
CONTRIBUTED RESEARCH ARTICLE 429

Partial Rank Data with the hyper2
Package: Likelihood Functions for
Generalized Bradley-Terry Models
by Robin K. S. Hankin

Abstract Here I present the hyper2 package for generalized Bradley-Terry models and give examples
from two competitive situations: single scull rowing, and the competitive cooking game show Mas-
terChef Australia. A number of natural statistical hypotheses may be tested straightforwardly using
the software.

Introduction: the Bradley-Terry model

The Bradley-Terry model for datasets involving paired comparisons has wide uptake in the R com-
munity. However, existing functionality1 is restricted to paired comparisons. The canonical problem
is to consider n players who compete against one another; the basic inference problem is to estimate
numbers p = (p1, . . . , pn), pi > 0, ∑ pi = 1 which correspond to player “strengths”. Information
about the pi may be obtained from the results of paired comparisons between the players.

Applications are legion. The technique is widely used in a competitive sport context (Turner and
Firth, 2012), in which matches are held between two opposing individuals or teams. It can also be
applied to consumer choice experiments in which subjects are asked to choose a favourite from among
two choices (Hatzinger and Dittrich, 2012), in which case the pi are known as “worth parameters”.

If player i competes against player j, and wins with probability Pij then the likelihood function
for p1, . . . pn corresponding to a win for i is pi

pi+pj
. As Turner and Firth (2012) point out, this may be

expressed as

logit
(

Pij

)
= log pi − log pj

and this fact may be used to estimate p using generalized linear models. However, consider the case
where three competitors, i, j, and k compete. The probability that i wins is then pi

pi+pj+pk
(Luce, 1959);

but there is no simple way to translate this likelihood function into a GLM. However, working directly
with the likelihood function for p has several advantages which are illustrated below. The resulting
likelihood functions may readily be generalized to accommodate more general order statistics, as in a
race. In addition, likelihood functions may be specified for partial order statistics; also, observations in
which a loser is identified may be given a likelihood function using natural R idiom in the package.

Further generalizations

Observing the winner w from a preselected set of competitors C has a likelihood function of pw/ ∑i∈C pi.
But consider a more general situation in which two disjoint teams A and B compete; this would have
likelihood ∑i∈A pi/ ∑i∈A∪B pi. Such datasets motivate consideration of likelihood functions L (·)
with

L (p) = ∏
s∈O

(
∑
i∈s

pi

)ns

(1)

where O is a set of observations and s a subset of [n] = {1, 2, . . . , n}; numbers ns are integers which
may be positive or negative. The approach adopted by the hyperdirichlet package is to store each of
the 2n possible subsets of [n] together with an exponent:

∏
s∈2[n]

(
∑
i∈s

pi

)ns

. (2)

but this was noted as being needlessly memory intensive and slow; it is limited, in practice, to n 6 9.

Consider, for example, the following inference problem. Suppose we wish to make inferences
about p1, . . . , p20, the unknown parameters of a multinomial distribution with classes c1, . . . , c20; we

1In theory, the deprecated hyperdirichlet package (Hankin, 2010) provides similar functionality but it is slow
and inefficient. It is limited to a small number of players and cannot cope with the examples considered here, and
is superceded by hyper2, which was originally called hyperdirichlet2.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=hyper2


CONTRIBUTED RESEARCH ARTICLE 430

demand that pi > 0 and ∑ pi = 1. If our observation is a single trial with result c1 ∪ c2 [that is, the
observation was known to be either c1 or c2], then a likelihood function might be L1 (p1, . . . , p20) =
p1 + p2. However, observe that this very simple example is not accessible to the hyperdirichlet
package, which would have to store 220 > 106 powers, almost all of which are zero.

The hyper2 package uses the obvious solution to this problem: work with equation 1, rather
than equation 2 and store only nonzero powers. However, this requires one to keep track of which
subsets of [n] have nonzero powers. Suppose we wish to incorporate subsequent observations into
our likelihood function p1. We might observe two further independent trials, with results c1 ∪ c2
and c1 ∪ c3 respectively, having a likelihood (p1 + p2) (p1 + p3). Then a likelihood function for all
three trials might be L2 (p1, . . . , p20) = (p1 + p2)

2 (p1 + p3).

One natural representation for the likelihood function (p1 + p2)
2 (p1 + p3) would be as a function

mapping subsets of {1, 2, . . . , 20} to the real numbers; in this case we would map the set {1, 2} to (the
power) 2, and map {1, 3} to 1. However, note that updating our likelihood function from L1 to L2
increments the power of p1 + p2: some mechanism for identifying that the same sum appears in both
marginal likelihood functions is needed.

The hyper2 package

One such mechanism is furnished by the C++ Standard Template Library’s “map” class (Musser et al.,
2009) to store and retrieve elements. In STL terminology, a map is an associative container that stores
values indexed by a key, which is used to sort and uniquely identify the values. In the package, the
key is a (STL) set of strictly positive integers 6 n. The relevant typedef statements are:

typedef set<unsigned int> bracket;
typedef map<bracket, double> hyper2;

Thus a bracket object is a set of (unsigned) integers—here a sum of some pi; and a hyper2 object is a
function that maps bracket objects to real numbers—here their power. The following C++ pseudocode
shows how the aforementioned likelihood function would be created:

const bracket b1.insert({1,2}); // b1 = (p1+p2)
const bracket b2.insert({1,3}); // b2 = (p1+p3)

hyper2 L; // L2 is the likelihood function

// first observation:
L[b1] = 1; // L = (p1+p2)

//second observation:
L[b1] += 1; // L = (p1+p2)^2 # updating of existing map element
L[b2] += 1; // L = (p1+p2)^2*(p1+p3)^1

In the STL, a map object stores keys and associated values in whatever order the software considers
to be most propitious. This allows faster access and modification times but the order in which the
maps, and indeed the elements of a set, are stored is not defined. In the case of likelihood functions
such as Equation 1, this is not an issue because both multiplication and addition are associative and
commutative operations. One side-effect of using this system is that the order of the bracket-power
key-value pairs is not preserved.

The package in use

Consider the Chess dataset of the hyperdirchlet package, in which matches between three chess
players are tabulated (Table 1). The Bradley-Terry model (Bradley and Terry, 1952) is appropriate
here (Caron and Doucet, 2012), and the hyper2 package provides a likelihood function for the strengths
of the players, p1, p2, p3 with p1 + p2 + p3 = 1. A likelihood function might be

p30
1 p36

2 p22
3

(p1 + p2)
35 (p2 + p3)

35 (p1 + p3)
18 .

Using the hyper2 package, the R idiom to create this likelihood function would be a two-stage
process. The first step would be to implement the numerator, that is the number of games won by
each player:

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 431

Topalov Anand Karpov total
22 13 - 35
- 23 12 35
8 - 10 18

30 36 22 88

Table 1: Results of 88 chess matches (dataset chess in the aylmer package (Hankin, 2008)) between
three Grandmasters; entries show number of games won up to 2001 (draws are discarded). Topalov
beats Anand 22-13; Anand beats Karpov 23-12; and Karpov beats Topalov 10-8.

R> library("hyper2")
R> chess <- hyper2(list(1, 2, 3), c(30, 36, 22))
R> chess

p1^30 * p2^36 * p3^22

Thus the chess object has the correct number of players (three), and has the numerator recorded
correctly. To specify the denominator, which indicates the number of matches played by each pair of
players, the package allows the following natural idiom:

R> chess[c(1, 2)] <- -35
R> chess[c(2, 3)] <- -35
R> chess[c(1, 3)] <- -18
R> chess

p1^30 * (p1 + p2)^-35 * (p1 + p3)^-18 * p2^36 * (p2 + p3)^-35 * p3^22

Note how the terms appear in an essentially random order, a side-effect of the efficient map class. It is
sometimes desirable to name the elements explicitly:

R> pnames(chess) <- c("Topalov", "Anand", "Karpov")
R> chess

Topalov^30 * (Topalov + Anand)^-35 * (Topalov + Karpov)^-18 * Anand^36
* (Anand + Karpov)^-35 * Karpov^22

The package can calculate log-likelihoods:

R> loglik(chess, c(1/3, 1/3))

[1] -60.99695

[the second argument of function loglik() is a vector of length 2, third element of p being the
“fillup” value (Aitchison, 1986)]; the gradient of the log-likelihood is given by function gradient():

R> gradient(chess, c(1/3, 1/3))

[1] 24.0 16.5

Such functionality allows the rapid location of the maximum likelihood estimate for p:

R> maxp(chess)

Topalov Anand Karpov
0.4036108 0.3405168 0.2558723

Men’s single sculling in the 2016 Summer Olympic Games

In this section, I will take results from the 2016 Summer Olympic Games and create a likelihood
function for the finishing order in Men’s single sculling. In Olympic sculling, up to six individual
competitors race a small boat called a scull over a course of length 2 km; the object is to cross the
finishing line first. Note that actual timings are irrelevant, given the model, as the sufficient statistic
is the order in which competitors cross the finishing line. The 2016 Summer Olympics is a case in
point: the gold and silver medallists finished less than 5 milliseconds apart, corresponding to a lead
of ∼ 2.5 cm. Following Luce (1959), the probability of competitor i winning in a field of j = 1, . . . , n is

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=aylmer


CONTRIBUTED RESEARCH ARTICLE 432

pi
p1 + · · ·+ pn

.

However, there is information in the whole of the finishing order, not just the first across the line. Once
the winner has been identified, then the runner-up may plausibly be considered to be the winner
among the remaining competitors; and so on down the finishing order. Without loss of generality, if the
order of finishing were 1, 2, 3, 4, 5, 6, then a suitable likelihood function would be, following Plackett
(1975):

p1
p1 + p2 + p3 + p4 + p5 + p6

· p2
p2 + p3 + p4 + p5 + p6

· p3
p3 + p4 + p5 + p6

· p4
p4 + p5 + p6

· p5
p5 + p6

· p6
p6
(3)

The result of heat 1 may be represented as

fournier � cabrera � bhokanal � saensuk � kelmelis � teilemb

(a full list of the finishing order for all 25 events is given in the package as rowing.txt). The first step
to incorporating the whole finishing order into a likelihood function is to define a hyper2 object which
stores the names of the participants:

R> data("rowing")
R> H <- hyper2(pnames = allrowers)
R> H

(banna + bhokanal + boudina + cabrera + campbell + dongyong + drysdale
+ esquivel + fournier + gambour + garcia + grant + hoff + kelmelis +
khafaji + kholmirzayev + martin + memo + molnar + monasterio + obreno +
peebles + rivarola + rosso + saensuk + shcharbachenia + synek +
szymczyk + taieb + teilemb + yakovlev + zambrano)^0

Observe that the resulting likelihood function is uniform, as no information has as yet been included.
Incorporating the information from Heat 1 into a likelihood function corresponding to Equation 3 is
straightforward using the order_likelihood() function:

R> heat1 <- c("fournier", "cabrera", "bhokanal", "saensuk",
+ "kelmelis", "teilemb")
R> H <- H + order_likelihood(char2num(heat1, allrowers))
R> H

bhokanal * (bhokanal + cabrera + fournier + kelmelis + saensuk +
teilemb)^-1 * (bhokanal + cabrera + kelmelis + saensuk + teilemb)^-1 *
(bhokanal + kelmelis + saensuk + teilemb)^-1 * cabrera * fournier *
kelmelis * (kelmelis + saensuk + teilemb)^-1 * (kelmelis + teilemb)^-1
* saensuk

(variable heat1 shows the finishing order for Heat 1). Again observe that object H includes its terms in
no apparent order. Although it would be possible to incorporate information from subsequent heats
in a similar manner, the package includes a ready-made dataset, sculls2016:

R> head(sculls2016)

banna^4 * (banna + boudina + cabrera + molnar + obreno + rivarola)^-1 *
(banna + boudina + cabrera + molnar + rivarola)^-1 * (banna + boudina +
molnar + rivarola)^-1 * (banna + cabrera + campbell + grant + hoff)^-1
* (banna + cabrera + campbell + grant + hoff + szymczyk)^-1

Finding the maximum likelihood estimate for the parameter pbanna, . . . , pzambrano is straightforward
using the maxp() function, provided with the package (Figure 1). The optimization routine has access
to derivatives which means that the estimate is found very quickly.

Figure 1 shows very clearly that the competitor with the highest strength is Drysdale, the gold medallist
for this event. The bronze and silver medallists were Synek and Martin respectively, whose estimated
strengths were second and third highest in the field.

MasterChef Australia

MasterChef Australia is a game show in which amateur cooks compete for a title (Wikipedia, 2017a).
From a statistical perspective the contest is interesting because the typical show format is to identify the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 433

R> dotchart(maxp(sculls2016))

banna
bhokanal
boudina
cabrera
campbell
dongyong
drysdale
esquivel
fournier
gambour
garcia
grant
hoff
kelmelis
khafaji
kholmirzayev
martin
memo
molnar
monasterio
obreno
peebles
rivarola
rosso
saensuk
shcharbachenia
synek
szymczyk
taieb
teilemb
yakovlev
zambrano

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 1: Maximum likelihood estimate for the strengths of the 32 competitors in the Men’s singles
sculls in the 2016 Summer Olympics.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 434

weakest player, who is then eliminated from the competition. Here, results from MasterChef Australia
Series 6 (Wikipedia, 2017b) will be analysed; an extended discussion of the data used is given in the
package at masterchef.Rd.

We wish to make inferences about the contestents’ generalized Bradley-Terry strengths p1, . . . , pn,
∑ pi = 1. One informative event was a team challenge in which the contestants were split randomly
into two teams, red and blue:

R> team_red <- c("Jamie", "Tracy", "Ben", "Amy", "Renae", "Georgia")
R> team_blue <- c("Brent", "Laura", "Emelia", "Colin", "Kira", "Tash")

We may represent the fact that the red team won as

{Jamie + Tracy + Ben + Amy + Renae + Georgia} � {Brent + Laura + Emelia + Colin + Kira + Tash} .
(4)

A plausible likelihood function can be generated using the standard assumption (Hankin, 2010)
that the competitive strength of a team is the sum of the strengths of its members. The likelihood
function for the observation given in Equation 4 would then be

pJamie + pTracy + pBen + pAmy + pRenae + pGeorgia

pJamie + pTracy + pBen + pAmy + pRenae + pGeorgia + pBrent + pLaura + pEmelia + pColin + pKira + pTash
.

(5)

To generate a likelihood function in R, we need to set up a hyper2 object with appropriate contes-
tants:

R> H <- hyper2(pnames = c(
+ "Amy", "Ben", "Brent", "Colin", "Emelia",
+ "Georgia", "Jamie", "Kira", "Laura", "Renae",
+ "Sarah", "Tash", "Tracy"))
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Sarah + Tash + Tracy)^0

Object H is a uniform likelihood function. The package R idiom for incorporating likelihood from
Equation 5 is straightforward and natural:

R> H[team_red] <- +1
R> H[c(team_red, team_blue)] <- -1
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Tash + Tracy)^-1 * (Amy + Ben + Georgia + Jamie + Renae +
Tracy)

(Sarah did not take part). The above idiom makes it possible to define likelihoods for observations
that have a peculiar probability structure, and I give two examples below.

One event involved eight competitors who were split randomly into four teams of two. The show
format was specified in advance as follows: The teams were to be judged, and placed in order. The
two top teams were to be declared safe, and the other two teams sent to an elimination trial from
which an individual winner and loser were identified, the loser being obliged to leave the competition.
The format for this event is also typical in MasterChef.

The observation was that Laura and Jamie’s team won, followed by Emelia and Amy, then Brent
and Tracy. Ben and Renae’s team came last:

{Laura + Jamie} � {Emelia + Amy} � {Brent + Tracy} � {Ben + Renae} . (6)

Again assuming that the team strength is the sum of its members’ strengths, a likelihood function
for this observation may be obtained by using the order statistic technique of Plackett (1975):

pLaura + pJamie

pLaura + pJamie + pEmelia + pAmy + pBrent + pTracy + pBen + pRenae
·

pEmelia + pAmy

pEmelia + pAmy + pBrent + pTracy + pBen + pRenae
·

pBrent + pTracy

pBrent + pTracy + pBen + pRenae
(7)

and we would like to incorporate information from this observation into object H, which is a likelihood
function for the two-team challenge discussed above. The corresponding package idiom is natural:

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 435

R> blue <- c("Laura", "Jamie")
R> yellow <- c("Emelia", "Amy")
R> green <- c("Brent", "Tracy")
R> red <- c("Ben", "Renae")

(the teams were randomly assigned a colour). We may now generate a likelihood function for the
observation that the order of teams was blue, yellow, green, red, as per Equation 7:

R> H[blue] <- 1
R> H[c(blue, yellow, green, red)] <- -1
R> H[yellow] <- 1
R> H[c(yellow, green, red)] <- -1
R> H[green] <- 1
R> H[c(green, red)] <- -1
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Tash + Tracy)^-1 * (Amy + Ben + Brent + Emelia + Jamie + Laura
+ Renae + Tracy)^-1 * (Amy + Ben + Brent + Emelia + Renae + Tracy)^-1 *
(Amy + Ben + Georgia + Jamie + Renae + Tracy) * (Amy + Emelia) * (Ben +
Brent + Renae + Tracy)^-1 * (Brent + Tracy) * (Jamie + Laura)

We may incorporate subsequent observations relating to the elimination trial among the four com-
petitors comprising the losing two teams. The observation was that Laura won, and Renae came last,
being eliminated. We might write

{Laura} � {Brent, Tracey, Ben} � {Renae} , (8)

which indicates that Laura came first, then Brent/Tracey/Ben in some order, then Renae came last.
For this observation a likelihood function, following Critchlow (1985), might be

L (p1, p2, p3, p4, p5) = Prob (p1 � p2 � p3 � p4 � p5 ∪ p1 � p2 � p4 � p3 � p5 ∪ . . .) (9)

= Prob

 ⋃
[abc]

p1 � pa � pb � pc � p5

 (10)

=
p1

p1 + p2 + p3 + p4 + p5
· p2

p2 + p3 + p4 + p5
· p3

p3 + p4 + p5
· p4

p4 + p5

+
p1

p1 + p2 + p4 + p3 + p5
· p2

p2 + p4 + p3 + p5
· p4

p4 + p3 + p5
· p3

p3 + p5

+
p1

p1 + p3 + p2 + p4 + p5
· p3

p3 + p2 + p4 + p5
· p2

p2 + p4 + p5
· p4

p4 + p5

+ · · ·

where Laura’s strength is shown as p1 etc for brevity. The R idiom is as follows:

R> L <- ggol(H,
+ winner = "Laura",
+ btm4 = c("Brent", "Tracy", "Ben"),
+ eliminated = "Renae")

Arguments to ggol() are disjoint subsets of the players, the subsets themselves being passed in
competition order from best to worst. Object L includes information from the team challenge (via first
argument H) and the elimination results. It is a list of length 3! = 6 objects of class hyper2, each of
which gives a Luce likelihood function for a consistent total ordering of the competitors.

A final example (taken from MasterChef series 8, week 10) is given as a generalization of the Luce
likelihood. The format was as follows. Eight contestents were split randomly into four teams of two,
the top two teams being declared safe. Note that the likelihood interpretation differs from the previous
team challenge, in which the observation was an unambiguous team ranking: here, there is only a
partial ranking of the teams and one might expect this observation to be less informative. Without loss
of generality, the result may be represented as

{p1 + p2, p3 + p4} � {p5 + p6, p7 + p8} (11)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 436

and a likelihood function on p1, . . . p8 for this observation might be

L (p1, . . . , p8) = Prob
(
{p1 + p2} � {p3 + p4} � {p5 + p6} � {p7 + p8} ∪

{p1 + p2} � {p3 + p4} � {p7 + p8} � {p5 + p6} ∪
{p3 + p4} � {p1 + p2} � {p5 + p6} � {p7 + p8} ∪

{p3 + p4} � {p1 + p2} � {p5 + p6} � {p7 + p8}
)

(12)

=
p1 + p2

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8
· p3 + p4

p3 + p4 + p5 + p6 + p7 + p8
· p5 + p6

p5 + p6 + p7 + p8

+ · · ·+
p3 + p4

p3 + p4 + p1 + p2 + p7 + p8 + p5 + p6
· p1 + p2

p3 + p4 + p7 + p8 + p5 + p6
· p7 + p8

p7 + p8 + p5 + p6
.

Maximum likelihood estimation

The package provides an overall likelihood function for all informative judgements in the series on the
final 13 players in object masterchef_series6. We may assess a number of related hypotheses using
the package. The first step is to calculate the likelihood for the hypothesis that all players are of equal
strength:

R> data("masterchef")
R> n <- 13
R> equal_strengths <- rep(1/n,n-1)
R> like_series(equal_strengths, masterchef_series6)

[1] -78.68654

The strengths of the 13 players may be estimated using standard maximum likelihood techniques. This
requires constrained optimization in order to prevent the search from passing through inadmissible
points in p-space:

R> UI <- rbind(diag(n-1), -1)
R> CI <- c(rep(0, n-1), -1)
R> constrOptim(
+ theta = equal_strengths,
+ f = function(p){-like_series(p, L)},
+ ui = UI, ci = CI,
+ grad = NULL)

In the above code, UI enforces pi > 0 and CI enforces p1 + · · ·+ pn−1 6 1. The resulting maximum
likelihood estimate, pmax_masterchef6 in the package, is shown pictorially in Figure 2. The support at
the precalculated evaluate is

R> like_series(indep(pmax_masterchef6), masterchef_series6)

[1] -66.19652

and this allows us to test the hypothesis of equal player strengths: by Wilks’s theorem (Wilks, 1938)
the quantity −2 log Λ (where Λ is the likelihood ratio) has an asymptotic null distribution of χ2

12. This
corresponds to a p-value of

R> pchisq(2*(78.7-66.2), df = 12, lower.tail = FALSE)

[1] 0.01482287

showing that the observations do constitute evidence for differential player strengths. Figure 2 suggests
that Laura, the runner-up, is actually a stronger competitor than the winner, Brent. We may assess this
statistically by finding the maximum likelihood for p, subject to the constraint that pLaura 6 pBrent:

R> UI <- rbind(UI, c(0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0))
R> CI <- c(CI, 0)
R> ans2 <-
+ constrOptim(

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 437

R> pmax_masterchef6

Amy Ben Brent Colin Emelia Georgia
1.086182e-01 7.457970e-02 1.343553e-01 2.819606e-02 1.169766e-01 6.850455e-09

Jamie Kira Laura Renae Sarah Tash
1.065412e-01 2.055794e-02 2.750621e-01 4.070643e-02 2.803893e-02 1.142094e-09

Tracy
6.636755e-02

R> dotchart(pmax_masterchef6)

Amy

Ben

Brent

Colin

Emelia

Georgia

Jamie

Kira

Laura

Renae

Sarah

Tash

Tracy

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

Figure 2: Maximum likelihood estimate for the strengths of the top 13 competitors in Series 6 of
MasterChef Australia.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 438

+ theta = equal_strengths,
+ f = function(p){-like_series(p, masterchef_series6)},
+ grad = NULL,
+ ui = UI, ci = CI)

(updated object UI represents the constraint that Brent’s strength exceeds that of Laura). In the package,
object pmax_masterchef6_constrained is included as the result of the above optimization, at which
point the likelihood is

R> like_series(indep(pmax_masterchef6_constrained), masterchef_series6)

[1] -67.37642

The two estimates differ by about 1.18, less than the two-units-of-support criterion of Edwards (1992);
alternatively, one may observe that the likelihood ratio is not in the tail region of its asymptotic
distribution (χ2

1) as the p-value is about 0.12. This shows that there is no strong evidence for Laura’s
competitive strength being higher than that of Brent. Similar techniques can be used to give a profile
likelihood function; the resulting support interval for Laura’s strength is [0.145, 0.465], which does not
include 1

13 ' 0.077, the mean player strength.

However, further work would be needed to make statistically robust inferences from these findings.
Suppose, for example, that all competitors have equal competitive ability: then all the pi are identical,
and players are exchangeable. Under these circumstances, one could run a tournament and identify a
winner. One might expect that the winning player would have the highest pi as estimated by pmax().
It is not clear at this stage how to interpret likelihood functions for players conditional on their
competition performance. Another issue would be the applicability of Wilks’s theorem (Wilks, 1938)
which states only that the asymptotic distribution of −2 log Λ is chi-squared. Although the likelihood
ratio statistic is inherently meaningful, its sampling distribution is not clear at this stage.

Conclusions

Several generalizations of Bradley-Terry strengths are appropriate to describe competitive situations
in which order statistics are sufficient.

The hyper2 package is introduced, providing a suite of functionality for generalizations of the par-
tial rank analysis of Critchlow (1985). The software admits natural R idiom for translating commonly
occurring observations into a likelihood function.

The package is used to calculate maximum likelihood estimates for generalized Bradley-Terry
strengths in two competitive situations: Olympic rowing, and MasterChef Australia. The estimates for
the competitors’ strengths are plausible; and several meaningful statistical hypotheses are assessed
quantitatively.

Bibliography

J. Aitchison. The Statistical Analysis of Compositional Data. The Blackburn Press, 1986. [p431]

R. A. Bradley and M. E. Terry. The rank analysis of incomplete block designs I. The method of paired
comparisons. Biometrika, 39:324–345, 1952. [p430]

F. Caron and A. Doucet. Efficient Bayesian inference for generalized Bradley-Terry models. Journal
of Computational and Graphical Statistics, 21(1):174–196, 2012. URL https://dx.doi.org/10.1080/
10618600.2012.638220. [p430]

D. E. Critchlow. Metric Methods for Analyzing Partially Ranked Data. Springer-Verlag, New York, 1985.
[p435, 438]

A. W. F. Edwards. Likelihood (Expanded Edition). John Hopkins, 1992. [p438]

R. K. S. Hankin. Exact tests for two-way contingency tables with structural zeros. Journal of Statistical
Software, 28(11):1–19, 2008. URL https://doi.org/10.18637/jss.v028.i11. [p431]

R. K. S. Hankin. A generalization of the Dirichlet distribution. Journal of Statistical Software, 33(11):
1–18, 2010. URL https//doi.org/10.18637/jss.v033.i11. [p429, 434]

R. Hatzinger and R. Dittrich. Prefmod: An R package for modeling preferences based on paired
comparisons, rankings, or ratings. Journal of Statistical Software, 48:1–31, 2012. URL https://10.
18637/jss.v048.i10. [p429]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://dx.doi.org/10.1080/10618600.2012.638220
https://dx.doi.org/10.1080/10618600.2012.638220
https://doi.org/10.18637/jss.v028.i11
https//doi.org/10.18637/jss.v033.i11
https://10.18637/jss.v048.i10
https://10.18637/jss.v048.i10


CONTRIBUTED RESEARCH ARTICLE 439

R. Luce. Individual Choice Behaviour: A Theoretical Analysis. John Wiley & Sons, New York, 1959. [p429,
431, 435]

D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide: C++ Programming with
the Standard Template Library. Addison-Wesley Professional, 3rd edition, 2009. ISBN 0321702123,
9780321702128. [p430]

R. L. Plackett. The analysis of permutations. Applied Statistics, 24:193–202, 1975. [p432, 434]

H. Turner and D. Firth. Bradley-terry models in R: The BradleyTerry2 package. Journal of Statistical
Software, 48(9):1–21, 2012. URL https://doi.org/10.18637/jss.v048.i09. [p429]

Wikipedia. MasterChef Australia — Wikipedia, the free encyclopedia, 2017a. URL https://en.
wikipedia.org/w/index.php?title=MasterChef_Australia&oldid=761024807. [Online; accessed
1-February-2017]. [p432]

Wikipedia. MasterChef Australia (series 6) — Wikipedia, the free encyclopedia, 2017b. URL https:
//en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=762395535.
[Online; accessed 1-February-2017]. [p434]

S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses.
The Annals of Mathematical Statistics, 9(1):60–62, 1938. URL http://www.jstor.org/stable/2957648.
[p436, 438]

Robin K. S. Hankin
AUT University
Auckland
New Zealand
ORCiD: 0000-0002-6727-9347
hankin.robin@gmail.com

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://doi.org/10.18637/jss.v048.i09
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia&oldid=761024807
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia&oldid=761024807
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=762395535
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=762395535
http://www.jstor.org/stable/2957648
mailto:hankin.robin@gmail.com

	Partial Rank Data with the hyper2 Package: Likelihood Functions for Generalized Bradley-Terry Models
	Introduction: the Bradley-Terry model
	Further generalizations

	The hyper2 package
	The package in use

	Men's single sculling in the 2016 Summer Olympic Games
	MasterChef Australia
	Maximum likelihood estimation

	Conclusions


