
CONTRIBUTED RESEARCH ARTICLE 439

Simple Features for R: Standardized
Support for Spatial Vector Data
by Edzer Pebesma

Abstract Simple features are a standardized way of encoding spatial vector data (points, lines,
polygons) in computers. The sf package implements simple features in R, and has roughly the same
capacity for spatial vector data as packages sp, rgeos, and rgdal. We describe the need for this package,
its place in the R package ecosystem, and its potential to connect R to other computer systems. We
illustrate this with examples of its use.

What are simple features?

Features can be thought of as “things” or objects that have a spatial location or extent; they may be
physical objects like a building, or social conventions like a political state. Feature geometry refers to
the spatial properties (location or extent) of a feature, and can be described by a point, a point set,
a linestring, a set of linestrings, a polygon, a set of polygons, or a combination of these. The simple
adjective of simple features refers to the property that linestrings and polygons are built from points
connected by straight line segments. Features typically also have other properties (temporal properties,
color, name, measured quantity), which are called feature attributes. Not all spatial phenomena are
easy to represent by “things or objects:” continuous phenoma such as water temperature or elevation
are better represented as functions mapping from continuous or sampled space (and time) to values
(Scheider et al., 2016), and are often represented by raster data rather than vector (points, lines,
polygons) data.

Simple feature access (Herring, 2011) is an international standard for representing and encoding
spatial data, dominantly represented by point, line, and polygon geometries (ISO, 2004). It is widely
used e.g. by spatial databases (Herring, 2010), GeoJSON (Butler et al., 2016), GeoSPARQL (Perry and
Herring, 2012), and open source libraries that empower the open source geospatial software landscape
including GDAL (Warmerdam, 2008), GEOS (GEOS Development Team, 2017), and liblwgeom (a
PostGIS component, Obe and Hsu (2015)).

The need for a new package

The sf (Pebesma, 2018) package is an R package for reading, writing, handling, and manipulating
simple features in R, reimplementing the vector (points, lines, polygons) data handling functionality
of packages sp (Pebesma and Bivand, 2005; Bivand et al., 2013), rgdal (Bivand et al., 2017) and rgeos
(Bivand and Rundel, 2017). However, sp has some 400 direct reverse dependencies, and a few thousand
indirect ones. Why was there a need to write a package with the potential to replace it?

First of all, at the time of writing sp (2003) there was no standard for simple features, and the
ESRI shapefile was by far the dominant file format for exchanging vector data. The lack of a clear
(open) standard for shapefiles, the omnipresence of “bad” or malformed shapefiles, and the many
limitations of the ways it can represent spatial data adversely affected sp, for instance in the way it
represents holes in polygons, and a lack of discipline to register holes with their enclosing outer ring.
Such ambiguities could influence plotting of data, or communication with other systems or libraries.

The simple feature access standard is now widely adopted, but the sp package family has to make
assumptions and do conversions to load them into R. This means that you cannot round-trip data, e.g.,
loading data in R, manipulating them, exporting them and getting the same geometries back. With sf,
this is no longer a problem.

A second reason was that external libraries heavily used by R packages for reading and writing
spatial data (GDAL) and for geometrical operations (GEOS) have developed stronger support for the
simple feature standard.

A third reason was that the package cluster now known as the tidyverse (Wickham, 2017, 2014),
which includes popular packages such as dplyr (Wickham et al., 2017) and ggplot2 (Wickham, 2016),
does not work well with the spatial classes of sp:

• tidyverse packages assume objects not only behave like data.frames (which sp objects do by
providing methods), but are data.frames in the sense of being a list with equally sized column
vectors, which sp does not do.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=sf
http://CRAN.R-project.org/package=sp
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=rgeos
http://CRAN.R-project.org/package=tidyverse
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 440

• attempts to “tidy” polygon objects for plotting with ggplot2 (“fortify”) by creating data.frame
objects with records for each polygon node (vertex) were neither robust nor efficient.

A simple (S3) way to store geometries in data.frame or similar objects is to put them in a geometry
list-column, where each list element contains the geometry object of the corresponding record, or
data.frame “row”; this works well with the tidyverse package family.

Conventions

Classes

The main classes introduced by package sf are

"sf": a data.frame (or tbl_df) with one or more geometry list-columns, and an attribute sf_column
indicating the active geometry list-column of class sfc,

"sfc": a list-column with a set of feature geometries

"sfg": element in a geometry list-column, a feature geometry

"crs": a coordinate reference system, stored as attribute of an "sfc"

Except for "sfg", all these classes are implemented as lists. Objects of class "sfg" are subtyped
according to their class, classes have the following storage form:

POINT: numeric vector with a single point

MULTIPOINT: numeric matrix with zero or more points in rows

LINESTRING: numeric matrix with zero or more points in rows

POLYGON: list with zero or more numeric matrices (points as rows); polygon outer ring is followed by
zero or more inner rings (holes)

MULTILINESTRING: list with zero or more numeric matrices, points in rows

MULTIPOLYGON: list of lists following the POLYGON structures

GEOMETRYCOLLECTION: list of zero or more of the (classed) structures above

All geometries have an empty form, indicating the missing (or NA) equivalent for a geometry.

Functions and methods

Category Functions

binary predicates st_contains, st_contains_properly, st_covered_by, st_covers,
st_crosses, st_disjoint, st_equals, st_equals_exact,
st_intersects, st_is_within_distance, st_within, st_touches,
st_overlaps

binary operations st_relate, st_distance
unary operations st_dimension, st_area, st_length, st_is_longlat, st_is_simple,

st_is_valid, st_jitter, st_geohash, st_geometry_type
miscellaneous st_sample, st_line_sample, st_join, st_interpolate_aw,

st_make_grid, st_graticule, sf_extSoftVersion, rawToHex,
st_proj_info

setters st_set_agr, st_set_crs
constructors st_sfc, st_sf, st_as_sf, st_as_sfc, st_point, st_multipoint,

st_linestring, st_multilinestring, st_polygon,
st_multipolygon, st_geometrycollection, st_combine,
st_bind_cols

in- & output st_read, st_read_db, st_write, st_write_db, read_sf, write_sf,
st_drivers, st_layers

plotting st_viewport, st_wrap_dateline, sf.colors

Table 1: Functions provided by package sf, arranged by functional category.

Functions are listed in Table 1. Some functions or methods operate on both attributes and ge-
ometries, e.g. aggregate and summarise compute grouped statistics and group (union) corresponding

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 441

class methods

sfg as.matrix, c, coerce, format, head, Ops, plot, print, st_as_binary, st_as_grob,
st_as_text, st_transform, st_coordinates, st_geometry, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm

sfc [, [<-, as.data.frame, c, coerce, format, Ops, print, rep, st_as_binary, st_as_text,
st_bbox, st_coordinates, st_crs, st_crs<-, st_geometry, st_precision,
st_set_precision, str, summary, st_transform, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm, obj_sum, type_sum

sf [, [[<-, $<-, aggregate, cbind, coerce, merge, plot, print, rbind, st_agr, st_agr<-,
st_bbox, st_coordinates, st_crs, st_crs<-, st_geometry, st_geometry<-,
st_precision, st_set_precision, st_transform, st_boundary, st_buffer,
st_centroid, st_convex_hull, st_difference, st_intersection, st_line_merge,
st_make_valid, st_node, st_point_on_surface, st_polygonize, st_segmentize,
st_simplify, st_split, st_sym_difference, st_triangulate, st_union, st_voronoi,
st_cast, st_collection_extract, st_is, st_zm, anti_join, arrange, distinct,
filter, full_join, gather, group_by, inner_join, left_join, nest, mutate, rename,
right_join, sample_frac, sample_n, select, semi_join, separate, slice, spread,
summarise, transmute, ungroup, unite

crs $, is.na, Ops, print, st_as_text, st_crs

Table 2: Methods for sf classes: colours indicate geometry operation, class manipulation, tidyverse;
and Ops refers to (a subset of) arithmetical operations.

geometries, and st_interpolate_aw carries out area-weighted interpolation (Do et al., 2015). The
function st_join joins pairs of tables based on a geometrical predicate such as st_intersects.

Generic methods for sf objects are listed in Table 2. Many of them are for creation, extraction, and
conversion, and many of them are not needed for every-day work. Where possible, methods act either
on a geometry (sfg), a geometry set (sfc), or a geometry set with attributes (sf), Methods return an
object of identical class. Coordinate reference systems (CRS) carry through all operations, except for
st_transform, which transforms coordinates from one reference system into another, and hence, the
CRS changes.

Serialisations

The simple feature access defines two serialisation standards: well-known-text (WKT) and well-known-
binary (WKB). Well-known text is the default print form and sfc columns can be read from WKT
character vectors, using st_as_sfc:

> library(sf)
Linking to GEOS 3.5.1, GDAL 2.1.2, proj.4 4.9.3
> (pt <- st_point(c(0,1)))
POINT (0 1)
> (pol <- st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))
POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))
> st_as_sfc("POINT(0 1)") # returns sfc:
Geometry set for 1 feature
geometry type: POINT
dimension: XY
bbox: xmin: 0 ymin: 1 xmax: 0 ymax: 1
epsg (SRID): NA
proj4string: NA
POINT (0 1)

R native simple feature geometries can be written to WKB using st_as_binary:

> st_as_binary(st_point(c(0,1)))
[1] 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0 3f

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 442

> st_as_binary(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))
[1] 01 03 00 00 00 01 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[26] 00 00 00 00 00 00 00 00 00 00 f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00
[51] 00 f0 3f 00 00 00 00 00 00 f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[76] f0 3f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Similarly, binary encoded geometries can be read back using st_as_sfc.

All communication to and from the underlying libraries GDAL, GEOS and liblwgeom, as well
as direct reading and writing of geometry BLOBs in spatial databases, uses binary serialisation and
deserialisation, written in C++. This makes code not only fast but also robust: for all possible geometry
classes, a single interface is used to communicate to a variety of endpoints.

Spherical geometry

The GEOS library provides a large set of operations for data in a two-dimensional space. For unpro-
jected, geographic data the coordinates are longitude and latitude, and describe points on a sphere (or
ellipsoid), not on a plane. The sf package allows such data to be passed to all geometric operations,
but will emit a message if this happens through GEOS, assuming a flat Earth. For the functions
st_area, st_length, st_distance, st_is_within_distance, and st_segmentize specialized spherical
functions, taken from lwgeom (Pebesma), are used. The advantage of this package e.g. over geosphere
(Hijmans, 2016a) is that it supports simple features for distance calculations, where geosphere only
computes distances between points. Function st_sample has been modified to work for spherical
coordinates when sampling points on an area over a sphere.

It would be nice to get a (more) complete set of functions working for spherical geometry. Potential
candidate libraries to be used for this include s2 (Rubak and Ooms, 2017), liblwgeom (part of PostGIS),
CGAL (Fabri and Pion, 2009), and boost.Geometry.

Tidy tools

During the development of sf, considerable effort was put into making the new data structures work
with the tidyverse. This was done by providing methods for dplyr verbs (Table 2), and by helping
develop a ggplot2 geom function (next section) that plots maps well.

The tidy tools manifesto prescribes four principles, which we will comment on:

1. Reuse existing data structures. We use the simplest R structures (numeric vector for point,
matrix for point set, list for any other set), and fully support two standardized serializations
(WKT, WKB)

2. Compose simple functions with the pipe. functions and methods were designed such that
they can be used easily in pipe-based workflows; replacement functions like st_crs<- were
augmented by st_set_crs to make this look better.

3. Embrace functional programming. Functions were kept type-safe, empty geometries and
empty lists are supported, and operation overloading was done creatively e.g. by providing Ops
for scaling and shifting a polygon:

> pol * 2 + pt
POLYGON ((0 1, 2 1, 2 3, 0 3, 0 1))

Functions like st_join for a spatial join allow the user to pass a join function that is compatible
with st_intersects, making the spatial predicate applied for the join completely customisable.

4. Design for humans. with the experience of having (co-)written and maintained sp for a decade,
we have tried to keep sf simple and lean. Methods were used as much as possible to keep the
namespace small. All functions and methods start with st_ (for “spacetime”, following PostGIS
convention) to keep them recognizable, and searchable using tab-completion.

Plotting

Figure 1 (left) shows the default plot for an "sf" object with more than one attribute: no color keys are
given, default colours depend on whether the variable is numeric (top) or a factor (bottom). Figure 1
was obtained by:

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=lwgeom
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=s2
https://cran.r-project.org/web/packages/tidyverse/vignettes/manifesto.html

CONTRIBUTED RESEARCH ARTICLE 443

BIR74

NAME

0 5000 10000 15000 20000

84°W 82°W 80°W 78°W 76°W

32
°N

33
°N

34
°N

35
°N

36
°N

37
°N

38
°N

BIR74

Figure 1: At left: default plot for sf object with two attributes; on right: plot for a single attribute with
color key, axes and graticule.

SID79

SID74

84°W 82°W 80°W 78°W 76°W

34°N

34.5°N

35°N

35.5°N

36°N

36.5°N

34°N

34.5°N

35°N

35.5°N

36°N

36.5°N

0

10

20

30

40

50

SID

Figure 2: Plot generated with ggplot2::geom_sf, the now curved graticules follow constant long/lat
lines.

> library(sf)
> nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
> plot(nc[, c(9,5)])

When we plot a single attribute, a color key is default (unless key.pos=NULL). The following command

> plot(nc[, 9], key.pos = 1, axes = TRUE, graticule = TRUE)

adds axes and a graticule (longitude/latitude grid lines) on the right side of Figure 1.

Figure 2 shows a plot generated by ggplot2 (version 2.2.1 or later):

> library(ggplot2)
> library(tidyr)
> library(dplyr)
> nc2 <- nc %>% st_transform(32119) %>% select(SID74, SID79, geom) %>%
+ gather(VAR, SID, -geom)
> ggplot() + geom_sf(data = nc2, aes(fill = SID)) + facet_wrap(~ VAR, ncol = 1)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 444

Figure 3: Dependencies of sf on other R packages and external system libraries.

Rasters, time series, and units

For some users, starting with sf feels like closing an old book (sp), and opening a new one. But it is
not as if this new book has a similar content, or size. It is unsure when, or even whether at all, the
hundreds of packages that use sp classes will be modified to use the sf classes.

The most heard question is where raster data are in this new book: sp provides simple classes for
gridded data, raster (Hijmans, 2016b) provides heavy duty classes and a massive number of methods
to work with them, tightly integrated with the sp vector classes. The current version of raster accepts
sf objects in some of its functions by converting them to (the smaller set of) sp objects. At the time of
writing this, we can only say that this is an area of active discussion, exploration and development,
and we will be happy to point interested readers to where the public components of this discussion
are taking place.

Besides raster data, time series for spatial features (e.g. for monitoring stations) are hard to map
onto sf objects: one would either have to put time slices in columns, or add a time column and repeat
the feature geometry for each observation. Raster data, spatial time series, and raster time series are
the focus of the stars project.

A new aspect of the package is the ability to retrieve spatial measures and to set e.g. distance
parameters with explicit measurement units (Pebesma et al., 2016):

> st_area(st_transform(nc[1,], 2264)) # NC state plane, US foot

12244955726 US_survey_foot^2

> st_crs(2264)$units

[1] "us-ft"

> st_area(st_transform(nc[1,], 2264)) %>% units::set_units(km^2) # convert:

1137.598 km^2

which might first confuse, but has the potential to prevent a whole category of scientific errors.

Connections to other computer systems and scalability

In many cases, analysing spatial data with R starts with importing data, or ends with exporting data,
from or to a file or database. The ability to do this is primarily given by the well-known text (WKT)
and well-known binary (WKB) serialisations that are part of the simple feature standard, and that
are supported by sf. Communication with the GDAL, GEOS, and liblwgeom libraries uses WKB
both ways. GDAL currently has drivers for 93 different spatial vector data connections (file formats,
data bases, web services). Figure 3 shows the dependencies of sf on other R packages and system
libraries. A reason to build upon these libraries is that they are used and maintained by, and hence
reflect concensus of, the large community of spatial data experts outside R.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=raster
https://github.com/r-spatial/stars

CONTRIBUTED RESEARCH ARTICLE 445

Besides using GDAL, sf can directly read and write from and to spatial databases. This currently
works with PostGIS using RPostgreSQL; making this work with RPostgres and in general with spatial
databases using DBI is under active development. Initial experiments indicate that working with
massive, out-of-memory spatial databases in R is possible using the dbplyr framework. This not
only removes the memory limits of R, but also benefits from the persistent spatial indexes of these
databases.

For planar data, sf builds its spatial indexes on the fly for spatial binary predicates (st_intersects,
st_contains etc.) and its binary operations (st_intersection, st_difference etc). A blog post about
the spatial indexes in sf describes how using indexes makes these operations feasible for larger in-
memory datasets. For spherical data, indexes e.g. provided by liblwgeom or by s2 still need to be
explored.

Summary and further reading

We present a new package, sf, for simple features in R, as a modern alternative for parts of the
sp-family of packages. It provides new foundational classes to handle spatial vector data in R, and
has been received with considerable enthusiasm and uptake. While implementing sf, several well-
proven concepts have been maintained (separation of geometries and attributes, libraries used), new
links have been made (dplyr, ggplot2, spatial databases), and new concepts have been explored and
implemented (units, spatial indexes).

For further reading into the full capabilities of sf and its rationale, the reader is refered to the six
vignettes that come with the package.

Acknowledgments

Writing sf would not have been possible without all the prior work and continuous help of Roger
Bivand. Package contributers are Ian Cook, Tim Keitt, Michael Sumner, Robin Lovelace, Hadley
Wickham, Jeroen Ooms, and Etienne Racine. All contributors to GitHub issues are also acknowledged.
Special thanks go to Dirk Eddelbuettel for developing Rcpp (Eddelbuettel et al., 2011; Eddelbuettel,
2013).

Support from the R Consortium has been very important for the development, visibility and fast
adoption of sf, and is gratefully acknowledged. Anonymous reviewers are acknowledged for helpful
comments.

Bibliography

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine - Open Source (’GEOS’), 2017. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.3-25. [p439]

R. Bivand, T. Keitt, and B. Rowlingson. rgdal: Bindings for the ’Geospatial’ Data Abstraction Library, 2017.
URL https://CRAN.R-project.org/package=rgdal. R package version 1.2-15. [p439]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied Spatial Data Analysis with R, Second Edition.
Springer-Verlag, 2013. URL http://www.asdar-book.org/. [p439]

H. Butler, M. Daly, A. Doyl, S. Gillies, S. Hagen, and T. Schaub. The GeoJSON format, 2016. ISSN
2070-1721. URL https://tools.ietf.org/html/rfc7946. [p439]

V. H. Do, C. Thomas-Agnan, and A. Vanhems. Accuracy of areal interpolation methods for count
data. Spatial Statistics, 14:412 – 438, 2015. URL https://doi.org/10.1016/j.spasta.2015.07.005.
[p441]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer-Verlag, New York, 2013. [p445]

D. Eddelbuettel, R. François, J. Allaire, K. Ushey, Q. Kou, N. Russel, J. Chambers, and D. Bates. Rcpp:
Seamless R and C++ integration. Journal of Statistical Software, 40(8):1–18, 2011. [p445]

A. Fabri and S. Pion. CGAL: The computational geometry algorithms library. In Proceedings of the
17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages
538–539. ACM, 2009. [p442]

GEOS Development Team. GEOS - Geometry Engine, Open Source. Open Source Geospatial Foundation,
2017. URL https://trac.osgeo.org/geos/. [p439]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://r-spatial.org/r/2017/06/22/spatial-index.html
https://s2geometry.io/
http://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
http://www.asdar-book.org/
https://tools.ietf.org/html/rfc7946
https://doi.org/10.1016/j.spasta.2015.07.005
https://trac.osgeo.org/geos/

CONTRIBUTED RESEARCH ARTICLE 446

J. R. Herring. OpenGIS implementation standard for geographic information-simple feature access-
part 2: SQL option. Open Geospatial Consortium Inc, 2010. URL http://portal.opengeospatial.
org/files/?artifact_id=25354. [p439]

J. R. Herring. OpenGIS implementation standard for geographic information-simple feature access-
part 1: Common architecture. Open Geospatial Consortium Inc, page 111, 2011. URL http://portal.
opengeospatial.org/files/?artifact_id=25355. [p439]

R. J. Hijmans. geosphere: Spherical Trigonometry, 2016a. URL https://CRAN.R-project.org/package=
geosphere. R package version 1.5-5. [p442]

R. J. Hijmans. Raster: Geographic Data Analysis and Modeling, 2016b. URL https://CRAN.R-project.
org/package=raster. R package version 2.5-8. [p444]

ISO. Geographic Information – Simple Feature Access – Part 1: Common Architecture, 2004. URL https:
//www.iso.org/standard/40114.html. ISO 19125-1:2004. [p439]

R. O. Obe and L. S. Hsu. PostGIS in Action. Manning Publications Co., 2015. [p439]

E. Pebesma. lwgeom: Bindings to Selected ’liblwgeom’ Functions for Simple Features. URL https://CRAN.R-
project.org/package=lwgeom. R package version 0.1-5. [p442]

E. Pebesma. sf: Simple Features for R, 2018. URL https://CRAN.R-project.org/package=sf. R package
version 0.6-1. [p439]

E. Pebesma, T. Mailund, and J. Hiebert. Measurement units in R. The R Journal, 8(2):486–494, 2016.
URL https://journal.r-project.org/archive/2016-2/pebesma-mailund-hiebert.pdf. [p444]

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9–13, 2005.
URL https://CRAN.R-project.org/doc/Rnews/. [p439]

M. Perry and J. Herring. OGC GeoSPARQL-a geographic query language for RDF data. OGC
Implementation Standard, ref: OGC, 2012. [p439]

E. Rubak and J. Ooms. S2: Google’s S2 Library for Geometry on the Sphere, 2017. URL https://CRAN.R-
project.org/package=s2. R package version 0.1-1. [p442]

S. Scheider, B. Gräler, E. Pebesma, and C. Stasch. Modeling spatiotemporal information generation.
International Journal of Geographical Information Science, 30(10):1980–2008, 2016. URL https://doi.
org/10.1080/13658816.2016.1151520. [p439]

F. Warmerdam. The geospatial data abstraction library. In Open Source Approaches in Spatial Data
Handling, pages 87–104. Springer-Verlag, 2008. [p439]

H. Wickham. Tidy data. Journal of Statistical Software, Articles, 59(10):1–23, 2014. ISSN 1548-7660. URL
https://doi.org/10.18637/jss.v059.i10. [p439]

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2016. [p439]

H. Wickham. Tidyverse: Easily Install and Load the ’Tidyverse’, 2017. URL https://CRAN.R-project.
org/package=tidyverse. R package version 1.1.1. [p439]

H. Wickham, R. Francois, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2017. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.4. [p439]

Edzer Pebesma
Institute for Geoinformatics
Heißenbergstraße 2
Münster, Germany
ORCiD: 0000-0001-8049-7069
edzer.pebesma@uni-muenster.de

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://portal.opengeospatial.org/files/?artifact_id=25354
http://portal.opengeospatial.org/files/?artifact_id=25354
http://portal.opengeospatial.org/files/?artifact_id=25355
http://portal.opengeospatial.org/files/?artifact_id=25355
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://www.iso.org/standard/40114.html
https://www.iso.org/standard/40114.html
https://CRAN.R-project.org/package=lwgeom
https://CRAN.R-project.org/package=lwgeom
https://CRAN.R-project.org/package=sf
https://journal.r-project.org/archive/2016-2/pebesma-mailund-hiebert.pdf
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=s2
https://CRAN.R-project.org/package=s2
https://doi.org/10.1080/13658816.2016.1151520
https://doi.org/10.1080/13658816.2016.1151520
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=dplyr
mailto:edzer.pebesma@uni-muenster.de

	Simple Features for R: Standardized Support for Spatial Vector Data
	What are simple features?
	The need for a new package
	Conventions
	Classes
	Functions and methods

	Serialisations
	Spherical geometry
	Tidy tools
	Plotting
	Rasters, time series, and units
	Connections to other computer systems and scalability
	Summary and further reading
	Acknowledgments

