The R Journal: article published in 2017, volume 9:2

Visualization of Regression Models Using visreg PDF download
Patrick Breheny and Woodrow Burchett , The R Journal (2017) 9:2, pages 56-71.

Abstract Regression models allow one to isolate the relationship between the outcome and an ex planatory variable while the other variables are held constant. Here, we introduce an R package, visreg, for the convenient visualization of this relationship via short, simple function calls. In addition to estimates of this relationship, the package also provides pointwise confidence bands and partial residuals to allow assessment of variability as well as outliers and other deviations from modeling assumptions. The package provides several options for visualizing models with interactions, including lattice plots, contour plots, and both static and interactive perspective plots. The implementation of the package is designed to be fully object-oriented and interface seamlessly with R’s rich collection of model classes, allowing a consistent interface for visualizing not only linear models, but generalized linear models, proportional hazards models, generalized additive models, robust regression models, and many more.

Received: 2016-09-12; online 2017-10-24
CRAN packages: visreg, rms, rockchalk, car, effects, plotmo, lattice, ggplot2, splines, rgl, MASS, mgcv, locfit, randomForest, e1071, gbm, lme4
CRAN Task Views implied by cited CRAN packages: SocialSciences, Econometrics, Environmetrics, MachineLearning, Multivariate, Graphics, Psychometrics, Survival, Bayesian, Distributions, SpatioTemporal, Cluster, Finance, NumericalMathematics, OfficialStatistics, Phylogenetics, ReproducibleResearch, Robust


CC BY 4.0
This article is licensed under a Creative Commons Attribution 4.0 International license.

@article{RJ-2017-046,
  author = {Patrick Breheny and Woodrow Burchett},
  title = {{Visualization of Regression Models Using visreg}},
  year = {2017},
  journal = {{The R Journal}},
  doi = {10.32614/RJ-2017-046},
  url = {https://doi.org/10.32614/RJ-2017-046},
  pages = {56--71},
  volume = {9},
  number = {2}
}