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mle.tools: An R Package for Maximum
Likelihood Bias Correction
by Josmar Mazucheli, André Felipe B. Menezes and Saralees Nadarajah

Abstract Recently, Mazucheli (2017) uploaded the package mle.tools to CRAN. It can be used for
bias corrections of maximum likelihood estimates through the methodology proposed by Cox and
Snell (1968). The main function of the package, coxsnell.bc(), computes the bias corrected maximum
likelihood estimates. Although in general, the bias corrected estimators may be expected to have
better sampling properties than the uncorrected estimators, analytical expressions from the formula
proposed by Cox and Snell (1968) are either tedious or impossible to obtain. The purpose of this paper
is twofolded: to introduce the mle.tools package, especially the coxsnell.bc() function; secondly, to
compare, for thirty one continuous distributions, the bias estimates from the coxsnell.bc() function
and the bias estimates from analytical expressions available in the literature. We also compare, for
five distributions, the observed and expected Fisher information. Our numerical experiments show
that the functions are efficient to estimate the biases by the Cox-Snell formula and for calculating the
observed and expected Fisher information.

Introduction

Since it was proposed by Fisher in a series of papers from 1912 to 1934, the maximum likelihood
method for parameter estimation has been employed to several issues in statistical inference, because of
its many appealing properties. For instance, the maximum likelihood estimators, hereafter referred to
as MLEs, are asymptotically unbiased, efficient, consistent, invariant under parameter transformation
and asymptotically normally distributed (Edwards, 1992; Lehmann, 1999). Most properties that make
the MLEs attractive depend on the sample size, hence such properties as unbiasedness, may not be
valid for small samples or even moderate samples (Kay, 1995). Indeed, the maximum likelihood
method produces biased estimators, i.e., expected values of MLEs differ from the real true parameter
values providing systematic errors. In particular, these estimators typically have biases of order
O
(
n−1), thus these errors reduce as sample size increases (Cordeiro and Cribari-Neto, 2014).

Applying the corrective Cox-Snell methodology, many researchers have developed nearly unbiased
estimators for the parameters of several probability distributions. Interested readers can refer to
Cordeiro et al. (1997), Cribari-Neto and Vasconcellos (2002), Saha and Paul (2005), Lemonte et al.
(2007), Giles and Feng (2009) Lagos-Álvarez et al. (2011), Lemonte (2011), Giles (2012b), Giles (2012a),
Schwartz et al. (2013), Giles et al. (2013), Teimouri and Nadarajah (2013), Xiao and Giles (2014), Zhang
and Liu (2015), Teimouri and Nadarajah (2016), Reath (2016), Giles et al. (2016), Schwartz and Giles
(2016), Wang and Wang (2017), Mazucheli and Dey (2017) and references cited therein.

In general, the Cox-Snell methodology is efficient for bias corrections. However, obtaining ana-
lytical expressions for some probability distributions, mainly for those indexed by more than two
parameters, can be notoriously cumbersome or impossible. Stočsić and Cordeiro (2009) presented
Maple and Mathematica scripts that may be used to calculate closed form analytic expressions for
bias corrections using the Cox-Snell formula. They tested the scripts for 20 two-parameter continuous
probability distributions, and the results were compared with those published in earlier works. In the
same direction, researchers from the University of Illinois, at Urbana-Champaign, have developed
a Mathematica program, entitled “CSCK MLE Bias Calculation” (Johnson et al., 2012b) that enables
the user to calculate the analytic Cox-Snell MLE bias vectors for various probability distributions
with up to four unknown parameters. It is important to mention that both, Maple (Maple, 2017) and
Mathematica (Wolfram Research, Inc., 2010), are commercial softwares.

In this paper, our objective is to introduce a new contributed R (R Core Team, 2016) package,
namely mle.tools that computes the expected/observed Fisher information and the bias corrected
estimates by the methodology proposed by Cox and Snell (1968). The theoretical background of
the methodology is presented in Section Overview of the Cox-Snell methodology. Details about the
mle.tools package are described in Section The mle.tools package details. Closed form solutions of
bias corrections are collected from the literature for a large number of distributions and compared to
the output from the coxsnell.bc() function, see Section Comparative study. In Section Additional
Applications, we compare various estimates of Fisher’s information, considering a real application
from the literature. Finally, Section Concluding Remarks contains some concluding remarks and
directions for future research.
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Overview of the Cox-Snell methodology

Let X1, . . . , Xn be n be independent random variables with probability density function f (xi | θ)
depending on a p-dimensional parameter vector θ =

(
θ1, . . . , θp

)
. Without loss of generality, let

l = l (θ | x) be the log-likelihood function for the unknown p-dimensional parameter vector θ given
a sample of n observations. We shall assume some regularity conditions on the behavior of l (θ | x)
(Cox and Hinkley, 1979).

The joint cumulants of the derivatives of l are given by:

κij = E

[
∂2 l

∂ θi ∂ θj

]
, (1)

κijl = E

[
∂3 l

∂ θi ∂ θj ∂ θl

]
, (2)

κij,l = E

[(
∂2 l

∂ θi ∂ θj

) (
∂ l

∂ θl

)]
, (3)

κ
(l)
ij =

∂ κij

∂ θl
(4)

for i, j, l = 1, . . . , p.

The bias expression of the sth element of θ̂, the MLEs of θ, when the sample data are independent,
but not necessarily identically distributed, was proposed by Cox and Snell (1968):

B
(

θ̂s

)
=

p

∑
i=1

p

∑
j=1

p

∑
l=1

κsi κ jl
[
0.5κijl + κij,l

]
+O

(
n−2

)
, (5)

where s = 1, . . . , p and κij is the (i, j)th element of the inverse of the negative of the expected Fisher
information.

Thereafter, Cordeiro and Klein (1994) noticed that equation (5) holds even if the data are non-
independent, and it can be re-expressed as:

B
(

θ̂s

)
=

p

∑
i=1

κsi
p

∑
j=1

p

∑
l=1

[
κ
(l)
ij − 0.5κijl

]
κ jl +O

(
n−2

)
. (6)

Defining a(l)ij = κ
(l)
ij − 0.5κijl , A(l) =

{
a(l)ij

}
and K =

[
−κij

]
, the expected Fisher information

matrix for i, j, l = 1, . . . , n, the bias expression for θ̂ in matrix notation is:

B
(

θ̂
)
= K−1 Avec

(
K−1

)
+O

(
n−2

)
, (7)

where vec
(
K−1) is the vector obtained by stacking the columns of K−1 and A =

{
A1 | · · · | Ap}.

Finally, the bias corrected MLE for θs can be obtained as:

θ̃s = θ̂s − B̂
(

θ̂s

)
. (8)

Alternatively, using matrix notation the bias corrected MLEs can be expressed as Cordeiro and Klein
(1994):

θ̃ = θ̂− K̂−1 Âvec
(

K̂−1
)

, (9)

where K̂ = K
∣∣
θ=θ̂

and Â = A
∣∣
θ=θ̂

.

The mle.tools package details

The current version of the mle.tools package, uploaded to CRAN in February, 2017, has implemented
three functions — observed.varcov(), expected.varcov() and coxsnell.bc() — which are of great
interest in data analysis based on MLEs. These functions calculate, respectively, the observed Fisher
information, the expected Fisher information and the bias corrected MLEs using the bias formula in
(5). The above mentioned functions can be applied to any probability density function whose terms
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are available in the derivatives table of the D() function (see “deriv.c” source code for further details).
Integrals, when required, are computed numerically via the integrate() function. Below are some
mathematical details of how the returned values from the three functions are calculated.

Let X1, . . . , Xn be independent and identical random variables with probability density function
f (xi | θ) depending on a p-dimensional parameter vector θ =

(
θ1, . . . , θp

)
. The (j, k)th element of the

observed, Hjk, and expected, Ijk, Fisher information are calculated, respectively, as

Hjk = −
n

∑
i=1

∂2

∂θj∂θk
log f (xi | θ)

∣∣∣∣∣
θ=θ̂

and

Ijk = −n× E

(
∂2

∂θj∂θk
log f (x | θ)

)
= −n×

∫
X

∂2

∂θj∂θk
log f (x | θ)× f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂

,

where j, k = 1, . . . , p, θ̂ is the MLE of θ and X denotes the support of the random variable X.

The observed.varcov() function is as follows:

function (logdensity, X, parms, mle)

where logdensity is an R expression of the log of the probability density function, X is a numeric
vector containing the observations, parms is a character vector of the parameter name(s) specified in
the logdensity expression and mle is a numeric vector of the parameter estimate(s). This function
returns a list with two components (i) mle: the inputed MLEs and (ii) varcov: the observed variance-
covariance evaluated at the inputed MLE argument. The elements of the Hessian matrix are calculated
analytically.

The functions expected.varcov() and coxsnell.bc() have the same arguments and are as follows:

function (density, logdensity, n, parms, mle, lower = "-Inf", upper = "Inf", ...)

where density and logdensity are R expressions of the probability density function and its logarithm,
respectively, n is a numeric scalar of the sample size, parms is a character vector of the parameter
names(s) specified in the density and log-density expressions, mle is a numeric vector of the parameter
estimates, lower is the lower integration limit (-Inf is the default), upper is the upper integration
limit (Inf is the default) and ... are additional arguments passed to the integrate() function. The
expected.varcov() function returns a list with two components:

$mle the inputed MLEs and

$varcov the expected covariance evaluated at the inputed MLEs.

The coxsnell.bc() function returns a list with five components:

$mle the inputed MLEs,

$varcov the expected variance-covariance evaluated at the inputed MLEs,

$mle.bc the bias corrected MLEs,

$varcov.bc the expected variance-covariance evaluated at the bias corrected MLEs

$bias the bias estimate(s).

Furthermore, the bias corrected MLE of θs, s = 1, . . . , p denoted by θ̃s is calculated as θ̃s =

θ̂s − B̂
(

θ̂s

)
, where θ̂s is the MLE of θs and

B̂
(

θ̂s

)
=

p

∑
j=1

p

∑
k=1

p

∑
l=1

κsjκkl
[
0.5κjkl + κjk,l

]∣∣∣∣∣∣
θ=θ̂

,

where κ jk is the (j, k)th element of the inverse of the negative of the expected Fisher information,

κjkl = n
∫
X

∂3

∂θj∂θk∂θl
log f (x | θ) f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂

,

κjk,l = n
∫
X

∂2

∂θj∂θk
log f (x | θ)

∂

θl
log f (x | θ) f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂
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and X denotes the support of the random variable X.

It is important to emphasize that first, second and third-order partial log-density derivatives
are analytically calculated via the D() function, while integrals are computed numerically, using the
integrate() function. Furthermore, if numerical integration fails and/or the expected/observed
information is singular, an error message is returned.

Comparative study

In order to evaluate the robustness of the coxsnell.bc() function, we compare, through real applica-
tions, the estimated biases obtained from the package and from the analytical expressions for a total
of thirty one continuous probability distributions. The analytical expressions for each distribution,
named as distname.bc(), can be found in the supplementary file “analyticalBC.R”. For example, the
entry lindley.bc(n,mle) evaluates the bias estimates locally at n and mle values.

In the sequel, the probability density function, the analytical Cox-Snell expressions and the bias
estimates are provided for: Lindley, inverse Lindley, inverse Exponential, Shanker, inverse Shanker,
Topp-Leone, Lévy, Rayleigh, inverse Rayleigh, Half-Logistic, Half-Cauchy, Half-Normal, Normal,
inverse Gaussian, Log-Normal, Log-Logistic, Gamma, inverse Gamma, Lomax, weighted Lindley,
generalized Rayleigh, Weibull, inverse Weibull, generalized Half-Normal, inverse generalized Half-
Normal, Marshall-Olkin extended Exponential, Beta, Kumaraswamy, inverse Beta, Birnbaum-Saunders
and generalized Pareto distributions.

It is noteworthy that analytical bias corrected expressions are not reported in the literature for
the Lindley, Shanker, inverse Shanker, Lévy, inverse Rayleigh, half-Cauchy, inverse Weibull, inverse
generalized half-normal and Marshall-Olkin extended exponential distributions.

According to all the results presented below, we observe concordance between the bias estimates
given by the coxsnell.bc() function and the analytical expression(s) for 28 out the 31 distributions.
The distributions which did not agree with the coxsnell.bc() function were the beta, Kumaraswamy
and inverse beta distributions. Perhaps there are typos either in our typing or in the analytical
expressions reported by Cordeiro et al. (1997), Lemonte (2011) and Stočsić and Cordeiro (2009).
Having this view, we recalculated the analytical expressions for the biases. For the beta and inverse
beta distributions, our recalculated analytical expressions agree with the results returned by the
coxsnell.bc() function, so there are actually typos in the expression of Cordeiro et al. (1997) and
Stočsić and Cordeiro (2009). For the Kumaraswamy, we could not evaluate the analytical expression
given by the author but we compare the results from coxsnell.bc() function with a numerical
evaluation in Maple (Maple, 2017) and the results are exactly equals.

1. One-parameter Lindley distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ
(1 + x) exp(−θx), x > 0.

• Bias expression (not previously reported in the literature):

B
(

θ̂
)
=

(
θ3 + 6 θ2 + 6 θ + 2

)
(θ + 1) θ

n (θ2 + 4 θ + 2)2 . (10)

Using the data set from Ghitany et al. (2008) we have n = 100, θ̂ = 0.1866 and ŝe
(

θ̂
)
= 0.0133.

Evaluating the analytical expression (10) and the coxsnell.bc() function, we have, respectively,

lindley.bc(n = 100, mle = 0.1866)
## theta
## 0.0009546
pdf <- quote(theta^2 / (theta + 1) * (1 + x) * exp(-theta * x))
lpdf <- quote(2 * log(theta) - log(1 + theta) - theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,

parms = c("theta"), mle = 0.1866, lower = 0)$bias
## theta
## 0.0009546

2. Inverse Lindley distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ

(
1 + x

x3

)
exp

(
− θ

x

)
, x > 0.
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• Bias expression (Wang, 2015):

B
(

θ̂
)
=

(θ + 1) θ
(
θ3 + 6 θ2 + 6 θ + 2

)
n (θ2 + 4 θ + 2)2 . (11)

Using the data set from Sharma et al. (2015) we have n = 58, θ̂ = 60.0016 and ŝe
(

θ̂
)
= 7.7535.

Evaluating the analytical expression (11) and the coxsnell.bc() function, we have, respectively,

invlindley.bc(n = 58, mle = 60.0016)
## theta
## 1.017
pdf <- quote(theta^2 / (theta + 1) * ((1 + x) / x^3) *

exp(-theta / x))
lpdf <- quote(2 * log(theta) - log(1 + theta) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("theta"), mle = 60.0016, lower = 0)$bias
## theta
## 1.017

3. Inverse exponential distribution with rate parameter θ

f (x | θ) =
θ

x2 exp
(
− θ

x

)
, x > 0.

• Bias expression (Johnson et al., 2012b):

B
(

θ̂
)
=

θ

n
. (12)

Using the data set from Lawless (2011), we have n = 30, θ̂ = 11.1786 and ŝe
(

θ̂
)
= 2.0409.

Evaluating the analytical expression (12) and the coxsnell.bc() function, we have, respectively,

invexp.bc(n = 30, mle = 11.1786)
## theta
## 0.3726
pdf <- quote(theta / x^2 * exp(- theta / x))
lpdf <- quote(log(theta) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,

parms = c("theta"), mle = 11.1786, lower = 0)$bias
## theta
## 0.3726

4. Shanker distribution with scale parameter θ

f (x | θ) =
θ2

θ2 + 1
(θ + x) exp(−θ x), x > 0.

• For bias expression (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Shanker (2015), we have n = 31, θ̂ = 0.0647 and ŝe
(

θ̂
)

= 0.0082.
Evaluating the analytical expression and the coxsnell.bc() function, we have, respectively,

shanker.bc(n = 31, mle = 0.0647)
## theta
## 0.001035
pdf <- quote(theta^2 / (theta^2 + 1) * (theta + x) *

exp(-theta * x))
lpdf <- quote(2*log(theta) - log(theta^2 + 1) + log(theta + x) -

theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,

parms = c("theta"), mle = 0.0647, lower = 0)$bias
## theta
## 0.001035

5. Inverse Shanker distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ2

(
1 + θ x

x3

)
exp

(
− θ

x

)
, x > 0.
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• Bias expression (not previously reported in the literature):

B
(

θ̂
)
=

θ3 + 2 θ

n (θ2 + 1)
. (13)

Using the data set from Sharma et al. (2015), we have n = 58, θ̂ = 59.1412 and ŝe
(

θ̂
)
= 7.7612.

Evaluating the analytical expression (13) and the coxsnell.bc() function, we have, respectively,

invshanker.bc(n = 58, mle = 59.1412)
## theta
## 1.02
pdf <- quote(theta^2 / (theta^2 + 1) * (theta * x + 1) /

x^3 * exp(-theta / x))
lpdf <- quote(log(theta) - 2 * log(x) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("theta"), mle = 59.1412, lower = 0)$bias
## theta
## 1.02

6. Topp-Leone distribution with shape parameter ν

f (x | ν) = 2 ν (1− x) xν−1 (2− x)ν−1, 0 < x < 1.

• Bias expression (Giles, 2012a):

B (ν̂) = ν

n
. (14)

Using the data set from Cordeiro and dos Santos Brito (2012), we have n = 107, ν̂ = 2.0802 and
ŝe (ν̂) = 0.2011. Evaluating the analytical expression (14) and the coxsnell.bc() function, we
have, respectively,

toppleone.bc(n = 107, mle = 2.0802)
## nu
## 0.01944
pdf <- quote(2 * nu * x^(nu - 1) * (1 - x) * (2 - x)^(nu - 1))
lpdf <- quote(log(nu) + nu * log(x) + log(1 - x) + (nu - 1) *

log(2 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 107,

parms = c("nu"), mle = 2.0802, lower = 0, upper = 1)$bias
## nu
## 0.01944

7. One-parameter Lévy distribution with scale parameter σ

f (x | σ) =

√
σ

2 π
x−

3
2 exp

(
− σ

2 x

)
, x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = 2 σ

n
. (15)

Using the data set from Achcar et al. (2013), we have n = 361, σ̂ = 4.4461 and ŝe (σ̂) = 0.3309.
Evaluating the analytical expression (15) and the coxsnell.bc() function, we have, respectively,

levy.bc(n = 361, mle = 4.4460)
## sigma
## 0.02463
pdf <- quote(sqrt(sigma / (2 * pi)) * exp(-0.5 * sigma / x) /

x^(3 / 2))
lpdf <- quote(0.5 * log(sigma) - 0.5 * sigma / x - (3 / 2) * log(x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 361,

parms = c("sigma"), mle = 4.4460, lower = 0)$bias
## sigma
## 0.02463
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8. Rayleigh distribution with scale parameter σ

f (x | σ) =
x

σ2 exp
(
− x2

2 σ2

)
, x > 0.

• Bias expression (Xiao and Giles, 2014):

B (σ̂) = − σ

8 n
. (16)

Using the data set from Bader and Priest (1982), we have n = 69, σ̂ = 1.2523 and ŝe (σ̂) = 0.0754.
Evaluating the analytical expression (16) and the coxsnell.bc() function, we have, respectively,

rayleigh.bc(n = 69, mle = 1.2522)
## sigma
## -0.002268
pdf <- quote(x / sigma^2 * exp(- 0.5 * (x / sigma)^2))
lpdf <- quote(- 2 * log(sigma) - 0.5 * x^2 / sigma^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("sigma"), mle = 1.2522, lower = 0)$bias
## sigma
## -0.002268

9. Inverse Rayleigh distribution with scale parameter σ

f (x | σ) =
2 σ2

x3 exp
(
− σ

x2

)
, x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = 3σ

8 n
. (17)

Using the data set from Bader and Priest (1982), we have n = 63, σ̂ = 2.8876 and ŝe (σ̂) = 0.1819.
Evaluating the analytical expression (17) and the coxsnell.bc() function, we have, respectively,

invrayleigh.bc(n = 63, mle = 2.8876)
## sigma
## 0.01719
pdf <- quote(2 * sigma^2 / x^3 * exp(-sigma^2 / x^2))
lpdf <- quote(2 * log(sigma) - sigma^2 / x^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 63,

parms = c("sigma"), mle = 2.8876, lower = 0)$bias
## sigma
## 0.01719

10. Half-logistic distribution with scale parameter σ

f (x | σ) =
2 exp

(
− x

σ

)
σ
[
1 + exp

(
− x

σ

)]2 , x > 0.

• Bias expressions (Giles, 2012b):

B (σ̂) = −0.05256766607 σ

n
. (18)

Using the data set from Bhaumik et al. (2009), we have n = 34, σ̂ = 1.3926 and ŝe (σ̂) = 0.2056.
Evaluating the analytical expression (17) and the coxsnell.bc() function, we have, respectively,

halflogistic.bc(n = 34, mle = 1.3925)
## sigma
## -0.002153
pdf <- quote((2/sigma) * exp(-x / sigma) / (1 + exp(-x / sigma))^2)
lpdf <- quote(-log(sigma) - x / sigma - 2 * log(1 + exp(-x / sigma)))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 34,

parms = c("sigma"), mle = 1.3925, lower = 0)$bias
## sigma
## -0.002153
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11. Half-Cauchy distribution with scale parameter σ

f (x | σ) =
2
π

σ

σ2 + x2 , x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = −σ

n
. (19)

Using the data set from Alzaatreh et al. (2016), we have n = 64, σ̂ = 28.3345 and ŝe (σ̂) = 4.4978.
Evaluating the analytical expression (19) and the coxsnell.bc() function, we have, respectively,

halfcauchy.bc(n = 64, mle = 28.3345)
## sigma
## 0.4427
pdf <- quote( 2 / pi * sigma / (x^2 + sigma^2))
lpdf <- quote(log(sigma) - log(x^2 + sigma^2))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 64,

parms = c("sigma"), mle = 28.3345, lower = 0)$bias
## sigma
## 0.4456

12. Half-normal distribution with scale parameter σ

f (x | σ) =

√
2
π

1
σ

exp
(
− x2

2 σ2

)
, x > 0.

• Bias expressions (Xiao and Giles, 2014):

B (σ̂) = − σ

4 n
. (20)

Using the data set from Raqab et al. (2008), we have n = 69, σ̂ = 1.5323 and ŝe (σ̂) = 0.1304.
Evaluating the analytical expression (20) and the coxsnell.bc() function, we have, respectively,

halfnormal.bc(n = 69, mle = 1.5323)
## sigma
## -0.005552
pdf <- quote(sqrt(2) / (sqrt(pi) * sigma) * exp(-x^2 / (2 * sigma^2)))
lpdf <- quote(-log(sigma) - x^2 / sigma^2 / 2 )
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("sigma"), mle = 1.5323, lower = 0)$bias
## sigma
## -0.005552

13. Normal distribution with mean µ and standard deviation σ

f (x | µ, σ) =
1√

2 π σ
exp

[
− (x− µ)2

2 σ2

]
, x ∈ (−∞, ∞).

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B (σ̂) = −3 σ

4 n
. (21)

Using the data set from Kundu (2005), we have n = 23, µ̂ = 4.1506, σ̂ = 0.5215, ŝe (µ̂) = 0.1087
and ŝe (σ̂) = 0.0769. Evaluating the analytical expressions (21) and the coxsnell.bc() function,
we have, respectively,

normal.bc(n = 23, mle = c(4.1506, 0.5215))
## mu sigma
## 0.00000 -0.01701
pdf <- quote(1 / (sqrt(2 * pi) * sigma) *

exp(-0.5 / sigma^2 * (x - mu)^2))
lpdf <- quote(-log(sigma) - 0.5 / sigma^2 * (x - mu)^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 23,

parms = c("mu", "sigma"), mle = c(4.1506, 0.5215))$bias
## mu sigma
## -4.071e-13 -1.701e-02
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14. Inverse Gaussian distribution with mean µ and shape λ

f (x | µ, λ) =

√
λ

2 π x3 exp
[
−λ (x− µ)2

2 x µ2

]
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B
(

λ̂
)
=

3λ

n
. (22)

Using the data set from Chhikara and Folks (1977), we have n = 46, µ̂ = 3.6067, λ̂ = 1.6584,

ŝe (µ̂) = 0.7843 and ŝe
(

λ̂
)

= 0.3458. Evaluating the analytical expressions (22) and the
coxsnell.bc() function, we have, respectively,

invgaussian.bc(n = 46, mle = c(3.6065, 1.6589))
## mu lambda
## 0.0000 0.1082
pdf <- quote(sqrt(lambda / (2 * pi * x^3)) *

exp(-lambda * (x - mu)^2 / (2 * mu^2 * x)))
lpdf <- quote(0.5 * log(lambda) - lambda * (x - mu)^2 /

(2 * mu^2 * x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 46,

parms = c("mu", "lambda"), mle = c(3.6065, 1.6589),
lower = 0)$bias

## mu lambda
## 3.483e-07 1.082e-01

15. Log-normal distribution with location µ and scale σ

f (x | µ, σ) =
1√

2 π x σ
exp

[
− (log x− µ)2

σ2

]
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B (σ̂) = −3 σ

4 n
. (23)

Using the data set from Kumagai et al. (1989), we have n = 30, µ̂ = 2.164, σ̂ = 1.1765, ŝe (µ̂) =
0.2148 and ŝe (σ̂) = 0.1519. Evaluating the analytical expressions (23) and the coxsnell.bc()
function, we have, respectively,

lognormal.bc(n = 30, mle = c(2.1643, 1.1765))
## mu sigma
## 0.00000 -0.02941
pdf <- quote(1 / (sqrt(2 * pi) * x * sigma) *

exp(-0.5 * (log(x) - mu)^2 / sigma^2))
lpdf <- quote(-log(sigma) - 0.5 * (log(x) - mu)^2 / sigma^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,

parms = c("mu", "sigma"), mle = c(2.1643, 1.1765),
lower = 0)$bias

## mu sigma
## -5.952e-09 -2.941e-02

16. Log-logistic distribution with shape β and scale α

f (x | α, β) =
(β/α) (x/α)β−1[

1 + (x/α)β
]2 , x > 0.

• For bias expressions, see Reath (2016).

From Reath (2016) we have n = 19, α̂ = 6.2542, β̂ = 1.1732, ŝe (α̂) = 2.1352, ŝe
(

β̂
)
= 0.2239,

B̂ (α̂) = 0.3585 and B̂
(

β̂
)
= 0.0789. Evaluating the coxsnell.bc() function, we have:

pdf <- quote((beta / alpha) * (x / alpha)^(beta - 1) /
(1 + (x / alpha)^beta)^2)

lpdf <- quote(log(beta) - log(alpha) + (beta - 1) * log(x / alpha) -
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2 * log(1 + (x / alpha)^beta))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 19,

parms = c("alpha", "beta"), mle = c(6.2537, 1.1734),
lower = 0)$bias

## alpha beta
## 0.35854 0.07883

17. Gamma distribution with shape α and rate λ

f (x | α, λ) =
λα

Γ(α)
xα−1 exp(−λ x), x > 0.

• Bias expressions (Giles and Feng, 2009):

B (α̂) = α [Ψ′(α)− αΨ′′(α)]− 2

2 n [αΨ′(α)− 1]2
(24)

and

B
(

λ̂
)
=

λ
[
2 α (Ψ′(α))2 − 3 Ψ′(α)− α Ψ′′(α)

]
2 n [αΨ′(α)− 1]2

. (25)

Using the data set from Delignette-Muller et al. (2008), we have n = 254, α̂ = 4.0083, λ̂ = 0.0544,

ŝe (α̂) = 0.3413 and ŝe
(

λ̂
)
= 0.0049. Evaluating the analytical expressions (24), (25) and the

coxsnell.bc() function, we have, respectively,

gamma.bc(n = 254, mle = c(4.0082, 0.0544))
## alpha lambda
## 0.0448278 0.0006618
pdf <- quote((lambda^alpha) / gamma(alpha) * x^(alpha - 1) *

exp(-lambda *x))
lpdf <- quote(alpha * log(lambda) - lgamma(alpha) + alpha * log(x) -

lambda * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 254,

parms = c("alpha", "lambda"), mle = c(4.0082, 0.0544),
lower = 0)$bias

## alpha lambda
## 0.0448278 0.0006618

18. Inverse gamma distribution with shape α and scale β

f (x | α, β) =
1

Γ(α) βα
xα−1 exp

(
− x

β

)
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (α̂) = −0.5 α2 Ψ′′ (α) + 0.5 Ψ′ (α) α− 1

n α (Ψ′ (α)− 1)2 (26)

and

B
(

β̂
)
=

β
(
−0.5 α Ψ′′ (α)− 1.5 Ψ′ (α) + (Ψ′ (α))2

α
)

n (Ψ′ (α) α− 1.0)2 . (27)

Using the data set from Kumagai and Matsunaga (1995), we have n = 31, α̂ = 1.0479, β̂ = 5.491,

ŝe (α̂) = 0.2353 and ŝe
(

β̂
)
= 1.5648. Evaluating the analytical expressions (26), (27) and the

coxsnell.bc() function, we have, respectively,

invgamma.bc(n = 31, mle = c(5.4901, 1.0479))
## beta alpha
## 0.60849 0.08388
pdf <- quote(beta^alpha / gamma(alpha) * x^(-alpha - 1) *

exp(-beta / x))
lpdf <- quote(alpha * log(beta) - lgamma(alpha) -

alpha * log(x) - beta / x)
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coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,
parms = c("beta", "alpha"), mle = c(5.4901, 1.0479),
lower = 0)$bias

## beta alpha
## 0.60847 0.08388

19. Lomax distribution with shape α and scale β

f (x | α, β) = α β (1 + β x)−(α+1), x > 0.

• Bias expressions (Giles et al., 2013):

B (α̂) =
2 α (α + 1)

(
α2 + α− 2

)
(α + 3) n

(28)

and

B
(

β̂
)
= −2 β (α + 1.6485) (α + 0.3934) (α− 1.5419)

n α (α + 3)
. (29)

Using the data set from Tahir et al. (2016), we have n = 179, α̂ = 4.9103, β̂ = 0.0028, ŝe (α̂) =
0.6208 and ŝe

(
β̂
)
= 3.4803× 10−4. Evaluating the analytical expressions (28), (29) and the

coxsnell.bc() function, we have, respectively,

lomax.bc(n = 179, mle = c(4.9103, 0.0028))
## alpha beta
## 1.281e+00 -9.438e-05
pdf <- quote(alpha * beta / (1 + beta * x)^(alpha + 1))
lpdf <- quote(log(alpha) + log(beta) - (alpha + 1) *

log(1 + beta * x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 179,

parms = c("alpha", "beta"), mle = c(4.9103, 0.0028),
lower = 0)$bias

## alpha beta
## 1.281e+00 -9.439e-05

20. Weighted Lindley distribution with shape α and scale θ

f (x | α, θ) =
θα+1

(θ + α) Γ(α)
xα−1 (1 + x) exp(−θx), x > 0.

• For bias expressions, see (Wang and Wang, 2017):

Using the data set from Ghitany et al. (2013), we have n = 69, α̂ = 22.8889, θ̂ = 9.6246,

ŝe (α̂) = 3.9507 and ŝe
(

θ̂
)
= 1.6295. Evaluating the analytical expressions and the coxsnell.bc

function, we have, respectively,

wlindley.bc(n = 69, mle = c(22.8889, 9.6246))
## alpha theta
## 1.0070 0.4167
pdf <- quote(theta^(alpha + 1) / ((theta + alpha) * gamma(alpha)) *

x^(alpha - 1) * (1 + x) * exp(-theta * x))
lpdf <- quote((alpha + 1) * log(theta) + alpha * log(x) -

log(theta + alpha) - lgamma(alpha) - theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("alpha", "theta"), mle = c(22.8889, 9.6246),
lower = 0)$bias

## alpha theta
## 1.0068 0.4166

21. Generalized Rayleigh with shape α and scale θ

f (x | β, µ) =
2 θα+1

Γ(α + 1)
x2 α+1 exp

(
−θ x2

)
, x > 0.

• For bias expressions, see (Xiao and Giles, 2014):
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Using the data set from Gomes et al. (2014), we have n = 384, θ̂ = 0.5195, α̂ = 0.0104, ŝe
(

θ̂
)
=

0.2184 and ŝe (α̂) = 0.0014. Evaluating the analytical expressions and the coxsnell.bc()
function, we have, respectively,

generalizedrayleigh.bc(n = 384, mle = c(0.5195, 0.0104))
## alpha theta
## 1.035e-02 8.865e-05
pdf <- quote(2 * theta^(alpha + 1) / gamma(alpha + 1) *

x^(2 * alpha + 1) * exp(-theta * x^2 ))
lpdf <- quote((alpha + 1) * log(theta) - lgamma(alpha + 1) +

2 * alpha * log(x) - theta * x^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 384,

parms = c("alpha", "theta"), mle = c(0.5195, 0.0104),
lower = 0)$bias

## alpha theta
## 1.035e-02 8.865e-05

22. Weibull distribution with shape β and scale µ

f (x | β, µ) =
β

µβ
xβ−1 exp

(
− x

µ

)β

, x > 0.

• Bias expressions (the expressions below differs from Stočsić and Cordeiro (2009)):

B (µ̂) = µ (0.5543324495− 0.3698145397 β)

n β2 (30)

and

B
(

β̂
)
=

1.379530692 β

n
. (31)

From Datta and Datta (2013), we have n = 50, µ̂ = 2.5752, β̂ = 38.0866, ŝe (µ̂) = 0.2299 and

ŝe
(

β̂
)
= 2.2299. Evaluating the analytical expression (30), (31) and the coxsnell.bc() function,

we have, respectively,

weibull.bc(n = 50, mle = c(38.0866, 2.5751))
## mu beta
## -0.04572 0.07105
pdf <- quote(beta / mu^beta * x^(beta - 1) *

exp(-(x / mu)^beta))
lpdf <- quote(log(beta) - beta * log(mu) + beta * log(x) -

(x / mu)^beta)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 50,

parms = c("mu", "beta"), mle = c(38.0866, 2.5751),
lower = 0)$bias

## mu beta
## -0.04572 0.07105

23. Inverse Weibull distribution with shape β and scale µ

f (x | β, α) = β µβ x−(β+1) exp
[
−
(µ

x

)β
]

, x > 0.

• Bias expressions (not previously reported in the literature):

B
(

β̂
)
=

1.379530690 β

n
(32)

and

B (µ̂) = µ (0.3698145391 β + 0.5543324494)
nβ2 . (33)

Using the data set from Nichols and Padgett (2006), we have n = 100, β̂ = 1.769, µ̂ = 1.8917,

ŝe
(

β̂
)
= 0.1119 and ŝe (µ̂) = 0.1138. Evaluating the analytical expressions (32), (33) and the

coxsnell.bc() function, we have, respectively,
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inverseweibull.bc(n = 100, mle = c(1.7690, 1.8916))
## beta mu
## 0.024404 0.007305
pdf <- quote(beta * mu^beta * x^(-beta - 1) *

exp(-(mu / x)^beta))
lpdf <- quote(log(beta) + beta * log(mu) - beta * log(x) -

(mu / x)^beta)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,

parms = c("beta", "mu"), mle = c(1.7690, 1.8916),
lower = 0)$bias

## beta mu
## 0.024404 0.007305

24. Generalized half-normal distribution with shape α and scale θ

f (x | α, θ) =

√
2
π

α

θα
xα−1 exp

[
−1

2

( x
θ

)2 α
]

.

• Bias expressions (Mazucheli and Dey, 2017):

B (α̂) = 1.483794456
α

n
(34)

and

B
(

θ̂
)
= (0.2953497661− 0.3665611957 α)

θ

n α2 . (35)

Using the data set from Nadarajah (2008a), we have n = 119, α̂ = 3.8096, θ̂ = 4.9053,

ŝe (α̂) = 0.2758 and ŝe
(

θ̂
)

= 0.0913. Evaluating the analytical expressions (34), (35) and
the coxsnell.bc() function, we have, respectively,

genhalfnormal.bc(n = 119, mle = c(3.8095, 4.9053))
## alpha theta
## 0.047500 -0.003127
pdf <- quote(sqrt(2 / pi) * alpha / theta^alpha * x^(alpha - 1)*

exp(- 0.5 * (x / theta)^(2 * alpha) ))
lpdf <- quote(log(alpha) - alpha * log(theta) + alpha * log(x) -

0.5 * (x / theta)^(2 * alpha))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 119,

parms = c("alpha", "theta"), mle = c(3.8095, 4.9053),
lower = 0)$bias

## alpha theta
## 0.047500 -0.003127

25. Inverse generalized half-normal distribution with shape α and scale θ

f (x | α, θ) =

√
2
π

(α

x

) ( 1
θ x

)α

exp

[
−1

2

(
1

θ x

)2 α
]

, x > 0.

• For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Nadarajah et al. (2011), we have n = 20, α̂ = 3.0869, θ̂ = 0.6731, ŝe (α̂) =
0.5534 and ŝe

(
θ̂
)

= 0.0379. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

invgenhalfnormal.bc(n = 20, mle = c(3.0869, 0.6731))
## alpha theta
## 0.229016 -0.002953
pdf <- quote(sqrt(2) * pi^(-0.5) * alpha * x^(-alpha - 1) *

exp(-0.5 * x^(-2 * alpha) * (1 / theta)^(2 * alpha)) *
theta^(-alpha))

lpdf <- quote(log(alpha) - alpha * log(x) - 0.5e0 / (x^alpha)^2*
theta^(-2 * alpha) - alpha * log(theta))

coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "theta"), mle = c(3.0869, 0.6731),
lower = 0)$bias
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## alpha theta
## 0.229016 -0.002953

26. Marshall-Olkin extended exponential distribution with shape α and rate λ

f (x | α, λ) =
λ α exp (−λ x)

[1− (1− α) exp (−λ x)]2
, x > 0.

• For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Linhart and Zucchini (1986), we have n = 20, α̂ = 0.2782, λ̂ =

0.0078, ŝe (α̂) = 0.2321 and ŝe
(

λ̂
)
= 0.0049. Evaluating the analytical expressions and the

coxsnell.bc() function, we have, respectively,

moeexp.bc(n = 20, mle = c(0.2781, 0.0078))
## alpha lambda
## 0.210919 0.003741
pdf <- quote(alpha * lambda * exp(-x * lambda) /

((1- (1 - alpha) * exp(- x * lambda)))^2)
lpdf <- quote(log(alpha) + log(lambda) - x * lambda -

2 * log((1 - (1-alpha) * exp(- x * lambda))))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,

parms = c("alpha", "lambda"), mle = c(0.2781, 0.0078),
lower = 0)$bias

## alpha lambda
## 0.21086 0.00374

27. Beta distribution with shapes α and β

f (x | α, β) =
Γ(α + β)

Γ(α) Γ(β)
xα−1 (1− x)β−1, 0 < x < 1.

• For bias expressions, see (Cordeiro et al., 1997).

Using the data set from Javanshiri et al. (2015), we have n = 48, α̂ = 5.941, β̂ = 21.2024,

ŝe (α̂) = 1.1812 and ŝe
(

β̂
)
= 4.3462. Evaluating the analytical expressions in Cordeiro et al.

(1997), our analytical expressions and the coxsnell.bc() function, we have, respectively,

beta.gauss.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## -4.784 -4.125
beta.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## 0.3582 1.3315
pdf <- quote(gamma(alpha + beta) / (gamma(alpha) * gamma(beta)) *

x^(alpha - 1) * (1 - x)^(beta - 1))
lpdf <- quote(lgamma(alpha + beta) - lgamma(alpha) -

lgamma(beta) + alpha * log(x) + beta * log(1 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 48,

parms = c("alpha", "beta"), mle = c(5.941, 21.2024),
lower = 0, upper = 1)$bias

## alpha beta
## 0.3582 1.3315

28. Kumaraswamy distribution with shapes α and β

f (x | α, β) = α β xα−1 (1− xα)β−1, 0 < x < 1.

• For bias expressions, see (Lemonte, 2011).

Using the data set from Wang et al. (2017), we have n = 20, α̂ = 6.3478, β̂ = 4.4898, ŝe (α̂) =
1.5576 and ŝe

(
β̂
)

= 2.0414. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

kum.bc(n = 20, mle = c(6.3478, 4.4898))
## alpha beta
## -6.573 -13.323
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pdf <- quote(alpha * beta * x^(alpha - 1) *
(1 - x^alpha)^(beta - 1))

lpdf <- quote(log(alpha) + log(beta) + alpha * log(x) + (beta - 1) *
log(1 - x^alpha))

coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "beta"), mle = c(6.3478, 4.4898),
lower = 0, upper = 1)$bias

## alpha beta
## 0.514 1.013

29. Inverse beta distribution with shapes α and β

f (x | α, β) =
Γ(α + β)

Γ(α) Γ(β)
xα−1 (1 + x)−(α+β), x > 0.

• For bias expressions, see (Stočsić and Cordeiro, 2009).

Using the data set from Nadarajah (2008b), we have n = 116, α̂ = 28.5719, β̂ = 1.3783, ŝe (α̂) =
4.0367 and ŝe

(
β̂
)

= 0.1637. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

invbeta.bc(n = 116, mle = c(28.5719, 1.3782))
## alpha beta
## 534.26 17.73
pdf <- quote(gamma(alpha + beta) * x^(alpha - 1) *

(1 + x)^(- alpha - beta) / gamma(alpha)/gamma(beta))
lpdf <- quote(lgamma(alpha + beta) + alpha * log(x) -

(alpha + beta) * log(1 + x) - lgamma(alpha) - lgamma(beta))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 116,

parms = c("alpha", "beta"), mle = c(28.5719, 1.3782),
lower = 0)$bias

## alpha beta
## 0.8025 0.0306

30. Birnbaum-Saunders distribution with shape α and scale β

f (x | α, β) =
1

2 α β
√

2 π

[(
β

x

)1/2
+

(
β

x

)3/2
]

exp
[
− 1

2, α2

(
x
β
+

β

x
− 2
)]

, x > 0.

• Bias expressions (Lemonte et al., 2007):

B (α̂) = − α

4 n

(
1 +

2 + α2

α (2 π)−1/2 h(α) + 1

)
(36)

and

B
(

β̂
)
=

β2 α2

2 n
[
α (2 π)−1/2 h(α) + 1

] , (37)

where

h(α) = α

√
π

2
− π e2/α2

[
1−Φ

(
2
α

)]
.

Using the data set from Gross and Clark (1976), we have n = 20, α̂ = 0.3149, β̂ = 1.8105,

ŝe (α̂) = 0.0498 and ŝe
(

β̂
)
= 0.1259. Evaluating the analytical expressions (36), (37) and the

coxsnell.bc() function, we have, respectively,

birnbaumsaunders.bc(n = 20, mle = c(0.3148, 1.8104))
## alpha beta
## -0.011991 0.004374
pdf <- quote(1 / (2 * alpha * beta * sqrt(2 * pi)) *

((beta / x)^0.5 + (beta / x)^1.5) *
exp(- 1/(2 * alpha^2) * (x / beta + beta/ x - 2)))

lpdf <- quote(-log(alpha) - log(beta) - 1 / (2 * alpha^2) *
(x / beta + beta/ x - 2) + log((beta / x)^0.5 +
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(beta / x)^1.5))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,

parms = c("alpha", "beta"), mle = c(0.3148, 1.8104),
lower = 0)$bias

## alpha beta
## -0.011991 0.004374

31. Generalized Pareto distribution with shape ξ and scale σ

f (x | ξ, σ) =
1
σ

(
1 +

ξ x
σ

)−(1/ξ+1)
, x > 0, ξ 6= 0.

• Bias expressions (Giles et al., 2016):

B
(

ξ̂
)
= − (1 + ξ) (3 + ξ)

n (1 + 3 ξ)
(38)

and

B (σ̂) = −
σ
(
3 + 5 ξ + 4 ξ2)
n (1 + 3 ξ)

. (39)

Using the data set from Ross and Lott (2003), we have n = 58, ξ̂ = 0.736, σ̂ = 1.709, ŝe
(

ξ̂
)
=

0.223 and ŝe (σ̂) = 0.41. Evaluating the analytical expressions (38), (39) and the coxsnell.bc()
function, we have, respectively,

genpareto.bc(n = 58, mle = c(0.736, 1.709))
## xi sigma
## -0.03486 0.08126
pdf <- quote(1 / sigma * (1 + xi * x / sigma )^(-(1 + 1 / xi)))
Rlpdf <- quote(-log(sigma) - (1 + 1 / xi) * log(1 + xi * x / sigma))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("xi", "sigma"), mle = c(0.736, 1.709),
lower = 0)$bias

## xi sigma
## -0.03486 0.08126

Additional Applications

In this section, we present additional numerical results returned by cosnell.bc(),
observed.varc() and expected.varcov(). For the data describing the times between successive
electric pulses on the surface of isolated muscle fiber (Cox and Lewis, 1966; Jørgensen, 1982), we fitted
the exponentiated Weibull, Marshall-Olkin extended Weibull, Weibull, Marshall-Olkin extended expo-
nential and exponential distributions. These distributions were also fitted by Cordeiro and Lemonte
(2013). There are 799 observations and for each distribution we report the MLEs, the bias corrected

MLEs, the observed variance-covariance obtained from the numerical Hessian H−1
1

(
θ̂
)

, the observed

variance-covariance obtained from the analytical Hessian H−1
2

(
θ̂
)

, the expected variance-covariance

I−1
(

θ̂
)

and the expected variance-covariance evaluated at the bias corrected MLEs I−1
(

θ̃
)

. The

MLEs and the H−1
1

(
θ̂
)

matrix were obtained by the fitdistrplus package (Delignette-Muller et al.,
2017). The R codes used to obtain the numerical results are available in the supplementary material.

It is important to emphasize that for the Marshall-Olkin extended Weibull and exponentiated
Weibull distributions, it is not possible to obtain analytical expressions for bias corrections. The
exponentiated-Weibull family was proposed by Mudholkar and Srivastava (1993). Its probability
density function is:

f (x | λ, β, α) = α β λ xβ−1 e−λ xβ
(

1− e−λ xβ
)α−1

,

where λ > 0 is the scale parameter and β > 0 and α > 0 are the shape parameters. The Marshall-Olkin
extended Weibull distribution was introduced by Marshall and Olkin (1997). Its probability density

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=fitdistrplus


CONTRIBUTED RESEARCH ARTICLE 284

function is:

f (x | λ, β, α) =
α β λ xβ−1 e−λ xβ(

1− α e−λ xβ
)2 ,

where λ > 0 is the scale parameter, β > 0 is the shape parameter, α > 0 is an additional shape
parameter and α = 1− α.

The fitted parameter estimates and their bias corrected estimates are shown in Table 1. We see
that the bias corrected MLEs for α and λ of the MOE-Weibull and exp-Weibull distributions are quite
different from the original MLEs.

Table 1: MLEs and bias corrected MLEs.

Distribution α̂ β̂ λ̂ α̃ β̃ λ̃
MOE-Weibull 0.3460 1.3247 0.0203 0.3283 1.3240 0.0188

exp-Weibull 1.9396 0.7677 0.2527 1.8973 0.7625 0.2461
Weibull – 1.0829 0.0723 – 1.0811 0.0723

MOE-exponential 1.1966 – 0.0998 1.1820 – 0.0994
exponential – – 0.0913 – – 0.0912

It is important to assess the accuracy of MLEs. The two common ways for this are through the
inverse observed Fisher information and the inverse expected Fisher information matrices. The results
below show large differences between the observed H−1 and expected I−1 information matrices. As
demonstrated by Cao (2013), the I−1 outperforms the H−1 under a mean squared error criterion,
hence with mle.tools the researchers may choose one of them and not use the easier. Furthermore, in
general, we observe that the bias corrected MLEs decrease the variance of estimates.

• Exponentiated Weibull distribution:

H−1
1

(
θ̂
)
=

 0.00726 −0.00717 0.03564
−0.00717 0.00718 −0.03493

0.03564 −0.03493 0.18045

 , H−1
2

(
θ̂
)
=

 0.00729 −0.00720 0.03579
−0.00720 0.00721 −0.03509

0.03579 −0.03509 0.18120

 ,

I−1
(

θ̂
)
=

 0.00532 −0.00524 0.02609
−0.00524 0.00527 −0.02545

0.02609 −0.02545 0.13333

 , I−1
(

θ̃
)
=

 0.00510 −0.00510 0.02482
−0.00510 0.00519 −0.02454

0.02482 −0.02454 0.12590

 .

•Marshall-Olkin extended Weibull distribution:

H−1
1

(
θ̂
)
=

 0.00004 −0.00036 0.00052
−0.00036 0.00361 −0.00430

0.00052 −0.00430 0.00748

 , H−1
2

(
θ̂
)
=

 0.00005 −0.00047 0.00068
−0.00047 0.00468 −0.00582

0.00068 −0.00582 0.00967

 ,

I−1
(

θ̂
)
=

 0.00006 −0.00056 0.00082
−0.00056 0.00542 −0.00699

0.00082 −0.00699 0.01146

 , I−1
(

θ̃
)
=

 0.00005 −0.00051 0.00072
−0.00051 0.00526 −0.00651

0.00072 −0.00651 0.01030

 .

•Weibull distribution:

H−1
1

(
θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00086

]
, H−1

2

(
θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00087

]
,

I−1
(

θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00089

]
, I−1

(
θ̃
)
=

[
0.00004 −0.00018
−0.00018 0.00089

]
.

•Marshall-Olkin extended exponential distribution:

H−1
1

(
θ̂
)
=

[
0.00004 0.00081
0.00081 0.02022

]
, H−1

2

(
θ̂
)
=

[
0.00004 0.00081
0.00081 0.02023

]
,

I−1
(

θ̂
)
=

[
0.00004 0.00083
0.00083 0.02094

]
, I−1

(
θ̃
)
=

[
0.00004 0.00082
0.00082 0.02047

]
.
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• Exponential distribution:

H−1
1

(
θ̂
)
= 0.000010433, H−1

2

(
θ̂
)
= 0.000010436,

I−1
(

θ̂
)
= 0.000010436, I−1

(
θ̃
)
= 0.000010410.

Concluding Remarks

As pointed out by several works in the literature, the Cox-Snell methodology, in general, is efficient for
reducing the bias of the MLEs. However, the analytical expressions are either notoriously cumbersome
or even impossible to deduce. To the best of our knowledge, there are only two alternatives to obtain
the analytical expressions automatically, those presented in Stočsić and Cordeiro (2009) and Johnson
et al. (2012a). They use the commercial softwares Maple (Maple, 2017) and Mathematica (Wolfram
Research, Inc., 2010).

In order to calculate the bias corrected estimates in a simple way, Mazucheli (2017) developed
an R (R Core Team, 2016) package, uploaded to CRAN on 2 February, 2017. Its main function,
coxsnell.bc(), evaluates the bias corrected estimates. The usefulness of this function has been tested
for thirty one continuous probability distributions. Bias expressions, for most of them, are available in
the literature.

It is well known that the Fisher information can be computed using the first or second order
derivatives of the log-likelihood function. In our implementation, the functions expected.varcov()
and coxsnell.bc() are using the second order derivatives, analytically returned by the D() function.
In a future work, we intend to check if there is any gain in calculating the Fisher information from
the first order derivatives of the log-hazard rate function or from the first order derivatives of the
log-reversed-hazard rate function. Efron and Johnstone (1990) showed that the Fisher information
can be computed using the hazard rate function. Gupta et al. (2004) computed the Fisher information
from the first order derivatives of the log-reversed-hazard rate function. In general, expressions of the
first order derivatives of the log-hazard rate function (log-reversed-hazard rate function) are simpler
than second order derivatives of the log-likelihood function. In this sense, the integrate() function
can work better. It is important to point out that the hazard rate function and the reversed hazard
rate function are given, respectively, by h (x | θ) = − d

dx log [S(x | θ)] and h (x | θ) = d
dx log [F(x | θ)],

where S (x | θ) and F (x | θ) are, respectively, the survival function and the cumulative distribution
function.

In the next version of mle.tools, we will include, using analytical first and second-order partial
derivatives, the following:

• the MLEs of g (θ) and Var [g (θ)],

• the negative log likelihood value −2 log(L),

• the Akaike’s information criterion −2 log(L) + 2p,

• the corrected Akaike’s information criterion −2 log(L) + 2np
n−p−1 ,

• the Schwarz’s Bayesian information criterion −2 log(L) + p log(n),

• the Hannan-Quinn information criterion −2 log(L) + 2 log log(n)p,

where L is the value of the likelihood function evaluated at the MLEs, n is the number of observations,
and p is the number of estimated parameters.

Also, the next version of the package will incorporate analytical expressions for the distributions
studied in Section 2.4 implemented in the supplementary file “analyticalBC.R”.
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