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InfoTrad: An R package for estimating the
probability of informed trading
by Duygu Çelik and Murat Tiniç

Abstract The purpose of this paper is to introduce the R package InfoTrad for estimating the proba-
bility of informed trading (PIN) initially proposed by Easley et al. (1996). PIN is a popular information
asymmetry measure that proxies the proportion of informed traders in the market. This study provides
a short survey on alternative estimation techniques for the PIN. There are many problems documented
in the existing literature in estimating PIN. InfoTrad package aims to address two problems. First,
the sequential trading structure proposed by Easley et al. (1996) and later extended by Easley et al.
(2002) is prone to sample selection bias for stocks with large trading volumes, due to floating point
exception. This problem is solved by different factorizations provided by Easley et al. (2010) (EHO
factorization) and Lin and Ke (2011) (LK factorization). Second, the estimates are prone to bias due to
boundary solutions. A grid-search algorithm (YZ algorithm) is proposed by Yan and Zhang (2012) to
overcome the bias introduced due to boundary estimates. In recent years, clustering algorithms have
become popular due to their flexibility in quickly handling large data sets. Gan et al. (2015) propose
an algorithm (GAN algorithm) to estimate PIN using hierarchical agglomerative clustering which is
later extended by Ersan and Alici (2016) (EA algorithm). The package InfoTrad offers LK and EHO
factorizations given an input matrix and initial parameter vector. In addition, these factorizations can
be used to estimate PIN through YZ algorithm, GAN algorithm and EA algorithm.

Introduction

The main aim of this paper is to present the InfoTrad package that estimates the probability of
informed trading (PIN) initially proposed by Easley et al. (1996). PIN is one of the primary measures of
proxy information asymmetry in the market. The structural model is driven from maximum likelihood
estimation (MLE). Wide range of studies use PIN to answer questions in different fields of finance1.

Although it is a heavily used measure in the finance literature, the development of applications that
calculate PIN are quite slow. An initial attempt for R community is made by Zagaglia (2012). FinAsym
package of Zagaglia (2012) and the PIN package of Zagaglia (2013) provide the trade classification
algorithm of Lee and Ready (1991) which is an important tool for studies that use the TAQ database.
Both packages also provide PIN estimates through pin_likelihood() functions. However, those
estimates are prone to bias due to misspecification and other limitations. InfoTrad package aims to
overcome such limitations and provide users with a wide range of options when estimating PIN.

Due to the popularity of the measure, problems in estimating PIN recently gained attention in the
finance literature. Easley et al. (2010) indicate that for stocks with a large trading volume, it is not
possible to estimate PIN due to floating-point-exception (FPE). Two different numerical factorizations
are provided by Easley et al. (2010) and Lin and Ke (2011) to overcome the bias created due to FPE.

In addition, boundary solutions in estimating PIN are also shown to create bias in empirical studies.
Yan and Zhang (2012) show that, independent of the type of factorization, the likelihood function can
stuck at local optimum and provide biased PIN estimates. They propose an algorithm (YZ algorithm)
that spans the parameter space by using 125 different initial values for the MLE problem and obtain
the PIN estimate that gives the highest likelihood value with non-boundary solutions. Although YZ
algorithm provides estimates with higher likelihood and guarantees obtain non-boundary solutions,
the iterative structure makes this algorithm time-consuming especially for studies that use large
datasets.

Considering the fact that recent studies that estimate PIN use large datasets, the effectiveness of the
YZ algorithm is questioned. In recent years, clustering algorithms have become popular due to their
efficiency in processing large sets of data. Gan et al. (2015) propose an algorithm that use hierarchical
agglomerative clustering to estimate PIN. Ersan and Alici (2016) later extends this framework.

FPE and boundary solutions are not the only problems of PIN model. Duarte and Young (2009)
indicate that the structural model of Easley et al. (1996) enforces a negative contemporaneous covari-
ance between intraday buy and sell orders, which is contrary to the empirical evidence for symmetric
order shocks. In addition,they show that the PIN model fails to capture the volatility of buy and sell
orders,through simulations. Moreover, Duarte and Young (2009) adjust PIN to take into account the
liquidity impact and show that liquidity is more prominent on stock returns compared to information

1For instance, analyst coverage (Easley et al., 1998), stock splits (Easley et al., 2001), initial public offerings (Ellul
and Pagano, 2006), credit ratings (Odders-White and Ready, 2006), M&A announcements (Aktas et al., 2007) and
asset returns [(Easley et al., 2002),(Easley et al., 2010)] among others.
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asymmetry. Finally, it is important to note that PIN does not consider any strategic behaviour of
investors such as order splitting. Order splitting can be more evident when a stock is jointly trading
on multiple venues (Menkveld, 2008). Even for a stock that is traded on a single market, an informed
investor may want to split her order in order avoid revealing her private information too quickly
(Foucault et al., 2013). PIN model, by construction, fails to attach multiple small orders to a single
informed investor.

This paper introduces and discusses the R (R Core Team, 2016) InfoTrad package for estimating
PIN. InfoTrad provides users with the necessary methods to solely adress the problems of FPE and
boundary solutions. The package contains the likelihood factorizations of EHO and LK as separate
functions (EHO() and LK(), respectively) which provide likelihood specifications to avoid FPE. In
addition, through YZ(), GAN() and EA() functions, PIN estimates can be obtained using the grid-search
algorithm of Yan and Zhang (2012) and clustering algorithms of Gan et al. (2015) and Ersan and Alici
(2016). For all of the algorithms, likelihood specification can be set to EHO or LK.

The paper is organized as follows; Section 2.2 provides a brief description of PIN. Specifically,
section 2.2.1 discusses the problem of FPE and the alternative factorizations EHO and LK. Section 2.2.2
reviews the problem of boundary solutions and the YZ algorithm. Section 2.2.3 describes the clustering
algorithms of Gan et al. (2015) and Ersan and Alici (2016). Section 2.3 introduces the package InfoTrad
along with examples. Section 2.4 evaluates the performance of each method through simulations.
Section 2.5 provides concluding remarks.

PIN Model

The structural model of Easley et al. (1996) and Easley et al. (2002) consists of three types of agents;
informed traders, uninformed traders and market makers. On a trading day t, one risky asset is
continuously traded. Market maker sets the price for a given stock by observing the buy orders (Bt)
and sell orders (St). For that stock, an information event is assumed to follow a Bernoulli distribution
with success probability α. This event reveals either a high or a low signal for the stock value. The
event is assumed to provide a low signal with probability δ. When informed traders observe a high
(low) signal, they are assumed to place buy (sell) orders at a rate of µ. Uninformed traders are assumed
to place orders, independent of the information event and the signal. They arrive to market to place a
buy (sell) order at a rate of εb (εs). Orders of both informed and uninformed investors are assumed to
follow independent Poisson processes.

The joint probability distribution with respect to the parameter vector Θ ≡ {α, δ, µ, εb, εs} and the
number of buys and sells (Bt, St), is specified by

f (Bt, St|Θ) ≡ αδexp(−εb)
εBt

b
Bt!

exp[−(εs + µ)]
(εs + µ)St

St!

+α(1− δ)exp[−(εb + µ)]
(εb + µ)Bt

Bt!
exp(−εs)

εSt
s

St!

+(1− α)exp(−εb)
εBt

b
Bt!

exp(−εs)
εSt

s
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(1)

The estimates of arrival rates (µ̂, ε̂s and ε̂b), along with estimates of the probabilities (α̂ and δ̂) can
be obtained by maximizing the joint log-likelihood function given the order input matrix (Bt, St) over
T trading days. The non-linear objective function of this problem can be written as;

L(Θ|T) ≡
T

∑
t=1

L(Θ|(Bt, St)) =
T

∑
t=1

log[ f (Bt, St|Θ)] (2)

The maximization problem is subject to the boundary constraints α, δ ∈ [0, 1] and µ, εb, εs ∈ [0, ∞)2.
The PIN estimate is then given by;

P̂IN =
α̂µ̂

α̂µ̂ + ε̂b + ε̂s
(3)

2Both PIN package of Zagaglia (2013) and FinAsym package of Zagaglia (2012) fail to acknowledge the
boundary constraints on arrival rates µ, εb, εs. Similar to event probabilities, they restrict these parameters to [0, 1]
which forces the estimates for the arrival of informed and uninformed traders on a given day to take values at most
one. This creates significant bias in PIN estimates.
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Floating-Point Exception

PIN estimates are prone to selection bias, especially for stocks for which the number of buy and sell
orders are large3. Lin and Ke (2011) show that the increase in the number of buy and sell orders for a
given stock, significantly shrinks the feasible solution set for the maximization of the log likelihood
function in equation (2). To maximize the non-linear function (1), the optimization software introduces
initial values for the parameters in Θ. The numerical optimization method is applied after those initial
parameters are introduced. Therefore, for large enough Bt and St whose factorials cannot be calculated
by mainstream computers (i.e. FPE), the optimal value for equation (2) becomes undefined. The FPE
problem is therefore, more pronounced in active stocks.

To avoid the bias created due to FPE, one factorization of the equation (2) is provided by Easley
et al. (2010) as LEHO(Θ|T) ≡ ∑T

t=1 LEHO(Θ|Bt, St) where

LEHO(Θ|Bt, St) = log[αδexp(−µ)xBt−Mt
b x−Mt

s + α(1− δ)exp(−µ)x−Mt
b xSt−Mt

s + (1− α)xBt−Mt
b xSt−Mt

s ]

+Btlog(εb + µ) + Stlog(εs + µ)− (εb + εs) + Mt[log(xb) + log(xs)]− log(St!Bt!),
(4)

where Mt = min(Bt, St) + max(Bt, St)/2, xb = εb/(µ + εb) and xs = εs/(µ + εs).

Lin and Ke (2011) introduce another algebraically equivalent factorization of the equation (2),
LLK(Θ|T) ≡ ∑T

t=1 LLK(Θ|Bt, St) where

LLK(Θ|Bt, St) = log[αδexp(e1t − emaxt) + α(1− δ)exp(e2t − emaxt) + (1− α)exp(e3t − emaxt)]

+Btlog(εb + µ) + Stlog(εs + µ)− (εb + εs) + emaxt − log(St!Bt!),
(5)

where e1t = −µ− Btlog(1 + µ/εb), e2t = −µ− Stlog(1 + µ/εs), e3t = −Btlog(1 + µ/εb)− Stlog(1 +
µ/εs) and emaxt = max(e1t, e2t, e3t). The last term log(St!Bt!) is constant with respect to the parameter
vector Θ, and is, therefore, dropped in the MLE for both factorizations.

Boundary Solutions

Another source of bias in estimating PIN arises from boundary solutions. Yan and Zhang (2012)
indicate that in calculating PIN, parameter estimates α̂ and δ̂ usually fall onto the boundaries of the
parameter space, that is, they are equal to zero or one. PIN estimate presented in equation (3) is directly
related to the estimate of α̂. Letting α̂ equal to zero will make sure that PIN is zero as well. This can
create a sample selection bias in portfolio formation, especially for quarterly estimations4. Yan and
Zhang (2012) show that;

E(B) = α(1− δ)µ + εb (6)

E(S) = αδµ + εs (7)

Then, they propose the following algorithm to overcome the bias created due to boundary solutions.
Let (α0, δ0, ε0

b , ε0
s , µ0) be the initial parameter function to be placed in the non-linear program presented

in equation (4). In addition, let B̄ and S̄ be the average number of buy and sell orders.

α0 = αi, δ0 = δj, ε0
b = γk B̄, µ0 =

B̄− ε0
b

α0(1− δ0)
and ε0

s = S̄− α0δ0µ0 (8)

where αi, δj, γk ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. This will yield 125 different PIN estimates along with their
likelihood values. In line with Yan and Zhang (2012), we drop any initial parameter vector having
negative values for ε0

s . In addition, following Ersan and Alici (2016), we also drop any initial parameter
vector with µ0 > max(Bt, St). Yan and Zhang (2012) then select the estimate with non-boundary
parameters yielding highest likelihood value. This method, by construction, spans the parameter
space and tries to avoid local optima and provides non-boundary estimates for α.

3For example, Zagaglia (2012) provides a sample data to calculate PIN. In sample data the maximum trade
number is 19. If you multiply each observation in the sample data by 10, the pin_likelihood() function of
FinAsym package fails to provide results with the sample initial parameter vector.

4For quarterly estimations of PIN, one can be sure that there is at least one information event, earnings
announcement. Therefore α̂ cannot be equal to zero.
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Clustering Approach

In recent years, clustering algorithms are increasingly becoming popular in estimating the probability
of informed trading due to efficiency concerns. Gan et al. (2015) and Ersan and Alici (2016) use
clustering algorithms to estimate PIN. Gan et al. (2015) introduce a method that clusters the data
into three groups (good news, bad news, no news) based on the mean absolute difference in order
imbalance. Let Xt = Bt − St be the order imbalance on day t computed as the difference between
buy orders and sell orders. The clustering is then based on the distance function defined as D(I, J) =
|Xi − Xj|, 1 ≤ i, j ≤ T where i 6= j. They use hierarchical agglomerative clustering (HAC) to group
the data elements based on the distance matrix. Specifically, they use hclust() function of Müllner
(2013) in R5. The algorithm sequentially clusters, in a bottom-up fashion, each observation into groups
based on Xt and stops when it reaches three clusters. The theoretical framework of Easley et al. (1996)
indicates that a stock has high (low) Xt on good (bad) days. Therefore, the cluster which has the
highest (lowest) mean Xt is labelled as good (bad) news. The remaining cluster is then labelled as no
news. Once each observation is grouped into their respective clusters (good news, bad news, no news),
c ∈ {G, B, N}, the parameter estimates for Θ ≡ {α, δ, µ, εb, εs} are calculated simply by counting.
Let ωc be the proportion of cluster c occupying the total number of days T, such that ∑3

c=1 ωc = 1.
Similarly, let B̄c and S̄c be the average number of buys and sells on cluster c, respectively.

Then, the probability of an information event is given by α̂ = ωB + ωG. Moreover, the estimate
for the probability of information event releasing bad news is given by δ̂ = ωB/α̂. The estimate
for the arrival rate of buy orders of uninformed traders represented by ε̂b = ωB

ωB+ωN
B̄B + ωN

ωB+ωN
B̄N .

Similarly, the estimate for the arrival rate of sell orders of uninformed traders represented by ε̂s =
ωG

ωG+ωN
S̄G + ωN

ωG+ωN
B̄N . Finally, the arrival rate for the informed investors is calculated as µ̂ =

ωG
ωB+ωG

(B̄G − ε̂b) +
ωB

ωB+ωG
(S̄B − ε̂s) where (B̄G − ε̂b) corresponds to the buy rate of informed investors

µ̂b and (S̄B − ε̂s) corresponds to the sell rate of informed investors µ̂s
6.

Through simulations, Gan et al. (2015) show that estimates calculated as above are proper can-
didates for the initial parameter values to be used in MLE process. Ersan and Alici (2016) argue
that the estimates for the informed arrival rate, µ, contains a downward bias with GAN algorithm7.
This is what we observe in this study as well. In addition, they state that GAN algorithm provides
inaccurate estimates for δ. In order to overcome these issues, instead of using Xt, Ersan and Alici use
absolute daily order imbalance, |Xt|, to cluster the data. They initially cluster, |Xt| into two, again
by using hclust(). The cluster with the lower mean daily absolute order imbalance is labelled as "no
event" cluster and the remaining as "event" cluster. Then, the formation of "good" and "bad" event
day clusters are obtained through separating the days in the "event" cluster into two with respect to
the sign of the daily order imbalances. The parameter estimates are then computed with the same
procedure presented above8.

The InfoTrad Package

The R package InfoTrad provides five different functions EHO(),LK(),YZ(),GAN() and EA(). The first
two functions provide likelihood specifications whereas the last three functions can be used to obtain
parameter estimates for Θ to calculate PIN in equation (3). All five functions require a data frame that
contains Bt in the first column, and St in the second column. We create Bt and St for ten hypothetical
trading days9. EHO() and LK() read (Bt, St) and return the related functional form of the negative log
likelihood. These objects can be used in any optimization procedure such as optim() to obtain the
parameter estimates Θ̂ ≡ {α̂, δ̂, µ̂, ε̂b, ε̂s}, the likelihood value and other specifications, in one iteration
with a pre-specified initial value vector, Θ0, for parameters. We define EHO() and LK() as simple
likelihood specifications rather than functions that execute the MLE procedure. This is due to the
fact that MLE estimators vary depending on the optimization procedure. Users who wish to develop
alternative estimation techniques, based on the proposed likelihood factorization, can use EHO() and
LK(). This is the underlying reason why those functions do not have built-in optimization procedures.

5hclust() function is used at its default setting in line with Gan et al. (2015).
6Both Gan et al. (2015) and Ersan and Alici (2016) do not mention the case where µ̂b < 0 or µ̂s < 0. It is fair to

assume that in such cases, informed investors are not present on the buy (sell) side. Therefore, we set µb and µs
equal to zero when we obtain a negative estimate.

7We also show that estimates for µ contains a significant downward bias due to poor choice of initial parameter
value µ0 when GAN algorithm is used.

8Ersan and Alici (2016) also provide an iterative process in which they systematically update the clusters. We
plan to introduce this methodology in the future versions of our package.

9The numbers are randomly selected. We set numbers to be high enough so that the original likelihood
framework presented in equation (1) cannot be used due to FPE. Easley et al. (1996) indicate that at least 60 days
worth of data is required in order to obtain proper convergence for P̂IN. We use ten days for demonstration
purposes.
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By specifying EHO() and LK() as simple likelihood functions, we give developers the flexibility to
select the most suitable optimization procedure for their application.

For researchers who want to calculate an estimate of PIN, YZ(), GAN() and EA() functions have
built-in optimization procedures. Those functions read a likelihood specification value along with
data. Likelihood specification can be set either to “LK" or to “EHO" with “LK" being the default. All
estimation functions use neldermead() function of nloptr package to conduct MLE with the specified
factorization. GAN and EA functions also use hclust() function of Müllner (2013) to conduct
clustering. The output of these three functions is an object that provides {α̂, δ̂, µ̂, ε̂b, ε̂s, f (Θ̂), P̂IN},
where f (Θ̂) represents the optimal likelihood value given the parameter estimates Θ̂.

EHO() function

An example is provided below for EHO() with a sample data and initial parameter values. Notice that
the first column of sample data is for Bt and second column is for St. Similarly, the initial parameter
values are constructed as; Θ0 = {α, δ, µ, εb, εs}. We use optim() with ‘Nelder-Mead’ method to execute
MLE, however developer is flexible to use other methods as well.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Initial parameter values
# par0 = (alpha, delta, mu, epsilon_b, epsilon_s)
par0 = c(0.5,0.5,300,400,500)

# Call EHO function
EHO_out = EHO(data)
model = optim(par0, EHO_out, gr = NULL, method = c("Nelder-Mead"), hessian = FALSE)

## Parameter Estimates
model$par[1] # Estimate for alpha
# [1] 0.9111102
model$par[2] # Estimate for delta
#[1] 0.0001231429
model$par[3] # Estimate for mu
# [1] 417.1497
model$par[4] # Estimate for eb
# [1] 336.075
model$par[5] # Estimate for es
# [1] 466.2539

## Estimate for PIN
(model$par[1]*model$par[3])/((model$par[1]*model$par[3])+model$par[4]+model$par[5])
# [1] 0.3214394
####

In this example, Bt and St vectors are selected so that the likelihood function cannot be represented as
in equation (1). We set the initial parameters to be Θ0=(0.5,0.5,300,400,500). For the given Bt, St and
Θ0 vectors, PIN measure is calculated as 0.32 with EHO factorization.
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LK() function

An example is provided below for LK() function with a sample data and initial parameter values.
Notice that the first column of sample data is for Bt and second column is for St. Similarly, the initial
parameter values are constructed as; Θ0 = {α, δ, µ, εb, εs}. We use optim() with ‘Nelder-Mead’ method
to execute MLE, however developer is flexible to use other methods as well.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Initial parameter values
# par0 = (alpha, delta, mu, epsilon_b, epsilon_s)
par0 = c(0.5,0.5,300,400,500)

# Call LK function
LK_out = LK(data)
model = optim(par0, LK_out, gr = NULL, method = c("Nelder-Mead"), hessian = FALSE)

## The structure of the model output ##
model

#$par
#[1] 0.480277 0.830850 315.259805 296.862318 400.490830

#$value
#[1] -44343.21

#$counts
#function gradient
# 502 NA

#$convergence
#[1] 1

#$message
#NULL

## Parameter Estimates
model$par[1] # Estimate for alpha
# [1] 0.480277
model$par[2] # Estimate for delta
# [1] 0.830850
model$par[3] # Estimate for mu
# [1] 315.259805
model$par[4] # Estimate for eb
# [1] 296.862318
model$par[5] # Estimate for es
# [1] 400.4908

## Estimate for PIN
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(model$par[1]*model$par[3])/((model$par[1]*model$par[3])+model$par[4]+model$par[5])
# [1] 0.178391
####

For the given Bt, St and Θ0 vectors, PIN measure is calculated as 0.18 with LK factorization.

YZ() function

An example is provided below for YZ() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that YZ() function do not require
any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data<-cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the algorithm of Yan and Zhang (2012).
# Default factorization is set to be "LK"

result=YZ(data)
print(result)

# Alpha: 0.3999999
# Delta: 0
# Mu: 442.1667
# Epsilon_b: 263.3333
# Epsilon_s: 424.9
# Likelihood Value: 44371.84
# PIN: 0.2004457

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the algorithm of Yan and Zhang (2012).

result=YZ(data,likelihood="EHO")
print(result)

# Alpha: 0.9000001
# Delta: 0.9000001
# Mu: 489.1111
# Epsilon_b: 396.1803
# Epsilon_s: 28.72002
# Likelihood Value: Inf
# PIN: 0.3321033

For the given Bt and St vectors, PIN measure is calculated as 0.20 with YZ algorithm along with
LK factorization. Moreover, PIN measure is calculated as 0.33 with YZ algorithm along with EHO
factorization.
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GAN() function

An example is provided below for GAN() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that GAN() function do not require
any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy<-c(350,250,500,552,163,345,847,923,123,349)
Sell<-c(382,500,463,550,200,323,456,342,578,455)
data<-cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the algorithm of Gan et. al. (2015).
# Default factorization is set to be "LK"

result=GAN(data)
print(result)

# Alpha: 0.3999998
# Delta: 0
# Mu: 442.1667
# Epsilon_b: 263.3333
# Epsilon_s: 424.9
# Likelihood Value: 44371.84
# PIN: 0.2044464

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the algorithm of Gan et. al. (2015)

result=GAN(data, likelihood="EHO")
print(result)

# Alpha: 0.3230001
# Delta: 0.4780001
# Mu: 481.3526
# Epsilon_b: 356.6359
# Epsilon_s: 313.136
# Likelihood Value: Inf
# PIN: 0.1884001

For the given Bt and St vectors, PIN measure is calculated as 0.20 with GAN algorithm along with
LK factorization. Moreover, PIN measure is calculated as 0.19 with GAN algorithm along with EHO
factorization.

EA() function

An example is provided below for EA() function with a sample data. Notice that the first column
of sample data is for Bt and second column is for St. In addition, the first example is with default
likelihood specification LK and the second one is with EHO. Notice that EA() function do not require
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any initial parameter vector Θ0.

library(InfoTrad)
# Sample Data
# Buy Sell
#1 350 382
#2 250 500
#3 500 463
#4 552 550
#5 163 200
#6 345 323
#7 847 456
#8 923 342
#9 123 578
#10 349 455

Buy=c(350,250,500,552,163,345,847,923,123,349)
Sell=c(382,500,463,550,200,323,456,342,578,455)
data=cbind(Buy,Sell)

# Parameter estimates using the LK factorization of Lin and Ke (2011)
# with the modified clustering algorithm of Ersan and Alici (2016).
# Default factorization is set to be "LK"

result=EA(data)
print(result)

# Alpha: 0.9511418
# Delta: 0.2694005
# Mu: 76.7224
# Epsilon_b: 493.7045
# Epsilon_s: 377.4877
# Likelihood Value: 43973.71
# PIN: 0.07728924

# Parameter estimates using the EHO factorization of Easley et. al. (2010)
# with the modified clustering algorithm of Ersan and Alici (2016).

result=EA(data,likelihood="EHO")
print(result)

# Alpha: 0.9511418
# Delta: 0.2694005
# Mu: 76.7224
# Epsilon_b: 493.7045
# Epsilon_s: 377.4877
# Likelihood Value: 43973.71
# PIN: 0.07728924

For the given Bt and St vectors, PIN measure is calculated as 0.08 with EA algorithm along with
LK factorization. Moreover, PIN measure is calculated, again, as 0.08 with EA algorithm along with
EHO factorization.

Simulations and Performance Evaluation

In this section, we investigate the performance of the estimates obtained for Θ and PIN using the
existing methods. We evaluate the methods based on their accuracy proxied by mean absolute errors
(MAE)10. We first examine how the estimates vary in different trade intensity levels. To this end, we
follow the methodology in Gan et al. (2015). Let I be the the set of trade intensity levels ranging
from 50 to 5000 at step size of 50, that is, I={50, 100, 150, . . . , 5000}. We first set our parameters as

10All estimations are conducted on a 2.6 Intel i7-6700HQ CPU.We do not consider speed as a performance
measure since the average processing time for each method is less than 10 seconds.
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Θ = {α = 0.5, δ = 0.5, µ = 0.2i, εb = 0.4i, εs = 0.4i}, where i ∈ I. For each trade intensity level, we
generate N=50 random samples of α̃ and δ̃ that are binomially distributed with parameters α and
δ respectively. α̃ and δ̃ proxy the content of the information event. For each pair of α̃, δ̃ values, we
generate buy and sell values (Bt, St) for hypothetical T=60 days in the following manner;

• if α̃ = 0, then there is no information event, therefore, generate Bt ∼ Pois(εb) and St ∼ Pois(εs).

• if α̃ = 1, and δ̃ =1, then there is bad news, therefore generate Bt ∼ Pois(εb) and St ∼ Pois(εs + µ)

• if α̃ = 1, and δ̃ =0, then there is good news, therefore generate Bt ∼ Pois(εb +µ) and St ∼ Pois(εs)

We then form the joint likelihood function represented by equation (4) in EHO form or by equation
(5) in LK form and obtain the estimates using YZ(), GAN() or EA() methods.

The results are presented in Table 1 which indicates that YZ() method with LK() factorization
provides the PIN estimates with lowest MAE. Although the clustering algorithms, especially GAN()
method, provide powerful estimates of α̂, δ̂, ε̂b, ε̂s, they fail to estimate the arrival rate of informed
investors µ̂,accurately. This is in line with Ersan and Alici (2016). On the contrary, YZ() method with
EHO() factorization provides the best estimates for µ̂, but fails to provide good estimates for other
parameters.

Method Factorization P̂IN α̂ δ̂ µ̂ ε̂b ε̂s

YZ LK 0.075 0.199 0.059 415.2 104.3 109.0
YZ EHO 0.134 0.428 0.310 154.6 288.3 247.4

GAN EHO 0.101 0.087 0.083 479.4 124.1 117.3
GAN LK 0.101 0.087 0.083 479.5 123.8 118.1

EA LK 0.102 0.268 0.274 484.6 128.7 119.3
EA EHO 0.102 0.270 0.275 483.1 128.5 107.8

Table 1: This table represents the mean absolute errors (MAE) of the parameter estimates obtained
by a given method for a given factorization. Each row represents a different method with a different
factorization. First two column represent the specification of method and factorization respectively.
The last six columns represents the power of estimates of PIN along with the parameter space

Θ ≡ {α, δ, µ, εb, εs}. MAE measures for the estimates calculated as ∑N
i=1

|Θ̂i−ΘTR
i |

N where Θ̂ represent
the estimates and ΘTR represents the true value.

A more general way of examining the accuracy of PIN estimates is proposed in several studies
(e.g, Lin and Ke (2011), Gan et al. (2015), Ersan and Alici (2016)). In this setting, we fix the trade
intensity, I=2500. The total trade intensity represents the overall presence of informed and uninformed
traders, that is, I=(µ, εb, εs). We then generate three probability terms p1, p2, p3 with N=5000 random
observations that are distributed uniformly between 0 and 1. p1 represents the fraction of informed
investors in total trade intensity, that is, µ=p1 ∗ I. The rest of the trade intensity is distributed equally
to buy and sell orders of uninformed investors, that is, eb = es = (1− p1) ∗ I/2. p2 represents the
true parameter for the probability of news arrival, α, and p3 is the true parameter for the content of
the news, δ. We generate observations for α̃ and δ̃, as described earlier. For each pair of α̃ and δ̃, we
generate buy and sell values (Bt, St) for hypothetical T=60 days, again, in the manner presented above;
form the likelihood and obtain the parameter estimates.

The results are presented in Table 2. Similar to first simulation, GAN() captures the true nature of α̂
and δ̂ better than any other method with both factorizations. YZ() method with EHO() factorization
performs best when estimating the arrival of informed traders, µ̂. The importance of estimating
µ̂ becomes quite evident in Table 2. Although other methods outperform YZ() method with EHO()
factorization in estimating α, εb and εs, it provides the best estimate for PIN due to it’s performance on
estimating µ̂.

Summary

This paper provides a short survey on five most widely used estimation techniques for the probability
of informed trading (PIN) measure. In this paper, we introduce the R package InfoTrad, covering
estimation procedures for PIN using EHO, LK factorizations along with YZ, GAN and EA algorithms
(EHO(),LK(), YZ(), GAN() EA()). The functions EHO() and LK() read a (Tx2) matrix where the rows
of the first column contains total number of buy orders on a given trading day t, Bt, and the rows
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Method Factorization P̂IN α̂ δ̂ µ̂ ε̂b ε̂s

YZ LK 0.323 0.428 0.432 1,212.0 303.4 325.0
YZ EHO 0.237 0.437 0.357 942.9 386.0 470.2

GAN LK 0.348 0.380 0.410 1,218.7 314.5 323.3
GAN EHO 0.347 0.357 0.397 1,216.2 328.5 339.5

EA LK 0.348 0.437 0.421 1,224.0 325.1 336.3
EA EHO 0.347 0.428 0.413 1,222.0 331.3 345.9

Table 2: This table represents the mean absolute errors (MAE) of the parameter estimates obtained
by a given method for a given factorization. Each row represents a different method with a different
factorization. First two column represent the specification of method and factorization respectively.
The last six columns represents the power of estimates of PIN along with the parameter space

Θ ≡ {α, δ, µ, εb, εs}. MAE measures for the estimates calculated as ∑N
i=1

|Θ̂i−ΘTR
i |

N where Θ̂ represent
the estimates and ΘTR represents the true value.

of the second column contains the total number of sell orders on a given trading day t, St, where
t ∈ {1, 2, . . . , T}. In addition, they also require an initial parameter vector in the form of, Θ0 =
{α, δ, µ, εb, εs}. Both functions produce the respective log-likelihood functions.

The functions YZ(), GAN() and EA() read (Bt, St) as an input along with a likelihood specification
that is set to ‘LK’ by default. These functions do not require initial parameter matrix to obtain the
parameter estimates when calculating PIN. All three functions use neldermead() method of nloptr
as built-in optimization procedure for MLE. YZ() GAN() and EA() produce an object that gives the
parameter estimates Θ̂ along with likelihood value and P̂IN.
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