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Approximating the Sum of Independent
Non-Identical Binomial Random
Variables
by Boxiang Liu and Thomas Quertermous

Abstract The distribution of the sum of independent non-identical binomial random variables is
frequently encountered in areas such as genomics, healthcare, and operations research. Analytical
solutions for the density and distribution are usually cumbersome to find and difficult to compute.
Several methods have been developed to approximate the distribution, among which is the saddlepoint
approximation. However, implementation of the saddlepoint approximation is non-trivial. In this
paper, we implement the saddlepoint approximation in the sinib package and provide two examples
to illustrate its usage. One example uses simulated data while the other uses real-world healthcare data.
The sinib package addresses the gap between the theory and the implementation of approximating
the sum of independent non-identical binomials.

Introduction

Convolution of independent non-identical binomial random variables appears in a variety of appli-
cations, such as analysis of variant-region overlap in genomics (Schmidt et al., 2015), calculation of
bundle compliance statistics in healthcare organizations (Benneyan and Taşeli, 2010), and reliability
analysis in operations research (Kotz and Johnson, 1984).

Computating the exact distribution of the sum of non-identical independent binomial random
variables requires enumeration of all possible combinations of binomial outcomes that satisfy the
totality constraint. However, analytical solutions are often difficult to find for sums of greater than
two binomial random variables. Several studies have proposed approximate solutions (Johnson et al.,
2005; Jolayemi, 1992). In particular, Eisinga et al. (2013) examined the saddlepoint approximation, and
compared them to exact solutions. They note that in practice, these approximations are often as good
as the exact solution and can be implemented in most statistical software.

Despite the theoretical development of aforementioned approximate solutions, a software imple-
mentation in R is still lacking. The stats package includes functions for frequently used distribution
such as dbinom and dnorm, and less frequently used distributions such as pbirthday, but it does not
contain functions for the distribution of the sum of independent non-identical binomials. The EQL
package provides a saddlepoint function to approximate the mean of i.i.d. random variables, but
does not apply to the case where the random variables are not identical. In this paper, we implement a
saddlepoint approximation in sinib (sum of independent non-identical binomial random variables).
The package provides the standard suite of distributional functions for the distribution (psinib),
density (dsinib), quantile (qsinib), and random deviates (rsinib). The package is accompanied by a
detailed documentation, and can be easily integrated into existing applications.

The remainder of this paper is organized as follows. We begin by providing an overview of the
distribution of the sum of independent non-identical binomial random variables. Next, we give
an overview of the saddlepoint approximation. The following section describes the design and
implementation of the saddlepoint approximation in the sinib package. We provide two examples
and assess the accuracy of saddlepoint approximation in these situations. The final section concludes
and discusses future direction.

Overview of the distribution

Suppose X1,. . . ,Xm are independent non-identical binomial random variables such that Sm = ∑m
i=1 Xi.

We are interested in finding the distribution of Sm.

P(Sm = s) = P(X1 + X2 + · · ·+ Xm = s) (1)

In the special case of m = 2, the probability simplifies to

P(S2 = s) = P(X1 + X2 = s) =
s

∑
i=0

P(X1 = i)P(X2 = s− i) (2)
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Computation of the exact distribution often involves enumerating all possible combinations of each
variable that sum to a given value, which becomes infeasible when n is large. A fast recursion method
to compute the exact distribution has been proposed (Butler and Stephens, 2016; Arthur Woodward
and Palmer, 1997). The algorithm is as follows:

1. Compute the exact distribution of each Xi.

2. Calculate the distribution of S2 = X1 + X2 using Equation 2 and cache the result.

3. Calculate Sr = Sr−1 + Xi for r = 3, 4, . . . , m.

Although the recursion speeds up the calculation, studies have shown that the result may be
numerically unstable due to round-off error in computing P(Sr = 0) if r is large (Eisinga et al., 2013;
Yili). Therefore, approximation methods are still widely used in literature.

Saddlepoint approximation

The saddlepoint approximation, first proposed by Daniels (1954) and later extended by Lugannani
and Rice (1980), provides highly accurate approximations for the probability and density of many
distributions. In brief, let M(u) be the moment generating function, and K(u) = log(M(u)) be the
cumulant generating function. The saddlepoint approximation to the PDF of the distribution is given
as:

P̂1(S = s) =
exp(K(û)− ûs)√

2πK′′(û)
(3)

where û is the unique value that satisfies K′(û) = s.

Eisinga et al. (2013) applied the saddlepoint approximation to the sum of independent non-identical
binomial random variables. Suppose that Xi ∼ Binomial(ni, pi) for i = 1, 2, . . . , m. The cumulant
generating function of Sm = ∑m

i=1 Xi is:

K(u) =
m

∑
i=1

ni ln(1− pi + pi exp(u)) (4)

The first- and second-order derivatives of K(u) are:

K′(u) =
m

∑
i=1

niqi (5)

K′′(u) =
m

∑
i=1

niqi(1− qi) (6)

where qi =
piexp(u)

(1−pi+pi exp(u)) .

The saddlepoint of û can be obtained by solving K′(û) = s. A unique root can always be found
because K(u) is strictly convex and therefore K′(u) is monotonically increasing on the real line.

The above shows the first-order approximation of the distribution. The approximation can be
improved by adding a second-order correction term (Daniels, 1987; Akahira and Takahashi, 2001):

P̂2(S = s) = P̂1(S = s)
{

1 +
K′′′′(û)

8[K′′(û)]2
− 5[K′′′(û)]2

24[K′′(û)]3
}

(7)

where

K′′′(û) =
m

∑
i=1

niqi(1− qi)(1− 2qi)

and

K′′′′(û) =
m

∑
i=1

niqi(1− qi)[1− 6qi(1− qi)]

Although the saddlepoint equation cannot be solved at boundaries s = 0 and s = ∑m
i=1 ni, their

exact probabilities can be computed easily:

P(S = 0) =
m

∏
i=1

(1− pi)
ni (8)

P(S =
m

∑
i=1

ni) =
m

∏
i=1

pni
i (9)
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Incorporation of boundary solutions into the approximation gives:

P̄(S = s) =


P(S = 0), s = 0

[1− P(S = 0)− P(S = ∑m
i=1 ni)]

P̂2(S=s)

∑
∑m

i=1 ni−1
i=1 P̂2(S=i)

, 0 < s < ∑m
i=1 ni

P(S = ∑m
i=1 ni), s = ∑m

i=1 ni

(10)

We have implemented Equation 10 as the final approxmation of the probability density function.
For the cumulative density, Daniels (1987) gave the following approximator:

P̂3(S ≥ s) =

1−Φ(ŵ)− φ(ŵ)( 1
ŵ −

1
û1
), if s 6= E(S) and û 6= 0

1
2 −

1√
2π

[ K′′′(0)
6K′′(0)3/2 − 1

2
√

K′′(0)

]
, otherwise (11)

where ŵ = sign(û)[2ûK′(û) − 2K(û)]1/2 and û1 = [1− exp(−û)][K′′(û)]1/2. The letters Φ and φ
denotes the probability and density of the standard normal distribution.

The accuracy can be improved by adding a second-order continuity correction:

P̂4(S ≥ s) = P̂3(S ≥ s)− φ(ŵ)
[ 1

û2

( κ̂4
8
−

5κ̂2
3

24

)
− 1

û3
2
− κ̂3

2û2
2
+

1
ŵ3

]
(12)

where û2 = û[K′′(û)]1/2, κ̂3 = K′′′(û)[K′′(û)]−3/2, and κ̂4 = K′′′′(û)[K′′(û)]−2.

We have implemented Equation 12 to approximate the cumulative distribution.

The sinib package

The package uses only base R and the stats package to minimize compatibility issues. The arguments
for the functions in the sinib package are designed to have similar meaning to those in the stats
package, thereby minimizing the learning required. To illustrate, we compare the arguments of the
*binom and the *sinib functions.

From the help page of the binomial distribution, the arguments are as follows:

• x, q: vector of quantiles.

• p: vector of probabilities.

• n: number of observations.

• size: number of trials.

• prob: probability of success on each trial.

• log, log.p: logical; if TRUE, probabilities p are given as log(p).

• lower.tail: logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

Since the distribution of sum of independent non-identical binomials is defined by a vector of
trial and probability pairs (each pair for one constituent binomial), it was neccessary to redefine these
arguments in the *sinib functions. Therefore, the following two arguments were redefined:

• size: integer vector of number of trials.

• prob: numeric vector of success probabilities.

All other arguments remain the same. It is worth noting that when size and prob arguments are given
as vectors of length 1, the *sinib function reduces to *binom functions:

# Binomial:
dbinom(x = 1, size = 2, prob = 0.5)
[1] 0.5

# Sum of binomials:
library(sinib)
dsinib(x = 1, size = 2, prob = 0.5)
[1] 0.5

The next section shows a few examples to illustrate the usage of sinib.
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Example usage of sinib

This section shows a few examples to illustrate the usage of sinib.

Sum of two binomials

We use two examples to illustrate the use of this package, starting from the simplest case of two
binomial random variables with the same mean but different sizes: X ∼ Bin(n, p) and Y ∼ Bin(m, p).
The distribution of S = X + Y has an analytical solution, S ∼ Bin(m + n, p). We can therefore use
different combinations of (m, n, p) to assess the accuracy of the saddlepoint approximation to the
cumulative density function. We use m, n = {10, 100, 1000} and p = {0.1, 0.5, 0.9} to assess the
approximation. The ranges of m and n are chosen to be large and the value of p are chosen to represent
both boundaries.

library(foreach)
library(data.table)
library(cowplot)
library(sinib)

# Gaussian approximator:
p_norm_app = function(q,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
pnorm(q, mean = mu, sd = sigma)

}

# Comparison of CDF between truth and approximation:
data=foreach(m=c(10,100,1000),.combine='rbind')%do%{

foreach(n=c(10,100,1000),.combine='rbind')%do%{
foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{

a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=c(m,n),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_grid(p~m)+
theme_bw()+
scale_color_discrete(name='prob',guide = 'none')+
xlab('Truth')+
ylab('Approximation')+
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

Figure 1 shows that the saddlepoint approximations are close to the ground truths across a range
of parameters. For parsimony, this figure only shows the case of n = 10. In comparison with the
saddlepoint method, the Gaussian method (dashed lines) provides a relatively poor approximation.
We can further examine the accuracy by looking at the differences between the approximations and
the ground truth.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=pbinom(q=0:(m+n),size=(m+n),prob = p)
b=psinib(q=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=p_norm_app(q=0:(m+n),size=c(m,n),prob = c(p,p))
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Figure 1: Comparison of CDF between truth and approximation for n = 10.

data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)
}

}
}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),value.name = 'error',

variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
ylab(expression(

'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+
scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')

Figure 2 shows the difference between the truth and the approximation for m = n = 100. The
dashed lines indicate the mean of each random variable. The approximations perform well overall.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 477

Error

p = 0.1

Error

p = 0.5

Error

p = 0.9

Relative error

p = 0.1

Relative error

p = 0.5

Relative error

p = 0.9

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

0e+00

1e−04

2e−04

3e−04

4e−04

0.00

0.25

0.50

0.75

1.00

0e+00

2e−05

4e−05

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0e+00

1e−05

2e−05

Quantile

Tr
ut

h 
−

 A
pp

ro
xi

m
at

io
n 

   
   

   
   

  T
ru

th
−

A
pp

ro
xi

m
at

io
n

T
ru

th

Figure 2: Difference in CDF between the ground truth and the approximation

The largest difference occurs around the mean, which is approximately 4e-4. It is worthwhile to
mention that the errors are small for quantiles away from the mean because the the true probabilities
are close to zero and one in the tails. To explore the tail behavior, we examine the relative error defined
as truth−approximation

truth . The relative errors are large for quantiles between zero and the mean because the
true probabilities in this interval are close to zero and the saddlepoint approximation returns zero. The
relative errors are small for quantiles near and greater than the mean, indicating that the saddlepoint
method provides a good approximation in this interval. As a baseline, we calculated the error and
relative error derived from the Gaussian approximation (Figure 3). The largest absolute deviation
approaches 0.06, two orders of magnitude greater than the deviation obtained from the saddlepoint
approximation.

# Comparison of PDF between truth and approximation:
d_norm_app = function(x,size,prob){

mu = sum(size*prob)
sigma = sqrt(sum(size*prob*(1-prob)))
dnorm(x, mean = mu, sd = sigma)

}

data=foreach(m=c(10,100,1000),.combine='rbind')%do%{
foreach(n=c(10,100,1000),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=d_norm_app(x=0:(m+n),size=c(m,n),prob=c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}

data[,m:=paste0('m = ',m)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('saddle','norm'))
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Figure 3: Difference in CDF between the ground truth and Gaussian approximation.

ggplot(data[n==10],aes(x=truth,y=value,color=p,linetype=variable))+
geom_line()+
facet_wrap(m~p,scales='free')+
theme_bw()+
scale_color_discrete(guide = 'none')+
xlab('Truth')+
ylab('Approximation') +
scale_linetype_discrete(name = '', breaks = c('saddle','norm'),

labels = c('Saddlepoint','Gassian')) +
theme(legend.position = 'top')

We next examine the approximation for the probability density function. Figure 4 shows that the
saddlepoint approximation is very close to the ground truth, whereas the Gaussian approximation is
farther away. It is worthwhile to mention that the Gaussian method provides a good approximation
for p = 0.5 because the distribution is symmetrical. Furthermore, we examine the difference between
the truth and the approximations. One example for m = n = 100 is shown in Figure 5. As before, the
saddlepoint approximation degrades around the mean, but the largest deviation is less than 4e-7. As a
baseline, we calculated the difference between the true PDF and the Gaussian approximation in Figure
6. The largest deviation from the Gaussian approximation is 0.004, or four orders of magnitude greater
than that from the saddlepoint approximation.

data=foreach(m=c(100),.combine='rbind')%do%{
foreach(n=c(100),.combine='rbind')%do%{

foreach(p=c(0.1, 0.5, 0.9),.combine='rbind')%do%{
a=dbinom(x=0:(m+n),size=(m+n),prob = p)
b=dsinib(x=0:(m+n),size=as.integer(c(m,n)),prob=c(p,p))
c=d_norm_app(x=0:(m+n),size=c(m,n),prob = c(p,p))
data.table(s=seq_along(a),truth=a,saddle=b,norm=c,m=m,n=n,p=p)

}
}

}
data = melt(data,measure.vars = c('saddle','norm'),value.name = 'approx',

variable.name = 'Method')
data[,`Relative error` := (truth-approx)/truth]
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Figure 4: Comparison of PDF between truth and approximation for n = 10.

data[,Error := (truth-approx)]
data[,p:=paste0('p = ',p)]
data = melt(data,measure.vars = c('Relative error','Error'),

value.name = 'error', variable.name = 'type')

ggplot(data[Method == 'saddle'],aes(x=s,y=error,color=p))+
geom_point(alpha=0.5)+theme_bw()+
facet_wrap(type~p,scales='free')+
xlab('Quantile')+
ylab(expression(

'Truth - Approximation'~~~~~~~~~~~~~~~frac(Truth - Approximation,Truth)))+
scale_color_discrete(guide='none') +
geom_vline(xintercept=200*0.5,color='green',linetype='longdash')+
geom_vline(xintercept=200*0.1,color='red',linetype='longdash')+
geom_vline(xintercept=200*0.9,color='blue',linetype='longdash')

Healthcare monitoring

In the second example, we used a health system monitoring dataset by Benneyan and Taşeli (2010). To
improve compliance with medical devices, healthcare organizations often monitor bundle reliability
statistics, each representing a percentage of patient compliance. Suppose ni and pi represent the
number of patients and percentage of compliant patients for element i in the bundle, and n and p take
the following values:
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Figure 5: Difference in PDF between truth and the saddlepoint approximation.

size=as.integer(c(12, 14, 4, 2, 20, 17, 11, 1, 8, 11))
prob=c(0.074, 0.039, 0.095, 0.039, 0.053, 0.043, 0.067, 0.018, 0.099, 0.045)

Since it is difficult to find an analytical solution for the density, we estimated the density with
simulation (1e8 trials) and treated it as the ground truth. We then compared simulations with 1e3,
1e4, 1e5, and 1e6 trials, and the saddlepoint approximation to the ground truth. (Note that running
simulation will take several minutes.)

# Sinib:
approx=dsinib(0:sum(size),size,prob)
approx=data.frame(s=0:sum(size),pdf=approx,type='saddlepoint')

# Gauss:
gauss_approx = d_norm_app(0:sum(size),size,prob)
gauss_approx = data.frame(s=0:sum(size),pdf=gauss_approx,type='gauss')

# Simulation:
data=foreach(n_sim=10^c(3:6,8),.combine='rbind')%do%{

ptm=proc.time()
n_binom=length(prob)
set.seed(42)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)

S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
data.table(s=0:sum(size),pdf=sim,type=n_sim)

}

data=rbind(data,gauss_approx,approx)
truth=data[type=='1e+08',]

merged=merge(truth[,list(s,pdf)],data,by='s',suffixes=c('_truth','_approx'))
merged=merged[type!='1e+08',]
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Figure 6: Difference in PDF between truth and the Gaussian approximation.

ggplot(merged,aes(pdf_truth,pdf_approx))+
geom_point()+
facet_grid(~type)+
geom_abline(intercept=0,slope=1)+
theme_bw()+
xlab('Truth')+
ylab('Approximation')
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Figure 7: Comparison of PDF between truth and approximation.

Figure 7 shows that the simulation with 1e6 trials and the saddlepoint approximation are indistin-
guishable from the ground truth, while the Gaussian method and estimates with fewer simulations
show clear deviations from the truth. To further examine the magnitude of deviation, we plot the
difference in PDF between the truth and the approximation:

merged[,Error:=pdf_truth-pdf_approx]
merged[,`Relative Error`:=(pdf_truth-pdf_approx)/pdf_truth]
merged = melt(merged,measure.vars = c('Error','Relative Error'),variable.name = 'error_type',

value.name = 'error')

p2=ggplot(merged,aes(s,error))+
geom_point()+
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facet_grid(error_type~type,scales = 'free_y')+
theme_bw()+
xlab('Outcome')+
ylab('Truth-Approx')+
xlim(0,20) +
ylab(expression(frac(Truth - Approximation,Truth)~~~~~~~'Truth - Approximation'))
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Figure 8: Error and relative error between truth and approximation.

Figure 8 shows that that the saddlepoint method and the simulation with 1e6 draws both provide
good approximations, while the Gaussian approximation and simulations of smaller sizes show clear
deviations. We also note that the saddlepoint approximation is 5 times faster than the simulation of
1e6 trials.

ptm=proc.time()
n_binom=length(prob)
mat=matrix(rbinom(n_sim*n_binom,size,prob),nrow=n_binom,ncol=n_sim)
S=colSums(mat)
sim=sapply(X = 0:sum(size), FUN = function(x) {sum(S==x)/length(S)})
proc.time()-ptm
# user system elapsed
# 1.008 0.153 1.173

ptm=proc.time()
approx=dsinib(0:sum(size),size,prob)
proc.time()-ptm
# user system elapsed
# 0.025 0.215 0.239

Conclusion and future direction

In this paper, we presented an implementation of the saddlepoint method to approximate the distribu-
tion of the sum of independent and non-identical binomials. We assessed the accuracy of the method
by comparing it with first, the analytical solution in the simple case of two binomials, and second, the
simulated ground truth on a real-world dataset in healthcare monitoring. These assessments suggest
that the saddlepoint method generally provides an approximation superior to simulation in terms of
both speed and accuracy, and outperforms the Gaussian approximation in terms of accuracy. Overall,
the sinib package addresses the gap between the theory and implementation on the approximation of
sum of independent and non-identical binomial random variables.

In the future, we aim to explore other approximation methods such as the Kolmogorov approxi-
mation and the Pearson curve approximation described by Butler and Stephens (2016).
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