribution, but it can be modified with the argument family. The selected family determines how
many parameters are to be modelled. To improve the stability of the imputation method, distributional
parameters can be restricted to be the same for all units. The maximum number of parameters to be
fitted is controlled by n.ind.par, that is, the value of k in equation (1). For example, if the Johnson’ SU
family (a four parameter continuous distribution) is selected and n.ind.par = 2, then the mean and
the variance are modelled individually with p-splines, but the shape parameters are restricted to be
the same for all units and are modelled as contant values.

The function mice.impute.gamlss() has the same structure as the imputation methods included
in the mice package, meaning that the named method "gamlss" can be directly passed as an argument
to the mice() function. This function also passes all modified default arguments to the fitting function.

Additional functions are included in the package to set the family and n.ind.par arguments to
non-default values. This allows users to mix different gamlss imputation methods within one call to
the function mice(). The functions are variantes of mice.impute.gamlss() where "gamlss" is replaced
with a method from Table 1 with the syntax mice.impute.method(). The name of the function is a
reference to the corresponding family from gamlss.family (see Stasinopoulos and Rigby, 2007)
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Method Model distribution

gamlssNO Normal
gamlssBI Binomial
gamlssGA Gamma
gamlssJSU Johnson’s SU
gamlssPO Poisson
gamlssTF Student’s t
gamlssZIBI Zero inflated Binomial
gamlssZIP Zero inflated Poisson

Table 1: Included univariate gamlss imputation models.

Usage

The imputation methods provided by ImputeRobust add a new semiparametric method to the already
included methods in mice. This means that it can be used directly with the function mice().

Simple example

As an illustration let us consider an example using the proposed method to estimate the parameters in
a linear regression model with multiple imputation. To do this we created a data set with n = 500
units composed of four independent variables and one dependent variable with the following code:

> set.seed(19394)
> n <- 500
> mu <- rep(0, 4)
> Sigma <- diag(4)
> Sigma[1,2] <- 0.15; Sigma[1,3] <- 0.1; Sigma[1,4] <- -0.1
> Sigma[2,3] <- 0.25; Sigma[2,4] <- 0.05
> Sigma[lower.tri(Sigma)] = t(Sigma)[lower.tri(Sigma)]
> require("MASS")
> rawvars <- mvrnorm(n, mu = mu, Sigma = Sigma)
> pvars <- pnorm(rawvars)
> X.1 <- rawvars[,1]
> X.2 <- qchisq(pvars, 3)[,3]
> X.3 <- qpois(pvars, 2.5)[,2]
> X.4 <- qbinom(pvars, 1, .4)[,4]
> data <- cbind(X.1, X.2, X.3, X.4)
> beta <- c(1.8, 1.3, 1, -1)
> sigma <- 4.2
> y <- data %*% beta + rnorm(n, 0, sigma)
> data <- data.frame(y, data)

Thus, we obtain correlated covariates X.1, . . . , X.4 which are random draws from specific distri-
butions, that is, values for X.1 are drawn from a standard normal random distribution, values for
X.2 are drawn from a χ2 distribution with three degrees of freedom, values for X.3 are drawn from a
Poisson distribution with parameter λ = 2.5, and values for X.4 come from a Bernoulli distribution
with parameter π = 0.4. The dependent variable, y, is created according to the linear regression model:

yi = β0 + X.1β1 + X.2β2 + X.3β3 + X.4β4 + ε, ε ∼ N(0, σ2). (3)

The vector of linear predictors, β, and the error variance, σ2, are chosen so that the coefficient of
determination, R2, is 0.5.

In this first example, we create missing values in X.2 to X.4 with a monotone MAR mechanism
dependent on y and X.1 as shown:

> r.s <- cbind(y, X.1) %*% c(2,1)
> r.s <- scale(r.s)
> pos <- cut(r.s, quantile(r.s, c(0, .5, 1)), include.lowest=TRUE)
> p.r <- as.numeric(c(.9, .2))
> p.r <- as.vector(p.r[pos])
> R2 <- as.logical(rbinom(length(p.r),1,p.r))
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> r.s <- cbind(y[!R2], X.1[!R2]) %*% c(2,1)
> r.s <- scale(r.s)
> pos <- cut(r.s, quantile(r.s, c(0, .4, 1)), include.lowest=TRUE)
> p.r <- as.numeric(c(.32, .27))
> p.r <- as.vector(p.r[pos])
> R3 <- as.logical(rbinom(length(p.r),1,p.r))
> R4 <- runif(nrow(data[!R2,][!R3,]), 0, 1) >= .25
> data$X.2[!R2] <- NA
> data$X.3[!R2][!R3] <- NA
> data$X.4[!R2][!R3][!R4] <- NA

More precisely, to generate missing values in X.2 and X.3, we first generate variables r∗ = 2y+ X.1.
Let Ri be a response indicator, where Ri = 1 if X.i is observed and Ri = 0 if X.i is not observed. Then
missing values in X.2 and X.3 are generated according to

Pr(R2 = 1|r∗) =
{

0.9 if r∗ ≤ r∗0.5
0.2 else,

, Pr(R3 = 1|r∗, R2 = 0) =

{
0.32 if r∗ ≤ r∗0.4
0.27 else,

and Pr(R3 = 1|R2 = 1) = Pr(R3 = 1|r∗, R2 = 1) = 1. Finally, under both conditions, missing values
in X.4 are generated independently from y and X.1 with probability 0.25 for those units for which
X.3 is not observed. The frequency of missing values and the pattern can be visualized with the mice
function md.pattern():

> library(ImputeRobust)
> md.pattern(data)

y X.1 X.4 X.3 X.2
276 1 1 1 1 1 0
66 1 1 1 1 0 1
127 1 1 1 0 0 2
31 1 1 0 0 0 3

0 0 31 158 224 413

The output is generated by the mice package, for details see van Buuren and Groothuis-Oudshoorn
(2011). It can be seen that only 276 out of the 500 units are fully observed and that the missing pattern
is monotone with the smallest amount of missing values in X.4 followed by X.2. X.3 has the highest
amount of missing values.

The imputation task can be performed with a simple call of the mice() function:

> predictorMatrix <- matrix(c(rep(c(0,0,1,1,1),2), rep(0,5), c(0,0,1,0,0),
+ c(0,0,1,1,0)), nrow = 5)
> imps <- mice(data, method = "gamlss", predictorMatrix = predictorMatrix,
+ visitSequence = "monotone", maxit = 1, seed = 8913)
iter imp variable
1 1 X.4 X.3 X.2
1 2 X.4 X.3 X.2
1 3 X.4 X.3 X.2
1 4 X.4 X.3 X.2
1 5 X.4 X.3 X.2

In this example with a monotone missing pattern, the missing values are imputed in accordance
with Rubin (1987, p. 171). The variables are ranked according to the amount of missing values and
imputations are drawn starting with the most frequently observed incomplete variable. In the next step,
the most frequently observed variable of the remaining incompletely observed variables is imputed.
This procedure continues until all variables with missing values are completed, using completely
observed but also completed variables to impute the next. In mice() the arguments visitSequence
and predictorMatrix control the column order in which incomplete variables are imputed and which
variables serve as predictors in each imputation model, respectively. By setting these arguments to
non-default values the required order of imputing values is achieved.

The result is an object of class Multiply Imputed Data Set (mids) with contents:

> print(imps)
Multiply imputed data set
Call:
mice(data = data, method = "gamlss", predictorMatrix = predictorMatrix,

visitSequence = "monotone", maxit = 1, seed = 8913)
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Number of multiple imputations: 5
Missing cells per column:
y X.1 X.2 X.3 X.4
0 0 224 158 31

Imputation methods:
y X.1 X.2 X.3 X.4

"gamlss" "gamlss" "gamlss" "gamlss" "gamlss"
VisitSequence:
X.4 X.3 X.2
5 4 3

PredictorMatrix:
y X.1 X.2 X.3 X.4

y 0 0 0 0 0
X.1 0 0 0 0 0
X.2 1 1 0 1 1
X.3 1 1 0 0 1
X.4 1 1 0 0 0
Random generator seed value: 8913

The argument method = "gamlss" in the mice function call implies by default, that imputations
are drawn assuming a normal distribution for the response variable in the imputation model given all
covariables. This has been shown to lead to acceptable results in situations in which even non-plausible
values are imputed (de Jong et al., 2014). A useful way of inspecting the distribution of the original
and an imputed data is the stripplot() function as shown in figure 1.

> library(lattice)
> stripplot(imps)
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Figure 1: Stripplot of the five variables in the original and the five imputed data sets. Observed data
values are blue and imputed data values are red.
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The model of interest, as per equation (3), is the linear regression of y on X.1, X.2, X.3, and X.4
that created the original data set. The true value of the regression coefficient is c(1.8,1.3,1,-1). The
imputed data sets can be analysed as follows:

> fit <- with(imps, lm(y ~ X.1 + X.2 + X.3 + X.4))
> print(pool(fit))
Call: pool(object = fit)

Pooled coefficients:
(Intercept) X.1 X.2 X.3 X.4
1.0729769 1.7565698 1.1600009 0.6262502 -0.4023920

Fraction of information about the coefficients missing due to nonresponse:
(Intercept) X.1 X.2 X.3 X.4
0.4477033 0.5111319 0.9276184 0.7934569 0.2925600

> round(summary(pool(fit)), 2)
est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda

(Intercept) 1.07 0.57 1.87 22.89 0.07 -0.11 2.26 NA 0.45 0.40
X.1 1.76 0.26 6.79 17.73 0.00 1.21 2.30 0 0.51 0.46
X.2 1.16 0.29 4.00 4.47 0.01 0.39 1.93 224 0.93 0.90
X.3 0.63 0.27 2.33 6.89 0.05 -0.01 1.26 158 0.79 0.74
X.4 -0.40 0.46 -0.87 49.39 0.39 -1.33 0.52 31 0.29 0.26

Modifying the imputation model

The default behaviour of the "gamlss" method of using a normal distribution can be overridden by
setting the argument family to any distribution contained in the gamlss.dist package (Stasinopoulos
et al., 2017). This will define globally the new response distribution for all imputation methods that call
the "gamlss" method. If the user wants to set different distribution families, to suit the particularities
of the variables to be imputed, several functions fully compatible with mice() are already included.

In the previous example, variables X.3 and X.4 were treated as continuous variables in the
imputation step, and it was possible for X.2 to take on negative values, even though is a strictly positive
variable. We will show now how the GAMLSS imputation model can be adjusted to accommodate
different types of distributions simultaneously. For the new imputation task, we use a Gamma
distribution for X.2, a Poisson distribution for the imputation of X.3, and a Binomial distribution for
X.4. The incomplete data set is the same as before, where X.1 and y need not to be imputed.

> imps <- mice(data, method = c("", "", "gamlssGA", "gamlssPO", "gamlssBI"),
+ seed = 8913)
iter imp variable
1 1 X.2 X.3 X.4
1 2 X.2 X.3 X.4
1 3 X.2 X.3 X.4
1 4 X.2 X.3 X.4
1 5 X.2 X.3 X.4
2 1 X.2 X.3 X.4
2 2 X.2 X.3 X.4
...

Figure 2 shows the effect of the changes in the response distribution for the imputation model.
Choosing the Gamma distribution for X.2, the Poisson distribution for X.3 and the Binomial distribu-
tion for X.4 imputes realistic values as compared to, e.g., choosing the normal distribution. Whether to
favor the imputation of realistic values or not, is a different problem. Since the final goal is statistical
validity of MI based estimation (Rubin, 1996), in some applications it may be better to allow for the
imputation of “unrealistic” while using a flexible model, for example, impute continuous values when
the variable to be imputed is a count variable (see de Jong, 2012; Salfran, 2018).

> stripplot(imps)

The model of interest in this example is the same as in section 2.4.1. The results of running the
analysis are slightly different due to choosing different imputation models.

> fit <- with(imps, lm(y ~ X.1 + X.2 + X.3 + X.4))
> round(summary(pool(fit)), 2)
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Figure 2: Stripplot of the five variables in the original data and the five imputed data sets. Observed
data values are blue and imputed data values are red.

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 0.78 0.48 1.61 40.46 0.11 -0.20 1.76 NA 0.33 0.30
X.1 1.78 0.25 7.27 18.00 0.00 1.27 2.30 0 0.51 0.46
X.2 1.19 0.13 8.89 10.43 0.00 0.90 1.49 224 0.66 0.60
X.3 0.70 0.21 3.37 8.90 0.01 0.23 1.18 158 0.71 0.65
X.4 -0.32 0.40 -0.80 127.39 0.43 -1.12 0.48 31 0.16 0.15

Chronic kidney disease data

A real world example data set was retrieved from the Machine Learning Database Repository at the
University of California, Irvine (Lichman, 2013). The dataset contains 400 observations from which
some variables were selected. The data already contained 149 rows where some values were missing.
This example illustrates some of the specific extra arguments that can be passed to the imputation
method, mainly with the objective of controlling the speed of the gamlss() function.

> library(RWeka)
> data <- read.arff("data/chronic_kidney_disease_full.arff")
> data <- data[,c("age", "bp", "bgr", "bu", "sc", "sod", "pot", "hemo",
+ "class")]
> data$class <- ifelse(data$class == "ckd", 1, 0)

The missing data pattern is non-monotone. The fully conditional specification approach behind
mice will handle this case. Running mice with the default fitting arguments of gamlss in complex data
sets like this would take a long time. There are several ways in which the speed of the imputation can
be adjusted. One alternative is by changing the values controlling the GAMLSS fitting algorithm. The
arguments n.cyc, bf.cyc, cyc control respectively the number of cycles of the outer, backfitting, and
inner algorithms of gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007). Other
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arguments that can be changed are the convergence criterions of the outer and inner algorithms with
the c.crit or cc arguments, respectively.

The choice of imputation model can also be modified by the user. The relevant argument is
gam.mod. The default imputation model is a P-spline with two degrees of freedom and second order
differences, this amounts to gam.mod = list(type = "pb",par = list(degree = 2,order = 2). The
degrees and order can be changed. Also, the model can be set to be linear using type = "linear".

The following code shows the result of imputing missing values of the chronic kidney disease data
set. With the current parameters and without any other optimization this took 10 minutes computing
time with a Core i7-3520M CPU.

> meth <- c("gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlssJSU",
+ "gamlssJSU", "gamlssJSU", "gamlssJSU", "gamlss")
> imps <- mice(data, method = meth, n.cyc = 3, bf.cyc = 2, cyc = 2,
+ maxit = 5, m = 5, seed = 8901,
+ gam.mod = list(type = "linear"))
iter imp variable
1 1 age bp bgr bu sc sod pot hemo
1 2 age bp bgr bu sc sod pot hemo
1 3 age bp bgr bu sc sod pot hemo
1 4 age bp bgr bu sc sod pot hemo
1 5 age bp bgr bu sc sod pot hemo
2 1 age bp bgr bu sc sod pot hemo
2 2 age bp bgr bu sc sod pot hemo
...

Figure 3 shows that even with an extreme simplification of the fitting algorithm of gamlss. The
imputation method still manages to produce acceptable values.

> stripplot(imps)

We used the imputed data set to fit a logistic regression in which we modelled the probability of
having chronic kidney disease as a function of age and some other blood related information.

> fit <- with(imps, glm(class ~ age + bp + bgr + sc + sod + pot + hemo,
+ family=binomial(link='logit')))
> round(summary(pool(fit)), 2)

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 33.04 12.85 2.57 79.40 0.01 7.47 58.61 NA 0.21 0.19
age -0.03 0.02 -1.16 33.22 0.25 -0.07 0.02 9 0.36 0.32
bp 0.09 0.04 2.45 134.55 0.02 0.02 0.16 12 0.15 0.13
bgr 0.03 0.01 2.29 12.24 0.04 0.00 0.07 44 0.61 0.55
sc 4.27 1.59 2.69 14.12 0.02 0.87 7.67 17 0.57 0.51
sod -0.15 0.09 -1.62 45.86 0.11 -0.34 0.04 87 0.30 0.27
pot -0.68 0.38 -1.82 45.99 0.08 -1.44 0.07 88 0.30 0.27
hemo -1.72 0.37 -4.65 30.81 0.00 -2.48 -0.97 52 0.38 0.34

Conclusion

The imputation method based on gamlss is a fairly new imputation technique which is provided to
properly handle situations in which fully parametric assumptions with respect to the conditional
distribution of the variable to be imputed is questionable. The technique is based on the idea of
attaining imputations avoiding possibly misspecified imputation models. Salfran (2018), de Jong et al.
(2014) and de Jong (2012) showed that this technique outperforms standard imputation techniques in
several scenarios. The ImputeRobust package is a step forward in the development of an imputation
method that requires weak distributional assumptions, but still allows valid inference. It extends the
set of applications of the existing GAMLSS package by allowing it to interact with the mice package.

By building on the popular mice package, the advantages of standard and robust imputation pro-
cedures are available in a user friendly way. Further research will focus on improving the efficiency of
this semi-parametric imputation technique, requiring only weak assumptions for generating multiple
imputations but still allowing valid inferences.
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Figure 3: Stripplot of the chronic kidney data set variables with missings and five imputed data sets.
Observed data is in blue and imputed data in red.

Acknowledgements

The authors gratefully acknowledge financial support from the German Science Foundation via grant
SP 930/8-1.

Bibliography

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the
American Statistical Association, 88(422):669–679, 1993. ISSN 1537-274X. URL https://doi.org/10.
1080/01621459.1993.10476321. [p61]

R. de Jong. Robust Multiple Imputation. PhD thesis, Universität Hamburg, 2012. URL http://ediss.
sub.uni-hamburg.de/volltexte/2012/5971/. [p61, 67, 69]

R. de Jong, S. van Buuren, and M. Spiess. Multiple imputation of predictor variables using generalized
additive models. Communications in Statistics - Simulation and Computation, 45(3):968–985, 2014. ISSN
1532-4141. URL https://doi.org/10.1080/03610918.2014.911894. [p61, 66, 69]

P. H. C. Eilers and B. D. Marx. Flexible smoothing with b -splines and penalties. Statistical Science, 11
(2):89–121, 1996. ISSN 0883-4237. URL https://doi.org/10.1214/ss/1038425655. [p62]

I. R. Harris. Predictive fit for natural exponential families. Biometrika, 76(4):675–684, 1989. ISSN
1464-3510. URL https://doi.org/10.1093/biomet/76.4.675. [p62]

Y. He and T. E. Raghunathan. On the Performance of Sequential Regression Multiple Imputation Meth-
ods with Non Normal Error Distributions. Communications in Statistics - Simulation and Computation,
38(4):856–883, 2009. ISSN 0361-0918. URL https://doi.org/10.1080/03610910802677191. [p61]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1080/01621459.1993.10476321
https://doi.org/10.1080/01621459.1993.10476321
http://ediss.sub.uni-hamburg.de/volltexte/2012/5971/
http://ediss.sub.uni-hamburg.de/volltexte/2012/5971/
https://doi.org/10.1080/03610918.2014.911894
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1093/biomet/76.4.675
https://doi.org/10.1080/03610910802677191


CONTRIBUTED RESEARCH ARTICLE 71

Y. He and T. E. Raghunathan. Multiple imputation using multivariate gh transformations. Journal
of Applied Statistics, 39(10):2177–2198, 2012. ISSN 0266-4763. URL https://doi.org/10.1080/
02664763.2012.702268. [p61]

J. Honaker, G. King, and M. Blackwell. Amelia II: A Program for Missing Data. Journal of Statistical
Software, 45(7):1–47, 2011. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v045.i07. [p61]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p68]

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, 2002. ISBN
9780471183860. URL https://doi.org/10.1002/9781119013563. [p61]

J. Liu, A. Gelman, J. Hill, Y.-S. Su, and J. Kropko. On the stationary distribution of iterative imputations.
Biometrika, 101(1):155–173, 2013. ISSN 1464-3510. URL https://doi.org/10.1093/biomet/ast044.
[p61]

R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape
(with discussion). Journal of the Royal Statistical Society C, 54(3):507–554, 2005. ISSN 1467-9876. URL
https://doi.org/10.1111/j.1467-9876.2005.00510.x. [p61, 62, 68]

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, 1987. ISBN 978-0-471-
65574-9. URL https://doi.org/10.1002/9780470316696. [p61, 62, 65]

D. B. Rubin. Multiple imputation after 18+ years. Journal of the American Statistical Association, 91(434):
473–489, 1996. ISSN 1537-274X. URL https://doi.org/10.1080/01621459.1996.10476908. [p67]

D. Salfran. Multiple Imputation for Complex Data Sets. PhD thesis, Universität Hamburg, 2018. URL
http://ediss.sub.uni-hamburg.de/volltexte/2018/9058/. [p62, 67, 69]

J. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, 1997. ISBN 9781439821862. URL
https://doi.org/10.1201/9781439821862. [p61]

D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape
(gamlss). Journal of Statistical Software, 23(7), 2007. ISSN 1548-7660. URL https://doi.org/10.
18637/jss.v023.i07. R package version 5.0-2. [p62, 63, 68]

M. Stasinopoulos, B. R. with contributions from Calliope Akantziliotou, G. Heller, R. Ospina,
N. Motpan, F. McElduff, V. Voudouris, M. Djennad, M. Enea, A. Ghalanos, and C. Argyropou-
los. Gamlss.dist: Distributions for Generalized Additive Models for Location Scale and Shape, 2017. URL
https://CRAN.R-project.org/package=gamlss.dist. R package version 5.0-2. [p67]

M. Templ, A. Kowarik, and P. Filzmoser. Iterative stepwise regression imputation using standard and
robust methods. Computational Statistics & Data Analysis, 55(10):2793–2806, 2011. ISSN 0167-9473.
URL https://doi.org/10.1016/j.csda.2011.04.012. [p61]

S. van Buuren. Multiple imputation of discrete and continuous data by fully conditional specification.
Statistical Methods in Medical Research, 16(3):219–242, 2007. ISSN 1477-0334. URL https://doi.org/
10.1177/0962280206074463. [p61]

S. van Buuren. Flexible Imputation of Missing Data. Chapman and Hall/CRC, 2012. ISBN 9781439868256.
URL https://doi.org/10.1201/b11826. [p61]

S. van Buuren and K. Groothuis-Oudshoorn. Mice: Multivariate imputation by chained equations.
Journal of Statistical Software, 45(3), 2011. ISSN 1548-7660. URL https://doi.org/10.18637/jss.
v045.i03. R package version 2.30. [p61, 62, 65]

Daniel Salfran
Psychological Methods and Statistics
Faculty of Psychology and Movement Science
Universität Hamburg
Von-Melle-Park 5, 20146 Hamburg
Germany
danielsalfran@gmail.com

Martin Spiess
Psychological Methods and Statistics
Faculty of Psychology and Movement Science
Universität Hamburg

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1080/02664763.2012.702268
https://doi.org/10.1080/02664763.2012.702268
https://doi.org/10.18637/jss.v045.i07
http://archive.ics.uci.edu/ml
https://doi.org/10.1002/9781119013563
https://doi.org/10.1093/biomet/ast044
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1002/9780470316696
https://doi.org/10.1080/01621459.1996.10476908
http://ediss.sub.uni-hamburg.de/volltexte/2018/9058/
https://doi.org/10.1201/9781439821862
https://doi.org/10.18637/jss.v023.i07
https://doi.org/10.18637/jss.v023.i07
https://CRAN.R-project.org/package=gamlss.dist
https://doi.org/10.1016/j.csda.2011.04.012
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1201/b11826
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
mailto:danielsalfran@gmail.com


CONTRIBUTED RESEARCH ARTICLE 72

Von-Melle-Park 5, 20146 Hamburg
Germany
martin.spiess@uni-hamburg.de

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

mailto:martin.spiess@uni-hamburg.de

	Generalized Additive Model Multiple Imputation by Chained Equations With Package ImputeRobust
	Introduction
	Robust imputation with gamlss and mice
	Implementation
	Main functions

	Usage
	Simple example
	Modifying the imputation model
	Chronic kidney disease data

	Conclusion


