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Pstat: An R Package to Assess Population
Differentiation in Phenotypic Traits
by Stéphane Blondeau Da Silva and Anne Da Silva

Abstract The package Pstat calculates PST values to assess differentiation among populations from
a set of quantitative traits and provides bootstrapped distributions and confidence intervals for PST .
Variations of PST as a function of the parameter c/h2 are studied as well. The package implements
different transformations of the measured phenotypic traits to eliminate variation resulting from
allometric growth, including calculation of residuals from linear regression, Reist standardization, and
the Aitchison transformation.

Introduction

Understanding the causes governing patterns of morphological variations in the wild represents
a fundamental goal of evolutionary biology. In particular, the relative importance of selective and
neutral processes behind the observed differentiation remains a crucial question.

Studies comparing differentiation in quantitative traits and neutral markers have significantly
increased over the last ten years (Leinonen et al., 2013). Typically, a set of populations is sampled
and the degree of genetic differentiation is estimated for a set of molecular markers with the Wright’s
FST index (Wright, 1951). For its part, the QST index (Spitze, 1993) assesses the degree of phenotypic
differentiation over a set of quantitative traits. The logic of FST and QST comparison relies on the
assumption that the FST obtained by the consideration of neutral markers reflects the divergence only
induced by genetic drift (Reynolds et al., 1983). Hence, FST provides a null expectation and allows
estimation of the degree of population differentiation that would be reached without selection (Merilä
and Crnokrak, 2001).

As a consequence, the comparison between FST and QST leads to three possibilities: (i) QST > FST
means that quantitative traits show a higher level of differentiation than what would have been
expected under the influence of genetic drift, such that natural selection could induce differentiation
between populations by favoring different phenotypes (i.e., heterogeneous selection); (ii) QST < FST
could indicate the influence of natural selection, but selecting for same optima among populations
(i.e., homogeneous selection); (iii) QST = FST means that no departure from neutral expectations can
be detected and that the degree of differentiation in quantitative traits could have been obtained only
by genetic drift, even if the contribution of natural selection can neither be excluded nor estimated.

Spitze (1993) introduced and defined the QST quantity as follows for diploid species assuming
purely additive gene action:

QST =
σ2
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where σ2
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and σ2
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are the morphological additive genetic variance components between and within
populations.

In the wild, the estimation of the additive genetic variance components is challenging as breeding
design is impossible. Therefore, QST is often approximated by PST (Leinonen et al., 2006), which is
directly calculated from the total phenotypic variance components with no distinction between the
relative contribution of genetic and environmental variations:
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where σ2
b and σ2

w are the respective phenotypic variances between and within populations, c is an
estimate of the proportion of the total variance due to additive genetic effects across populations,
and h2 is heritability, the proportion of phenotypic variance due to additive genetic effects (Brommer,
2011). How well PST approximates QST depends on the parameters c and h2, such that if the values of
c and h2 are known, then the phenotypic divergence quantified by PST would equal QST . This implies
caution in the interpretation obtained from PST (Brommer, 2011).

A large number of studies have assessed the potential for natural selection to affect morphological
evolution by comparing phenotypic divergence with neutral genetic divergence via a PST versus FST
approach (e.g., Mobley et al., 2011; Lima, 2012; He et al., 2013; Shinn et al., 2015). While estimation
of FST values are included in various R packages such as diveRsity (Keenan et al., 2013) or hierfstat
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(Goudet, 2005), no R package exists to deal with the PST index. In this study, we present the Pstat
package to handle large datasets of quantitative traits and correct quantitative traits taking into account
allometric growth. The package calculates PST values with their respective bootstrapped confidence
intervals, and offers several options to select individuals, traits, or populations. We also provide
various plotting tools for the visual evaluation of PST and FST values. We will walk through a detailed
example to give an overview of the Pstat package.

An example to get familiar with the main functions

After loading the package with library(Pstat), load the sample data with data(test). This data
frame contains 200 rows, with each row representing an individual in a population of common
wetland plants, Juncus effusus (see Michalski and Durka 2015 and the Dryad Digital Repository,
https://doi.org/10.5061/dryad.bk5hk). The data frame contains the name of the populations (A, B,
C, D, and E) to which each individual belongs and eleven quantitative measures. An excerpt from the
sample data are presented in Table 1.

Populations QM1 QM2 QM3 QM4 . . .

1 A 0.18487253 0.4001979 0.1694021 42 . . .
2 B 0.24023500 0.4718000 0.2178500 46 . . .
3 C 0.23499676 0.4686213 0.2060222 25 . . .
4 B 0.20495223 0.3746026 0.1846816 51 . . .
5 C 0.20739220 0.4866461 0.2131618 19 . . .
6 C 0.22545341 0.3770903 0.1882165 28 . . .
7 C 0.18371681 0.4992361 0.2167194 25 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 1: Sample from the test data frame, containing quantitative measures for individual members
of Juncus effusus (Michalski and Durka, 2015).

The data preparation

The package can be used to transform data to eliminate variation resulting from allometric growth.
Users have the choice between three alternatives:

1. Residuals of a linear regression, with one of the quantitative variables used as the regressor
(Kuhry and Marcus, 1977);

2. The allometric transformation described in Reist (1985); or

3. Aitchison’s log-ratio transform (Aitchison, 1986).

Among a variety of univariate transformations that aim to separate size and shape variations, Reist
(1985) showed that adjustments for size using a regression and residuals (the first option) and allometric
adjustments to a standard size (the second option) are preferred since they allow the complete removal
of size variations and have minimal impact on the correlation and covariance structure of the data.
Unlike the first two options, the third transformation offers the benefit of keeping the same number of
variables. We provide examples of each of the three alternatives below.

Simple linear adjustments

The first adjustment method provided by Pstat is a simple linear regression. Assuming the existence of
linear relationships between the dependent variable and one of the quantitative traits, the Res function
returns a new data frame with the residuals of the regression. The function’s arguments are as follows:

◦ data: the studied data frame to be transformed with as many rows as individuals; the first
column must contain the population to which the individual belongs and the other columns
may contain quantitative variables.

◦ reg: the name or the rank of the variable chosen as the regressor.

◦ Rp: the names of the populations to be deleted. Default value: Rp=0, no population removed.

◦ Ri: the line numbers of individuals to be deleted. Default value: Ri=0, no individuals removed.
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We present sample output from the test data, using one of the quantitative traits as the regressor.
A sample of the transformed data output by Res is presented in Table 2.

## Using the explanatory variable QM3 as the regressor
Res(data=test, reg="QM3")

Populations QM1 QM2 QM4 . . .

1 A 0.0339245264 5.621424e-03 6.23817063 . . .
2 B 0.1001268662 4.497085e-02 8.44522196 . . .
3 C 0.0922422473 4.966613e-02 -12.11705813 . . .
4 B 0.0574228940 -3.014565e-02 14.67271191 . . .
5 C 0.0662351079 6.293798e-02 -18.38127681 . . .
6 C 0.0787149904 -3.001126e-02 -8.45810788 . . .
7 C 0.0433557311 7.315960e-02 -12.51293868 . . .

. . . . . . . . . . . . . . . . . .

Table 2: Sample from the adjusted data frame output by Res, using QM3 as the explanatory variable.

Reist transformation

In the second adjustment method provided by Pstat, all morphometric measurements are standardized
using the transformation proposed by Reist (1985).

Let n be the number of individuals and p the number of quantitative traits such that ∃ k ∈
{1, . . . , p} and the kth trait is the explanatory variable. Let us denote this variable (xi)1≤i≤n and the
other traits as j ∈ {1, . . . , p} \ {k}, (yij)1≤i≤n. The Reist transformation is

∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , p} \ {k} ,

Yij = log(yij)− bj(log(xi)− log(x)) ,

where Yij is the size adjusted measurement of the jth trait for the ith individual, yij the original
morphometric measurement, x the population mean of the explanatory variable, and xi the value
of the explanatory variable for the ith individual. For all j ∈ {1, . . . , p} \ {k}, the parameter bj is
estimated for the quantitative trait yj (i.e. (yij)1≤i≤n) and represents the slope of the linear regression
of log(yj) on log(x).

The ReistTrans function returns a corrected data frame. Using QM3 as the explanatory variable,
we present a sample of the transformed data frame in Table 3.

## Using QM3 as the explanatory variable (identified by column number)
ReistTrans(test, reg=3)

Populations QM1 QM2 QM4 . . .

1 A -0.7445410 -0.3859875 1.631722 . . .
2 B -0.6004703 -0.3462059 1.648348 . . .
3 C -0.6167708 -0.3421063 1.388608 . . .
4 B -0.6893556 -0.4255755 1.708186 . . .
5 C -0.6669355 -0.3300087 1.266323 . . .
6 C -0.6456670 -0.4250906 1.446049 . . .
7 C -0.7175846 -0.3210021 1.384003 . . .

. . . . . . . . . . . . . . . . . .

Table 3: Sample from the Reist adjusted data frame using QM3 as the explanatory variable.

Aitchison transformation

The third adjustment method provided by Pstat performs the Aitchison log-ratio transformation to
account for individual size-effects (Aitchison, 1986).

Let n be the number of individuals and p the number of morphological traits. For j ∈ {1, . . . , p}, let
(yij)1≤i≤n represent the quantitative variables. The formula formula for the Aitchison transformation
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is as follows:

∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , p} ,

Yij = log(yij)−
1
p

p

∑
k=1

log(yik) ,

where Yij is the transformed measure of the jth trait for the ith individual, and yij is the original value
for the ith individual and the jth trait.

The AitTrans function returns a corrected data frame. Sample output are included in Table 4.

AitTrans(test)

Populations QM1 QM2 QM3 QM4 . . .

1 A -1.947544 -1.6121417 -1.985498 0.408832854 ...
2 B -1.910214 -1.6170919 -1.952692 0.371908012 . . .
3 C -1.834151 -1.5343910 -1.891299 0.192727037 . . .
4 B -1.901481 -1.6395625 -1.946710 0.494436831 . . .
5 C -1.832709 -1.4622885 -1.820792 0.129251912 . . .
6 C -1.801889 -1.5785008 -1.880288 0.292211929 . . .
7 C -1.938699 -1.5045418 -1.866950 0.195092172 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4: Sample from the Aitchison adjusted data frame.

Phenotypic differentiation evaluation and confidence intervals

PST values

We are interested in determining the phenotypic differentiation across the five populations for each of
the eleven quantitative traits of the example dataset. The function Pst can determine the PST values
of each trait with the associated bootstrapped confidence intervals (Efron and Tibshirani, 1993). The
arguments to Pst are as follows:

◦ data: the input data frame with as many rows as individuals; the first column must contain the
population label and the others quantitative variables.

◦ ci: if ci=1, the confidence intervals are added to PST values. Default value: ci=0.

◦ csh: the c
h2 value. Default value: csh=1.

◦ va: a vector containing the names or column numbers of the quantitative measures under
consideration. If va=0, all the variables are selected. Default value: va=0.

◦ boot: the number of data frames generated to determine the confidence interval with the
bootstrap method. Default value: boot=1000.

◦ Pw: the names of the two populations considered to obtain pairwise PST . Default value: Pw=0,
no pairwise analysis.

◦ Rp: the names of the populations to be deleted. Default value: Rp=0, no populations removed.

◦ Ri: the line numbers of individuals to be deleted. Default value: Ri=0, no individuals removed.

◦ pe: the confidence level of the calculated interval. Default value: pe=0.95.

Let us apply the Pst function to the test dataset. The output from Pst will be a data frame:

## Example 1: Pairwise Pst values using populations C and D
Pst(test, csh=0.2, Pw=c("C","D"))
[1] "Populations sizes are:"
C D
76 32

Quant_Varia Pst_Values
1 QM1 0.1749659
2 QM2 0.7460913
... ... ...
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4 QM10 0.9800028

## Example 2: Pst for the 2nd variable and QM7 with 99% confidence intervals
Pst(test, va=c(2,"QM7"), ci=1, boot=10000, Ri=c(5,117:121), pe=0.99)
[1] "Populations sizes are:"
A B C D E
12 76 72 30 4
Quant_Varia Pst_Values 99 %_LowBoundCI 99 %_UpBoundCI

1 QM2 0.8561307 0.7826177 0.9198395
2 QM7 0.8851413 0.7722856 0.9376501

Distribution of PST

The bootstrapped PST values output from BootPst form a distribution for the selected quantitative
trait. In addition to arguments that are shared with Pst, the BootPst function has the following
additional arguments specific to the bootstrap procedure:

◦ opt: if opt=0, all the boot values of PST are returned; if opt="ci", the ordered values and the
confidence interval are returned; and if opt="hist", the ordered values and the distribution
histogram of PST are returned. Default value: opt=0.

◦ va: the name or column number of the quantitative measure considered.

◦ bars: the maximum number of bars the histogram may have. On the x-axis, the interval [0, 1] is
divided into bars parts (there may exist unfilled bars). Default value: bars=20.

The output from the BootPst function is a vector with the bootstrapped values.

Let us apply the BootPst function to test dataset:

## Example 1: Bootstrapped 95% confidence intervals for three populations (B, C, and D).
## Note that populations A and E are dropped
BootPst(test, opt="ci", va="Body_length", Rp=c("A","E"))
[1] "The studied quantitative variable is:"
[1] "Body_length"
[1] "Populations sizes are:"
B C D

76 76 32
[1] "95 % confidence interval determined by 1000 bootstrap values:"
[1] 0.8757057 0.9585423

[1] 0.7938426 0.8338286 0.8510682 0.8512374 0.8545911 0.8551115 0.8552097
[8] 0.8637057 0.8641575 0.8644145 0.8659723 0.8671139 0.8671265 0.8676122
[15] 0.8686147 0.8702277 0.8708352 0.8711419 0.8718030 0.8721783 0.8734932
...
[995] 0.9621794 0.9625852 0.9634700 0.9644283 0.9650500 0.9689611

## Example 2: Histogram for the trait in column 3 (output in Figure 1)
BootPst(test, opt="hist", va=3, bars=50)
[1] "The studied quantitative variable is:"
[1] "QM3"
[1] "Populations sizes are:"
A B C D E

12 76 76 32 4
[1] "1000 bootstrap values and Pst distribution:"

[1] 0.1062747 0.1076470 0.1269888 0.1593121 0.1775196 0.2050347 0.2111617
[8] 0.2327508 0.2401064 0.2487401 0.2588179 0.2589942 0.2623706 0.2722956
[15] 0.2827915 0.2860497 0.2935858 0.2947525 0.2954878 0.2995198 0.3003267
...
[995] 0.8211326 0.8253874 0.8293417 0.8318546 0.8420100 0.8635299

Variations of PST values and visual comparison with Wright’s FST index

Brommer (2011) and Lima (2012) offer plots that demonstrate how FST and PST depend on the c
h2

ratio. The Pstat package provides plotting tools to perform these analyses with the function TracePst.
Arguments specific to TracePst include:
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Figure 1: PST distribution histogram of QM3.

◦ va: a vector containing the selected variables names or numbers (i.e. those of the quantitative
measures considered). If va=0, all the variables are selected. Default value: va=0.

◦ ci: if ci=1, the confidence interval of PST is plotted. Default value: ci=1.

◦ Fst: the value of Wright’s FST , if available. Default value: Fst=-1, value of FST is unavailable.

◦ xm: x-axis maximum. Default value: xm=2.

◦ pts: the number of points used to plot the curves. Default value: pts=30.

Let us apply the TracePst function to the test dataset. The plots output are in Figure 2.

# Aitchison adjustment method:
trans_test=AitTrans(test)

# Plots illustrating how comparisons between Fst and Pst depends on c/h^2:
TracePst(trans_test, Fst=0.3, xm=3)
[1] "Populations sizes are:"
A B C D E
12 76 76 32 4

Conclusion

The use of PST versus FST comparison has increased rapidly in the last few years in the field of
evolutionary and ecological genetics. The Pstat package is the counterpart of existing R packages
dealing with F-statistics. It calculates PST values, and also provides bootstrapped confidence intervals,
several graphical tools, as well as three ways of transforming data to remove variation resulting from
allometric growth.
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Figure 2: Plots illustrating comparisons between FST and PST . The horizontal dotted green line marks
the value of FST . PST values and associated 95% confidence intervals are plotted in red.
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