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Residuals and Diagnostics for Binary and
Ordinal Regression Models: An

Introduction to the sure Package
by Brandon M. Greenwell, Andrew . McCarthy, Bradley C. Boehmke, and Dungang Liu

Abstract Residual diagnostics is an important topic in the classroom, but it is less often used in practice
when the response is binary or ordinal. Part of the reason for this is that generalized models for discrete
data, like cumulative link models and logistic regression, do not produce standard residuals that are
easily interpreted as those in ordinary linear regression. In this paper, we introduce the R package
sure, which implements a recently developed idea of SUrrogate REsiduals. We demonstrate the utility
of the package in detection of cumulative link model misspecification with respect to mean structures,
link functions, heteroscedasticity, proportionality, and interaction effects.

Introduction

Categorical outcomes are encountered frequently in practice across different fields. For example,
in medical studies, the outcome of interest is often binary (e.g., presence or absence of a particular
disease after applying a treatment). In other studies, the outcome may be an ordinal variable; that is,
a categorical outcome having a natural ordering. For instance, in an opinion poll, the response may
be satisfaction with categories low, medium, and high. In this case, the response is ordered: low <
medium < high.

Logistic and probit regression are popular choices for modeling a binary outcome. Although
this paper focuses on models for ordinal responses, the surrogate approach to constructing residuals
actually applies to a wide class of general models of the form

Y~FE(yXB),

where F, (-) is a discrete cumulative distribution function, X is an n X p model matrix, and Bisa p x 1
vector of unknown regression coefficients. This functional form includes binary regression as a special
case. For example, the probit model has

Y ~ Bernoulli [CD (XTﬁ)] ,

where @ (-) is the cumulative distribution function for the standard normal distribution.

The cumulative link model is a natural choice for modeling a binary or ordinal outcome. Consider
an ordinal categorical outcome ) with ordered categories 1 < 2 < - - - < J. In a cumulative link model,
the cumulative probabilities are linked to the predictors according to

G Pr{Y<j}) =aj+f(XB), (1)

where G (+) is a continuous cumulative distribution function, «; are the category-specific intercepts, X
is a matrix of covariates, and B is a vector of fixed regression coefficients. The intercept parameters
satisfy —oo = g < &y < --- <aj_1 < aj = co. We should point out that some authors (and software)
use the alternate formulation

G (Pr{Y >j}) =af +f(X,BY). @)

This formulation provides coefficients that are consistent with the ordinary logistic regression model.
The estimated coefficients from model (2) will have the opposite sign as those in model (1); see, for
example, Agresti (2010).

Another way to interpret the cumulative link model is through a latent continuous random
variable Z = —f (X, B) + €, where € is a continuous random variable with location parameter 0,
scale parameter 1, and cumulative distribution function G (-). We then construct an ordered factor
according to the rule

y=j if aj1<z<ua;
For € ~ N (0,1), this leads to the usual probit model for ordinal responses,

Pry<ji=Pr{Z<a)=Pr{ fXpre<a)=0(n+f(Xp).
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Common choices for the link function G™! (-) and the implied (standard) distribution for € are

described in Table 1.
Link Distributionof e G (y) G 1(p)
logit logistic exp (y) /[1+exp (y)] loglp/ (1—p)]
probit standard normal @ (y) 1 (p)
log-log Gumbel (max) exp [—exp (—y)] —log[—log (p)]
complementary log-log Gumbel (min) 1—exp[—exp (y)] log [—log (1 —p)]
cauchit Cauchy nlarctan (y) +1/2  tan(mp — 7/2)

Table 1: Common link functions. Note: the logit is typically the default link function used by most
statistical software.

There are a number of R packages that can be used to fit cumulative link models (1) and (2). The
recommended package MASS (Venables and Ripley, 2002) contains the function polr (proportional
odds logistic regression) which, despite the name, can be used with all of the link functions described
in Table 1. The VGAM package (Yee, 2017) has the vglm function for fitting vector generalized linear
models, which includes the broad class of cumulative link models. By default, vglm uses the same
parameterization as in Equation (1), but provides the option of using the parameterization seen in
Equation (2); this will result in the estimated coefficients having the opposite sign. Package ordinal
(Christensen, 2015) has the c1m function for fitting cumulative link models. The popular rms package
(Harrell, 2017) has two functions: 1lrm for fitting logistic regression and cumulative link models
using the logit link, and orm for fitting ordinal regression models. Both of these functions use the
parameterization seen in Equation (2).

The remainder of the paper is organized as follows. In the next section, we discuss the idea of
surrogate residuals (Liu and Zhang, 2017) and talk about some important properties. Next, we briefly
discuss jittering, bootstrapping, and how they apply to the surrogate approach. The Section ”“Sur-
rogate residuals in R” introduces the sure package and discusses the various modeling packages it
supports. The sections following demonstrate how sure can be used to detect misspecified mean
structures, heteroscedasticity, misspecified link functions, and interaction effects, as well as check the
proportionality assumption. The Section “Bitterness of wine” provides a real data analysis example.
We end with a closing summary.

Surrogate residuals

For a continuous outcome Y, the residual is traditionally defined as the difference between the
observed and fitted values. For ordinal outcomes, the residuals are more difficult to define, and few
definitions have been proposed in the literature. Liu et al. (2009) propose using the cumulative sums of
residuals derived from collapsing the ordered categories into multiple binary outcomes. Unfortunately,
this method leads to multiple residuals for the ordinal outcome and therefore is difficult to interpret.
Li and Shepherd (2012) show that the sign-based statistic (SBS)

Rsps = E{sign(y—¥)} =Pr{y >V} - Pr{y <V} ©)

can be used as a residual for ordinal outcomes. Though Li and Shepherd refer to these as probability-
based residuals, we will follow Liu and Zhang (2017) and refer to them as SBS residuals. For an
overview of the theoretical and graphical properties of the SBS residual (3), see Liu and Zhang (2017)
and the PResiduals package (Dupont et al., 2016). A limitation with the SBS residuals is that they are
based on a discrete outcome and are discrete themselves, which makes them less useful in diagnostic
plots.

Liu and Zhang (2017) propose a new type of residual that is based on a continuous variable S that
acts as a surrogate for the ordinal outcome ). This surrogate residual is defined as

Rs =S —E(S|X), (4)

where S is a continuous variable based on the conditional distribution of the latent variable Z given Y.
In particular, given ) = y, Liu and Zhang (2017) show that S follows a truncated distribution obtained
by truncating the distribution of Z = —f (X, B) + € using the interval (,_1,y). The benefit of the
surrogate residual (4) is that it is based on a continuous variable S, such that R is also continuous.

Furthermore, it can be shown (Liu and Zhang, 2017) that if the hypothesized model agrees with
the true model, then Rg will have the following properties:
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(a) symmetry around zero E (Rg|X) = 0;
(b) homogeneity Var (Rs|X) = ¢, a constant that is independent of X;
(c) reference distribution the empirical distribution of Rg approximates an explicit distribution that

is related to the link function G! (-). In particular, independent of X, Rs ~ G (c + [ udG(u)),
where c is a constant.

According to property (a), if [ udG (1) = 0, then Rg ~ G (-). Properties (a)—(c) allow for a thorough
examination of the residuals to check model adequacy and misspecification of the mean structure and
link function.

Jittering for general models

The latent method discussed in Section “Surrogate residuals” applies to cumulative link models for
ordinal outcomes. For more general models, we can define a surrogate using a technique called
jittering. Suppose the true model for an ordinal outcome ) is

Y~ E(y:X,P), ©)

where F (-) is a discrete cumulative distribution function. This model is general enough to cover the
cumulative link models (1) and (2), and nearly any parametric or nonparametric model for ordinal
outcomes.

Liu and Zhang (2017) suggest defining the surrogate S using either of the following two ap-
proaches:

1. jittering on the outcome scale: S|V =y ~ U [y, y + 1];
2. jittering on the probability scale: S|Y =y ~ U [Fa (y — 1), Fa (y)].

Once a surrogate is obtained, we define the surrogate residuals in the same way as Equation (4).
In either case, if the hypothesized model is correct, then symmetry around zero still holds; that is
E (Rs|X) = 0. For the latter case, if the hypothesized model is correct then Rg|X ~ U (—1/2,1/2).
In other words, jittering on the probability scale has the additional property that the conditional
distribution of Rg given X has an explicit form which allows for a full examination of the distributional
information of the residual.

Bootstrapping

Since the surrogate residuals are based on random sampling, additional variability is introduced. One
way to account for this sample variability and help stabilize any patterns in diagnostic plots is to use
the bootstrap (Efron, 1979).

The procedure for bootstrapping surrogate residuals is similar to the model-based bootstrap
algorithm used in linear regression. To obtain the b-th bootstrap replicate of the residuals, Liu and
Zhang (2017) suggest the following algorithm:

Step 1 Perform a standard case-wise bootstrap of the original data to obtain the bootstrap sample
(X0 Vo) oo (X Vi) -
Step 2 Using the procedure outlined in the previous section, obtain a sample of surrogate residuals
Rglb, e, Rgnb using the bootstrap sample obtained in Step 1.
This procedure is repeated a total of B times. For residual-vs-covariate (i.e., R-vs-x) plots and
residual-vs-fitted value (i.e., R-vs-f (X, B)) plots, we simply scatter all B X 1 residuals on the same

plot. This approach is valid since the bootstrap samples are drawn independently. For large data sets,
we find it useful to lower the opacity of the data points to help alleviate any issues with overplotting.
For Q-Q plots, on the other hand, Liu and Zhang (2017) suggest using the median of the B bootstrap
distributions, which is the implementation used in the sure package (Greenwell et al., 2017).

Surrogate residuals in R

The sure package supports a variety of R packages for fitting cumulative link and other types of
models. The supported packages and their corresponding functions are described in Table 2.

The sure package currently exports four functions:

¢ resids—for constructing surrogate residuals;
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Package Function(s) Model Parameterization
stats glm binary regression =~ NA
MASS polr cumulative link Pr{y <j}
rms lrm cumulative link pr{y >j}

lrm logistic regression NA

orm cumulative link Pr{y >j}
ordinal clm cumulative link Pr{y <j}
VGAM vglm cumulative link Pr{Yy <j}

vgam cumulative link pPr{y <j}

Table 2: Ordinal regression modeling packages supported by sure and the corresponding param-
eterization they use for fitting cumulative link models. Note: by default, vglm uses the same pa-
rameterization as in Equation (1). This can be reversed by setting reverse = TRUE in the family
argument.

* surrogate—for generating the surrogate response values used in the residuals;
* autoplot—for producing various diagnostic plots using ggplot2 graphics (Wickham, 2009);

¢ gof—for simulating p-values from various goodness-of-fit tests.

In addition, the package also includes five simulated data sets: df1, df2, df3, df4, and df5. These
data sets are used throughout the paper to demonstrate how the surrogate residual can be useful as a
diagnostic tool for cumulative link models. The R code used to generate these data sets is available on
the projects GitHub page: https://github.com/koalaverse/sure/blob/master/data-raw/data.R.

Detecting a misspecified mean structure

For illustration, the data frame df1 contains n = 2000 observations from the following cumulative link
model:
PrY <jt =@ (+pX+pX2), j=1234, 6)

where a1 = —16, a4y = —12, a3 = =8, 1 = =8, B = 1, and X ~ U (1,7). These parameters were
chosen to ensure that 1) the sample from the latent variable Z is spread out, rather than clustering in a
small interval, and 2) each category of ) is well represented in the sample; we follow these guidelines
throughout the simulated examples. The simulated data for this example are available in the df1
data frame from the sure package and are loaded automatically with the package; see ?df1 for details.
Below, we fit a (correctly specified) probit model using the polr function from the MASS package.

# Fit a cumulative link model with probit link

library(sure) # for residual function and sample data sets
library(MASS) # for polr function

fit.polr <- polr(y ~ x + I(x * 2), data = df1, method = "probit")

The code chunk below obtains the SBS residuals (3) from the previously fitted probit model
fit.polr using the PResiduals package and constructs a couple of diagnostic plots. The results are
displayed in Figure 1.

# Obtain the SBS/probability-scale residuals
library(PResiduals)
pres <- presid(fit.polr)

# Residual-vs-covariate plot and Q-Q plot

library(ggplot2) # for plotting

pl <- ggplot(data.frame(x = df1$x, y = pres), aes(x, y)) +
geom_point(color = "#444444" shape = 19, size = 2, alpha = 0.5) +
geom_smooth(color = "red”, se = FALSE) +
ylab("Probability-scale residual”)

p2 <- ggplot(data.frame(y = pres), aes(sample = y)) +
stat_qq(distribution = qunif, dparams = list(min = -1, max = 1), alpha = 0.5) +
xlab("Sample quantile”) +
ylab("Theoretical quantile”)

grid.arrange(pl, p2, ncol = 2) # Figure 1
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(Note: the reference distribution for the SBS residual is the ¢/ (—1,1) distribution.) As can be seen in
the left side of Figure 1, the SBS residuals are inherently discrete and often display unusual patterns in
diagnostic plots, making them less useful as a diagnostic tool.
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Figure 1: SBS residual plots for the (correctly specified) probit model fit to the df1 data set. Left:
Residual-vs-covariate plot with a nonparametric smooth (red curve). Right: Q-Q plot of the residuals.

Similarly, we can use the resids function in package sure to obtain the surrogate residuals
discussed in Section ”Surrogate residuals.” This is illustrated in the following code chunk; the results
are displayed in Figure 2. (Note: since the surrogate residuals are based on random sampling, we
specify the seed via the set. seed function throughout this paper for reproducibility.)

# Obtain surrogate residuals
library(sure)

set.seed(101) # for reproducibility
sres <- resids(fit.polr)

# Residual-vs-covariate plot and Q-Q plot

library(ggplot2) # needed for autoplot function

pl <- autoplot(sres, what = "covariate”, x = df1$x, xlab = "x")
p2 <- autoplot(sres, what = "qq", distribution = gnorm)
grid.arrange(pl, p2, ncol = 2) # Figure 2

o

Surrogate residual
Sample quantile
o

-2 0 2
X Theoretical quantile
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Figure 2: Surrogate residual plots for the (correctly specified) probit model fit to the df1 data set. Left:
Residual-vs-covariate plot with a nonparametric smooth (red curve). Right: Q-Q plot of the residuals.
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The sure package also includes autoplot methods for the various classes of models listed in
Table 2, so that the user can give autoplot the fitted model directly. The benefit of this approach is
that the fitted values and reference distribution (used in Q-Q plots) are automatically extracted. For
example, to reproduce the Q-Q plot in Figure 2, we could have used the following;:

set.seed(101) # for reproducibility
autoplot(fit.polr, what = "qq") # same as top right of Figure 1

Suppose that we did not include the quadratic term in our fitted model. We would expect a
residual-vs-x plot to indicate that such a quadratic term is missing. Below, we update the previously
fitted model by removing the quadratic term, then update the residual-vs-covariate plots (code not
shown). The updated residual plots are displayed in Figure 3.

fit.polr <- update(fit.polr, y ~ x) # remove quadratic term

The SBS residuals gives some indication of a misspecified mean structure, but this only becomes more
clear with increasing J, and the plot is still discrete. This is overcome by the surrogate residuals which
produces a residual plot not unlike those seen in ordinary linear regression models.
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Figure 3: Residual-vs-covariate plots with nonparametric smooths (red curves) for a probit model
with a misspecified mean structure fit to the simulated data from model (6). Left: Surrogate residuals.
Right: SBS residuals.

Detecting heteroscedasticty

One issue that often raises concerns in statistical inference is that of heteroscedasticity; that is, when
the error term has non constant variance. Heteroscedasticity can bias the statistical inference and
lead to improper standard errors, confidence intervals, and p-values. Therefore, it is imperative to
identify heteroscedasticity whenever present and take appropriate action (e.g., transformations). In
ordinary linear regression, this topic has been covered extensively. Not much has been proposed in
the literature for categorical models.

As discussed in Section “Surrogate residuals,” one of the properties of the surrogate residual Rg is
that, if the model is specified correctly, then Var (Rg|X) = ¢, where ¢ is a constant.

For this example, we generated n = 2000 observations from the following ordered probit model:
PriY <j} =@ {(a;+pX) /ox}, j=1,2345

where a1 = —36, 0y = —6, 03 = 34,04 =64, = -4, X ~U(2,7),and 0x = X2. Notice how the
variability is an increasing function of X. These data are available in the df2 data frame loaded with
the sure package; see ?df2 for details.

The following block of code uses the orm function from the popular rms package to fit a probit
model to the simulated data. Note: we set x = TRUE in the call to orm in order to use the presid
function later.
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# Fit a cumulative link model with probit link
library(rms) # for orm function
fit.orm <- orm(y ~ x, data = df2, family = "probit”, x = TRUE)

If heteroscedasticity is present, we would expect this to show up in various diagnostic plots, such
as a residual-vs-covariate plot. Below we obtain the SBS and surrogate residuals as before and plot
them against X. The results are displayed in Figure 4.

set.seed(102) # for reproducibility

p1 <- autoplot(resids(fit.orm), what = "covariate”, x = df2$x, xlab = "x")

p2 <- ggplot(data.frame(x = df2$x, y = presid(fit.orm)), aes(x, y))
geom_point(color = "#444444" shape = 19, size = 2, alpha = 0.25)
geom_smooth(col = "red”, se = FALSE) +
ylab("Probability scale residual")

grid.arrange(pl, p2, ncol = 2) # Figure 4

+ +

In Figure 4, it is clear from the plot of the surrogate residuals (left side of Figure 4) that the variance
increases with X, a sign of heteroscedasticity. As a matter of fact, the plot suggests that the true link
function has a varying scale parameter, ¢ = ¢ (X). The plot of the SBS residuals (right side of Figure 4),
on the other hand, gives no indication of an issue with nonconstant variance.
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Figure 4: Residual-vs-covariate plots with nonparametric smooths (red curves) for the simulated
heteroscedastic data. Left: Surrogate residuals. Right: SBS residuals.

As outlined in Section “Jittering for general models,” the jittering technique is broadly applicable
to virtually all parametric and nonparametric models for ordinal responses. To illustrate, the code
chunk below uses the VGAM package to fit a vector generalized additive model to the same data
using a nonparametric smooth for x.

library(VGAM) # for vgam and vglm functions
fit.vgam <- vgam(y ~ s(x), family = cumulative(link = probit, parallel = TRUE),
data = df2)

To obtain a surrogate residual using the jittering technique, we can set method = "jitter” in
the call to resids or autoplot. There is also the option jitter.scale which can be set to either
"probability”, for jittering on the probability scale (the default), or "response”, for jittering on the
response scale. In the code chunk below, we use the autoplot function to obtain residual-by-covariate
plots using both types of jittering. The results (Figure 5) indicate that the variance increases with
increasing x.

set.seed(103) # for reproducibility

pl <- autoplot(fit.vgam, what = "covariate”, x = df2$x, method = "jitter",

xlab = "x")
p2 <- autoplot(fit.vgam, what = "covariate”, x = df2$x, method = "jitter”,
jitter.scale = "response”, xlab = "x")

grid.arrange(pl, p2, ncol = 2) # Figure 5
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Figure 5: Residual-vs-covariate plots with nonparametric smooths (red curves) from a vector general-
ized additive model fit to the simulated heteroscedastic data. Left: Jittering on the probability scale
(default). Right: Jittering on the response scale.

Detecting a misspecified link function

For this example, we simulated n = 2000 observations from the following model
Pry<j)=G (mi 78X+X2) . j=1,2,34

where G (-) is the CDF for the Gumbel (max) distribution (see Table 1), a1 = —16, ap = —12, a3 = —8§,
B1=—-8,B2=1and X ~ U (1,7). The data are available in the data frame df3 within the package;
see ?df3 for details.

We fit a model with various link functions, where the true link function is log-log. From these
output, we construct Q-Q plots of the residuals using R = 100 bootstrap replicates. The results are
displayed in Figure 6.

# Fit models with various link functions to the simulated data

fit.probit <- polr(y ~ x + I(x * 2), data = df3, method = "probit")

fit.logistic <- polr(y ~ x + I(x * 2), data = df3, method = "logistic")

fit.loglog <- polr(y ~ x + I(x * 2), data = df3, method = "loglog") # correct link
fit.cloglog <- polr(y ~ x + I(x * 2), data = df3, method = "cloglog")

# Construct Q-Q plots of the surrogate residuals for each model
set.seed(1056) # for reproducibility

pl <- autoplot(fit.probit, nsim = 100, what = "qq")

p2 <- autoplot(fit.logistic, nsim = 100, what = "qq")

p3 <- autoplot(fit.loglog, nsim = 100, what = "qq")

p4 <- autoplot(fit.cloglog, nsim = 100, what = "qq")

# Figure 6
grid.arrange(pl, p2, p3, p4, ncol = 2) # bottom left plot is correct model

From the Q-Q plots in Figure 6, it is clear the the model with the log-log link (which corresponds to
Gumbel (max) errors in the latent variable formulation) is the most appropriate, while the other plots
indicate deviations from the hypothesized model.

Alternatively, we could also use the surrogate residuals to make use of existing distance-based
goodness-of-fit (GOF) tests; for example, the Kolmogorov-Smirnov distance. The gof function in sure
can be used to produce simulated p-values from such tests.

Currently, the gof function supports three goodness-of-fit tests: the Kolmogorov-Smirnov test
(test = "ks"), the Anderson-Darling test (test = "ad"), and the Cramer-Von Mises test (test =
"cvm”). Below, we use the gof function to simulate p-values from the Anderson-Darling test for
each of the four models; we also set nsim to 100 to produce smoother plots and reduce the sampling
error induced by the surrogate procedure. The plot method is then used to display the empirical
distribution function (EDF) of the simulated p-values. A good fit would imply uniformly distributed
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Figure 6: Q-Q plots of the residuals for various cumulative link models fit to simulated data with
Gumbel (max) errors. Top left: A model with probit link. Top right: A model with logit link. Bottom left:
A model with log-log link (i.e., the correct model). Bottom right: A model with complementary log-log
link.

p-values; hence, the EDF would be relatively straight with a slope of one. The results in Figure 7 agree
with the Q-Q plots from Figure 6 in that the log-log link is the most appropriate for these data. (Note:
the plotting method for "gof" objects uses base R graphics; hence, we can use the par function to set
various graphical parameters.)

# Figure 7
par(mfrow = c(2, 2), mar = c(2, 4, 2, 2) +0.1)
set.seed(8491) # for reproducibility

plot(gof(fit.probit, nsim = 100, test = "ad"”), main = "")
plot(gof(fit.logistic, nsim = 100, test = "ad"), main = "")
plot(gof(fit.loglog, nsim = 100, test = "ad"), main = "")
plot(gof(fit.cloglog, nsim = 100, test = "ad"), main = "")

Checking the proportionality assumption

An important feature of the cumulative link model (1) is the proportional odds assumption, which
assumes that the mean structure, f (X, B), remains the same for each of the | categories; for the logit
case (see row one of Table 1), this is also referred to as the proportional odds assumption. Harrell
(2001, pp. 334-335) suggests computing each observation’s contribution to the first derivative of
the log likelihood function with respect to B, averaging them within each of the | categories, and
examining any trends in the residual plots, but these plots can be difficult to interpret. Fortunately, it is
relatively straightforward to use the simulated surrogate response values S to check the proportionality
assumption.

To illustrate, we generated 2000 observations from each of the following probit models
Pr(y<j)=a (a]- +/31x), j=1,23 and Pr(y<j)=o (aj+5zx), j=4,56,

where ay = —1.5,ap =0,a3 =1, 04 = 3,1 =1, B = 1.5,and X ~ U (—3,3). The data are available
in the data frame df4 within the package; see ?df4 for details.

Checking the proportionality assumption here amounts to checking whether or not ; — 2 = 0.
As outlined in Liu and Zhang (2017), we can generate surrogates S; ~ N (—$1X,1) and S, ~
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Figure 7: EDFs of the simulated p-values from an Anderson-Darling GOF test for various cumulative
link models fit to simulated data with gumbel errors. Top left: A model with probit link. Top right: A
model with logit link. Bottom left: A model with log-log link (i.e., the correct model). Bottom right: A
model with complementary log-log link.

N (—B2X,1), both conditional on X. We then define the difference D = S, — S; which, conditional on
X, follows a N ((B1 — B2) X, 1) distribution. If 1 — B = 0, then D should be independent of X. This
can be easily checked by plotting D against X. Below, we use the surrogate function to generate the
surrogate response values directly (as opposed to the residuals) and generate the D-vs-X plot shown
in Figure 8.

# Fit separate models (VGAM should already be loaded)
fit1l <- vglm(y ~ x, data = df4[1:2000, ],

cumulative(link = probit, parallel = TRUE))
fit2 <- update(fitl, data = df4[2001:4000, 1)

# Generate surrogate response values
set.seed(8671) # for reproducibility
s1 <- surrogate(fit1)

s2 <- surrogate(fit2)

# Figure 8

ggplot(data.frame(D = s1 - s2, x = df4[1:2000, I$x) , aes(x = x, y = D)) +
geom_point(color = "#444444"  shape = 19, size = 2) +
geom_smooth(se = FALSE, size = 1.2, color = "red")

From Figure 8, it is clear that §1 — B, # 0; hence, the proportionality assumption does not hold.

Detecting interaction effects
A common challenge in model building is determining whether or not there are important interactions

between the predictors in the data. Using the surrogate residuals, it is rather straightforward to
determine if such an interaction effect is missing from the assumed model.

For illustration, we generated n = 2000 observations from the following ordered probit model

Pr(Y <j) =@ (aj+prx1 + poxa + srina), j=1,2,34,
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Figure 8: Scatterplot of D = S; — S, vs. x with a nonparametric smooth (red curve).

where oy = —16, 00 = —12, 03 = —8, 1 = =5, o = 3, B3 = 10, x; ~ U (1,7), and x; is a factor with
levels Treatment and Control. The simulated data are available in the df5 data frame loaded with the
sure package; see ?df5 for details. Below, we fit two probit models using the clm function from the
ordinal package. The first model corresponds to the simulated control group, while the second model
corresponds to the treatment group.

library(ordinal) # for clm function
fitl <= clm(y ~ x1, data = df5[df5$x2 == "Control”, ], link = "probit")
fit2 <- clm(y ~ x1, data = df5[df5$x2 == "Treatment”, 1, link = "probit")

If the true model contains an interaction term x1x, but the fitted model does not include it, we
can detect this misspecification using the surrogate residuals. We simply plot Rg versus x; for the
treatment group, and compare it to the plot of Rg versus x; for the controls—or better yet, we can just
use the surrogate response S instead of Rg. The trends in these two plots should be different. Below,
we use ggplot along with the sure function to construct such a plot in Figure 9. The plot indicates a
negative association between x; and the outcome within the control group, and a positive association
between x; and the treatment group (i.e., an interaction between x; and x7).

# Figure 9
set.seed(1105) # for reproducibility
df5$s <- c(surrogate(fit1), surrogate(fit2)) # surrogate response values
ggplot(df5, aes(x = x1, y = s)) +
geom_point(color = "#444444", shape = 19, size = 2, alpha = 0.5) +
geom_smooth(se = FALSE, size = 1.2, color = "red2") +
facet_wrap( ~ x2) +
ylab(”Surrogate response”) +
xlab(expression(x[1]1))

Bitterness of wine

Randall (1989) performed an experiment on factors determining the bitterness of wine. Two binary
treatment factors, temperature and contact (between juice and skin), were controlled while crushing
the grapes during wine production. Nine judges each assessed wine from two bottles from each of
the four treatment conditions; for a total of n = 72. The response is an ordered factor with levels
1 <2 <3 <4 <5. The data are available in the ordinal package; see ?ordinal: :wine for details.

data(wine, package = "ordinal”) # load wine data set
wine.clm <- clm(rating ~ temp + contact, data = wine, link = "probit")

Since both of the covariates in this model are binary factors, scatterplots are not appropriate
for displaying the residual-by-covariate relationships. Instead, the autoplot function in sure uses
boxplots; a future release is likely to include the additional option for producing nonparametric
densities for each level of a factor. The code chunk below uses autoplot along with grid.arrange to
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Figure 9: Scatterplot of the surrogate response S versus x; with a nonparametric smooth (red line).
Left: Control group. Right: Treatment group.

produce some standard residual diagnostic plots. The results are displayed in Figure 10. The Q-Q plot
and residual-vs-fitted value plot do not indicate any serious model misspecifications. Furthermore, the
boxplots reveal that the medians of the surrogate residuals are very close to zero, and the distribution
of the residuals within each level appear to be symmetric and have approximately the same variability
(with the exception of a few outliers).

set.seed(1225) # for reproducibility

grid.arrange( # Figure 10
autoplot(wine.clm, nsim = 10, what = "qq"),
autoplot(wine.clm, nsim = 10, what = "fitted”, alpha = 0.5),

autoplot(wine.clm, nsim = 10, what = "covariate”, x = wine$temp,
xlab = "Temperature”),
autoplot(wine.clm, nsim = 10, what = "covariate”, x = wine$contact,
xlab = "Contact”),
ncol = 2
)
Summary

In this paper, we introduce the sure package, which implements the surrogate approach to residuals for
ordinal regression models described in Liu and Zhang (2017). Using simulated data sets, we illustrate
the various properties of these residuals and how they can be used to check assumptions in the ordinal
regression model (e.g., heteroscedasticity, misspecified link functions, etc.) using continuous residuals
which produce diagnostic plots not unlike those seen in ordinary linear regression. This offers a new
way of performing typical diagnostic checks for ordinal regression models that are easily interpreted
by the analyst. Furthermore, this new approach to constructing residuals for ordinal regression models
is still under active development and new functionality will be added to sure in the future.

Acknowledgments

The authors would like to thank the anonymous reviewers and the Editor for their helpful comments
and suggestions.

Bibliography

A. Agresti. Analysis of Ordinal Categorical Data. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2010. ISBN 9781118209998. [p381]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 393

~ ®

8
2_
1_
0_
-1-
g B,
—2- o) -2 '
' ' '
1.0 2.0 2.5

N
o\

Sample quantile
o
Surrogate residual

-2 -1 0 1 2 15
Theoretical quantile Fitted value

3.0

Surrogate residual
o
1
Surrogate residual
o
1

'
cold warm no yes
Temperature Contact

Figure 10: Residual diagnostic plots for the quality of wine example.

R. H. B. Christensen. Ordinal—Regression Models for Ordinal Data, 2015. URL http://www.cran.r-
project.org/package=ordinal. R package version 2015.6-28. [p382]

C. Dupont, J. Horner, C. Li, Q. Liu, and B. Shepherd. PResiduals: Probability-Scale Residuals and Residual
Correlations, 2016. URL https://CRAN.R-project.org/package=PResiduals. R package version
0.2-4. [p382]

B. Efron. Bootstrap methods: Another look at the jackknife. Annals fo Statistics, 7(1):1-26, 1979. URL
http://dx.doi.org/10.1214/a0s/1176344552. [p383]

B. Greenwell, A. McCarthy, and B. Boehmke. Sure: Surrogate Residuals for Ordinal and General Regression
Models, 2017. URL https://CRAN.R-project.org/package=sure. R package version 0.1.2.9000.
[p383]

F. E. Harrell. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and
Survival Analysis. Graduate Texts in Mathematics. Springer-Verlag, 2001. ISBN 9780387952321.
[p389]

F. E. Harrell. Rms: Regression Modeling Strategies, 2017. URL https://CRAN.R-project.org/package=
rms. R package version 5.1-1. [p382]

C. Li and B. E. Shepherd. A new residual for ordinal outcomes. Biometrika, 99(2):473-480, 2012. URL
http://dx.doi.org/10.1093/biomet/asro73. [p382]

D. Liu and H. Zhang. Residuals and diagnostics for ordinal regression models: A surrogate approach.
Journal of the American Statistical Association, 0(ja):0-0, 2017. URL http://dx.doi.org/10.1080/
01621459.2017.1292915. [p382, 383, 389, 392]

I. Liu, B. Mukherjee, T. Suesse, D. Sparrow, and S. K. Park. Graphical diagnostics to check model
misspecification for the proportional odds regression model. Statistics in Medicine, 28(3):412-429,
2009. URL http://dx.doi.org/10.1080/01621459.2017.1292915. [p382]

J. H. Randall. The analysis of sensory data by generalized linear model. Biometrical Journal, 31(7):
781-793,1989. URL http://dx.doi.org/10.1002/bimj.4710310703. [p391]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th
edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p382]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859


http://www.cran.r-project.org/package=ordinal
http://www.cran.r-project.org/package=ordinal
https://CRAN.R-project.org/package=PResiduals
http://dx.doi.org/10.1214/aos/1176344552
https://CRAN.R-project.org/package=sure
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
http://dx.doi.org/10.1093/biomet/asr073
http://dx.doi.org/10.1080/01621459.2017.1292915
http://dx.doi.org/10.1080/01621459.2017.1292915
http://dx.doi.org/10.1080/01621459.2017.1292915
http://dx.doi.org/10.1002/bimj.4710310703
http://www.stats.ox.ac.uk/pub/MASS4

CONTRIBUTED RESEARCH ARTICLE 394

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
URL http://ggplot2.org. [p384]

T. W. Yee. VGAM: Vector Generalized Linear and Additive Models, 2017. URL https://CRAN.R-project.
org/package=VGAM. R package version 1.0-3. [p382]

Brandon M. Greenwell

Department of Mathematics and Statistics
Wright State University

3640 Colonel Glenn Hwy

Dayton, OH 45435

United States of America

ORCiD: 0000-0002-8120-0084
greenwell.brandon@gmail.com

Andrew McCarthy

The Perduco Group

3610 Pentagon Blvd

Suite 110

Beavercreek, OH 45431
United States of America
andymc82000@yahoo. com

Bradley C. Boehmke
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221

United States of America
bradleyboehmke@gmail.com

Dungang Liu
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
dungang.liu@uc.edu

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859


http://ggplot2.org
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=VGAM
https://orcid.org/0000-0002-8120-0084
mailto:greenwell.brandon@gmail.com
mailto:andymc82000@yahoo.com
mailto:bradleyboehmke@gmail.com
mailto:dungang.liu@uc.edu

	Residuals and Diagnostics for Binary and Ordinal Regression Models: An Introduction to the sure Package
	Introduction
	Surrogate residuals
	Jittering for general models
	Bootstrapping

	Surrogate residuals in R
	Detecting a misspecified mean structure
	Detecting heteroscedasticty
	Detecting a misspecified link function
	Checking the proportionality assumption
	Detecting interaction effects

	Bitterness of wine
	Summary
	Acknowledgments


