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Approximating the Sum of Independent
Non-Identical Binomial Random
Variables
by Boxiang Liu and Thomas Quertermous

Abstract The distribution of sum of independent non-identical binomial random variables is fre-
quently encountered in areas such as genomics, healthcare, and operations research. Analytical
solutions to the density and distribution are usually cumbersome to find and difficult to compute.
Several methods have been developed to approximate the distribution, and among these is the saddle-
point approximation. However, implementation of the saddlepoint approximation is non-trivial and,
to our knowledge, an R package is still lacking. In this paper, we implemented the saddlepoint ap-
proximation in the sinib package. We provide two examples to illustrate its usage. One example uses
simulated data while the other uses real-world healthcare data. The sinib package addresses the gap
between the theory and the implementation of approximating the sum of independent non-identical
binomials.

Introduction

Convolution of independent non-identical binomial random variables appears in a variety of appli-
cations, such as analysis of variant-region overlap in genomics (Schmidt et al., 2015), calculation of
bundle compliance statistics in healthcare organizations (Benneyan and Taşeli, 2010), and reliability
analysis in operations research (Kotz and Johnson, 1984).

Computating the exact distribution of the sum of non-identical independent binomial random
variables requires enumeration of all possible combinations of binomial outcomes that satisfy the
totality constraint. However, analytical solutions are often difficult to find for sums of greater than
two binomial random variables. Several studies have proposed approximate solutions (Johnson et al.,
2005; Jolayemi, 1992). In particular, Eisinga et al. (2013) examined the saddlepoint approximation, and
compared them to exact solutions. They note that, in practice, these approximations are often as good
as the exact solution and can be implemented in most statistical software.

Despite the theoretical development of aforementioned approximate solutions, a software im-
plementation in R is still lacking. The stats package includes functions for the most frequently used
distribution such as dbinom and dnorm. In addition, it also includes less frequent distributions such
as pbirthday. However, it does not contain functions for the distribution of the sum of independent
non-identical binomials. Another package, EQL, provides a saddlepoint function to approximate the
mean of i.i.d random variables. However, this function does not apply to the case where the random
variables are not identical. In this paper, we address this deficiency by implementing a saddlepoint
approximation in the open source package sinib (sum of independent non-identical binomial random
variables). The package provides the standard suite of probability (psinib), distribution (dsinib),
quantile (qsinib), and random number generator (rsinib) functions. The package is accompanied by
a detailed documentation, and can be easily integrated into existing applications.

The remainder of this paper is organized as follows, section 2 formulates the distribution of sum of
independent non-identical binomial random variables. Section 3 gives an overview of the saddlepoint
approximation. Section 4 describes the design and implementation of the sinib package. Section 5 uses
two examples to illustrate its usage. As a bonus, we assess the accuracy of saddlepoint approximation
in both examples. Section 6 draws final conclusion and discusses possible future development of the
package.

Overview of the distribution

Suppose X1,...,Xm are independent non-identical binomial random variables, and Sm = ∑m
i=1 Xi. We

are interested in finding the distribution of Sm.

P(Sm = s) = P(X1 + X2 + ... + Xm = s) (1)
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In the special case of m = 2, the probability simplifies to

P(S2 = s) = P(X1 + X2 = s) =
s

∑
i=0

P(X1 = i)P(X2 = s− i) (2)

Computation of the exact distribution often involves enumerating all possible combinations of
each variable that sum to a given value, which becomes infeasible when n is large. A fast recursion
method to compute the exact distribution has been proposed (Butler and Stephens, 2016; Arthur
Woodward and Palmer, 1997). The algorithm is as follows:

1. Compute the exact distribution of each Xi.

2. Calculate the distribution of S2 = X1 + X2 using equation 2 and cache the result.

3. Calculate Sr = Sr−1 + Xi for r = 3, 4, ..., m.

Although the recursion speeds up the calculation, studies have shown that the result may be
numerically unstable due to round-off error in computing P(Sr = 0) if r is large (Eisinga et al., 2013;
Yili). Therefore, approximation methods are still widely used in literature.

Saddlepoint approximation

The saddlepoint approximation, first proposed by Daniels (1954) and later extended by Lugannani
and Rice (1980), provides highly accurate approximations for the probability and density of many
distributions. In brief, let M(u) be the moment generating function, and K(u) = log(M(u)) be the
cumulant generating function. The saddlepoint approximation to the PDF of the distribution is given
as:

P̂1(S = s) =
exp(K(û)− ûs)√

2πK′′(û)
(3)

where û is the unique value that satisfies K′(û) = s.

Eisinga et al. (2013) applied the saddlepoint approximation to sum of independent non-identical
binomial random variables. Suppose that Xi ∼ Binomial(ni, pi) for i = 1, 2, ..., m. The cumulant
generating function of Sm = ∑m

i=1 Xi is:

K(u) =
m

∑
i=1

ni ln(1− pi + pi exp(u)) (4)

The first- and second-order derivatives of K(u) are:

K′(u) =
m

∑
i=1

niqi (5)

K′′(u) =
m

∑
i=1

niqi(1− qi) (6)

where qi =
piexp(u)

(1−pi+pi exp(u)) .

The saddlepoint of û can be obtained by solving K′(û) = s. A unique root can always be found
because K(u) is strictly convex and therefore K′(u) is monotonically increasing on the real line.

The above shows the first-order approximation of the distribution. The approximation can be
improved by adding a second-order correction term (Daniels, 1987; Akahira and Takahashi, 2001).

P̂2(S = s) = P̂1(S = s)
{

1 +
K′′′′(û)

8[K′′(û)]2
− 5[K′′′(û)]2

24[K′′(û)]3
}

(7)

where

K′′′(û) =
m

∑
i=1

niqi(1− qi)(1− 2qi)

and
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K′′′′(û) =
m

∑
i=1

niqi(1− qi)[1− 6qi(1− qi)]

Although the saddlepoint equation cannot be solved at boundaries s = 0 and s = ∑m
i=1 ni, their

exact probabilities can be computed easily:

P(S = 0) =
m

∏
i=1

(1− pi)
ni (8)

P(S =
m

∑
i=1

ni) =
m

∏
i=1

pni
i (9)

Incorporation of boundary solutions into the approximation gives:

P̄(S = s) =


P(S = 0), s = 0

[1− P(S = 0)− P(S = ∑m
i=1 ni)]

P̂2(S=s)

∑
∑m

i=1 ni−1
i=1 P̂2(S=i)

, 0 < s < ∑m
i=1 ni

P(S = ∑m
i=1 ni), s = ∑m

i=1 ni

(10)

We implemented equation 10 as the final approxmation of the probability density function. For
the cumulative density, Daniels (1987) gave the following approximator:

P̂3(S ≥ s) =

1−Φ(ŵ)− φ(ŵ)( 1
ŵ −

1
û1
), if s 6= E(S) and û 6= 0

1
2 −

1√
2π

[ K′′′(0)
6K′′(0)3/2 − 1

2
√

K′′(0)

]
, otherwise (11)

where ŵ = sign(û)[2ûK′(û)− 2K(û)]1/2 and û1 = [1− exp(−û)][K′′(û)]1/2. The letters Φ and φ
denotes the probability and density of the standard normal distribution.

The accuracy can be improved by adding a second-order continuity correction:

P̂4(S ≥ s) = P̂3(S ≥ s)− φ(ŵ)
[ 1

û2

( κ̂4
8
−

5κ̂2
3

24

)
− 1

û3
2
− κ̂3

2û2
2
+

1
ŵ3

]
(12)

where û2 = û[K′′(û)]1/2, κ̂3 = K′′′(û)[K′′(û)]−3/2, and κ̂4 = K′′′′(û)[K′′(û)]−2.

We implemented equation 12 in the package to approximate the cumulative distribution.

The sinib package

The package used only functions in base R and the stats package to minimize compatibility issues.
The arguments for the functions in the sinib package are designed to have similar meaning to those in
the stats package, thereby minimizing the learning required. To illustrate, we compare the arguments
of the *binom and the *sinib functions.

From the help page of the binomial distribution:

• x, q: vector of quantiles.

• p: vector of probabilities.

• n: number of observations.

• size: number of trials.

• prob: probability of success on each trial.

• log, log.p: logical; if TRUE, probabilities p are given as log(p).

• lower.tail: logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

Since the distribution of sum of independent non-identical binomials is defined by a vector of
trial and probability pairs (each pair for one constituent binomial), it was neccessary to redefine these
arguments in the *sinib functions. Therefore, the following two arguments were redefined:

• size: integer vector of number of trials.

• prob: numeric vector of success probabilities.

All other arguments remain the same. It is worth noting that when size and prob arguments are
given as vectors of length 1, the *sinib functions reduces to *binom functions:
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# Binomial:
dbinom(x = 1, size = 2, prob = 0.5)
[1] 0.5

# Sum of binomials:
library(sinib)
dsinib(x = 1, size = 2, prob = 0.5)
[1] 0.5

With that in mind, the next section shows a few examples to illustrate the usage of sinib.

Example usage of sinib

Sum of two binomials

We use two examples to illustrate the use of this package, starting from the simplest case of two
binomial random variables with the same mean but different sizes, X ∼ Bin(n, p) and Y ∼ Bin(m, p).
The distribution of S = X + Y has an analytical solution, S ∼ Bin(m + n, p). We can therefore use
different combinations of (m, n, p) to assess the accuracy of the saddlepoint approximation of the CDF.
We use m, n = {10, 100, 1000} and p = {0.1, 0.5, 0.9} to assess the approximation. The ranges of m and
n are chosen to be large and the value of p are chosen to represent both boundaries.

library(foreach)
library(data.table)
library(cowplot)
library(sinib)

# Gaussian approximator:
p_norm_app = function(q,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
pnorm(q, mean = mu, sd = sigma)

}

# Comparison of CDF between truth and approximation:
data=foreach(m=c(10,100,1000),.combine='rbind')%do%{

foreach(n=c(10,100,1000),.combine='rbind')%do%{
foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{

a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=c(m,n),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_grid(p~m)+
theme_bw()+
scale_color_discrete(name='prob',guide = 'none')+
xlab('Truth')+
ylab('Approximation')+
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

Figure 1 shows that the saddlepoint approximations are close to the ground truths across a range
of parameters. For space constraint this figure only shows the case of n = 10. The other two cases (n =
100 and 1000) can be found in supplementary figures 1 and 2. In comparison with the saddlepoint
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Figure 1: Comparison of CDF between truth and approximation for n = 10.

method, the Gaussian method (dashed lines) provides a relatively poor approximation. We can further
examine the accuracy by looking at the differences between the approximations and the ground truths.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),value.name = 'error',

variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
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ylab(expression(
'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+

scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')
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Figure 2: Difference in CDF between the ground truth and the approximation

Figure 2 shows the difference between the truth and the approximation for m = n = 100. The
dashed line indicate the mean of each random variable. The approximations perform well overall. The
largest difference occurs around the mean (dashed lines), which is around 4e-4. It is worthwhile to
mention that the error are small for quantiles away from the mean because the the true probabilities
are close to zero and one in the tails. To determine the tail behavior, we also examined the relative error
defined as truth−approximation

truth . The relative errors are large for quantiles between zero and the mean
because the true probabilities in this interval are close to zero and the saddlepoint approximation
returns zero. The relative errors are small for quantiles near and greater than the mean, indicating
that the saddlepoint method provide a good approximation in this interval. As a baseline, we
calculated the error and relative error derived from the Gaussian approximation (Figure 3). The largest
absolute deviation approaches 0.06, or two orders of magnitude greater than that from the saddlepoint
approximation.

# Comparison of PDF between truth and approximation:
d_norm_app = function(x,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
dnorm(x, mean = mu, sd = sigma)

}

data=foreach(m=c(10,100,1000),.combine='rbind')%do%{
foreach(n=c(10,100,1000),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=d_norm_app(x=0:(m+n),size=c(m,n),prob=c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)
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Figure 3: Difference in CDF between the ground truth and Gaussian approximation.

}
}

}

data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_wrap(m~p,scales='free')+
theme_bw()+
scale_color_discrete(guide = 'none')+
xlab('Truth')+
ylab('Approximation') +
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

We next examine the approximation for the PDF. Figure 4 shows that the saddlepoint approx-
imation is very close to the ground truth, whereas the Gaussian approximation is farther away. It
is worthwhile to mention that the Gaussian method provides a good approximation for p = 0.5
because the distribution is symmetrical. Further, We examine the difference between the truth and
the approximations. One example for m = n = 100 is shown in Figure 5. As before, the saddlepoint
approximation degrades around the mean, but the largest deviation is less than 4e-7. As a baseline,
we calculated the difference between the true PDF and the Gaussian approximation (Figure 6). The
largest deviation from the Gaussian approximation is 0.004, or four orders of magnitude greater than
that from the saddlepoint approximation.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
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Figure 4: Comparison of PDF between truth and approximation for n =10.

c=d_norm_app(x=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),

value.name = 'error', variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
ylab(expression(

'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+
scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')
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Figure 5: Difference in PDF between truth and the saddlepoint approximation.

Healthcare monitoring

In the second example, we used a health system monitoring dataset by Benneyan and Taşeli (2010). To
improve compliance with medical devices, healthcare organizations often monitor bundle reliability
statistics, each representing a percentage of patient compliance. Suppose ni and pi represent the
number of patients and percentage of compliant patients for element i in the bundle, and n and p take
the following values.

size=as.integer(c(12, 14, 4, 2, 20, 17, 11, 1, 8, 11))
prob=c(0.074, 0.039, 0.095, 0.039, 0.053, 0.043, 0.067, 0.018, 0.099, 0.045)

Since it is difficult to find an analytical solution to the density, we estimated the density with
simulation (1e8 trials) and treated it as the ground truth. We then compared simulations with 1e3,
1e4, 1e5, and 1e6 trials, as well as the saddlepoint approximation, to the ground truth (note that the
simulation will take several minutes).

# Sinib:
approx=dsinib(0:sum(size),size,prob)
approx=data.frame(s=0:sum(size),pdf=approx,type='saddlepoint')

# Gauss:
gauss_approx = d_norm_app(0:sum(size),size,prob)
gauss_approx = data.frame(s=0:sum(size),pdf=gauss_approx,type='gauss')

# Simulation:
data=foreach(n_sim=10^c(3:6,8),.combine='rbind')%do%{

ptm=proc.time()
n_binom=length(prob)
set.seed(42)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)

S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
data.table(s=0:sum(size),pdf=sim,type=n_sim)
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Figure 6: Difference in PDF between truth and the Gaussian approximation.

}

data=rbind(data,gauss_approx,approx)
truth=data[type=='1e+08',]

merged=merge(truth[,list(s,pdf)],data,by='s',suffixes=c('_truth','_approx'))
merged=merged[type!='1e+08',]

ggplot(merged,aes(pdf_truth,pdf_approx))+
geom_point()+
facet_grid(~type)+
geom_abline(intercept=0,slope=1)+
theme_bw()+
xlab('Truth')+
ylab('Approximation')
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Figure 7: Comparison of PDF between truth and approximation.

Figure 7 shows that the simulation with 1e6 trials and the saddlepoint approximation are visually
indistinguishable from the ground truth, while simulations with smaller sizes and the Gaussian
method show clear deviations from the truth. To be precise, we plotted the difference in PDF between
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the truth and the approximation.

merged[,Error:=pdf_truth-pdf_approx]
merged[,`Relative Error`:=(pdf_truth-pdf_approx)/pdf_truth]
merged = melt(merged,measure.vars = c('Error','Relative Error'),variable.name = 'error_type',

value.name = 'error')

p2=ggplot(merged,aes(s,error))+
geom_point()+
facet_grid(error_type~type,scales = 'free_y')+
theme_bw()+
xlab('Outcome')+
ylab('Truth-Approx')+
xlim(0,20) +
ylab(expression(frac(Truth - Approximation,Truth)~~~~~~~'Truth - Approximation'))
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Figure 8: Error and relative error between truth and approximation.

Figure 8 shows that that the saddlepoint method and the simulation with 1e6 both provide good
approximations, while simulations of smaller sizes and the Gaussian approximation show clear
deviations. Note that the saddlepoint approximation is 5 times faster than the simulation of 1e6 trials.

ptm=proc.time()
n_binom=length(prob)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)
S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
proc.time()-ptm
# user system elapsed
# 1.008 0.153 1.173

ptm=proc.time()
approx=dsinib(0:sum(size),size,prob)
proc.time()-ptm
# user system elapsed
# 0.025 0.215 0.239

Conclusion and future directions

In this paper, we presented an implementation of the saddlepoint method to approximate the distribu-
tion of sum of independent and non-identical binomials. We assessed the accuracy of the method by,
first, comparing it with the analytical solution on a simple case of two binomials, and second, with the
simulated ground truth on a real-world dataset in healthcare monitoring. These assessments suggest
that the saddlepoint method generally provides an approximation superior to simulation in terms of
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both speed and accuracy, and outperforms the Gaussian approximation in terms of accuracy. Overall,
the sinib package addresses the gap between the theory and implementation on the approximation of
sum of independent and non-identical binomial random variables.

In the future, we aim to explore other approximation methods such as the Kolmogorov approxi-
mation and the Pearson curve approximation described by Butler and Stephens (2016).
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