
CONTRIBUTED RESEARCH ARTICLE 424

Nonparametric Independence Tests and
k-sample Tests for Large Sample Sizes
Using Package HHG
by Barak Brill, Yair Heller, and Ruth Heller

Abstract Nonparametric tests of independence and k-sample tests are ubiquitous in modern applica-
tions, but they are typically computationally expensive. We present a family of nonparametric tests
that are computationally efficient and powerful for detecting any type of dependence between a pair
of univariate random variables. The computational complexity of the suggested tests is sub-quadratic
in sample size, allowing calculation of test statistics for millions of observations. We survey both
algorithms and the HHG package in which they are implemented, with usage examples showing
the implementation of the proposed tests for both the independence case and the k-sample problem.
The tests are compared to existing nonparametric tests via several simulation studies comparing both
runtime and power. Special focus is given to the design of data structures used in implementation of
the tests. These data structures can be useful for developers of nonparametric distribution-free tests.

Introduction

A common question that arises in the analysis of data is whether two random variables, X and Y, are
independent. The null hypothesis is

H0 : FXY(x, y) = FX(x)FY(y) ∀ x, y (1)

where FX and FY are the marginal cumulative distribution functions of X and Y, and FXY is the joint
cumulative distribution function. The case where Y is categorical and X is continuous is the k-sample
problem. An omnibus consistent test will reject the null hypothesis in (1) for any dependence between
X and Y, with probability increasing to one as the sample size tends to infinity.

In recent years, there has been great interest in developing tests of independence that are able
to identify complex dependencies based on N independent observations from FXY . For univariate
random variables, the first omnibus consistent test was based on summation of a score over all N 2× 2
partitions of the sample space where every data point serves as a partition point (Hoeffding, 1948).
This test is available via the function hoeffd from package Hmisc (Harrell Jr et al., 2018). Another
classic approach is based on the measure of mutual information following partitioning of the data into
a 2-dimensional grid (Paninski, 2003). This approach is taken in the R packages minet (Meyer et al.,
2008, 2017), infotheo (Meyer, 2014), and entropy (Hausser and Strimmer, 2009, 2014) with various
extensions to the partitioning schemes used.

Recently, several nonparametric omnibus consistent tests have been suggested that have com-
putational complexity at least quadratic in sample size. Reshef et al. (2011), with CRAN package
minerva (Albanese et al., 2013; Filosi et al., 2017), suggested MIC, which is based on the maximum
of penalized estimated mutual information partitions. Gretton et al. (2008), with CRAN package
dHSIC (Pfister et al., 2018; Pfister and Peters, 2017), suggested HSIC, which is a kernel test based
on the empirical estimate of the Hilbert Schmidt norm of the cross-covariance operator. Székely
et al. (2007, 2009), with CRAN package energy (Rizzo and Szekely, 2017), suggested dCov, which is
based on the joint empirical characteristic function. Both kernel and characteristic function methods
may be implemented in a scenario where X or Y are multivariate. Heller et al. (2016), with CRAN
package HHG, suggested tests which aggregate by maximization or by summation the likelihood
ratio test (LRT) scores over all possible partitions of data, with m partition points for each variable.
The suggested tests aggregate over all partitions of the data of size m×m (i.e., having m×m cells) for
a range of m values.

For the k-sample problem, Székely and Rizzo (2004) suggested a test based on joint empirical
characteristic function, which they implemented in package energy as well. Gretton et al. (2012a)
suggested a family of consistent two sample tests based on kernels. The function kmmd from package
kernlab (Zeileis et al., 2004) implements this family of tests for several kernel choices. Jiang et al.
(2015), with CRAN package dslice, suggested the dynamic slicing test statistic, which aggregates by
maximization the penalized LRT score with a penalty for fine partitions. Heller et al. (2016), with
CRAN package HHG, suggested tests which aggregate by maximization or by summation the LRT
scores over all possible partitions of data.

The potential advantage in power as sample size increases in the state-of-the-art tests listed above

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=Hmisc
http://www.bioconductor.org/packages/release/bioc/html/minet.html
http://CRAN.R-project.org/package=infotheo
http://CRAN.R-project.org/package=entropy
http://CRAN.R-project.org/package=minerva
http://CRAN.R-project.org/package=dHSIC
http://CRAN.R-project.org/package=energy
http://CRAN.R-project.org/package=HHG
http://CRAN.R-project.org/package=kernlab
http://CRAN.R-project.org/package=dslice

CONTRIBUTED RESEARCH ARTICLE 425

is hindered by the computational cost. In practice, many of the state-of-the-art tests cannot be applied
when sample sizes are in the thousands. The computational problem is compounded when multiple
tests are to be carried out in the same analysis, e.g., when the aim is to detect all pairwise associations
among the variables in a dataset.

Modifications to some of the tests listed above can be used for large sample sizes. For the HSIC test
statistic, it was suggested to compute the quadratic time HSIC test statistic for subsets of the data, and
then aggregate the HSIC test statistics towards the test statistic for the null hypothesis in (1) (Gretton
et al., 2012a,b). Two approximate HSIC statistics, the Nyström HSIC test statistic and the random
fourier feature HSIC, have been shown to have reduced computational complexity while enjoying
power comparable to the original HSIC statistic (Zhang et al., 2018). Other computationally efficient
ways to compute HSIC were suggested in Jitkrittum et al. (2016b,a). The three computationally efficient
adaptations of the HSIC test (Nyström, RFF, FSIC) have an intrinsic trade-off between power and
computational complexity given by a resolution parameter of the method. The user is able to ’pay in
runtime’ for more power. A computationally efficient algorithm for computing the univariate dCov
test statistic in O(Nlog(N)) time was developed in Huo and Székely (2016). For the suggested test
in Gretton et al. (2012a), computationally efficient modifications have been considered in Zhao and
Meng (2015) and Chwialkowski et al. (2015). A computationally efficient algorithm for computing
the univariate energy test statistic of Székely and Rizzo (2004) in O(Nlog(N)) time was developed in
Huang and Huo (2017). Jiang et al. (2015) suggested considering only a subset of partition locations for
large sample sizes for their dynamic slicing test. In our present work, we suggest a similar modification
for the tests in Heller et al. (2016).

This paper describes two main contributions. The first is to provide a method and software for
discovering dependence that has reasonable computational time for any sample size. Specifically, we
modify the algorithms for the tests of Heller et al. (2016) , which were shown to have good power in
complex settings, to aggregate only a representative subset of all partitions of the data, thus achieving
a computational complexity which is sub-quadratic in sample size. The suggested tests have power
competitive with state-of-the-art methods, but can be computed at a fraction of the time. Second, we
extend the algorithms for the tests of Heller et al. (2016) to allow partitions with a different number
of partition points on each axis. LRT scores of all partitions of size m × l of the sample space are
aggregated where m and l are the number of partition points of the X and Y variables, respectively.
This generalization does not increase the computational complexity, yet it can result in better power
for alternatives where the optimal number of partition points in each axis is different.

The paper is organized as follows. We introduce the atom based MinP statistic and detail our
novel contributions in the following two sections. Then, in “Usage examples”, we present the work
flow of the package (function calls and outputs). In “k-sample tests” we present the computationally
efficient tests for the K-Sample problem and their work flow. In “Simulation” we compare the novel
tests to other state-of-the-art tests in terms of power and runtime. Finally, in “Discussion” we provide
some final remarks. Other tests available in HHG are detailed in Appendix B.

The atom based test statistics

Suppose we have N sample points, where each sample is a pair (x, y). We split the plane into m parts
along the X axis and into l parts along the Y axis. (Note that for now, m and l are fixed; later we will
show how we choose the best m and l automatically so that the user will not need to fix them.) We
consider the set of all m× l partitions of the data, where a split point is possible only once every A
ordered observations in each variable. The indivisible blocks of observations are called atoms. We
assume for simplicity that the number of atoms NA is an integer multiple of A, NA = N/A. Figure 1
shows an example partition of the sample space based on atoms.

A cell c is defined by four integers, marking its left, right, top and bottom boundaries on an
equidistant grid of NA × NA points. A cell with all four boundaries in the interior of the grid will
be considered a ’center’ cell (cell type 1). A cell with either its top or bottom boundary at the edge
of the grid will be considered a ’top’ or ’bottom’ cell, respectively (cell type 2). A cell with either its
left or right boundary at the edge of the grid will be considered a ’left’ or ’right’ cell, respectively
(cell type 3). A set which has two boundaries at the edge of the grid (e.g., ’left’ and ’top’) will be
called a ’corner’ cell (cell type 4). Let Oc denote the number of samples observed in a cell, and Ec
the expected number of samples when H0 is true. For a cell of width w atoms and height h atoms,
Ec = w

NA

h
NA

N = whA2/N. Let C be the set of all cells and C (w, h, t) the set of all cells of size w× h
atoms and type t, where t ∈ {1, 2, 3, 4}. We define the function n(t, w, h, m, l), returning the number of

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 426

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

rank(x)

ra
nk

(y
)

1 5 10 15 20 25 30 35 40 45 50

1

5

10

15

20

25

30

35

40

45

50

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: A visualization of a single partition of the atoms plane. The atom size is A = 5, so only
partitions on the dashed black grid lines are allowed at boundary values 5.5, 10.5, 15.5, For m = 5
and l = 4, a single 5× 4 partition is depicted with blue line boundaries. For N = 50 sample points
(black dots), we have NA = 10 atoms dividing each axis. The cell coloured in blue, which has width
w = 2 atoms and height h = 3 atoms, has Oc = 8 sample points, whereas only Ec = 2× 3× 52/50 = 3
are expected under H0.

m× l partitions a cell of type t and size w, h participates in:

n(t, w, h, m, l) =

(NA−w−2

m−3) · (NA−h−2
l−3) t=1 (center cell)

(NA−w−2
m−3) · (NA−h−1

l−2) t=2 (top/bottom cell)
(NA−w−1

m−2) · (NA−h−2
l−3) t=3 (left/right cell)

(NA−w−2
m−2) · (NA−h−1

l−2) t=4 (corner cell)

(2)

Let Γ̃m×l be the set of all m× l partitions of the plane, where a split point is possible only between
atoms. For a given m× l partition size, the aggregated by sum test statistic is

Sm×l = ∑
Γ∈Γ̃m×l

∑
c∈Γ

Oc log (Oc/Ec) = ∑
c∈C

∑
Γ∈Γ̃m×l

I (c ∈ Γ)Oc log (Oc/Ec)

=
4

∑
t=1

(NA+1−m)

∑
w=1

(NA+1−l)

∑
h=1

∑
c∈C(w,h,t)

Oc log (Oc/Ec) n (t, w, h, m, l) , (3)

where I(·) is the indicator function. The last equality in (3) demonstrates that for computing
Sm×l , we can iterate over cells instead of partitions, thus achieving a computational complexity

of O
(

NA
4 + NlogN

)
, even though the number of possible partitions is |Γ̃m×l | = (NA−1

m−1) · (
NA−1

l−1).

Since the optimal partition size m× l is unknown, we propose taking the minimum p-value over
the plausible range of partition sizes:

MinP = min
2≤m,l≤m.max

pm×l , (4)

where pm×l is the p-value of the test statistic Sm×l .

In Appendix A we present the full pseudo-code for the algorithm, including the case when N is
not a multiple of A. The pseudo-code also shows how {Sm×l : m = 2, . . . , m.max, l = 2, . . . , m.max}
is computed at the same computational complexity as a single Sm×l . The atom based test in (4) is
consistent as long as NA → ∞ and m.max2/N → 0 (for a proof see Appendix C in Brill, 2016).

The null distribution of MinP and pm×l

In this section, we show how to tabulate the null distribution of our proposed statistic MinP. This
tabulation requires tabulating the null distribution of Sm×l . Fortunately, the test statistics in (3)-(4)
are based on the ranked observations and therefore are distribution free. Consequently, the null
distributions of {Sm×l : 2 ≤ m, l ≤ m.max} can be tabulated off-line (prior to seeing the data) in order

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 427

to evaluate the p-value of any test statistic that combines {pm×l : 2 ≤ m, l ≤ m.max}.
The tabulation of the null distribution of Sm×l and the MinP test statistics is described in the

schematic diagram in Figure 2. The structure of generated null distributions and stored tabula-
tions of null distributions differs. While one generates the vector of Sm×l statistics from a single
sample, the package data structure for a null table is constructed by sorted arrays of the marginal
distributions. Given a null table of size B repetitions, one can compute all marginal p-values for
S2×2, S2×3, S3×2, . . . , Sm.max×m.max in O(m.max2log(B)) time once each of the m× l statistics is com-
puted from data. Then the MinP statistic is simply the minimum of all these p-values. An additional
O(log(B)) search is required for computing the true p-value of the achieved MinP test statistic. Given
the null table, calculating the MinP statistic takes altogether O(N log N + N4

A + m.max2 log B + log B),
and since m.max ≤ NA, this is at most O(N log N + N4

A + N2
A log B). Since typically log B < N2

A, the
complexity is typically O(N log N + N4

A).

Sample B
Permutations

from
(1:𝑁,𝜋 1:𝑁)

𝑀𝑖𝑛𝑃 12

𝑀𝑖𝑛𝑃 47

𝑀𝑖𝑛𝑃 32

𝑀𝑖𝑛𝑃 21

𝑀𝑖𝑛𝑃 93

A B C

D
E

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆2×2 𝑆2×𝑀 𝑆3×𝑀… 𝑆3×2 … 𝑆𝑀×2…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆𝑀×𝑀…

𝑆 1
2×2 𝑆 5

2×𝑀 𝑆 112
3×𝑀… 𝑆 33

3×2 … 𝑆 2
𝑀×2…

𝑆 211
2×2 𝑆 41

2×𝑀 𝑆 58
3×𝑀… 𝑆 24

3×2 … 𝑆 164
𝑀×2…

𝑆 31
2×2 𝑆 32

2×𝑀 𝑆 32
3×𝑀… 𝑆 13

3×2 … 𝑆 78
𝑀×2…

𝑆 35
2×2 𝑆 281

2×𝑀 𝑆 2
3×𝑀… 𝑆 5

3×2 … 𝑆 81
𝑀×2…

𝑆 21
2×2 𝑆 17

2×𝑀 𝑆 42
3×𝑀… 𝑆 52

3×2 … 𝑆 65
𝑀×2…

𝑆 4
𝑀×𝑀…

𝑆 31
𝑀×𝑀…

𝑆 157
𝑀×𝑀…

𝑆 42
𝑀×𝑀…

𝑆 5
𝑀×𝑀…

𝑆 1
2×2

𝑆 𝐵
2×𝑀

𝑆 1
3×𝑀

…

𝑆 3
3×2

…

𝑆 2
𝑀×2

…

𝑆 2
2×2

𝑆 4
2×𝑀

𝑆 𝐵
3×𝑀

…

𝑆 2
3×2

… 𝑆 1
𝑀×2

…

𝑆 3
2×2 𝑆 3

2×𝑀 𝑆 3
3×𝑀

…

𝑆 1
3×2

…

𝑆 3
𝑀×2…

𝑆 4
2×2

𝑆 2
2×𝑀 𝑆 2

3×𝑀

…

𝑆 𝐵
3×2

…

𝑆 𝐵
𝑀×2

…

𝑆 𝐵
2×2

𝑆 1
2×𝑀

𝑆 4
3×𝑀

…

𝑆 4
3×2

…

𝑆 4
𝑀×2

…

𝑆 4
𝑀×𝑀

…

𝑆 3
𝑀×𝑀

…

𝑆 1
𝑀×𝑀

…

𝑆 2
𝑀×𝑀

…

𝑆(𝐵)
𝑀×𝑀

…

𝑀𝑖𝑛𝑃 1

𝑀𝑖𝑛𝑃 4

𝑀𝑖𝑛𝑃 3

𝑀𝑖𝑛𝑃 2

𝑀𝑖𝑛𝑃 𝐵

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮

Figure 2: Schematic for the computation of the p-value for the MinP statistic. In step A, sample N
pairs without replacement from {1, . . . , N} × {1, . . . , N}, B times. In step B, compute all test statistics
for each sample of N pairs, color coded so that we have B rows and (M− 1)2 columns of test statistics.
In step C, compute the within column rank for each test statistic: the rank is in the subscript for each
test statistic, and its p-value is solely determined by the rank and B. In step D, compute MinP for each
sample (row) and its rank in the subscript. In step E, each sorted column along with the sorted MinP
column is stored individually for fast access and computation of p-values.

In practice, one does not need to maintain all marginal null distributions at a fixed resolution.
Only the lower p-values (high Sm×l scores) are used for rejections. Thus, when one simulates a large
null table such as B = 106, marginal ECDFs can be maintained at 0.001 increments of the cumulative
probability distribution function for p-values bigger than some parameter for compression α′ (e.g.,
α′ = 0.05) and at maximum resolution for lower p-values. Using the above parameters as the two
different resolutions and α′, a null table of 106 values is compressed to just over 5 · 104 values. This
data structure makes p-value computation via the null table simple and efficient, with null tables sizes
being maintainable even for large values of B.

In addition, this data structure is utilized as a combination method for statistics with a nominal
false positive rate of α. Importantly, one can utilize this efficient data structure with any set of statistics
and a general combination score which takes into account only marginal p-values. For example, Heller
et al. (2016) propose another type of combination score for their tests, of the form −∑m.max

m=2 log (pm×m).
The combination score makes use of this data structure as well.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 428

Usage examples

Function calls and input arguments

The test procedure utilizes two function calls. The first function call carries out the tabulation of the
null distributions for both the Sm×l statistics and the MinP combination statistic. The second function
call computes the MinP test statistic and its p-value, given the look-up tables for the distributions of
Sm×l and MinP (see Table 1).

The arguments for the null distribution tabulation are the sample size, the maximal partition size
considered, and the number of atoms. These are denoted by the parameters n, mmax, and nr.atoms,
respectively. The default parameters for the test are mmax = min(10,n) and nr.atoms = min(40,n). In
Section “Simulations”, we discuss these defaults in terms of power, runtime, and the trade-off between
the two. Other parameters include the type of combination score used (MinP or Fisher) and the type
of data partition used (m×m or m× l).

The arguments for computing the MinP test statistic via Fast.independence.test are two vec-
tors of size n for the joint observations of (X, Y), and a null table object produced by the function
Fast.independence.test.nulltable. All test parameters are kept in the null table object.

Table 1: The novel atom-based tests in the HHG package.

Function Name Description

Fast.independence.test.nulltable Function creates null table objects for the atoms
based omnibus distribution-free test of indepen-
dence between two univariate random variables.
Input arguments are the number of atoms, m.max,
and the type of partitioning (all m× l or all m×m
partitions).

Fast.independence.test Performs the atoms based distribution-free test of
independence of two univariate random variables,
which is computationally efficient for large data
sets. Input arguments are two numeric vectors of
data, and optionally a null table object (if a null
table has not been precomputed, one is generated
on the fly).

Output description

The output of the function Fast.independence.test.nulltable is a null table data structure. This
data structure contains the sorted marginal distributions of Sm×l statistics, the sorted distribution of
the MinP test score, and the test parameters as in Figure 2.

The output of Fast.independence.test is an object of class "UnivariateStatistic" containing
the results of both the marginal Sm×l tests performed on the data, along with the results of the MinP
test. The fields m.stats and pvalues.of.single.m contain the test statistics for the tests of fixed
partitions size and their respective P-values, given by (3). The fields MinP and MinP.pvalue contain
the data adaptive test statistic and its P-value, given by (4).

Example code

We begin by computing the a look-up tables of the null distributions. This is done by calling the first
function, with the sample size as a parameter:

compute null table, using default m.max,
number of atoms and number of permutations under the null.

nt = Fast.independence.test.nulltable(n)

The number of atoms for the procedure and the maximal partition size are set to their default
values. The object nt now holds a look-up table which is specific for the selected test parameters and
sample size. We will use this object to carry out the test using Fast.independence.test:

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 429

carry out test, parameters set by null table passed.
res = Fast.independence.test(x,y,nt)

print results and P-value. P-value given under entry 'MinP.pvalue'.
res

The last line prints the output for the test. The output begins by describing the test parameters:
test statistic chosen, partition sizes considered, and number of atoms:

HHG univariate combined independence statistic
Statistics type combined:
sum of ADP-EQP-ML on Likelihood Ratio scores.

Single m statistics are the sum of scores over All Derived Partitions (ADP) of the data.
Statistics are normalized by the number of possible partitions and sample size.

Minimum partition size: 2 Maximum partition size: 10
Sample size: 1200
Equipartition nr.atoms: 40

The output printed shows the Sm×l test statistics along with their marginal p-values:

Single m (partition size) statistics:
m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

l=2 0.000548 0.00117 0.00180 0.00244 0.00308 0.00369 0.00429 0.00486 0.00541
l=3 0.001165 0.00244 0.00374 0.00505 0.00633 0.00759 0.00881 0.00998 0.01111
...
l=10 0.004584 0.00950 0.01453 0.01962 0.02470 0.02973 0.03468 0.03955 0.04434

Single m (partition size) pvalues:
m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

l=2 0.199 0.1294 0.0995 0.0597 0.05473 0.04478 0.04478 0.03483 0.03483
l=3 0.134 0.0647 0.0398 0.0299 0.02488 0.01493 0.01493 0.01493 0.01493
...
l=10 0.174 0.0846 0.0448 0.0249 0.01493 0.00995 0.00995 0.00995 0.00995

Finally, the output shows the MinP test statistic score along with it’s p-value, which is the p-value
for the test. The selected partition size attaining the smallest p-value is also shown:

MinP Statistic - Test statistic is minimum of above single m pvalues:
0.01
Partition size with minimum p-value: 6X6
p-value for MinP test:0.01

As stated above, the proposed method is distribution free. As such, the look-up table generated
can be used with any data of the same size, as we show in the next example.

generate data of size n:
x.2 = rnorm(n)
y.2 = x.2 + rnorm(n)

carry out test using exactly the same null table as before.
res2 = Fast.independence.test(x.2,y.2,nt)

The main advantage of distribution free tests is that while standard permutation based tests
performed on M null hypotheses with B permutations (in each test) require M × B independent
calculations of the test statistics, distribution free tests require only M test statistics and B permutations,
M + B in total. This condition makes them ideal for scenarios where a large number of hypotheses are
examined simultaneously.

For large values of NA and table size B, the computation of the look-up table can still be cumber-
some. The package vignette shows how this process can be parallelized.

k-sample tests

A special case of the independence problem is the k-sample problem: independence testing for
continuous X and categorical Y, where Y has K different categories, 1, . . . , K. The null hypothesis can

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 430

be formulated as:

H0 : FX(x|y = 1) = FX(x|y = 2) = . . . = FX(x|y = k), ∀x (5)

We modify the MinP test statistic in Heller et al. (2016) to consider only partitions at the atom level.
For example, instead of considering all possible partitions, we consider only partition points that are
found on an equidistant grid of NA points. Let pm be the p-value of the test statistic that aggregates by
summation or maximization all the LRT scores with partitions of size m of the real line, where a split
point is possible only every NA points. The atom based test statistic is

MinP = min
2≤m≤m.max

(pm) . (6)

The code snippets below show how to analyze an example. The two vectors X and Y are of size
1000. The entries in Y are the group labels: 500 zeros and 500 ones.

generate null table
nt = hhg.univariate.ks.nulltable(c(500,500), #group structure

variant = 'KSample-Equipartition', #computationally
efficient variant of the K-sample test.
mmax = 10, #m.max parameter
nr.atoms = 30, #number of atoms
nr.replicates = 10^4) #number of replicates

run test
res = hhg.univariate.ks.combined.test(X,Y,nt)

Shows Average LRT scores: AVG LRT score of
m = 2,...,10 cell tables
res

As with independence tests in which many k-sample tests with the same sample sizes are carried
out, the same null table can be used. We demonstrate this in the next example:

generate sample with the same group structure -
normal deviates with a shift between groups.
X2 = rnorm(length(Y),0,1)+1*Y

perform test using the same null table.
res2 = hhg.univariate.ks.combined.test(X2,Y,nt)

view results
res2

Simulations

We used simulations to assess the performance of the atom based tests in terms of both run time
and power. Full source code for reproducing the simulation results, graphs and usage examples is
found in the supplementary material, and at the GitHub repository (https://barakbri.github.io/
HHG_large_sample_framework/).

All run times were measured using the CRAN package rbenchmark (Kusnierczyk, 2012). Run
times were measured separately from power estimation, as simulation for power estimation has been
parallelized via the doRNG package (Gaujoux, 2017). All run time experiments were done serially,
without parallelization.

The test of independence

In order to assess the power of the MinP test statistics along with the actual run time required, we
present four different scenarios of dependence between univariate random variables. Figure 3 shows
the bivariate relationship along with a representative noisy sample: two monotone relationships (left
panels), and two non-monotone relationships (right panels).

The presented methods were run with N = 2500, NA = 5, 10, 15, 30, 45, 60, and with summation
over all m× l or m×m partitions. This allows one to assess the affect of NA on power and run time,
along with the possible affect of summation over tables with a different number of partition points on

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://barakbri.github.io/HHG_large_sample_framework/
https://barakbri.github.io/HHG_large_sample_framework/
http://CRAN.R-project.org/package=rbenchmark
http://CRAN.R-project.org/package=doRNG

CONTRIBUTED RESEARCH ARTICLE 431

the two axes. Reducing the number of atoms NA, allows one to estimate the breakdown of the method
in terms of power.

The parameter m.max was set to the package default (m.max = 10), except for NA = 5 where
m.max was constrained by the number of atoms to 5. Heller et al. (2016) and Brill (2016) show by
various simulation studies that the power of the test is quite robust to the selection of m.max since it
selects the optimal m, l adaptively; the test considers all partitions of sizes 2× 2 to m.max×m.max
and selects the best partition in the sense that its p-value is minimal.

Methods compared to in the simulation study are dCOV from CRAN package energy, MIC
from CRAN package minerva, and HSIC from CRAN package dHSIC. We note that typically faster
competitive methods are somewhat degenerate variations on these methods and would have much
lower power than the originals.

Figure 4 shows the trade-off between runtime and power. We see that as the number of atoms
increase, the run time increases but power is almost the same for 30 atoms or more. We set the default
value for the number of atoms in the functions given in Table 1 to be the minimum between sample
size and 40, promising the user a result in reasonable time regardless of sample size. Even for a small
number of atoms such as NA = 10, the MinP test power is similar to the MinP test with a high number
of atoms. For the smallest number of atoms considered, NA = 5, power may drop for complex signals
which require fine partitions of the data. For the monotone settings considered, the method maintains
competitive power also for NA = 5.

Figure 5 shows the power as a function of sample size. The power of the test for the monotone
settings is highest for dCov with the atoms based test a close second, similar to the best one achieved
by the competitors. For the Circles setting, power for the m× m and m× l variant is similar. The
setting is symmetric in practice, and the m×m variant enjoys higher power since it needs to account
for fewer possible selections of partition size under the MinP test statistic. Nevertheless, the loss of
power is small when considering all m× l partitions of the data. For the Sine setting, power differs
greatly between m× l and m× m variants. The setting is not symmetric in X and Y. One can see
that the optimal partition of the plane to capture the dependence requires few partitions of the Y
axis but many partitions of the X axis. See Brill (2016) for thorough simulations of different types of
bivariate relationships: in the non-symmetric settings, considering m× l partitions of the data leads to
substantial power gain; in symmetric settings, considering m× l partitions of the data leads to little
power loss over considering only m×m partitions.

This simulation study demonstrated that the presented tests have a power advantage over competi-
tors in settings where the underlying dependence is complex, i.e., settings where in multiple regions
the joint density and the product of the marginal densities differ. For those settings, a fine partition
of the sample space is optimal. Competing tests have tuning parameters, and the choice of tuning
parameter can affect the power of the test. Specifically, tuning parameters in competitor methods
include the degree of the Lp norm in dCOV, the kernel bandwidth in dHSIC, and the maximum
partition size considered in MIC. The low power achieved by alternative methods in the ’Circles’ and
’Sine’ settings could be partially attributed to the use of the package default setting for the tuning
parameters. The MinP procedure does not have a tuning parameter that can materially affect its
performance, since the single best partition size is chosen in a data adaptive manner. For many other
scenarios demonstrating this, see Heller et al. (2016) and Brill (2016).

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

● ●
●●

● ●●
●

●
●

●
●

●

●
● ●

●
●

● ● ●
●

●
●

● ● ●●
●

●● ●

●

●
●

●● ●
●●

●

●
●

●●
●

●
●●● ●

● ● ●
●

●

● ●●
●

●
●

●

●

●

●
●

●● ●
●●

●
● ●

●
●

●●
●

●
●

● ●● ●●

●
●● ●

●●
●

● ●
●●

●
●

●●
●

●
●

●
●

● ●
●●

●

●
● ●

●
●●

●

●
● ●

● ●
●●

●●

●
●

●●●
●

● ●●
● ●

●
●

●

●

●

●
●●

● ● ●
●

●
● ●● ●

●
●

● ●
●

●
●

●
●

●
● ●

●●
●

● ●●
●

●●

●
●

●

●

●●
●

● ●
●

●

●

●
●

●

●

●
●

●●
●

●●
● ●

● ●
●

●

●

● ●●
●

●
●●

●●● ● ●
●

●
●

●
●

●
●

●
●

●
●

●●●● ●●
●

●

●
●●

●
●

●
●● ●

● ●●
● ●

●●

●
●●●

●●

●●

●●
●● ●

●
● ●● ●●

●
●

●
●

●
●

● ● ●●● ●●●

●

● ● ●

● ●●

●
●

●
●●●

●

●

●

●
●

● ●

●●
●

●
●

●

●
● ●

● ●

●● ●●●
●

●
●

● ●
●

●
● ●

●
●

● ●

●
●●

●
● ●

● ●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●● ●

●

●● ●●

●

●
●● ● ●

●

●●

● ●

●

●

●●

●
●

● ●
●

● ●●
●

●

●● ●
●

●
●

●

● ●

●
● ●●

● ●●
● ●

● ● ●

● ● ●
●

●● ● ●

●
● ●

●

●●

●
●

●

●
● ● ●

● ●●

●

●●

●

●●●●

●●
●

●

● ●
●

●
●●

●
●

●
●

●
●

●
●

●
● ●

●
● ● ● ●

●

● ●
●●

●●

●

●●

●

●●
● ●● ●

●

●
● ●●●●

●

●
●●

●
●

●
●

●●

●
●●

●
● ●●

●
●

●

●●● ● ●
●

●
●●●●

●●●
●

●

●
●

●●●

●

● ● ● ●
●

●

●●
●

●●

●●●

●
●

● ●
●

●
●

●

●

●
●●●

●
● ●

●
●●

●

●
●

●

●●
●

●
●

●●
●

●● ●●● ●● ●
● ●

●

●
●●

● ●

●

●

●

● ●● ●
●

● ●
●

●

●

●
●

● ●
●

●
●●

●●
●●

●
●●

●●

●●
●

●

●

●

●

●●

●●
●

● ●
● ● ●

● ●
● ● ●

●
●

●

●
●

●
●

● ●
● ●

●
●

●●●●
● ●●

●●

●
● ●●● ●

●

●

●
●

●
●● ●

●

●

●
●

●●●●●

●
● ●

●
● ●

●
●

●
●●

● ●
●

●

●

●
●●

●

●
●

●●
●

●● ●

●

●
●●

●

●●
● ● ●

●● ● ●
●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●●●
● ● ●●

●
●

●

●
●●

●

●

●

●●● ●
●

●

●
●

● ●
● ●●

●

● ● ●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

● ●●

●

● ●
●●

●
●

● ● ● ● ●

● ● ●●
●●

●●●
● ●

●

● ●
●

●

● ●
●●●

●

● ●
●

●●

●

●

●●
●

●
●●

●
●

●

● ●
● ● ● ●

●
●

●●

●
●

●
● ●

●
●

●

● ●●
●

● ●●●
●

● ● ●●
●

●
●

●● ●

●●
●● ●●● ●●●

●
●●

●●
●

●

●● ●

●

● ●

●

●●●
●

●● ●
●

● ●
● ● ●

●
●

●●

●

●
● ●●

● ● ●●

● ●
●

●
●

●

●

●
●

●
● ●

●
●

●● ●

● ●
●

●
●●

●

●●●

● ● ●

● ●

●

●
●

● ●
●

●
●

●
● ●

●●

●●
●● ●

● ●
●

●

●●
● ●

●●
●

●
●

●

●
●●

●● ●
●

●

●

●

●

●
●

● ●
●●●●

●
●

● ● ●
●

● ●●
●●

●
● ●

● ●
●

●
●●

●●

●

●
● ●

● ●

●●

●
●

●

●●

●
●

●
●

●
●

●
●

●

●
●●● ●

●

●

● ●
●

●

●
● ●

●
● ●

● ●

●

● ●
●

●
● ●

●●
●

● ●
●

●●
●

●

● ●
●●

●
●

●

●

●
●

●● ●

● ●● ●

●

●
●● ●

● ●
● ●

●
● ●

●

●

●
●●●

●

●

●

●

● ● ●

●
● ●●

●
● ●

●
●

●

●

●

●
●

●

●●
● ●

●

●

● ●

●●
●● ●●

●

●●
●

● ●

● ●

●
●

●

●●●
●●

●
● ●

● ● ●● ●
●

●

●

●

●
● ●

● ●

●

●

●

●
●

● ●
●

●●
●

●
●●● ●

● ●

●
● ●●

●
● ●

●
●

●● ●●●

● ●●

● ●
●

● ● ●
●

● ●

●
●

●
● ● ●

●

●
●● ●

● ●●●
●

●●
●

●

●
●

● ●
●●

●●●
●

●●
●

●
●● ●●

●
●

● ●

●●
●

●
● ●●

●
● ● ● ● ●

● ●

●
● ●

●

●
●●

●

●●●

●
●

●

●
●

●●●
● ●

●● ●

●

● ●●● ●
●●

● ●●
●●

● ●
● ●

●● ●

●●

●
●

●●
●

●
●

● ● ●
●● ●●

●
●

●●●
●

●
●●

●●● ●
●

●

●
●

●
● ●

●
●

●
●

●

● ●
●

●
● ● ●●

●
●

●
● ●

●

●

●

●

●
●

●

● ●
● ●

●●
●

●

●
●●

●
● ●

●●

●
●

●
●

●
●

●
●●●

●●
●●

● ●

●

●

●
●

●
● ●

●
●● ●●

●●

● ●
●●

●
● ●

●
●

● ●

● ● ●
●

●
●

●●

●

●

● ●

●
●

●
●

●● ●
●

●

●

●
●

●
●

●●

●
●

●

●
●●●

●
●

●● ● ●
●●

●

●

●
●

●
●

●●

●
●

●

●

●
● ●

●
●●

● ●

●●
●

●
●● ●

●●

●

●
●

●
●

●●●

●

● ●

● ●

●●
●●

●
●

● ● ●
●

●
●

● ●

●
●

●●●
● ● ●

●● ●
●

●
●

●●●●
●

●

● ●●●

●●

●
●●●●

●
●

●
● ● ●●

●
●

●
●●

●

●

● ●

●

●

●
● ●

●
●

●●
●

● ●

●

●
●

● ●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

●●
● ● ●

●

●
● ●

●
● ●

●

●● ●

●
● ●

●

●

●●

●
●

●

● ●●
●

●

●

●
● ●

●

●
●

●●

●●

●

● ● ●

● ● ●●

●
●●● ● ● ●●

●

●
●

● ●
●

●
● ●

●
●●

●
● ● ●

●
●

●

●

●●●●
●

● ●
●

●●●
●

●

● ● ● ●●
●

●

●

●●●
●

●
●

●
●● ●● ●

●
●

●

●
● ●

●

● ●●

●
●

●
● ●●

●

● ●●

● ●
● ●

●
●

●
●

● ● ●●
●

●
●● ●●

●

●
●

●
● ●

●

●

●
●

●
●

●
●●

●
●

●
●

●●●

●
●

●

●
●

●●
● ● ●

●

●

● ● ●●
●

● ●
● ●

●●● ●

●
●

●● ●
● ● ●

●

●●
●●

●
●

●●
●

●●
●

● ● ●●●
●●

●●
●

●

●
●

● ● ●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●
●

●
●

●●
●●

●

●
●

●
●

●

● ● ●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●●

●
● ● ● ● ●

● ●● ●

●

●
●●●

●●
●

●

●

●
●

●

●
●

●
●

●
● ●

●
●

●
●

●

● ●
●●

●

●

● ●
●

●
● ●

●
●

●
● ●

●
●

● ●

●
●

●

● ●● ●
● ●●

●
●●

●
●

●●
●

● ●●

●
●

●●

●
●●

●
●

● ●

●

●●

●
● ●

● ●
●

● ●●

●
●

● ●
●

●

●

●

●

●
●

●
●

●

●

● ●
●●

● ●

●
● ●

●
●

●

●
●● ●

●

●

● ●
●

●●

●

●
●●

●
●● ●

●●

●

●
●

●
●

●● ●

●

●
●

●
●

● ●● ●●
● ●

●●

●
●●

●●
●●

●●

●●
●

●

● ●

●

●

●
●

●
● ●

●

●

●
●

●

●
●●

●
●●

●

● ● ● ●
●

●
●

●
●

●
●

● ●●
●

●
● ●●

● ●
●●

● ●●
● ●

● ●●

●
●

●●
●●● ●

●●●

●
●

●
●

●
●

●●

● ●●●

● ●
●●

●
●

●

●
●

●
●●●

●
●

● ●

●
●

●

●
●

●
●

● ● ● ●

●

●
●

●
●●

● ●

● ●● ●
●●

●●

●
●

●
● ●●● ●●

●●

●

●
●●

● ●
●● ●

● ●
●

● ●●
●

●

●
●

●●●

● ● ●

●●
●

●

●● ●
●

● ●

●●
●

●

● ●
●

●
●● ●

●
●●

●

●

●
● ● ●

●●

●
●

●

●
●

●
● ●● ●●●

●
●

●●
●●

●
●

●

●

●

●●

●

●
●

●

●
●●

●
● ●●

●
● ● ●● ●● ●●

●
●●

●●

●
●

●

●

●
●●●

●
●

● ●●
●

● ●
● ● ●

●●

● ●
●●

●
●

●

●●

●●
● ●

●●●●
●

●
●●●●●

●●

●
●

●

●●

●

● ●
●

●
●●

●●
●

●

●

● ●●●●● ●
●

●

●●
●

● ●

●●
● ●

●

● ●

●

● ●
●

●
●●

●

● ●

●

●
●●

●
●

●
● ●●

●
●

●
● ●

●

●
●

●
●

●
●

●●●●●
● ●●

●

● ●

●
●

●
●

●
●●

●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

● ● ●●
● ●

●
●

●
●

●

●

●

● ●
● ●●

●
●

●

●

●
● ● ●

● ●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●
● ●● ●

● ●●●●
●

●

●

●● ●

●

●● ●● ●
●

● ●● ●
●

●

●●● ● ●●
●●

●

●
●

●
● ●

● ●
●●

●●●
●

●
●

●
●

●
●

●

●
●

●

●
●

●● ●●
●●

●●

●

●

●
●

●● ● ●●

●
●●

●

●● ●

●●
●●

●
● ●

●

●●

●
● ● ●

●

● ●
●

●● ● ●●● ● ● ●
●

●
●

●

●
●

●

●
●

●
●

● ●● ●

●
●●

●
●

● ●

●

●

●

●
●

● ●●

●
●●●

●

●

● ●●●●
● ●

●
● ●●●

●
●

●●
●

● ●●

●

●
●

●

●

●

●
●

●
●

●
● ●● ● ●

●
●●

●
●

●
●

●

●

●

●

●
● ●

●●

●
●●

●
●●

● ● ●
●

●●

●

●

●●

●
●

● ●●●●

●

●
●

●

●
●●

●
●

●●

●
●●

●
●

●
●

●●●
●●

●
●

● ●
●

●

●

●● ●● ● ●
●

●

●●●
●●●

●

●
●●●

● ● ●

●● ●
●●

●

●
●

● ●●● ●
● ●●

●

●

●
●

●
●

●
●

●●

●●
●●

●
●● ●

●

●

●
●

●

●

●

●
●

● ●

● ●●
●

●
●

●
● ●

●

●
●

●

●●
●

●
●

● ●
●

●

●●
●

●

●

●●
●● ●

●
● ●● ●

●●
●

●

● ●
●

●
●

●
●●

●
●

● ●

●
●

●
●

●●

● ●
●

●●
● ●

●

●

●

●
●

● ● ●

● ●●
●

●
●

●●
●

● ● ●
●

●
●

●
●●

●
●

●

●

●

●

●

●●
●

●

● ●
●

●
●

●
●

●
●

●

●
●

●●
●●●

●
●

●● ●●
●

●
●

●
●

● ●

● ●
●

●

●
●

●● ●●
●

●

● ●

● ●
●

●● ●
●

●
●● ●● ● ●

●
● ●

●

●

●
●

●
●

●

●

● ● ●●

●

● ● ●
● ● ●●

●

●

●
●

●●
●

●
●

●
●

● ●

●
●

●
● ●

●
●

● ●●●
●●

●
●

●

●

●

● ●
● ●●

●

●
● ●

●

● ●
●

●
●

●

●

●
●

●
● ●

●

●

●
● ●

● ●

●
●

●●

●
●● ●●

● ●

●

●

●

● ●●●
●

●●
●

●
● ●

●

●
●● ●

●

●
●● ●

●●●●
●

●

●
●● ●

●
●

● ● ●
●

● ● ●

● ● ●
● ●●

●
●

●
●

●

● ● ●●
●

●

● ● ●

● ●●

●

●

●

●●
●

●
●

●
●

●
● ●

●
●

● ●
●

●
●

●● ●
●

● ● ●●

●
●

● ●

●

●●
●●

●
●

●

●
●● ●

●
●● ●●

●
● ●●

●●
●

●
●

●
●● ●

●

●●
●

●
●● ●

●

● ●

●

●

●
●

●

●
●●

●
●

● ●
●

●
●

●●● ● ●● ● ●

●

●●
●●

●
●●● ●

●●●
●

●

●

●

●●
●

● ●

●
●

●

●

●

●● ●● ●
●

●

●●
●

● ●
●

●

●

●
● ● ●

●● ●

● ● ●

●
●

● ● ●

●

●●

●
●

●●

●

●

●●●
●●

● ●●●● ●
● ● ●●

●● ●
●●

●
●● ●

●
●

● ●●

● ●

●●●●

●

● ●●

●
●

●
●

● ●

●
●

●

●

●
●

●●

●

●
●●

●
●●

●

●

● ●

● ●

● ●
● ● ●

●
●

●
●

●

●

●
●

● ●● ●●
●

●●

●

●
● ●

●

●
●

●

● ● ●● ●
●

● ●

●

●

●
●●●

●
●

●
● ●

●
●

●

●●
● ●

●

● ●●

●

●●
●

●● ●●●●
●●

● ●
●●● ● ● ● ●

● ●
●

●
● ●

● ● ●

●● ● ● ●
●

●●
● ●●

●●
● ● ●

●●●
●

●●● ●

● ●

●
● ●

● ●
●

●
●

●●

●
●

● ●
●

●
●

●
●

●

●

●

●

●
●

● ●
●

●● ●
●

●
●

●●●
●●●

●
● ●

●

●

●●● ●

●

● ●
● ●●

●
●

●

●

●
●

● ●
●● ●

● ●
● ●

●
●

●

●

●●

● ●
●

●●
●

● ●
●

●
●

●
●● ●

●
●

● ●
●● ●

●
●●●

●

●
●

●

●
●● ●

●
●

●

●
●

● ●
●

● ●
●

●

●

● ●●●●●

●●
● ●

●●
●●

●

●
●

●●
●

●●

●

●●

●

● ●● ●●●●
●

●●
● ●

● ●
● ●

●●●
●

●

●●

●

●

●
● ● ●● ●●

●
●●

●
●

● ●

●
●

●
●

●

●● ● ●
●

●
●●

●● ● ●●
●●

●
●

●

●●● ●
●

●
●

●●

● ●

●●

●

●

● ●●

● ●
●

●

●●
●●

●

●

● ●
●

● ● ●
● ●

● ●
●●

●
●

●●●
●

●
●

●

●●
●

●
●●●

●

●

●
●

●
●

●

●

●●

●●

●●
●

●
●

● ●
●

●● ●
● ●

●

●

●

●
●●●●

●●

●●
● ●

●
●

●

●

●
● ●●●

●

●
● ●

●●●
●

●
●●

●●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●
● ● ●

●
●

● ● ●

● ● ● ●
● ●

●● ●
●

●
● ●

●
●●

●

●
● ●

●
● ●●

●
● ●

●

●● ●

●●●
●

●
●

●
●

●
●●

● ●

●●

●

●●

● ●
●●

● ● ●
●

●
●

●

●
●

● ●

●

● ●●

● ●
●

●

●● ●
●

●

●

● ●●
●

●

●
●●

●

●
● ● ●

●

●
●

● ●●
●●●

●
●●●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
● ●

●
●

● ●
●

● ●
● ●

● ● ●
●

●● ● ● ●

●

●

●●

●●
●

●
●

●
●

●●

●
● ●

●●
●

●
●

● ●

●

●●

●

●
●

●

●
●

●●
●

●

●

●

● ● ●

●●
●●

● ●
●● ● ●●●

●

●
●● ●

●●
● ●

●●●● ●●
● ●

● ● ●

●

●●●
●●

●●

●

●

● ●

●

●
●

●●
● ●●

●
● ●●

●●
●●

● ●
● ●

●●●
●●

●

●

●

●
●●● ●

●
●●●

● ●
● ● ●
●

●
●

●

● ●
●

●
● ●●

●●
●

● ● ● ● ●
●

●

●
●●

●

● ●
● ●●

●
●

● ●

●
●

●
●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

● ●
●

●
●

● ●● ● ●●

●●●

●

●
●●

●

●
● ●

●
●

●
● ● ●

●

●●
●

● ●
● ●

●●

● ● ●●●
●●

●
●

●

● ●
●

●

●
●●

●
●

●
●

●
●●

●
● ●

●
●

●● ●●
●

●
●●

●
●

● ●

●

● ●

●

●
●●

●●●●●

●
●

● ●
● ●●

● ● ●●
● ●● ● ●

●

●
●

●

●● ●●

●
●●

●

●

● ●
●●

●

●

●
●

● ●●
●

● ●
●

●

●●

●
●●

●●

●●●
● ● ●●●

● ●

● ● ●

●
● ●●

●● ●

●●
●

●●
●

●● ●

●
●

●

● ●
●●

● ●● ●
●

● ●●
●

●

●
●

● ●

●
●

●

●
● ●

●●
●

●

●
●

●
●●●●● ●●

●
● ●

●
●

●
●

●

●

●
● ●

● ●
●

●
●

● ●

●

●

● ●
●

● ●
●

●
●●

●
●●

●

●●
●

●
●●●

●●
●

●●
● ●

●
●●

●
●●

●
●●

● ●

●

●●
●●

●●
●●

●

●
●

●
●

●
● ●

●

● ● ●●
●

●●●●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
● ●

● ●
● ●●●

●

●

●●
●

●

●

●
●●●●

●
●

●
●●

●
●●

●

●
●

●
●

● ● ●
● ●

●
● ●

●
●

●
● ●●

● ● ●

● ● ● ● ●

●
●●

●
● ●

●

●
●

●

●
●

● ●
● ● ●●●

●
●●

●
●

●

● ●

●

●●●●●● ●
●

●

●

●

●

●●● ●● ●●● ●●
● ●

●

●
●

●●●

●
●

●
●●

●
●

●
●●● ●

● ●
●

● ● ●

● ●
●●●●

●

●
●

●
●

● ●
● ●

●

●
●● ●●

●● ●●

● ●

●

●●
●

●●
●●

●
●

●

●●● ● ●

●

●●
●

●
●

●
●

●

●
●● ●

●
●●

●
●●

●
●

● ●
● ●

●
●

●
●●

●●

●●
●

●●
●●

●
●

●●

●●●●●●
●●●

●
●

● ●
●●●●

●

●

●

● ●
●●

●

●●●
●

●
●●

●

●
●

●
● ● ●

●

●
●

●●
● ●

●

●

● ● ●
●

● ●●

●

● ●
●

●
●●

●●●

●
●

●

●●●
●

● ●
●

●
● ●

● ●
● ● ● ●● ●

●
● ●●

●
●●●

●●
●

●
● ●

●
●

●●

● ●
●

●

●
●

●
●●●

●

● ●
●

●
●●

●
●

●
●

●
●

●
●

●
● ●

●● ●●

●

●● ●
●●

●●●

●

●
●●

●●●●

● ●
●

●

● ●

● ●
●

●●●●
●

●●●●

●●
●●

●

●●● ●●
●●

● ●
● ●

●●

●
●

●

●

● ●
●●●●

●

●
●

●●
●

●

●
● ●

●

●
●

●
●

● ●●
●

● ●
●

●

●

●
● ● ●

●
●●●

●
●

●●
● ●

●

● ● ●
●

●

● ●●
●

●

●●

●●
●

●
●

●

−20

−10

0

10

0.00 0.25 0.50 0.75 1.00

Line

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●
●

● ●

●

● ● ●

●

● ● ●● ● ●

●

●
● ●●●●

●● ●
●

●● ●●
●

●● ● ●● ● ● ●● ●●
●

●●

● ● ●● ●●
●

●●●●
●

●●

●

●● ●● ●●

●

● ● ●●

●

● ●● ●
● ●●● ●●●● ●

●
●●

●

●● ●
●

● ●

●

● ●●● ●● ●

●

●

●

● ●● ●

●

●

●

●●

●
●

● ●●
●

●

●

●● ●
●● ●●

●
● ● ●● ●●● ●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

● ●● ●●
●

● ● ● ●● ● ●● ●

●
●

●

●

●● ●

●

●
●

●

●●

●

●●
●

●

●● ● ●
●

●● ●

●

● ●
●● ●● ● ● ●

●●

● ●

●●
● ●

●● ●
●

●●
●

● ● ●
●

●
● ●●

●

●●
●

●●● ●●● ● ●● ●● ●● ●● ● ●● ●

●

● ●
●

●
●● ●●

●

●
●●

●

●
● ● ●● ●●●● ●● ● ●●

●
●● ●

●●
● ●● ●● ●

●●●● ●● ●●●●● ● ●● ●●● ●
●●● ●

●
●

● ●● ● ●●●

●

● ●●● ● ● ●
●

●●

●

●●

●

●
●

●
●

●

●

●

●● ●● ●● ●● ● ● ● ●● ● ●
● ●

●
●

●

●

●
●

●●●

●

●
●

●

● ● ●

●

●● ●●● ●

●

●
●

●● ●● ●

●

●

●

● ●● ●●●

●

●●
●

●

● ●●

●
●

● ●

●

● ●
●

●

● ●●●● ●● ●
●

●

●● ●●● ●● ●

●
● ●

● ●

●

●

●

●

●

● ● ● ● ●
● ●

●●
●

●

●

● ●
●

●

●

●
● ● ●

●●●

●

●●
●

●● ●● ●●

●

● ●
●

● ●

●

● ●● ●● ●●
●

●

● ●●

●

●● ● ●●● ●● ●● ●

●

● ●● ● ●●● ●●● ●●● ●●● ●●●
●

●● ● ●●●

●

●
●

●●

●

●

●

●

●

● ●● ●●
●

●●● ●● ●
●

●
●

●
●

● ●●● ●●

●

● ●● ●

●
●

●●
●

●

●

●● ●● ●

●

●
●●●● ●●

●

● ● ● ●●●● ● ●

●●

●
●

●●
●

● ●●

●
●

●

●

● ●● ●●● ●●
●

●● ●

●

●
● ●

● ●
● ●●● ●● ●●

● ●

●

●●● ●

●●

● ● ●● ●

●

●●

●
●

● ● ●●
●

●

●● ●●

●

●● ●

●
●

●
●●

● ●

●

● ●

●

●●● ●●●

●

●● ● ●● ●●

●●
●●● ●● ●● ●● ●

●
●

●●

●
●●● ●

●

●
● ● ●

●● ●
●●●

●

● ●
●

● ●● ●●●
●

●

●●
● ●

●
● ● ●

●●●●● ●
●

●

●

●●

●

● ●●

●

● ●
●

●
●

●●●●

●

●● ●
●

● ●●

●

●

●●

●

●

●

● ● ● ● ●
●

●
●●

●

●
●

●

● ●●
●

●● ●●

● ●

●

●

● ●●● ●●● ●
●●● ●●●

●
●

●
●

● ●●● ●
●

●

●

● ●● ●●

●

●● ●● ●●● ● ●● ●●

●

●

●

●● ●
●

●

●
●

● ●

●
●●

●●

●
●

●
●

●●

●

●● ● ●● ●● ●●● ● ●
●

●●●

●
●

●

● ●●

●●
● ● ●

●
●●

●●

●

● ● ●

●

● ●●

●●
●● ●

●
●● ● ●

●
●

● ●● ● ●● ● ● ●●●

●

●●

●
●

●● ●
●

●

●

●●● ●●● ●

●

●● ● ●● ● ●● ●● ●●

●

●

●

●
● ●

●●

●

●

●●

●●●●
● ●

●

●
● ● ●●

●
● ●●● ●●

●● ●
●●

●

●● ●
●

●●●

●

●

●

● ●● ●

●

●● ●● ●● ● ●●●
●●●

●

●●●

●

● ●
●

●● ●
●

●

●

●●
●

●●
●

●● ●

●

● ●●● ● ● ● ●●●
●

●

●

●●● ● ●●

●

● ● ● ●● ●●
●

●

●
● ●

●

●
●

●●
●

● ●●
●

● ● ● ●

●

●
●● ●● ●●

● ●
● ● ●

●

● ●●● ●●
●

●●

●●
● ●●

●
●

●

● ●
●

●

●

●
●

● ●
●●

●

●

●
●

●
●

●●
●

●● ● ●●● ●● ●●●
●

●

●
●●

●

●

●●● ●● ● ●● ●●

●

● ●● ●●
●

●
●

●

● ●●● ●● ● ● ●●●
●

●

●● ●●

●

● ●● ●
●

●● ●

●

● ● ●

●

●
●

● ● ●●

●

● ●●●

●

● ●●●
●

●● ●
●

●
●

●

●

●● ●●●

●

● ●●

●

●●● ●

●

●●● ● ●

●

●

● ●

●● ● ●

●

● ●●
●

●

●
●

●

●
●●●

●

● ●
●

●
●

●

●

●●●

●

● ● ●
● ●

●
●

●
●

●
● ● ●●

●

● ● ● ●●
●●

●

●

●● ●●
●

● ●
●

●

●

● ●

●
●● ● ●●● ●● ●●

●
● ●●●

●
●● ●

●
●●

●

●

●

●

●

●

●
●

● ●●● ● ●● ●

●

●●
●

●● ●
●

●

●●
● ●

● ●●● ●●
●

● ● ●●●

●

● ●

●

●

● ●●● ● ●
●

●
●

● ●●●
●

● ● ●
●

●● ● ●

●
●

●

● ●● ● ● ●

●

● ●● ●●
●

●●

●

●●

●

● ●

●

●
●

●

●● ●●● ● ●● ● ●●●
●

●

●

●
●

●● ●
●

●

●

● ●● ●

●

●

●

● ●● ● ●●

●

●●●
●●●●

●

●● ●●
●

● ●●● ●
●

● ● ●
●

●

●

● ●● ●

● ●

● ●● ●●
●●

●

●
●

●● ●●● ● ●●
●

● ●

●

●

●
●●●

●
● ●

●
●

● ●●
●

●

●●

● ● ●

●

●
●

●

●
●●

●● ● ● ●● ● ●●●● ●

●

●
●●● ●● ●● ●●

●

● ●
●

●●

●

●● ●

●

● ● ● ●

●

●
●

●● ●
●

●●● ●

●

●●
● ●

●
● ●

●
●

●● ● ●● ● ●

●

● ● ●● ●●●
●

●● ●●

●
●

● ●●

●

● ●● ● ●● ●● ●
●

●
●

●

●

●

●

● ●

●

●
●

● ● ●

●

●● ● ● ●
●

●●●

●

●
●

● ●●
●

●● ● ● ●

●

●
●

●●
●

●
● ●

● ● ●● ●●
●

●

●
●

●

●

● ●
●

● ●

● ● ●
● ●

●

●●● ●
●●● ●●

●●

●● ●
●

● ● ● ●●
●

●● ●●●

●

●

●
●

●
●

●● ●●● ●● ●●

●

●
●

●

●

●

● ●

●

●● ●

●
●

● ●●● ● ●●●
●

●● ●●●

●

●
● ● ●

● ●●

●
●

● ●● ●● ● ●●●●
●●●●●

●

●
● ● ●●● ●●● ●● ● ●●● ● ●●●

●

●● ●● ● ●●●

●

● ● ●● ●● ● ●●
●

●●● ●
●

●●● ●

●

●

●
●

●● ● ●● ●

●

● ●● ● ●● ●●●
●●

●● ●
●

●
●

● ●●● ●

●

● ● ●●● ●●
●●●● ●

●
●

●

●

●● ●
●

●

●

●
●

●
●

●

●●

●

●

●● ● ●●●

●

● ●●

●

●
●

●● ●●● ●●
●

●

●

●
● ●

●●

●

● ●● ●●● ●●
●

● ●
●

●● ●● ●●●

●

● ●●● ●

●

●●

●

●● ●●● ● ●●●● ● ●● ● ●
●

● ● ●●
●

●

● ● ●●● ●●

●

● ●

●●

●
●

●

●

●● ● ●
●●

●
● ●● ●● ●●● ● ● ● ●●●● ●● ● ●● ●●● ● ●●● ●

●
●

●

●

● ●

●

● ●
●

●●

●

●●
●

●● ● ●●●● ● ● ●
● ● ●●● ● ●

●
●

●

●●
●

●
●

●● ●
●

●

●

●

●
●

●

●

●● ● ●● ● ●●● ●●

●

●

●●

● ●●

●

●●
● ●

●
●

●● ●

●

● ●● ●

●

● ● ●

●
●

●● ●●●

●
●

● ●● ●

●

●● ●● ●●

●

●

●

●

●

●

●
● ●●

●

●●● ●● ●● ●
●

● ●●● ●

●●

● ●●

●

●
●

●● ●● ●● ● ● ● ●
● ●● ●

●

●
●

●●● ●
●

●
●

● ●● ● ● ●● ● ●● ●●

●

●● ●●

●
●

● ●●● ● ●● ●●

●

●● ● ● ●●

●

●

●

●

●●
●

● ●

●● ●
●●

●●

●

● ●● ●● ●●

●

●● ●

●

●

●

● ● ●●
●

●

●● ●●● ● ●
●

●●●

●

● ●

●

●
●

●

●

●● ● ●●●
●

● ●● ●●

●

●
●●● ●● ●

●

●● ●●●
●

●

●
●

●

●
●

●

●

●

●

● ● ●

●

●●
●●

●●● ● ● ● ●

●

●● ●
●

●● ●● ● ●● ●●● ●●

●

●●●
●●● ●● ●

●

●●●

●

●●● ●
●

● ●
●

●

●● ●●●●
●● ●

●

● ●● ●● ●● ●

●●

● ●● ● ●●

●
●

●●

●●

●

●

●●
●

●

●
●●● ●●●●

●

●
●

●● ● ●
●

● ●●● ●
●

●●
●

●
●●● ●● ● ●●

●

● ●●

●

●●●●● ● ●● ●● ●
●● ●

●
●

●

●

●●

●

● ● ● ●
● ● ●●●

●
● ●

●

●

● ● ●● ● ●
● ●● ●● ●

●
●●● ● ●

●●
●●● ● ●

●

●●

●
●

●● ●●
●

●

●
●

●● ●●
●

● ●
●

●● ● ●
●

●
●

● ● ●●● ● ●
●

●

●●●
●

●●●

●

●
●● ●

●●●

●
●

● ●●● ●

●●
●

●
● ●● ● ● ●

● ●

●

● ● ●●
●

● ● ●●

●

● ●

●

●

●

●
● ●●

●
●●

●
●● ●● ●●● ●

●

● ● ●●● ●● ●● ● ●●●

●

● ●● ●●● ●

●

●●●
●

● ● ●● ●●●● ●●

●
● ●

●● ● ●● ●● ●● ●●
●

● ● ●●●

● ●

● ●●● ●
● ●

●●●
●

●●
●

●● ●
●

● ●● ●●●● ● ●●●● ●●

●

●

●
●

● ●●

●●

●●

●

●

●

●

●

●● ● ●●
●

● ●
●

● ● ●●● ●● ●● ●

●
●

●
●

●
●

●

●

●
●

●

●
●

● ●●●
●● ●●●

●

●
● ●

●●
●

●● ● ●
●

●

●

●
●

●

●
● ●●●

●

● ●●
●

●

●

● ●● ●●

●●
●

●

● ● ● ●
●●

●

● ●●

●

●
● ● ●●●●● ●●● ●● ●

●●

●● ●● ● ●● ●●

●
●

●
●

●
●

●
●

● ● ●

●

●●
●●

● ● ● ●●●
●

●

●

●●
●

●

●● ● ●●

●

●

●

●

●
●

●● ● ●●

●
●

●

●
●●

●
●

●● ●●●● ● ● ●●

●

● ●
●

●

●
●

●● ●● ●●

●

● ● ●●● ●●● ●
●

●● ●●

●

●●●

●
●●

●
● ● ●● ●●● ● ●●● ● ● ● ●

● ●

●

●

●

●● ●●● ● ●●● ●●●

●

●
● ●●

● ●

● ● ●● ● ● ●●●
●

● ●

●

●

●

●● ●●

●

● ●●●
●

●●●●
●●

●

●

●
●

● ●● ●●●●
●

●
●

● ● ●●
●

●●
●

●●
●

● ●

●

●

●

●●● ● ●●

●
●

●● ●

●

●●● ● ●●
●

●
●

●●
●

●●●● ●● ● ●●● ●●

●

●● ●● ● ●● ●● ●●

●

●

●

● ●● ● ●
●

● ●●
●

●
●

● ●

●

●●● ●●

●

● ●●● ●●● ●● ●●● ●●●●● ●● ●●● ● ●
●

●● ●● ●
●

●●● ● ●●●●●

●●

● ●

●

●●●
●

●● ●

●
●●●●

●

●● ●●
●

● ●

●

●
●

●

●

●●●● ●● ●●
●

●

●

● ●

●

●
●

●

●● ●●

●
●

●
●

●

●●●●
●

●● ● ●
●

●●● ●
●

●
●

●● ● ●●● ● ●●

●

●
●

●

●

●

●●●● ●● ●

●

● ●

●

● ●●● ●

●

●

● ●
●

●

●
●

●
●●●● ●
●

●●

●

●● ●●● ●● ● ●● ●● ● ●● ●●●● ● ● ●● ● ●

●

● ●● ● ●●
●

● ●●● ●●

●

●
●

● ●● ● ● ●●● ●

●

●

●

●

●

●●● ● ●●● ● ●

●

●● ● ●
●● ● ●●●

●

●●

●

●

●

●
●

●

● ●●

●

● ●

●

● ●
●

● ●● ●
●

● ●
●

●
●

●●
●●

● ●

●

●● ●● ●● ●●

●

●

●
●

● ●
●

●

● ●
●

● ●●
●

●

●

●

●

●

● ●

●

● ●●

●

● ● ● ● ●

●

● ● ●
●●●● ●●● ● ●● ●● ●●

●
●

●
●

● ●●● ●

●

● ●

●

●
●

●●
●

● ●● ●●

●

● ●●● ●●

●

● ●

●

● ● ●●
●

● ● ●
●

●●

●

●●

●●
●

●
●●●●

●
●

●
●

●
● ●

●

● ●
●

●●

●

●●● ●
●

●●● ● ●

●

● ●● ●
●

● ●●
●● ●●●● ●● ● ●

●

●●●
●

● ●
●

●● ● ●●
●

●
●

● ●● ●●

●

●●●

●

●
●

●

● ● ●
● ●●● ●

●●

●

●
● ● ●●

●●

●● ● ● ● ●●

●

●●

●

●● ● ●●●

●

● ●● ● ● ●●

●

●●●● ●● ● ●●● ● ● ●● ●● ● ●● ●● ●● ● ●● ● ● ● ●
●

●
●

●

●

●
●

●●● ●●
●

● ●●
●

●
●

●●
●

● ●●●● ●●
●

●
●

●● ● ● ●● ●● ● ●●

●

●
●

●●
●

●

● ● ●● ● ● ●●

●

● ●●

●

●
●

●

●
●

●
●●● ●● ●

●
●●●● ●●● ●●

●
●

●● ● ●●
●

●
●●

●
●

●●

●

●●

●

●● ●●

●

● ● ●●
●

●●● ●

●

●● ●● ●●● ●

●
●

●●

●

● ● ●

●

●● ● ● ● ●●●
●

●● ●● ●
●●

●●
●●

●
●

●

●●● ●
●

● ●●● ●

●

●
●●

●
● ● ● ●

● ●●

●
●

●

●
●●

●

●● ● ●

●

●
● ● ●

●

●
●

● ●●
●

●

●

●

●

●●

●

●

●● ● ●● ● ●●

●

●●● ●
●●

●
●●●●●

●
●●● ●●

●
●● ●●

●●

● ●●● ●

●

●

●

● ●●● ●● ● ●●● ●

●

●● ●●
●●●● ● ● ●● ●● ●

●

●
●

●

●
●

● ●●●

●

● ●● ●●

●

● ●●

●

●●● ●
●

●● ● ●
●

●● ● ●● ●●

●

●● ●● ● ●● ●● ●

●

●● ● ●

●

●●●
●●● ●● ●● ●●●

●
●●

●

● ●

●

●
●

●

●

●

●●

●

●● ●●●
●

● ●
●

●

●

● ● ●● ●● ● ●● ● ●●● ●●
●

● ● ●● ● ●● ●

●

●●

●

●● ●

●

●

●

●● ●● ●
●

● ●● ●●

●

●

●●

● ●● ●●●● ● ●

●

● ●●● ●

●

●

●

●● ●● ● ● ●

●●

● ●● ●●● ●● ● ●● ● ●
●

●
●●●● ● ●

●
●● ●● ●

●●
●

●

●
●

●●

●● ● ●●● ●●● ●
●● ●●

●
● ●●● ●

●

● ●

●

● ● ●
●

●

● ●

●

●

●● ●●● ●
●

●
●●

●

● ● ●●● ● ● ●● ● ●●

●

●

●● ●● ●● ●●
● ●

● ●● ● ●●●●

●

● ●●● ● ●●
●

●

●

● ● ●●

●

●

●

●●
●

●●● ● ●

●

●● ●●● ● ● ● ●
●

●●

●

●● ●

●

● ●●●● ●● ●●●● ●
●

●
●

●

● ●●● ●●● ● ● ●
●

● ● ●● ●● ●● ●● ●
●

●●●

●

●

●
●●● ●

●

●

●

● ●
●

●

● ● ●
●

●●

●

●● ●●

●

●
● ● ●●

●

●
●

●● ●

●

●
●

● ● ●●
●

●● ● ●● ●

●

● ● ●● ●●●● ●●
●

● ● ●

●

●
●

● ●●●● ●●●
●

●●

●

●
●

●
●● ●●

●

●●●

●●

● ● ●● ●●●

●

●●

●

●
●

●● ● ●●●

●

● ●

●

● ●●●

●

● ●
●

● ●●

●

● ●●● ●● ●
● ●

●
●●

●
● ●●●

●

●●●

●
●

●●● ● ●●
●

●
●

●

●

●

●

● ●●● ●● ●

●
●

● ●

●

●
●

● ●●● ●

●

●●

●
●

●●●●● ● ●
● ●

●● ●● ●
●

● ● ●

●

●

●

● ●
● ●●●● ●

●

●

●

●●● ●●● ●
●

● ● ●●●

●

●
●

●

●
●●● ●●

●●
● ●●

●
●● ●● ●

● ●
●

●

● ● ●
●

●

●

●●

●

●
● ●● ●

●
●

●●

●

●
●●

●

●

●
●●● ●●

●

●●
●

●

●

● ● ●● ●● ●
●

●

●● ● ●●●
●

●●

●
● ●● ●

●

●

●

● ●
●

● ● ●
●●●●

●
●

●
● ●● ●

●
●

●●●

●

● ●

●

●

●

●●●● ● ●●● ●●

●

●

●

● ●●
●

● ● ●
●●●●

●●
●

●
● ●●● ●● ● ● ●● ●●

●

●●

●

●

●

●●●●●
●

●

●●
●● ● ●

●
●

●● ●●

●

●

●

●● ●●
●

●

● ●

●

●

● ●

● ●● ●● ●

●

● ●●

●

●

●
●●● ● ●●●

●●
●

● ●
●

● ●

●

●

●
● ●

●● ●●

●

●●

●

● ●●● ●●

●

● ● ●

●

●●●
●

● ●●

●

●● ● ●●
●

●●● ●●

●

● ●●

●
●

●

●

● ●● ● ●

●●

● ●● ● ●
●

●

● ●●
●

●

●
●●● ●●

●●● ●● ●

●

●●●
●●

●

● ● ●
●

●

●

●● ● ●●● ●●
●

● ●
●

●●●
●

●● ●●● ●

●

● ●●● ●● ●

●

● ●●●
●

● ●● ●

●
●

● ●● ●●● ● ●● ●
●

●● ●● ● ●
●

●●

●

●●

●

● ●

●
●

●
● ●● ●●●●

●●●● ● ●● ● ●●●

−10000

−5000

0

5000

10000

0.0 2.5 5.0 7.5 10.0

Exp2x

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−4

−2

0

2

4

−4 −2 0 2 4

Circles

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●
●

●
●● ● ●

●

●●
●

●
●

●
●●

●
● ●

●

●
●●

●

●

●

●

●●
●

●●●

● ● ●

●
●

●

●
●

●

●●
●

●
●

●●

●

●

●

● ●
●

● ●
●

●
●

●
●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

● ●
●

●●

●

●
●

●

●
●

●

●

●

● ●● ●

● ●
●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●
●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●

●●
●

● ●

●●

●

●

●●
●●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●
●●● ●

●
● ●

●

●

● ●

●

●

● ●
●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●●

●

●
●

●
●●

●
● ●

●
●

●●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

●

● ●

●

●

●● ●●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

● ●

●

●
●

●●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●●
●●

●

●●
●

●

●
●

●

●● ●

●
●

●

●

● ●●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●
●

●

● ●
●●

●

●

●

●

● ●●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●

●
● ● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

● ● ●

●

●

●

●

●
●

●●

● ●

●

●

●

●

● ●
●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●
●

●

● ●●●

●
●

●

●●●

●

●
● ●●

●●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

● ●

●
● ●

●

●

●

●

●
●

● ●

●

● ●

●
●

●

●

●
●

●●● ●

●

●

●●
●●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●

● ●●●
●

●

● ●

●

●

●
● ●●

●
●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●●●

● ●
●

●

●
● ●

●

●
●

●

●

●

●
●

● ●
●●

●
●

●

●
●

●

●
●

●
● ●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●● ●● ●●●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●●

●

● ●

●●

●

●

●●

●

●●

●

●● ●
●

●

●

●
● ●

●

●

●

●

●
●

●
●

●● ●

●●

●

● ●
●

●

●

●
●

● ●●

●●

●
●

●●

● ●●●

●

● ●

●

●

●

●●

●●●

●

●●

●

●

●

● ●●

●

●

●●

● ●
●

●

●

●
●

●

● ●
●

●●

●
●

●

●
●

●

●

●

●

● ●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●
●

● ● ●
●

●

●

●

● ●

●
●●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

● ●●

● ●
● ●

●
●

●

●
●●

●

●
●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●● ●

●
●

● ●

●

●

●

●

●

●

●●●●

● ●

●●

●●

●
●

●●

● ●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●●●

●

●

● ●

●

●
●●

●●

●

●
● ● ●

● ●

●
● ●

●

●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●● ●

●

● ●
●

●

●●
●

●

●

●

●

● ●

●

●

●

●

● ●
●●

●●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●● ●

● ●

●

●

●
●●

●
●

●

●●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●● ●

●

●●●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●
●●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●● ●

●
● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●● ● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●

● ●●
●●

●●

●

●

● ●● ●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●
●●

●

●

●
●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●
●

●

●● ●● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●● ●

●

●

●

●●

●

● ●

●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●
●

●
●●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●
●

●

●●

●

●

●

●●
●

●
●

●

●
●

●

●●● ●

●
●

●●

●
●

●

●

●
●●

●

●

●
●

●

● ●

●

●

● ●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●● ●●

● ●

●
●●

●

●

●

●
●

●
●

●●
●●●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●

● ●

●

●

● ●

●
●

●

●

● ●●
●

●
●

●

●

●

● ●●

●

● ●

●

●
●●●

● ●●

●
●

●

●
● ●

● ●

●

●

● ●
●

●
●

●●

●

●

●
●

●

● ●●

●

●

●

●●

●●

●

● ●●

●

●
●

● ●
●

●
●

●

●
● ●

●

●●

●

●
●

● ●●

●●●

●●
●

●

●

●

●●

●

●
● ●

●

●

●

●●● ●
●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●
●

● ●

●● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●●

●

●
●

●

●
●

●
●

●
●

●
●

●

●● ●

●

●

●

●

●●

●

●

● ●
● ●

●

●

●●

●

●

●

●

●● ●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●●●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
● ●

●●
●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●
●●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ●

●
●

●●

●

● ●

● ●●

● ●

●

●●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●●

●
●

●

●

●● ●

●● ●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●
●●

●

●

●
●●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●
●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●
●●

●
●

●● ●
●

●

● ●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●●●

●

●
●

●

●●

●●

●

●
● ●●

●
●

● ●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●● ●

●
●

●

●●

●

●●

●

●
●●●

● ●

●
●

● ●●

●

●

●●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●

● ●
●

●

●

●●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●
●●

●

●

●

● ●

●

● ●

●

●

●

●●

●
●

●

●
●

●●

●

●

●
●

●
●

●
● ●●

●●

●

●

●●

●

●●

● ●●

●
●

●

●

●
●

●

●

●
●

●
●

● ●

●

●
●

● ●

●

●

●
●

●●

●
●

●

●
●

●

●●●●

●●

● ●

● ●●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●●

●

●
●

●

● ●

●●

●

●

● ●
●

●

●
●

●

● ●●
● ●

●
●

●
●

●

●
●

● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

● ●

●
●

●

● ●

●

●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●● ●

●

● ●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●●●

●

●

● ●

● ●

●

● ●

●

●

●
● ●

● ●

●
●

●
●

●

●

●

●
● ●

●

● ● ●
●

●

●

●
●

●

●
●

●● ●

● ●

●
●●

●
●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●

●●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●●

●

●

●

●

●●

● ●
●●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

● ●

●

●

●

● ●
●

●

●

●

●
● ●●

●

●
● ●

●
●

● ●

●
●

● ●

●
●

●

●

●
●

● ●● ●● ●●

●

●
●●

●

● ●

●●

● ●●● ●●
●

●

●

●●●

●

●
●

●●

●

●
●

●●●
●

●
●

●

● ●

●●
●

●

●

●

●●

●

●● ●● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

● ●

● ●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●
●

● ●

●

●

●●

● ●

●

●

●

● ● ●

● ●●

●

● ●
●●

● ●

●●
●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●●●

●

●●
●●

●
●● ●

●
●

● ●
●

●

●
●

●

● ●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●● ●

● ●

●

●●

●
●

●
●

●

● ●

●
●

●

●●

●

●
●

●●

●

● ●

●

●

●
●

● ●

●● ●
●

●

●

●

●

●
● ●

●●

●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●

●●
●

●

●●
● ●

●

●

● ●

● ●
●

● ●●
●

●

●

●
●

●
●

● ●●

●

●

●

●●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●
●●

●

●

● ●● ●
● ●

●
●

●
● ●

●

● ●

●

●

●
●●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

● ●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

● ●

●● ●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●

● ●●
●●

●
● ●

●

●
● ●

●●
●

●

●
●

●● ●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
● ●● ●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●●●

●
●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●●

● ●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●
●

● ●●

●
●●

●

●

●●

●
●

●

●
●

● ●
●●

●
●

●
●●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●● ●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●●

●

● ●

● ●
●

●

● ●
●

●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
● ● ●●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●●

●
●

●

●
●●

●

● ●●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●● ●

●
● ●

● ●

●

●

●

●

●

● ●

●

●

● ●
●

●

●● ●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●
●

●

●

● ●●

●
●● ●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

● ●

●

●

●

●

●●

● ●

●●

● ●

●

●
●

●

●

● ●
●

●
●

●

●

●

●●

●
●

● ●

●

●●
● ●

●●

●
●

●

●

●● ●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●

●

●

●
●

● ●
●●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●
●

●

● ●

●
●

●●●

●
●

●

●

●
●

●●

●

● ●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

● ●
●● ●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●●●
●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●●

●

●●

●
●

●●
● ●●

●

●

● ●

●

● ●

● ●
●

●

●

●●

●

●

●

●
●

●

●

● ●●

●●

●

●

●
●

●

●
●

●
●

●
●

●
●●

●

●
●●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

● ●●

●

●
●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●
●

●
●

● ●

●
●

●
●

●● ● ●

●

●●
● ●

● ●

●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●
●●

●

●
●

●

●

●

● ●
●

●

●
●

●
●●

●

●

●
●●

● ●

●

●●

●
●

●

● ●

● ●

●●

●●

●●

●

● ●

●

●

● ●
●

●

●
●

●●

●

−20

−10

0

10

0.00 0.25 0.50 0.75 1.00

Sine

Figure 3: Four bivariate relationships (in red), along with a sample of N = 2500 observations in blue.

Figure 6 shows the run-time as a function of sample size and atom size. In the left panel, the
total time to carry out a test with 1000 permutations is computed for 4 methods: MinP (including
null table construction) with Sm×l test statistic (NA = 45), dCov, HSIC, and MIC (including null
table construction). We see that the O

(
N4

A
)

portion of the computation time of MinP takes the
largest portion of the computation, being greater than the O (Nlog (N)) part. As such, computation
time is constant for all N values considered. For other tests considered, computation time might be
shorter for smaller samples, but the computational complexity is quadratic (or above) and hence more

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 432

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

● ●
● ● ●

●

●

● ●

● ● ●

●

Circles Sine

Line Exp2x

0 5 10 0 5 10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

log(RunTime[Seconds])

P
ow

er

Test

●●

●●

●●

●●

●●

●●

●●

dCOV
dHSIC
MIC
mXl, 5 Atoms
mXl, 10 Atoms
mXl, 15 Atoms
mXl, 30 Atoms
mXl, 45 Atoms
mXl, 60 Atoms
mXm, 5 Atoms
mXm, 10 Atoms
mXm, 15 Atoms
mXm, 30 Atoms
mXm, 45 Atoms
mXm, 60 Atoms

Figure 4: Power and logarithm of run time for N = 2500. Run times for each method were computed
for a full procedure, including tabulation of the null hypothesis and parameter selection. Specifically,
for dCov and HSIC, the number of permutations was a single run of the test function with 1000
permutations (as computation of kernel distance matrices is done only once for the original data);
for MinP, runtime consists of 1000 computations for the null table and the test statistic (computation
of statistics under the null hypothesis, efficient tabulation of marginal distributions, and MinP,
computation of MinP for the tested dataset, which was then used for computing the P-value); for
MIC, run times consist of 1001 computations of the test statistic for the dataset tested and distribution
under the null. For a pre-computed null table of size N = 2500, running times for MIC and MinP
would be one thousandth of the time shown above, since these two tests are distribution free. Power
computation is based on 10000 datasets for the MinP procedure and 2000 datasets for alternative tests.
Errors bars show 95% confidence intervals.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Line Exp2x Circles Sine

500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500

0.00

0.25

0.50

0.75

1.00

N

P
ow

er

Test
●

●

●

●

dCOV

dHSIC

MIC

mxl, 45 Atoms

Figure 5: Power versus sample size, in each of the scenarios of Figure 3. Based on 10000 datasets for
the MinP procedure, and 2000 datasets for alternative tests. Error bars show 95% confidence intervals.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 433

computationally demanding than MinP for larger sample sizes. The right panel presents the run time
versus number of atoms for N = 300 and m.max = 10, 15. The relationship is clearly linear on the log
scale. The linear fit shows that the computational complexity is indeed to the fourth order in terms of
NA. Overall, the algorithm has a computational complexity which is O

(
N log N + N4

A
)
.

● ● ● ● ● ● ● ● ● ●

6.0 6.5 7.0 7.5 8.0 8.5

0
2

4
6

8

A

ln(N)

ln
(T

im
e[

S
ec

]/1
[S

ec
])

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

MXL , 45 Atoms
dCOV
dHSIC
MIC

X

X

X

X

X

X

X

X

X

X
X

X
X

X
X

X
X

X
X

X
X

4.6 4.8 5.0 5.2 5.4 5.6

0
1

2
3

4

B

ln(Nr.Atoms)

ln
(T

im
e[

S
ec

]/
1[

S
ec

])

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Linear fit, m.max = 10: −18.28 + x*3.94 ,R^2: 0.999982

Linear fit, m.max=15: −18.07 + x*3.91 ,R^2: 0.999956

Figure 6: A (Left): Runtime analysis on log scale for different methods for sample sizes N =
500, 1000, . . . , 5000. B (Right): Runtime comparison on log scale, compared with number of atoms.
Number of atoms varied between 100 and 300. Computations performed were Sm×l with mmax = 10
(black) and mmax = 15 (red). Linear fit verifies known computational complexity, O

(
N log N + N4

A
)
.

Time measurements were performed with 100 and 50 repetitions for left and right panels, respectively.

The k-sample test

In order to assess the power of the MinP test statistics, we present a simulation study. Methods
compared were the energy two sample test, given by eqdist.etest from package energy, and the
kernel MMD test, given by kmmd from kernlab.

Let ∑K
i=1 pi N(µi, σ2

i) denote the mixture distribution of K Gaussian distributions with means µi
and variances σ2

i . We examine the following three settings: the shifted normal, sampling from N
(
0, 12)

and from N
(
0.075, 12); the 2 component normal mixture, sampling from 0.7N

(
0, 12)+ 0.3N

(
0, 82)

and 0.7N
(
0.15, 12)+ 0.3N

(
0, 82); and the 3 component normal mixture, sampling from f (X|Y = 1) =

1
3 N (−4, 1) + 1

3 N (0, 1) + 1
3 N (4, 1), and f (X|Y = 2) = 1

3 N
(
−4, 0.82)+ 1

3 N
(
0, 0.82)+ 1

3 N
(
4, 0.82).

Table 2: A power comparison of the MinP test with a different number of atoms, the energy test, and
the MMD test. For the three data generations, the power is given in rows 1-3, as well as the run time
in row 4. Datasets are samples with two equal groups of size 2500 each to a total of N = 5000. For
each setting, we simulate 10000 datasets for the MinP procedure and 2000 datasets for alternative tests,
with 1000 permutations for each test. Run times are measured over 100 repetitions.

10 Atoms 25 Atoms 50 Atoms ENERGY KMMD

Normal, Shift 0.65 0.70 0.70 0.72 0.53
Mixture, 2 Components 0.72 0.75 0.74 0.21 0.36
Mixture, 3 Components 0.86 0.94 0.94 0.09 0.07

Run time (seconds) 2.96 3.09 3.23 5.22 146.51

Table 2 provides the power result for competitor tests, along with the MinP test statistic for
NA = 10, 25, 50. The MinP test has excellent power in comparison with energy and MMD, and the
run time is lower. For additional simulations that include many additional settings, see Brill (2016). In
general, the proposed k-sample test performs best when the difference between the distributions is
complex and specifically when the density plots of the two distributions intersect multiple times, see
Heller et al. (2016) for details.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 434

Discussion

We presented computationally fast and powerful novel tests for detecting complex dependencies
among univariate random variables. These tests can be used in the framework suggested in Heller
and Heller (2016) in order to construct computationally-fast, distribution-free multivariate tests
for powerful identification of complex multivariate relationships. Briefly, one may reduce tests of
independence between multivariate X and Y to univariate ones by several methods, such as choosing
a reference point in X and Y and testing whether distances between observations and reference points
are associated in X and Y, or by choosing a direction and projecting X and Y on it. Heller and Heller
(2016) discuss methods of aggregation over several reference points. If the univariate tests utilized are
computationally efficient for large sample sizes and consistent, the resulting multivariate tests will
also be consistent and computationally efficient.

Using our approach for obtaining a look-up table for MinP, the null distribution of any test statistic
that combines individual p-values from distribution-free tests can be efficiently tabulated. Steps A
to E depicted in Figure 2 can be performed with Sm×l columns replaced by other rank based test
statistics T1, . . . , TM, and the MinP can be replaced by any p-value combining function f (p1, . . . , pM).
For example, package coin contains various rank based tests to detect shift or scale differences across
distributions. The null distribution tabulation we presented can be useful for constructing a look-up
table for a distribution-free combined test for shift and scale.

Appendix A

Let N be the number of observations, and NA be the number of atoms such that the size of an atom is
given by an integer A = N/NA. The locations of splits between atoms are thus given by Ti = i · A for
i ∈ {0, 1, 2, . . . , NA}. If N is not a complete multiple of NA, we define the locations of splits between
atoms to be Ti = bi · N/NAc.

Step I (compute ECDF): The empirical CDF can be computed in O(N2
A + N) time for all possible

split locations: F̂(Ti, Tj), 0 ≤ i, j,5 NA. First, execute Algorithm 1 to compute the matrix Ar,s.

Algorithm 1 Compute ECDF at all inter-atoms split points

1: procedure COMPUTEECDF
2: Initialize Ai,j ← 0, for 0 ≤ i, j,≤ NA
3: Initialize Bi,j ← 0, for 0 ≤ i, j,≤ NA
4: for i = 1 to N do
5: AtomRankx ← dNA/N · rank(xi)e
6: AtomRanky ← dNA/N · rank(yi)e
7: BAtomRankx ,AtomRanky ← BAtomRankx ,AtomRanky + 1

8: for s = 0 to NA do
9: for r = 0 to NA do

10: Ar,s ← Br,s−1 + Br−1,s − Br−1,s−1 + Br,s
11: Br,s ← Ar,s

The empirical cumulative distribution function at the split point given by ranks (Ti, Tj) is given by
F̂(Ti, Tj) = Ai,j/N. For a cell of borders

[
Ti1, Ti2

]
×
[
Tj1, Tj2

]
, the expected number of observations is

given by:
E(Ti1, Ti2, Tj1, Tj2) =

(
Ti2 − Ti1

)
·
(
Tj2 − Tj1

)
/N (7)

Once the empirical CDF has been tabulated, the observed counts of the cell can be calculated in
constant time:

O(Ti1, Ti2, Tj1, Tj2) = Ai2,j2 − Ai1,j2 − Ai2,j1 + Ai1,j1 (8)

Step II (Aggregate LRT scores of all cells of given size): A cell of the sample space
[
Ti1, Ti2

]
×
[
Tj1, Tj2

]
is

given by its boundaries i1, i2, j1, j2. We define a cell to be ’top’ or ’bottom’ cell if i2 = N or i1 = 0. A
cell is considered ’right’ or ’left’ if j2 = N or j1 = 0. If a cell is in both categories, it is called ’corner’. If
a cell is not ’top’,’bottom’,’left’, or ’right’, it is called a ’center’ cell. Let Type(i1, i2, j1, j2) be a function
taking the borders of a cell and returning 1 for ’center’ cells, 2 for ’top’ or ’bottom’, 3 for ’left’ or ’right’,
and 4 for ’corner’ cells.

We define the width of the cell to be w(i1, i2) = i2− i1 and the height of the cell to be h(j1, j2) =
j2− j1. For each size and type, we sum up the scores of that size and type.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 435

Algorithm 2 computes the array St,w,h, which stores the sum of scores of the form O · ln
(

O
E

)
for

all cells of type t, width w, and height h.

Algorithm 2 Aggregate contribution to statistic by cell type and size

1: procedure AGGREGATECELLSCORES
2: Initialize St,w,h ← 0, ∀t ∈ [1, 4], w, h ∈ [1, NA − 1]
3: for i1 = 0 to NA − 1 do
4: for i2 = i1 + 1 to NA do
5: w0 ← w(i2, i1)
6: for j1 = 0 to NA − 1 do
7: for j2 = j1 + 1 to NA do
8: t← Type(i1, i2, j1, j2)
9: h0 ← h(j2, j1)

10: o ← O(i1, i2, j1, j2)
11: e← E(i1, i2, j1, j2)
12: St,w0,h0 ← St,w0,h0 + o · ln

(o
e
)

Step III (Computing Sm×l): Next, we aggregate over St,w0,h0 , over all cell sizes and types, to compute
Sm×l with m, l ∈ [2, m.max].

The number of partitions in which a cell is found is given by the number of possible ways to
select additional partitioning locations around that cell, denoted by n(t, w, h, m, l) (2). For example,
a ’center’ cell requires m− 3 choices of additional X partition points and l − 3 additional Y partition
points to fully define a m× l partition. Hence a ’center’ cell of size w,h is found in (NA−w−2

m−3) · (NA−h−2
l−3)

partitions. Note that the number of tables in which a cell is found does not depend on its edge locations
but only on its size and type. Thus, the contribution for Sm×l of all center cells of size w× h atoms is

given by the sum of their O · ln
(

O
E

)
scores, multiplied by (NA−w−2

m−3) · (NA−h−2
l−3). The differentiation

by cell type is needed since a cell bordering the edge of the sample space requires only one partition
point, thus allowing the selection of an extra partition point.

The final step is given in algorithm 3. Algorithm 3 computes Sm×l by summing over all values of
the array St,w,h with weights n(t, w, h, m, l).

Algorithm 3 Compute Sm×l for all m, l ∈ [2, m.max]

1: procedure COMPUTESTATISTIC
2: Initialize Sm×l ← 0, ∀m, l ∈ [2, m.max]
3: for m = 2 to m.max do
4: for l = 2 to m.max do
5: for t = 1 to 4 do
6: for w = 1 to NA − 1 do
7: for h = 1 to NA − 1 do
8: Sm×l ← Sm×l + n(t, w, h, m, l) · St,w,h

Appendix B

In Table 3 we list the additional available tests in the HHG package. Specifically, the multivariate tests
of Heller et al. (2013) and the univariate test of Heller et al. (2016).

Bibliography

D. Albanese, M. Filosi, R. Visintainer, S. Riccadonna, G. Jurman, and C. Furlanello. minerva and
minepy: a c engine for the mine suite and its r, python and matlab wrappers. Bioinformatics, 29(3):
407–408, 2013. URL https://doi.org/10.1093/bioinformatics/bts707. [p424]

B. Brill. Scalable non-parametric tests of independence. Master’s thesis, Tel Aviv University, 2016.
URL http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf. [p426, 431, 433]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1093/bioinformatics/bts707
http://primage.tau.ac.il/libraries/theses/exeng/free/2899741.pdf

CONTRIBUTED RESEARCH ARTICLE 436

Table 3: Nonparametric tests previously available in the HHG package for small to moderate sample
sizes

Function Name Description

hhg.test Implements the multivariate test of independence
described in Heller et al. (2013), testing for the
independence of two random vectors ~X and ~Y,of
dimensionality p and q, respectively.

hhg.test.2.sample
hhg.test.k.sample

Adaptation of the above procedure to the k-sample
problem (equality of distributions). Given a multi-
variate measurement ~X and a group factor variable
~Y, test whether the distributions ~X|Y = 1, ~X|Y =

2, . . . , ~X|Y = k are equal. This is the nonparametric
extension of the MANOVA problem (sensitive not
only to shifts in means).

hhg.univariate.ind.combined.test Univariate test of independence for problem (1), as
described in Heller et al. (2016).

hhg.univariate.ks.combined.test Test for univariate equality of distributions (i.e.,
X|Y = 1 X|Y = 2 . . . X|Y = k), as described in
Heller et al. (2016). This is the nonparametric exten-
sions of the ANOVA problem, which is sensitive
to any difference in distribution (not only to shifts
in means).

K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample testing with analytic
representations of probability measures. In Advances in Neural Information Processing Systems, pages
1981–1989, 2015. [p425]

M. Filosi, R. Visintainer, and D. Albanese. minerva: Maximal Information-Based Nonparametric Exploration
for Variable Analysis, 2017. URL https://CRAN.R-project.org/package=minerva. R package version
1.4.7. [p424]

R. Gaujoux. doRNG: Generic Reproducible Parallel Backend for ’foreach’ Loops, 2017. URL https://CRAN.R-
project.org/package=doRNG. R package version 1.6.6. [p430]

A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola. A kernel statistical test of
independence. In Advances in neural information processing systems, pages 585–592, 2008. [p424]

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(Mar):723–773, 2012a. [p424, 425]

A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, and B. K. Sripe-
rumbudur. Optimal kernel choice for large-scale two-sample tests. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1205–1213. Curran Associates, Inc., 2012b. URL http://papers.nips.cc/paper/4727-optimal-
kernel-choice-for-large-scale-two-sample-tests.pdf. [p425]

F. E. Harrell Jr, with contributions from Charles Dupont, and many others. Hmisc: Harrell Miscellaneous,
2018. URL https://CRAN.R-project.org/package=Hmisc. R package version 4.1-1. [p424]

J. Hausser and K. Strimmer. Entropy inference and the james-stein estimator, with application to
nonlinear gene association networks. Journal of Machine Learning Research, 10(Jul):1469–1484, 2009.
[p424]

J. Hausser and K. Strimmer. entropy: Estimation of Entropy, Mutual Information and Related Quantities,
2014. URL https://CRAN.R-project.org/package=entropy. R package version 1.2.1. [p424]

R. Heller and Y. Heller. Multivariate tests of association based on univariate tests. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=minerva
https://CRAN.R-project.org/package=doRNG
https://CRAN.R-project.org/package=doRNG
http://papers.nips.cc/paper/4727-optimal-kernel-choice-for-large-scale-two-sample-tests.pdf
http://papers.nips.cc/paper/4727-optimal-kernel-choice-for-large-scale-two-sample-tests.pdf
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=entropy

CONTRIBUTED RESEARCH ARTICLE 437

Processing Systems 29, pages 208–216. Curran Associates, Inc., 2016. URL http://papers.nips.cc/
paper/6220-multivariate-tests-of-association-based-on-univariate-tests.pdf. [p434]

R. Heller, Y. Heller, and M. Gorfine. A consistent multivariate test of association based on ranks of
distances. Biometrika, 100(2):503–510, 2013. URL https://doi.org/10.1093/biomet/ass070. [p435,
436]

R. Heller, Y. Heller, S. Kaufman, B. Brill, and M. Gorfine. Consistent distribution-free k-sample and
independence tests for univariate random variables. Journal of Machine Learning Research, 17(29):
1–54, 2016. [p424, 425, 427, 430, 431, 433, 435, 436]

W. Hoeffding. A non-parametric test of independence. The annals of mathematical statistics, pages
546–557, 1948. URL https://doi.org/10.1214/aoms/1177730150. [p424]

C. Huang and X. Huo. An efficient and distribution-free two-sample test based on energy statistics
and random projections. arXiv preprint arXiv:1707.04602, 2017. [p425]

X. Huo and G. J. Székely. Fast computing for distance covariance. Technometrics, 58(4):435–447, 2016.
URL https://doi.org/10.1080/00401706.2015.1054435. [p425]

B. Jiang, C. Ye, and J. S. Liu. Non-parametric K-sample tests via dynamic slicing. Journal of the
American Statistical Association, 110(510):642–653, 2015. URL https://doi.org/10.1080/01621459.
2014.920257. [p424, 425]

W. Jitkrittum, Z. Szabó, K. Chwialkowski, and A. Gretton. Interpretable distribution features with
maximum testing power. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 181–189. Curran Associates, Inc.,
2016a. URL http://papers.nips.cc/paper/6148-interpretable-distribution-features-with-
maximum-testing-power.pdf. [p425]

W. Jitkrittum, Z. Szabó, and A. Gretton. An adaptive test of independence with analytic kernel
embeddings. arXiv preprint arXiv:1610.04782, 2016b. [p425]

A. Karatzoglou, A. Smola, and K. Hornik. kernlab: Kernel-Based Machine Learning Lab, 2016. URL
https://CRAN.R-project.org/package=kernlab. R package version 0.9-25. [p]

B. B. . S. Kaufman, based in part on an earlier implementation by Ruth Heller, and Y. Heller. HHG:
Heller-Heller-Gorfine Tests of Independence and Equality of Distributions, 2017. URL https://CRAN.R-
project.org/package=HHG. R package version 2.2. [p]

W. Kusnierczyk. rbenchmark: Benchmarking routine for R, 2012. URL https://CRAN.R-project.org/
package=rbenchmark. R package version 1.0.0. [p430]

D. Lopez-Paz, P. Hennig, and B. Schölkopf. The randomized dependence coefficient. In Advances in
neural information processing systems, pages 1–9, 2013. [p]

P. E. Meyer. infotheo: Information-Theoretic Measures, 2014. URL https://CRAN.R-project.org/
package=infotheo. R package version 1.2.0. [p424]

P. E. Meyer, F. Lafitte, and G. Bontempi. minet: Ar/bioconductor package for inferring large
transcriptional networks using mutual information. BMC bioinformatics, 9(1):461, 2008. URL
https://doi.org/10.1186/1471-2105-9-461. [p424]

P. E. Meyer, F. Lafitte, and G. Bontempi. minet: Mutual Information NETworks, 2017. URL http:
//minet.meyerp.com. R package version 3.36.0. [p424]

Microsoft and S. Weston. foreach: Provides Foreach Looping Construct for R, 2017. URL https://CRAN.R-
project.org/package=foreach. R package version 1.4.4. [p]

L. Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253, 2003.
URL https://doi.org/10.1162/089976603321780272. [p424]

N. Pfister and J. Peters. dHSIC: Independence Testing via Hilbert Schmidt Independence Criterion, 2017.
URL https://CRAN.R-project.org/package=dHSIC. R package version 2.0. [p424]

N. Pfister, P. Bühlmann, B. Schölkopf, and J. Peters. Kernel-based tests for joint independence.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5–31, 2018. URL https:
//doi.org/10.1111/rssb.12235. [p424]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://papers.nips.cc/paper/6220-multivariate-tests-of-association-based-on-univariate-tests.pdf
http://papers.nips.cc/paper/6220-multivariate-tests-of-association-based-on-univariate-tests.pdf
https://doi.org/10.1093/biomet/ass070
https://doi.org/10.1214/aoms/1177730150
https://doi.org/10.1080/00401706.2015.1054435
https://doi.org/10.1080/01621459.2014.920257
https://doi.org/10.1080/01621459.2014.920257
http://papers.nips.cc/paper/6148-interpretable-distribution-features-with-maximum-testing-power.pdf
http://papers.nips.cc/paper/6148-interpretable-distribution-features-with-maximum-testing-power.pdf
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=HHG
https://CRAN.R-project.org/package=HHG
https://CRAN.R-project.org/package=rbenchmark
https://CRAN.R-project.org/package=rbenchmark
https://CRAN.R-project.org/package=infotheo
https://CRAN.R-project.org/package=infotheo
https://doi.org/10.1186/1471-2105-9-461
http://minet.meyerp.com
http://minet.meyerp.com
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://doi.org/10.1162/089976603321780272
https://CRAN.R-project.org/package=dHSIC
https://doi.org/10.1111/rssb.12235
https://doi.org/10.1111/rssb.12235

CONTRIBUTED RESEARCH ARTICLE 438

D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander,
M. Mitzenmacher, and P. C. Sabeti. Detecting novel associations in large data sets. science, 334(6062):
1518–1524, 2011. URL https://doi.org/10.1126/science.1205438. [p424]

M. L. Rizzo and G. J. Szekely. energy: E-Statistics: Multivariate Inference via the Energy of Data, 2017. URL
https://CRAN.R-project.org/package=energy. R package version 1.7-2. [p424]

C. Spearman. The proof and measurement of association between two things. The American journal of
psychology, 15(1):72–101, 1904. URL https://doi.org/10.2307/1412159. [p]

G. J. Székely and M. L. Rizzo. Testing for equal distributions in high dimension. InterStat, 5(16.10),
2004. [p424, 425]

G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al. Measuring and testing dependence by correla-
tion of distances. The Annals of Statistics, 35(6):2769–2794, 2007. URL https://doi.org/10.1214/
009053607000000505. [p424]

G. J. Székely, M. L. Rizzo, et al. Brownian distance covariance. The annals of applied statistics, 3(4):
1236–1265, 2009. URL https://doi.org/10.1214/09-aoas312. [p424]

H. Wickham and W. Chang. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics,
2016. URL https://CRAN.R-project.org/package=ggplot2. R package version 2.2.1. [p]

C. Ye, B. Jiang, X. Zhang, and J. S. Liu. dslice: an R package for nonparametric testing of associations
with application in qtl and gene set analysis. Bioinformatics, 31(11):1842–1844, 2015. URL https:
//doi.org/10.1093/bioinformatics/btv021. [p]

A. Zeileis, K. Hornik, A. Smola, and A. Karatzoglou. kernlab-an s4 package for kernel methods in
r. Journal of statistical software, 11(9):1–20, 2004. URL https://doi.org/10.18637/jss.v011.i09.
[p424]

Q. Zhang, S. Filippi, A. Gretton, and D. Sejdinovic. Large-scale kernel methods for independence
testing. Statistics and Computing, 28(1):113–130, 2018. URL https://doi.org/10.1007/s11222-016-
9721-7. [p425]

J. Zhao and D. Meng. Fastmmd: Ensemble of circular discrepancy for efficient two-sample test. Neural
computation, 27(6):1345–1372, 2015. URL https://doi.org/10.1162/neco_a_00732. [p425]

Barak Brill
Department of Statistics and Operations Research, Tel-Aviv University
Tel-Aviv
Israel
barakbri@mail.tau.ac.il

Yair Heller
Tel-Aviv
Israel
heller.yair@gmail.com

Ruth Heller
Department of Statistics and Operations Research, Tel-Aviv University
Tel-Aviv
Israel
ruheller@gmail.com

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1126/science.1205438
https://CRAN.R-project.org/package=energy
https://doi.org/10.2307/1412159
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/09-aoas312
https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.1093/bioinformatics/btv021
https://doi.org/10.1093/bioinformatics/btv021
https://doi.org/10.18637/jss.v011.i09
https://doi.org/10.1007/s11222-016-9721-7
https://doi.org/10.1007/s11222-016-9721-7
https://doi.org/10.1162/neco_a_00732
mailto:barakbri@mail.tau.ac.il
mailto:heller.yair@gmail.com
mailto:ruheller@gmail.com

	Nonparametric Independence Tests and k-sample Tests for Large Sample Sizes Using Package HHG
	Introduction
	The atom based test statistics
	The null distribution of MinP and pml
	Usage examples
	Function calls and input arguments
	Output description
	Example code

	k-sample tests
	Simulations
	The test of independence
	The k-sample test

	Discussion
	Appendix A
	Appendix B

