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RQGIS: Integrating R with QGIS for
Statistical Geocomputing
by Jannes Muenchow, Patrick Schratz, Alexander Brenning

Abstract Integrating R with Geographic Information Systems (GIS) extends R’s statistical capabilities
with numerous geoprocessing and data handling tools available in a GIS. QGIS is one of the most
popular open-source GIS, and it furthermore integrates other GIS programs such as the System for
Automated Geoscientific Analyses (SAGA) GIS and the Geographic Resources Analysis Support
System (GRASS) GIS within a single software environment. This and its QGIS Python API makes
it a perfect candidate for console-based geoprocessing. By establishing an interface, the R package
RQGIS makes it possible to use QGIS as a geoprocessing workhorse from within R. Compared to
other packages building a bridge to GIS (e.g., rgrass7, RSAGA, RPyGeo), RQGIS offers a wider
range of geoalgorithms, and is often easier to use due to various convenience functions. Finally,
RQGIS supports the seamless integration of Python code using reticulate from within R for improved
extendability.

Introduction

Defining a GIS as a system for the analysis, manipulation and visualization of geographical data
(Longley et al., 2011), one could argue that R has become a GIS (Bivand et al., 2013). In great part
this is thanks to packages that provide spatial classes and algorithms coded in and for R (despite this
these packages might also link to other software outside of R). These include maptools (Bivand and
Lewin-Koh, 2017), raster (Hijmans, 2017), sp (Bivand et al., 2013) and sf (Pebesma, 2017). Further
packages even extend R’s GIS capabilities through advanced mapping, e.g., mapview (Appelhans
et al., 2017) and mapmisc (Brown, 2016), and routing, e.g., osmar (Eugster and Schlesinger, 2013)
and dodgr (Padgham and Peutschnig, 2017), among others. Despite this, native R (in the sense of
coded in and for R) lacks fundamental GIS capabilities. GIS topology and topological operations are
only partially (RArcInfo, Gómez-Rubio and López-Quílez, 2005) or indirectly available via rgrass7
(Bivand, 2017). Furthermore, R is neither a spatial database management system nor especially good
at the manipulation of large data sets (Ripley et al., 2016). Hence, computationally demanding GIS
operations (point cloud processing, overlay operations on ’big’ spatial data) executed in R may be
rather slow. Performance and scalability, of course, depend on the computer hardware, and cloud
computing may eventually alleviate or even settle this problem. Yet, most R users most likely still
work on a local machine. What is more, R is lacking a number of fundamental GIS operations such as
the derivation of various terrain attributes from a digital elevation model (DEM). And the same is true
for 3D data visualization and voxel processing (Hengl et al., 2015). Finally, though interactive tasks
such as digitizing of geodata have become possible within R very recently (mapedit, Appelhans and
Russell, 2017), extensive manual editing is better done with the help of a GIS.

Many of R’s geospatial shortcomings could potentially be addressed through R programming
directly. However, R was designed from the very beginning as an interactive interface to the algorithms

Figure 1: The R-interface to geospatial software - geospatial libraries, Desktop GIS, geobrowsers as
well as web mapping and the position of RQGIS (left circle; WMS: Web Mapping Service). QGIS and
corresponding third-party providers (right circle, the upper three symbols correspond to (from left to
right): LiDAR tools, TauDEM, Orfeo Toolbox.
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of other software (Chambers, 2016). Hence, it is unnecessary and even counterproductive to duplicate
the functionality provided by an existing dedicated software with an expert developer and user
community as long as there is a way to access it from within R. Therefore, it is barely surprising that
numerous R packages provide access to third-party geoprocessing tools (Figure 1), only some of which
will be discussed here. rgdal (Bivand et al., 2017) accesses the geospatial data abstraction library
(GDAL/OGR) (GDAL Development Team, 2017). rgeos (Bivand and Rundel, 2017) is an interface
to geometry engine - open source (GEOS, GEOS Development Team, 2017), which opens the way to
GIS vector operations. However, GEOS performance is somewhat limited. Think, for instance, of the
spatial union of all US American census tracts and postal code layers, and it may be quite possible
that rgeos::gUnion may take a very long time. The successor of the sp package, package sf combines
the functionality of sp (spatial classes), rgdal (here: import/export of spatial vector data) and rgeos
(geometrical operations) in just one package. Note also that GEOS is a C API for topology operations
on geometries. Consequently, it expects topologically correct data. To make sure that our geodata lives
up to topological expectations in general, our best approach is probably through another third-party
integration, namely R-GRASS (Bivand, 2007, 2017). Additionally, GRASS GIS comprises a large suite
of vector and raster functions. Basically, the user has to set up a spatial database before being able to
use GRASS’s geoprocessing utilities (Neteler and Mitasova, 2008). Hence, less experienced GIS users
will likely prefer faster-to-use GIS interfaces also providing extensive geoprocessing capabilities. In
particular, RSAGA (Brenning et al., 2008) integrates R with SAGA (Conrad et al., 2015) and RPyGeo
(Brenning, 2012b) provides an interface to ArcGIS (ESRI, 2017), which is probably still the most popular
GIS environment in the world with >1 million users and the greatest market share among proprietary
GIS (Longley et al., 2011).

What has been missing, however, is an R interface to one of the most widely used open-source GIS,
QGIS (QGIS Development Team, 2017; Graser and Olaya, 2015). So far, the QGIS processing toolbox
provided only the opposite interface by letting the user integrate R scripts as a user-defined ‘tool‘ in
QGIS. This is fine for people unwilling to use R directly. However, interfacing from R to QGIS has
multiple benefits to the R user community. First and foremost, native QGIS geoalgorithms are now
available from within R for the first time. Moreover, it is a special feature of QGIS that it acts as an
umbrella integrating various other GIS power houses under its hood. These include SAGA, GRASS,
GDAL, the Orfeo Toolbox (Inglada and Christophe, 2009), TauDEM (Tarboton and Mohammed,
2017) and additional tools for light detection and ranging (LIDAR) data (Rapidlasso, 2017). RQGIS
(Muenchow and Schratz, 2017) brings this incredibly powerful geoprocessing environment to the
R console in just one package. This, however, does not mean that specialized packages such as
RSAGA and rgrass7 (Bivand, 2007) will become obsolete, as discussed later. RQGIS also aims to be
user-friendly by automatically retrieving GIS function parameter names and corresponding default
values as well as supporting R named arguments for geoalgorithm parameters through the ellipsis
argument.

In general, R–GIS interfaces open the way to extremely powerful and innovative statistical geo-
processing as for example shown by Brenning (2008), Hengl et al. (2010), Muenchow et al. (2012),
Vanselow and Samimi (2014), Brenning et al. (2015) Mergili et al. (2015), Mergili and Kerschner (2015),
Poggio and Gimona (2015) and Zandler et al. (2015). In this paper we will first introduce the general
architecture and main features of the RQGIS package. We will then demonstrate the application of this
integrated scientific programming approach with an ecological example. Subsequently, we will show
how to easily complement and extend RQGIS with Python programming, especially PyQGIS (Sher-
man, 2014). In our discussion, we will finally compare and contrast RQGIS with other approaches to
R–GIS integration, and provide an outlook and motivation for future developments.

Introducing the RQGIS package

Basic concepts

The RQGIS package utilizes the QGIS Python API in order to access QGIS modules. To successfully
run the QGIS Python API, RQGIS first sets up all required environment variables (Figure 2). And
secondly, it establishes a tunnel to Python using reticulate (Allaire et al., 2017) - a package providing
an R interface to Python. The older package rPython (Bellosta, 2015) is similar to reticulate, however,
it is only available for Unix-based systems which is why we had to dismiss it as an option for RQGIS.
With reticulate, we set up the Python environment only once, and use the resulting tunnel to exchange
functions and objects between R and Python seamlessly.

We can divide RQGIS roughly into two major components:

• The Python code (‘python_funs.py’ located in ‘inst/python’ of RQGIS) defines a Python class
named "RQGIS" with methods to be called during the geoprocessing. Defining an own class has
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Figure 2: Conceptual model of how RQGIS calls QGIS from within R.

the additional benefit that it becomes highly unlikely that (advanced) users interacting with the
QGIS Python API accidentally overwrite some of our predefined methods.

• The ‘processing.R’ file (found in the ‘R’ folder of RQGIS) actually establishes the QGIS Python
interface, and lets the user run QGIS from within R. The most important functions are (see also
Usage for a detailed description):

1. open_app() to establish a tunnel to Python and a QGIS custom application
2. find_algorithms() to retrieve the QGIS command-line names for all available geoal-

gorithms
3. open_help() and get_args_man() to access help resources as well as function argu-

ments and default values
4. run_qgis() to call QGIS geoalgorithms from within R

The most notable features of RQGIS are:

• For the first time, native QGIS algorithms are available from within R.
• Additionally, RQGIS provides access to hundreds of third party geoalgorithms including

GDAL, GRASS GIS and SAGA GIS. In the future many more integrations can be expected.
For instance, there is already a plugin providing access to PostGIS geoprocessing tools (clip,
dissolve, distance, etc.) available in the QGIS processing toolbox (https://plugins.qgis.org/
plugins/postgis_geoprocessing/).

• R users can stay in their preferred programming language without having to touch Python.
• Convenient access to QGIS help resources facilitates the geoprocessing work flow. While

open_help accesses the QGIS online help for a specific geoalgorithm, get_args_man() retrieves
function arguments and their default values.

• run_qgis() also accepts "sf", "sp" and "raster" objects as arguments. Similarly, users may
directly load the QGIS output into R by setting load_output to TRUE when using run_qgis().

Usage

Since RQGIS is an interface to various GIS software packages, the user needs to install this software
beforehand. To facilitate the installation process we have written an installation guide, see http:
//jannes-m.github.io/RQGIS/articles/install_guide.html. Or after having installed the package,
one can also access the corresponding vignette by typing:

vignette("install_guide", package = "RQGIS")

We will demonstrate the usage of RQGIS by showing how to compute the plan and tangential
curvatures of a digital elevation model (DEM). The first thing to do is to make sure, that all paths are
set correctly to successfully run the Python API from within R. Function set_env() facilitates this
since the user only needs to specify the root path to the QGIS installation. If the root path remains
unspecified, set_env() tries to be smart by checking the default QGIS installation directories. If
this is unsuccessful, set_env() will try to find the QGIS installation on the computer which may be
time-consuming especially on Windows machines. A much faster way is to explicitly indicate the root
path. For Windows this might look like this ‘qgis_env <-set_env(root = 'C:/OSGEO4~1')’.

Subsequently, set_env() finds all required paths. Virtually all subsequent RQGIS functions
require the output list of set_env(). This is why, RQGIS automatically caches the output of set_env(),
and reuses it when required by another function later on. To establish a tunnel to the QGIS Python
API, we run open_app(). Explicitly, the function sets all necessary paths (e.g., path to the QGIS Python
binary) to successfully run QGIS, and secondly opens a QGIS custom application (i.e., outside of the
QGIS GUI interface) while importing necessary Python modules.
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library("RQGIS")
set_env()
open_app()

Running set_env() and open_app() is optional here since all subsequent functions dependent
on their output will run them automatically in case they have not been executed before. To work in
a reproducible manner, and to find out which QGIS and third-party GIS versions we are using, we
execute:

## $root
## [1] "C:/OSGeo4W64"
##
## $qgis_prefix_path
## [1] "C:/OSGeo4W64/apps/qgis"
##
## $python_plugins
## [1] "C:/OSGeo4W64/apps/qgis/python/plugins"

info_r <- version
info_qgis <- qgis_session_info()
c(platform = info_r$platform, R = info_r$version.string, info_qgis)
## $platform
## [1] "x86_64-w64-mingw32"
##
## $R
## [1] "R version 3.4.2 (2017-09-28)"
##
## $qgis_version
## [1] "2.18.14"
##
## $gdal
## [1] "2.2.2"
##
## $grass6
## [1] "6.4.3"
##
## $grass7
## [1] "7.2.2"
##
## $saga
## [1] "2.3.2"

Continuing with our analysis, we need to find out the command-line name of a geoalgorithm
available in QGIS that computes the curvatures from a DEM. find_algorithms() lets the user use
regular expressions to search for a function which contains the search terms in its short description.
Leaving the search_term-argument empty, will return all available geoalgorithms. Here, we assume
that the function we are looking for contains the word ’curvature’ in its short description. Setting
name_only to TRUE gives back the name of the geoalgorithm instead of its name plus the corresponding
short description.

find_algorithms(search_term = "curvature",
name_only = TRUE)

## [1] "grass7:r.slope.aspect" "saga:curvatureclassification"
## [3] "saga:slopeaspectcurvature" "saga:upslopeanddownslopecurvature"
## [5] "grass:r.slope.aspect"

Several functions are available for our task, we will go on with function grass7:r.slope.aspect.
To familiarize ourselves with the function, we can access its online help by calling (not shown):

open_help(alg = "grass7:r.slope.aspect")

Next, we would like to know how to use a specific geoalgorithm. get_usage() prints the parame-
ters and default values for a given geoalgorithm to the console.

get_usage(alg = "grass7:r.slope.aspect")
## ALGORITHM: r.slope.aspect - Generates raster layers of slope
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## aspect
## curvatures and partial derivatives from a elevation raster layer.
## elevation <ParameterRaster>
## format <ParameterSelection>
## precision <ParameterSelection>
## -a <ParameterBoolean>
## zscale <ParameterNumber>
## min_slope <ParameterNumber>
## GRASS_REGION_PARAMETER <ParameterExtent>
## GRASS_REGION_CELLSIZE_PARAMETER <ParameterNumber>
## slope <OutputRaster>
## aspect <OutputRaster>
## pcurvature <OutputRaster>
## tcurvature <OutputRaster>
## dx <OutputRaster>
## dy <OutputRaster>
## dxx <OutputRaster>
## dyy <OutputRaster>
## dxy <OutputRaster>
##
##
## format(Format for reporting the slope)
## 0 - degrees
## 1 - percent
## precision(Type of output aspect and slope layer)
## 0 - FCELL
## 1 - CELL
## 2 - DCELL

get_args_man() lets us retrieve automatically a corresponding parameter-argument list. Setting
the options parameter to TRUE (the default) automatically chooses the default value from a list of
possible options for a parameter. This is always the first option which is in accordance with the QGIS
GUI behavior. To make the user aware of the automatically chosen options, get_args_man() prints the
corresponding values to the console.

params <- get_args_man(alg = "grass7:r.slope.aspect", options = TRUE)
## Choosing default values for following parameters:
## format: 0
## precision: 0
## See get_options('grass7:r.slope.aspect') for all available options.

grass7:r.slope.aspect has 17 parameters. Here, we only show the first six parameters for brevity.

head(params)
## $elevation
## [1] "None"
##
## $format
## [1] "0"
##
## $precision
## [1] "0"
##
## $`-a`
## [1] "True"
##
## $zscale
## [1] "1.0"
##
## $min_slope
## [1] "0.0"

Next, we specify the required arguments. Of course, grass7:r.slope.aspect expects a spatial
input file, here a DEM. Conveniently, run_qgis() accepts as input both a path to a spatial file stored
on disk or a spatial object residing in R’s environment (specifically "raster"-, "sp"- and "sf"-objects).
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Here, we use a DEM that comes as an example file with the RQGIS package. Note that run_qgis()
simply saves spatial input files to a temporary output location. Hence, if the file already exists on
disk, it is much more efficient to indicate the path to the file instead of loading it into R and letting
run_qgis() export it again. By contrast, indicating output paths is not strictly necessary. If an output
path parameter equals None (QGIS default), QGIS automatically creates an output file which it saves
to a temporary processing output folder. In the code chunk below, we specifically indicate curvature
outputs while keeping the default, i.e. None, for the remaining output parameters slope, aspect,
dx, dy, dxx, dyy and dxy (check out the GRASS function documentation for more information, i.e.
run ‘open_help("grass7:r.slope.aspect")’). run_qgis() prints all output paths to the console if
show_output_paths is set to TRUE. Here, we turn this behavior off for two reasons. First, we are
not interested in the output paths of the seven terrain attributes we left unspecified. Secondly, we
have explicitly specified the curvature output paths, i.e., we already know the corresponding output
locations. We recommend to specify those output paths which are relevant to the analysis. Manual
specification has the additional benefit that we can indicate a specific file format (QGIS default for
raster data sets is in most cases .tif, but we might want to use e.g., .asc or SAGA’s .sdat). Additionally,
loading QGIS output directly back into R (load_output-parameter) only works with output paths
specified by the user.

data("dem", package = "RQGIS")
out <- run_qgis(alg = "grass7:r.slope.aspect",

elevation = dem,
pcurvature = file.path(tempdir(), "pcurv.tif"),
tcurvature = file.path(tempdir(), "tcurv.tif"),
show_output_paths = FALSE,
load_output = TRUE)

Note that we used R named arguments in run_qgis(), i.e., we assigned values or objects to the
parameters whose names we have identified with the help of get_args_man() or get_usage(). We
could replace the R named arguments also by a parameter-argument list. Remember that we have
already created a parameter-argument list named params using get_args_man() (see above):

params$elevation <- dem
params$pcurvature <- file.path(tempdir(), "pcurv.tif")
params$tcurvature <- file.path(tempdir(), "tcurv.tif")
out <- run_qgis(alg = "grass7:r.slope.aspect",

params = params,
load_output = TRUE,
show_output_paths = FALSE)

class(out)
## [1] "list"
names(out)
## [1] "pcurvature" "tcurvature"

However, providing R named arguments and a parameter-argument list is not possible, and
run_qgis() will complain telling the user to user either one of these but not a mixture. Since we have
set load_output to TRUE, run_qgis() automatically loads the QGIS output into R. In this case, the
object out is a list with two "raster" objects. If we only had specified one output raster, out would
have been a "RasterLayer" object. In case the output is a vector layer, run_qgis() will load it as an
"sf" object. To have a look at the output, we can execute following code (not shown):

library("raster")
plot(stack(out))

Concerning the handling of parameter-argument pairs, run_qgis() uses get_args_man() through
pass_args() in the background to access the default values of all missing arguments if available.
If the user accidentally omits a required argument, run_qgis() will return an error message that
informs about the missing argument. The help documentation of pass_args() presents a detailed list
of argument checks that are run before executing run_qgis().

Experienced GRASS users may wonder if there is a need to specify the GRASS_REGION_PARAMETER.
pass_args() determines this parameter automatically based on the spatial layers provided as input
by the user (in our example above this is dem). However, the GRASS_REGION_PARAMETER can also be set
manually (see the pass_args() documentation for details).
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Figure 3: The study area Mount Mongón in northern Peru (Landsat image: path 9, row 67, acquisition
date 09/22/2000; USGS 2016).

Ecological example: combining geocomputing and statistics

To show the utility of RQGIS in real-world applications, we combine QGIS functionality with R’s
modeling and (geo-)statistical capabilities in an ecological study in the coastal desert of northern Peru
(Figure 3). Despite the extreme aridity of the Mount Mongón region (200-1100 m asl), this area is the
habitat of a distinct flora and fauna (Dillon et al., 2003). The unique vegetation, locally termed lomas,
mainly survives due to heavy fog during the austral winter months (Muenchow et al., 2013b,c).

Linking species richness to environmental predictors along gradients is a key topic of community
ecology and biogeography (Muenchow et al., 2017), and the fundamental basis for conservation
planning (Pomara et al., 2012). In our use case, we model vascular plant species richness along an
altitudinal gradient as a function of topographic and remotely sensed variables by means of count
regression. In the following, we will show a simplified version of an analysis by Muenchow et al.
(2013b).

Before running a Poisson model, we need to compute terrain attributes from a DEM. These will
serve as predictors to model species richness. To account for the unimodal relationship between
elevation and species richness, we use a second-order orthogonal polynomial function (Figure 4, Panel
Elevation). In the original paper, we dropped the least significant variables one at a time until only
significant predictors remained (elevation and its squared term, catchment slope, catchment area
and the normalized difference vegetation index, NDVI). Due to space constraints and demonstration
purposes, we will simply use the final model here (for details see Muenchow et al., 2013b). Instead of
calculating all predictors used in the original paper, we only show how to derive selected geospatial
predictors using RQGIS, namely tangential and profile curvature, catchment slope and catchment
area.

Terrain attributes

The numerical representation as well as the analysis of the land surface is frequently referred to
as terrain analysis and terrain modeling. The corresponding surface-characterizing measures are
known as terrain attributes (Pike et al., 2008). Terrain attributes play an important role, for example,
in pedometrics (McBratney et al., 2000), precision agriculture (Kühn et al., 2009), geomorphometry
(Pike et al., 2008) and ecology (Muenchow et al., 2013a). They are frequently related to slope stability
(Montgomery and Dietrich, 1994; Muenchow et al., 2012). Additionally, they are proxies for variables
representing water availability such as soil moisture, soil texture or moisture-holding capacity, among
others (Brenning, 2008; Franklin et al., 2000; Muenchow et al., 2013c). Especially the latter is of utmost
importance regarding plant distribution in a desert environment. While GIS can easily calculate terrain
attributes, R is rather limited in this respect. However, without terrain attributes, we would neither be
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Figure 4: Scatterplot of all predictors used in the Poisson model against the response variable. Each
dot represents a visited plot on Mount Mongón. The gray line smoother should aid visual inspection.

able to model nor predict species richness appropriately.

First we would like to use SAGA to remove local depressions from the DEM, since these may
be artifacts. For this, we use the [1] Fill Sinks method. Note that you also may use numbers for
specifying the option, here, the fill sinks method corresponds to 1.

get_usage("saga:sinkremoval")
## ALGORITHM: Sink removal
## DEM <ParameterRaster>
## SINKROUTE <ParameterRaster>
## METHOD <ParameterSelection>
## THRESHOLD <ParameterBoolean>
## THRSHEIGHT <ParameterNumber>
## _RESAMPLING <ParameterSelection>
## DEM_PREPROC <OutputRaster>
##
##
## METHOD(Method)
## 0 - [0] Deepen Drainage Routes
## 1 - [1] Fill Sinks
## _RESAMPLING(Resampling method)
## 0 - Nearest Neighbour
## 1 - Bilinear Interpolation
## 2 - Bicubic Spline Interpolation
## 3 - B-Spline Interpolation
run_qgis(alg = "saga:sinkremoval",

DEM = dem,
METHOD = "[1] Fill Sinks",
DEM_PREPROC = file.path(tempdir(), "sdem.sdat"),
show_output_paths = FALSE)

Next, we compute the catchment area (or upslope contributing area) and its mean slope from the
preprocessed DEM. These raster datasets are calculated while calculating the ’Saga wetness index’,
which is also frequently used as a predictor in ecological studies. To calculate the catchment slope
instead of the local slope we set the SLOPE_TYPE argument to 1. The names of the output rasters are
‘carea.sdat’ and ‘cslope.sdat’ both of which will be stored in tempdir().

get_usage("saga:sagawetnessindex")
## ALGORITHM: Saga wetness index
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## DEM <ParameterRaster>
## SUCTION <ParameterNumber>
## AREA_TYPE <ParameterSelection>
## SLOPE_TYPE <ParameterSelection>
## SLOPE_MIN <ParameterNumber>
## SLOPE_OFF <ParameterNumber>
## SLOPE_WEIGHT <ParameterNumber>
## _RESAMPLING <ParameterSelection>
## AREA <OutputRaster>
## SLOPE <OutputRaster>
## AREA_MOD <OutputRaster>
## TWI <OutputRaster>
##
##
## AREA_TYPE(Type of Area)
## 0 - [0] absolute catchment area
## 1 - [1] square root of catchment area
## 2 - [2] specific catchment area
## SLOPE_TYPE(Type of Slope)
## 0 - [0] local slope
## 1 - [1] catchment slope
## _RESAMPLING(Resampling method)
## 0 - Nearest Neighbour
## 1 - Bilinear Interpolation
## 2 - Bicubic Spline Interpolation
## 3 - B-Spline Interpolation
run_qgis(alg = "saga:sagawetnessindex",

DEM = file.path(tempdir(), "sdem.sdat"),
SLOPE_TYPE = 1,
SLOPE = file.path(tempdir(), "cslope.sdat"),
AREA = file.path(tempdir(), "carea.sdat"),
show_output_paths = FALSE)

To have a look at the output rasters, we can run (not shown):

library("dplyr")
library("raster")
file.path(tempdir(), c("cslope.sdat", "carea.sdat")) %>%
raster::stack(.) %>%
plot

We furthermore need to apply some transformations to these raster files for improved interpretabil-
ity. On the one hand, we convert slope angle from radians to degrees.

library("raster")
cslope <- raster(file.path(tempdir(), "cslope.sdat"))
cslope <- cslope * 180 /pi

On the other hand, we divide the catchment area variable by one million to change the unit from
m2 to km2. Furthermore, we transform it logarithmically since it is strongly skewed to the right.

carea <- raster(file.path(tempdir(), "carea.sdat"))
log_carea <- log(carea / 1e+06)

Apart from the catchment area and catchment slope, our final model requires the NDVI as an
indicator of vegetation properties. To calculate it, we would have to perform pixel-by-pixel arithmetic
operations on raster data sets representing the Landsat satellite’s spectral bands three (red) and four
(near infrared). These so-called map algebra operations are available through raster and the QGIS
modules saga:rastercalculator and grass:r.mapcalculator; however, the RQGIS package already
provides the NDVI raster as an example dataset. Therefore, we merely have to attach the data to our
workspace.

data("ndvi", package = "RQGIS")

To account for the nonlinear unimodal relationship between elevation and species richness, we
need two rasters representing the second-order orthogonal polynomials of the original DEM. First, we
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convert the elevation unit from m to km by dividing the original DEM raster by 1000. Next, we use R’s
built-in poly() function to calculate the orthogonal polynomials for each pixel in our DEM raster to
avoid collinearity among the predictors. Before saving the resulting rasters and the catchment slope,
the catchment area and the NDVI to a temporary output location, we apply the crop() function from
the raster package to ensure that all rasters share the same extent.

data("dem", package = "RQGIS")
dem <- dem / 1000
my_poly <- poly(values(dem), degree = 2)
dem1 <- dem2 <- dem
values(dem1) <- my_poly[, 1]
values(dem2) <- my_poly[, 2]
for (i in c("dem1", "dem2", "log_carea", "cslope", "ndvi")) {
tmp <- crop(get(i), dem)
writeRaster(x = tmp,

filename = file.path(tempdir(), paste0(i, ".asc")),
format = "ascii",
prj = TRUE,
overwrite = TRUE)

}

After creating these raster datasets, we would like to extract their attributes to the randomly
sampled points. Conveniently, RSAGA’s pick.from.ascii.grids() function accepts multiple rasters
for parallel attribute extraction. Note that pick.from.ascii.grids() is a pure R function, i.e., it runs
without accessing SAGA. Here, we only extract the predictor variables needed in the final model
(see above). The "sf" object random_points refers to randomly sampled points we visited in the field.
Unfortunately, pick.from.ascii.grids() does not accept spatial point objects as input; instead we
have to provide it with a "data.frame" and indicate which columns refer to the coordinates. In the
file argument we specify the raster files from which we would like to extract values to our points.
The output columns in vals will be named like the input rasters.

library("dplyr")
data("random_points", package = "RQGIS")
random_points[, c("x", "y")] <- sf::st_coordinates(random_points)
raster_names <- c("dem1", "dem2", "log_carea", "cslope", "ndvi")
vals <- RSAGA::pick.from.ascii.grids(data = as.data.frame(random_points),

X.name = "x",
Y.name = "y",
file = file.path(tempdir(), raster_names),
varname = raster_names)

dplyr::select(vals, -geometry) %>%
head(., 3)

## id spri x y dem1 dem2 log_carea cslope ndvi
## 1 1 4 797179 8932755 -0.01049 0.01268 -1.21800 21.18 -0.3603
## 2 2 4 796749 8932621 -0.01019 0.01163 0.04145 13.02 -0.3488
## 3 3 3 796816 8932739 -0.01008 0.01124 -0.48148 23.70 -0.3396

Modeling species richness and predictive mapping

To model species richness, which is a count variable, we naturally opt for a Poisson regression. Overall,
spatial count regression models are popular across many fields including epidemiology (Fernandez
et al., 2012), demography (Chien et al., 2016), criminology (Jones-Webb and Wall, 2008), remote
sensing (Comber et al., 2016) and ecology (Moreno-Fernández et al., 2015). Since we observed a
unimodal nonlinear relationship between species richness and elevation, elevation enters the model as
a second-order polynomial function.

fit <- glm(formula = spri ~ dem1 + dem2 + cslope + ndvi + log_carea,
data = vals,
family = "poisson")

To spatially predict species richness (Figure 5), we apply the estimated beta coefficients to the input
rasters. raster’s predict function does this by accepting the fitted model and the predictor rasters as
input. Finally, the crop-function ensures that the predictions are restricted to the study area.

library("sf")
library("raster")
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Figure 5: Prediction map of species richness. The points represent the visited plots.

raster_names <- c("dem1.asc", "dem2.asc", "log_carea.asc", "cslope.asc",
"ndvi.asc")

s <- stack(x = file.path(tempdir(), raster_names))
pred <- predict(object = s,

model = fit,
fun = predict,
type = "response")

pred <- crop(x = pred,
y = as(random_points, "Spatial"))

# plot the output (shown in Figure 5)
plot(pred)
plot(st_geometry(random_points), add = TRUE)

Note that an alternative to raster::predict() is RSAGA’s multi.local.function() in conjunc-
tion with grid.predict() (see Brenning, 2008).

The model reached a good goodness-of-fit (explained deviance divided by null deviance) of 0.78.
The most important variable in predicting species richness was elevation and its squared term. In our
interpretation, variation with elevation mainly relates to differences in water availability. Humidity,
and thus species richness, is greatest just below the temperature inversion (ca. 750–850 m). For a more
detailed interpretation of the model and its predictors, refer to Muenchow et al. (2013b).

Extending RQGIS through Python and PyQGIS

In this section we would like to show examplarily how one can easily extend RQGIS through Python
and especially PyQGIS. As explained in sections Basic concepts and Usage, RQGIS uses the reticulate
package to establish a tunnel to the QGIS API. To find out which Python binary is in use we run the
py_config() function of the reticulate package. When using Windows, please do so only after having
run open_app before, since this sets all necessary paths to run the QGIS Python binary. Otherwise
py_config() will be unable to find it, in which case it most likely would use another Python binary
(e.g., the one shipped with Anaconda) if available. Additionally, open_app() imports various necessary
Python libraries (among others osgeo, processing and qgis), and attaches our Python RQGIS class
(see section Usage).

library("reticulate")
py_config()
## python: C:/OSGeo4W64/bin/python.exe
## libpython: C:/OSGeo4W64/bin/python27.dll
## pythonhome: C:\OSGeo4W64\apps\Python27
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## version: 2.7.5 (default, May 15 2013, 22:44:16) [MSC v.1500 64 bit (AMD64)]
## Architecture: 64bit
## numpy: C:\OSGeo4W64\apps\Python27\lib\site-packages\numpy
## numpy_version: 1.12.1
##
## NOTE: Python version was forced by use_python function

We have defined the Python class RQGIS in python_funs.py which is part of ’inst/python’. Aside
from set_env() all functions found in ’R/processing’ make extensive use of the Python RQGIS
methods. Most of the Python methods have the same names as their counterparts in R. We can access
them with py_run_string() of the reticulate-package. This sends a call to Python, and converts the
Python into R output if desired.

py_run_string("methods = dir(RQGIS)")$methods
## [1] "__doc__" "__init__" "__module__"
## [4] "check_args" "get_args_man" "get_options"
## [7] "open_help" "qgis_session_info"

Of course, we can use the Python RQGIS methods directly via reticulate which is exactly what
the RQGIS-package is doing. For example, to find out what the options are for a QGIS geoalgorithm
named qgis:randompointsinsidepolygonsvariable, we can run:

py_cmd <- "opts = RQGIS.get_options('qgis:randompointsinsidepolygonsvariable')"
py_run_string(py_cmd)$opts
## $STRATEGY
## [1] "Points count" "Points density"

Or we can use PyQGIS-functionality directly. For instance, assuming we would like to find out the
function parameters of qgis:randompointsinsidepolygonsvariable, we can use alghelp() from the
QGIS Python processing framework (Graser and Olaya, 2015, and see also https://docs.qgis.org/
2.8/en/docs/user_manual/processing/console.html). Here, we only show the first 40 characters of
the output.

py_cmd <- "processing.alghelp('qgis:randompointsinsidepolygonsvariable')"
py_capture_output(py_run_string(py_cmd)) %>%
substring(., 1, 40)

## [1] "ALGORITHM: Random points inside polygons"

Users can easily extend the RQGIS class with additional methods, or they could write their own
classes and methods. Also if there is a need to write Python one-liners or make use of some Python
functionality, this can easily be done using RQGIS in conjunction with reticulate. Here, we will
present one last example. Frequently, users have asked us if it was possible to also use the QGIS
map canvas from within R. Therefore, we provide a proof-of-concept how this could be achieved (see
also http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/canvas.html). First of
all, we save random_points to a temporary output location.

data("random_points", package = "RQGIS")
file <- normalizePath(file.path(tempdir(), "points.shp"), winslash = "/",

mustWork = FALSE)
sf::st_write(random_points, dsn = file)

Before running the subsequent code, make sure that you have already attached the packages
RQGIS and reticulate. Additionally, you need to run open_app() first. Then we can create the map
canvas, add the previously saved shapefile to it, set the extent to the extent of our shapefile, set the
map canvas layer, and finally open a standalone map window (Figure 6). If this does not open a
standalone window you might have to run py_run_string('app.exec_()') to initialize a Qt event
loop which in turn renders the points in a standalone window (pers. comm. Barry Rowlingson). We
emphasize that this is only a proof-of-concept, and a rather unstable solution (see section Current and
future developments).

# create the map canvas
py_run_string("canvas = QgsMapCanvas()")
# import point shapefile
py_run_string(sprintf("layer = QgsVectorLayer('%s', 'points', 'ogr')", file))
# add imported point layer to the map canvas
py_run_string("QgsMapLayerRegistry.instance().addMapLayer(layer)")
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Figure 6: A very simple example how to access the QGIS map canvas from within R.

# set the extent of the map canvas to the extent of the imported shapefile
py_run_string("canvas.setExtent(layer.extent())")
# set the map canvas layer
py_run_string("canvas.setLayerSet([QgsMapCanvasLayer(layer)])")
# open a standalone window
py_run_string("canvas.show()")
# if a standalone window has not already opened, run the next line
# py_run_string("app.exec_()")

Discussion

R/GIS-integration: Combining the best of two worlds

In our use case (see section Ecological example: combining geocomputing and statistics) we mainly
used QGIS for raster preprocessing and the generation of terrain attributes. Naturally, there are many
more geospatial analysis problems that can be solved using the thousands of geoalgorithms that
are accessible through RQGIS and other R–GIS packages. For instance, SAGA provides more than
600 (Conrad et al., 2015) and GRASS more than 500 functions (http://grass.osgeo.org/grass72/
manuals/).

For example, apart from relatively simple DEM derivatives (slope angle and orientation), a GIS
can also calculate more complex, process-oriented terrain attributes such as the relative slope position
or the topographic wetness index (Conrad et al., 2015). Additionally, most GIS can easily extract
stream networks (Hengl et al., 2010) and surface roughness (Grohmann, 2004). Somewhat related are
geospatial calculations concerned with terrain classification and landform identification (Brenning,
2012a; Rocchini et al., 2013). Physically-based models (e.g., SHALSTAB or Factor of Safety, both
available in SAGA GIS) may provide additional insights (Goetz et al., 2011). Of course, GIS also
provide an extensive suite of vector processing tools as required, for example, in geomarketing.

As pointed out in the beginning R has its limitations regarding GIS capabilities, but when it comes
to statistical analyses, R is the uncontested champion in its field. For instance, instead of using a
polynomial function in our use case (see section Modeling species richness and predictive mapping),
we could have used a generalized additive model (GAM) with a logarithmic link function to allow
for nonlinear relationships between various predictors and species richness (Figure 4). A GAM is
the nonlinear extension of a generalized linear model (GLM), and uses smoothing functions to deal
with nonlinearity (Hastie, 2017). In ecology, coupling ordination techniques and GAMs is a fruitful
approach to spatially predict ecological communities (Muenchow et al., 2013a).

Equally, machine learning algorithms (support vector machines, random forests, etc.) are read-
ily available in R, although these methods may tend to overfit the training data (Brenning, 2005).
Overfitting in turn limits a model’s ability to spatially predict the response variable. Here, spatial
cross-validation through the sperrorest package (Brenning et al., 2012) provides an opportunity to
assess spatial predictive capabilities.

Frequently, the residuals of spatial models show some form of spatial autocorrelation. This violates
the assumption of independent model residuals made by most statistical models (Dormann et al., 2007;
Zuur et al., 2009). Violating this assumption can lead to untrustworthy p values, biased coefficients
and subsequently poor predictions (Zuur et al., 2009). Fortunately, packages such as nlme (Pinheiro
et al., 2017) and mgcv (Wood, 2017) let the user incorporate various correlation structures into a
model. This is most helpful in the presence of temporal and spatial autocorrelation (e.g, Iturritxa et al.,
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2015). Sometimes mixed-effect models may also account for autocorrelation since random intercepts
allow for correlation within a group (e.g., Peters et al., 2014). Another way of dealing with spatial
autocorrelation is e.g., to include auto-regressive correlation structures in a GLM or GAM within a
Bayesian modeling approach (Zuur and Ieno, 2017).

To summarize, R offers an incredibly vast suite of advanced statistical and data science methods.
On the other hand, QGIS and other GIS software offer a rich suite of geoalgorithms and geocomputa-
tional power. Interfacing R with GIS simply combines the best of two worlds for automated statistical
geocomputing.

RSAGA and R/GRASS-integration

Compared to the two separate packages rgrass7 and RSAGA, RQGIS has the advantage of providing
a unified interface to both GRASS and SAGA GIS toolboxes. Moreover, QGIS facilitates the usage
of third-party geoalgorithms by automatically converting vector (e.g., shapefiles) and raster formats
(e.g., ASCII grid files) into the particular format supported by the third-party module. For instance,
SAGA has its own grid format (sgrd-files) and GRASS uses its own database format. Running SAGA
or GRASS functions, (R)QGIS automatically converts the input data using io_gdal() in the case of
SAGA and v.in.ogr() or r.in.gdal() in the case of GRASS. Though this is extremely user-friendly
especially when providing interfaces to various third-party providers, it comes at the prize of increased
computing time due to the necessity of multiple format conversions during one geoalgorithm call.
Equally user-friendly it the automatic setup of the GRASS environment (projection, region and mapset)
through (R)QGIS, if necessary. This certainly facilitates access to GRASS, especially for less experienced
GIS users. Finally, RQGIS is overall quite user-friendly due to its convenience functions open_help()
and get_args_man() and through its support of R named arguments for geoalgorithm parameters (see
sections Basic concepts and Usage).

However, (R)QGIS only integrates a subset of the modules available in SAGA and GRASS GIS.
While this fraction is likely to grow in the near future, a full integration of all modules is improbable as
it would duplicate functionality (though this of course already has happened) and interface functions
that are unnecessary within the QGIS environment, such as the GRASS database functions. If the user’s
intention is to use GRASS’s database management system (DBMS), the direct R–GRASS integration
via the spgrass6 (Bivand et al., 2013) and rgrass7 packages (Bivand and Neteler, 2000) would be the
appropriate path. RQGIS does not provide access to this DBMS since the GRASS plugin of the QGIS
processing toolbox only allows restricted access to GRASS’s DBMS functionality. The use of rgrass7
also allows the user to operate within a single GRASS session instead of calling a new one for each
GRASS command as implicitly done by QGIS.

In the case of SAGA GIS, RSAGA has additional benefits. First of all, RSAGA provides numerous
user-friendly wrapper functions with arguments (and meaningful default values) documented in
the R help pages. RSAGA also strives to provide unified access to a range of SAGA versions while
using, if possible, persistent function and argument names as well as default values. This allows for an
easier migration between SAGA versions. At the moment RSAGA supports versions 2.0.4–2.2.3, but
support for SAGA versions until the current version 6.1 has already been developed, and is currently
being tested. By contrast, QGIS 2.14 supports SAGA 2.1.2–2.3.1. With the release of QGIS 2.18.10, this
support was limited to the long term SAGA release 2.3.x. Extremely useful are furthermore RSAGA’s
special geocomputing functions that allow, for example, the application of any user-defined R function
to a stack of grids, either locally or within moving windows (functions multi.focal.function() and
multi.local.function()). In conjunction with grid.predict(), predict methods of models fitted in
R can therefore also be applied to stacks of raster files, as shown in Brenning (2008).

In the end, it will be up to the user to decide whether to use RQGIS, RSAGA, rgrass7 or some
combination of these, depending on the user’s preferences, expertise and tasks at hand. In any case,
we would recommend RQGIS if a user

• requires mainly the more commonly used SAGA and GRASS functions,

• does not want to be bothered with setting up the GRASS environment,

• does not plan to use GRASS geodatabase capabilities,

• does not want to worry about spatial data format conversions,

• would like to use spatial objects residing in R as input-arguments, and load GIS output auto-
matically into R,

• cherishes the flexibility of seamlessly integrating QGIS, GRASS, SAGA and other third-party
software (GDAL/OGR, Orfeo Toolbox, LAStools, TauDEM) within a single geoprocessing
workflow in R.
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Accessing ArcGIS through RPyGeo

The integration of GIS functionality into R is not limited to the mentioned open-source GIS software,
but also includes the global leader in commercial GIS software (Longley et al., 2011), ArcGIS, through
the RPyGeo package (Brenning, 2012b). This package piggybacks on ArcGIS’s own Python interface to
ArcGIS functions, or ‘tools’. RPyGeo generates Python code that calls ArcGIS. Some of the challenges
currently include

• latency times related to launching Python and ArcGIS before each GIS call,

• passing data and files between R and ArcGIS,

• error tracking based on Python and/or ArcGIS error messages,

• interpretation of ArcGIS help pages from the perspective of a geoprocessing interface function
in R.

While some of these limitations may be overcome in future releases of RPyGeo and ArcGIS, the
growing interest in integrating R and ArcGIS is also evident from recent efforts to provide access to R
from within ArcGIS (https://r-arcgis.github.io/). This so-called R–Bridge allows users to

• retrieve data from ArcGIS geodatabases into R as "sp" objects, and export R data back into
ArcGIS geodatabases,

• run R code within ArcGIS as a user-defined ‘tool’. This is similar to QGIS’s ability to integrate R
scripts as user-defined GIS modules in the Processing toolbox.

While this connectivity, in principle, goes both ways, the integration of ArcGIS into R through the
R–Bridge is currently limited to data import/export, which is complementary to RPyGeo’s capability
of executing ArcGIS modules from within R.

Current and future developments

There are several interesting developing directions in the R-spatial world and for RQGIS. For example,
we have been asked multiple times to include the QGIS mapping widget within R for fast interactive
visualization and styling of multiple layers. In section Extending RQGIS through Python and PyQGIS
we have shown that this is theoretically possible. However, mixing R and Qt events seems to cause
frequently trouble (also pers. comm. Barry Rowlingson). For instance, when running QgsMapCanvas()
twice or enlarging the standalone window manually (Figure 6), one runs a high risk of crashing the
current R session. Therefore, Kevin Stadler, Barry Rowlingson and Julia Wagemann have opted for
a different approach realized within a Google Summer of Code Project. In this project they wrote
the QGIS Plugin Network API which enables the user to access the QGIS API via a HTTP interface
from another language capable of making HTTP calls (such as R). Along with the sibling R package
qgisremote (https://qgisapi.gitlab.io/qgisremote/index.html) this allows R users to seamlessly
exchange spatial data between R and QGIS. For example, one can add vector and raster layers from
within R to the QGIS map canvas, interactively edit them (such as adding new points or changing
polygon vertices), and load the results back into R. Similarly, the packages mapview (build on top of
leaflet, Cheng et al., 2017) and mapedit lets the user interactively visualize and edit spatial objects
on leaflet maps. The advantage of qgisremote over these two packages is that the QGIS map canvas
probably is better able to handle larger quantities of spatial data compared to leaflet, and that it
provides the user with the full power of a Desktop GIS for manually editing spatial data (trace, snap,
etc.). Nevertheless, mapview is a great tool for interactive visualization, and mapedit is a good
alternative for small and quick modifications of spatial vector data within R. Coming back to the user
request to include the QGIS mapping widget into RQGIS, we can state that qgisremote already filled
this gap perfectly. In summary, RQGIS and qgisremote complement one another. The first gives an
R user direct access to the QGIS processing engine, and the latter hands an R user the power of a
Desktop GIS graphical user interface.

Adding new functionalities to RQGIS will generally include Python programming. Since QGIS
migrates from Python 2 to Python 3 by the end of 2017, it is probably best to postpone major RQGIS
extensions until after the migration. To guarantee a smooth transition, and to offer the possibility
to work either with QGIS 2 or QGIS 3, we have designed RQGIS in such a way that we ideally
would merely have to add a Python 3 script to ’inst/python’ to make RQGIS also work with QGIS
3. In the case of a bumpier transition than anticipated, RQGIS users may rest assured that RQGIS
will work in any case with the QGIS long term release 2.18 which will be further developed and
regularly updated (see https://www.qgis.org/en/site/getinvolved/development/roadmap.html#
release-schedule).

Another envisaged RQGIS update includes the support for "stars" classes (see https://github.
com/r-spatial/stars). stars aims to mainly extend the raster package.
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Conclusions

Combining R and GIS software creates a powerful environment for advanced statistical geocomputing.
RQGIS makes this also possible with QGIS—one of the most-widely used open-source GIS, which
is therefore probably also very appealing to R users. Conveniently, RQGIS offers a unified interface
to various desktop GIS (SAGA, GRASS, etc.) that are integrated into QGIS. The use of GIS tools is
facilitated through auxiliary functions for the automatic retrieval of function arguments and their
default values, the support of R named arguments in run_qgis(), the seamless exchange of spatial
data types, and the quick access of the online help for any QGIS geoalgorithm.
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