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Visualization of Regression Models
Using visreg
by Patrick Breheny and Woodrow Burchett

Abstract Regression models allow one to isolate the relationship between the outcome and an ex-
planatory variable while the other variables are held constant. Here, we introduce an R package,
visreg, for the convenient visualization of this relationship via short, simple function calls. In addition
to estimates of this relationship, the package also provides pointwise confidence bands and partial
residuals to allow assessment of variability as well as outliers and other deviations from modeling
assumptions. The package provides several options for visualizing models with interactions, including
lattice plots, contour plots, and both static and interactive perspective plots. The implementation of
the package is designed to be fully object-oriented and interface seamlessly with R’s rich collection of
model classes, allowing a consistent interface for visualizing not only linear models, but generalized
linear models, proportional hazards models, generalized additive models, robust regression models,
and many more.

Introduction

In simple linear regression, it is both straightforward and extremely useful to plot the regression line.
The plot tells you everything you need to know about the model and what it predicts. It is common to
superimpose this line over a scatter plot of the two variables. A further refinement is the addition of
a confidence band. Thus, in one plot, the analyst can immediately assess the empirical relationship
between x and y in addition to the relationship estimated by the model and the uncertainty in that
estimate, and also assess how well the two agree and whether assumptions may be violated.

Multiple regression models address a more complicated question: what is the relationship between
an explanatory variable and the outcome as the other explanatory variables are held constant? This
relationship is just as important to visualize as the relationship in simple linear regression, but doing
so is not nearly as common in statistical practice.

As models get more complicated, it becomes more difficult to construct these sorts of plots. With
multiple variables, we cannot simply plot the observed data, as this does not hold the other variables
constant. Interactions among variables, transformations, and non-linear relationships all add extra
barriers, making it time-consuming for the analyst to construct these plots. This is unfortunate,
however – as models grow more complex, there is an even greater need to represent them with clear
illustrations.

In this paper, we aim to eliminate the hurdle of implementation through the development of a
simple interface for visualizing regression models arising from a wide class of models: linear models,
generalized linear models, robust regression models, additive models, proportional hazards models,
and more. We implement this interface in R and provide it as the package visreg, publicly available
from the Comprehensive R Archive Network. The purpose of the package is to automate the work
involved in plotting regression functions, so that after fitting one of the above types of models, the
analyst can construct attractive and illustrative plots with simple, one-line function calls. In particular,
visreg offers several tools for the visualization of models containing interactions, which are among the
easiest to misinterpret and the hardest to explain.

It is worth noting that there are two distinct goals involved in plotting regression models: illustrat-
ing the fitted model visually and diagnosing violations of model assumptions through examination of
residuals. The approach taken by visreg is to construct a single plot that simultaneously addresses
both goals. This is not a new idea. Indeed, this project was inspired by the work of Trevor Hastie,
Robert Tibshirani, and Simon Wood, who have convincingly demonstrated the utility of these types of
plots in the context of generalized additive models (Hastie and Tibshirani, 1990; Wood, 2006).

In particular, visreg offers partial residuals, which can be defined for any regression model and are
easily superimposed on visualization plots. Partial residuals are widely useful in detecting many types
of problems, although several authors have pointed out that they are not without limitations (Mallows,
1986; Cook, 1993). Various extensions and modifications of partial residuals have been proposed,
and there is an extensive literature on regression diagnostics (Belsley et al., 1980; Cook and Weisberg,
1982); indeed, many diagnostics are specific to the type of model (e.g., Pregibon, 1981; Grambsch and
Therneau, 1994; Loy and Hofmann, 2013). Partial residuals are a useful, easily generalized idea that
can applied to virtually any type of model although it is certainly worth being aware of other types of
diagnostics that are specific to the modeling framework in question.

There are a number of R packages that offer functions for visualizing regression models, including
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rms (Harrell, 2015), rockchalk (Johnson, 2016), car (Fox and Weisberg, 2011), effects (Fox, 2003), and,
in base R, the termplot function. The primary advantage of visreg over these alternatives is that each
of them is specific to visualizing a certain class of model, usually lm or glm. visreg, by virtue of its
object-oriented approach, works with any model that provides a predict method – meaning that it
can be used with hundreds of different R packages as well as user-defined model classes. We also feel
that visreg offers a simpler interface and produces nicer-looking plots, but admit that beauty is in the
eye of the beholder. Nevertheless, there are situations in which each of these packages are very useful
and offer some features that others do not, such as greater flexibility for other types of residuals (car)
and better support for visualizing three-way interactions (effects).

Each type of model has different mathematical details. All models, however, describe how the
response is expected to vary as a function of the explanatory variables. In R, this is implemented for an
extensive catalog of models that provide an associated predict method. Although there are no explicit
rules forcing programmers to write predict methods for a given class in a consistent manner, there
is a widely agreed-upon convention to follow the general syntax of predict.lm. It is this abstraction
upon which visreg is based: the use of object-oriented programming to provide a single tool with a
consistent interface for the convenient visualization of a wide array of models.

There are thousands of R packages, many of which provide an implementation of some type of
model. It is impossible for any programmer or team of programmers to write an R package that is
familiar with the details of all of them. However, the encapsulation and abstraction offered by an
object-oriented programming language allow for an elegant solution to this problem. By passing a
fitted model object to visreg, we can call the predict method provided by that model class to obtain
appropriate predictions and standard errors without needing to know any of the details concerning
how those calculations work for that type of model; the same applies to construction of residuals
through the residual method.

The only other R package that we are aware of that provides this kind of object-oriented flexibility
is plotmo by Stephen Milborrow. The visreg and plotmo projects were each started independently
around the year 2011 and have developed into mature, widely used packages for model visualization.
The organization and syntax of the packages is quite different, but both are based on the idea of using
the generic predict and residuals methods provided by a model class to offer a single interface
capable of visualizing virtually any type of model. The primary difference between the two packages
is that plotmo separates the visualization of models and the plotting of residuals, constructed using
the plotmo() and plotres() functions, respectively, while as mentioned earlier, visreg combines the
two into a single plot (plotmo offers an option to superimpose the unadjusted response onto a plot,
but this is very different from plotting partial residuals). Furthermore, as one would expect, each
package offers a few options that the other does not. For example, plotmo offers the ability to construct
partial dependence plots (Hastie et al., 2009), while visreg offers options for contrast plots and what
we call “cross-sectional” plots (Figs. 6, 7, and 8). Broadly speaking, plotmo is somewhat more oriented
towards machine learning-type models, while visreg is more oriented towards regression models,
though both packages can be used for either purpose. In particular, plotmo supports the X,y syntax
used by packages like glmnet, which is more popular among machine learning packages, while visreg
focuses exclusively on models that use a formula-based interface.

The outline of the paper is as follows. In “Conditional and contrast plots”, we explicitly define
the relevant mathematical details for what appears in visreg’s plots. The remainder of the article is
devoted to illustrating the interface and results produced by the software in three extensions of simple
linear regression: multiple (additive) linear regression models, models that possess interactions, and
finally, other sorts of models, such as generalized linear models, proportional hazards models, random
effect models, random forests, etc.

Conditional and contrast plots

We begin by considering regression models, where all types of visreg plots are well-developed and
clearly defined. At the end of this section, we describe how these ideas can be extended generically to
any model capable of making predictions.

In a regression model, the relationship between the outcome and the explanatory variables is
expressed in terms of a linear predictor η:

η = Xβ = ∑
j

xjβ j, (1)

where xj is the jth column of the design matrix X. For the sake of clarity, we focus in this section on
linear regression, in which the expected value of the outcome E(Yi) equals ηi; extensions to other,
nonlinear models are discussed in “Other models”. In the absence of interactions (see “Linear models
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with interactions”), the relationship between Xj and Y is neatly summarized by β j, which expresses
the amount by which the expected value of Y changes given a one-unit change in Xj.

Partial residuals are a natural multiple regression analog to plotting the observed x and y in simple
linear regression. Partial residuals were developed by Ezekiel (1924), rediscovered by Larsen and
McCleary (1972), and have been discussed in numerous papers and textbooks ever since (Wood, 1973;
Atkinson, 1982; Kutner et al., 2004). Letting r denote the vector of residuals for a given model fit, the
partial residuals belonging to variable j are defined as

rj = y− X−j β̂−j (2)

= r + xj β̂j, (3)

where the −j subscript refers to the portion of X or β that remains after the jth column/element is
removed.

The reason partial residuals are a natural extension to the multiple regression setting is that the
slope of the simple linear regression of rj on xj is equal to the value β̂j that we obtain from the multiple
regression model (Larsen and McCleary, 1972).

Thus, it would seem straightforward to visualize the relationship between Xj and Y by plotting a
line with slope β j through the partial residuals. Clearly, however, we may add any constant to the line
and to rj and the above result would still hold. Nor is it obvious how the confidence bands should be
calculated.

We consider asking two subtly different questions about the relationship between Xj and Y:

(1) What is the relationship between E(Y) and Xj given x−j = x∗−j?

(2) How do changes in Xj relative to a reference value x∗j affect E(Y)?

The biggest difference between the two questions is that the first requires specification of some x∗−j,
whereas the second does not. The reward for specifying x∗−j is that specific values for the predicted
E(Y) may be plotted on the scale of the original variable Y; the latter type of plot can address only
relative changes. Here, we refer to the first type of plot as a conditional plot, and the second type as
a contrast plot. As we will see, the two questions produce regression lines with identical slopes, but
with different intercepts and confidence bands. It is worth noting that these are not the only possible
questions; other possibilities, such as “What is the marginal relationship between Xj and Y, integrating
over X−j?” exist, although we do not explore them here.

For a contrast plot, we consider the effect of changing Xj away from an arbitrary point x∗j ; the
choice of x∗j thereby determines the intercept, as the line by definition passes through (x∗j , 0). The

equation of this line is y = (x − x∗j )β̂ j. For a continuous Xj, we set x∗j equal to x̄j. The confidence
interval at the point xj = x is based on

V(x) = V
{

η̂(x)− η̂(x∗j )
}
= (x− x∗j )

2V(β̂ j).

When Xj is categorical, we plot differences between each level of the factor and the reference category
(see Figure 3 for an example); in this case, we are literally plotting contrasts in the classical ANOVA
sense of the term (hence the name). Our usage of the term “contrast” for continuous variables is
somewhat looser, but still logical in the sense that it estimates the contrast between a value of Xj and
the reference value.

For a conditional plot, on the other hand, all explanatory variables are fully specified by x and x∗−j.

Let λ(x)T denote the row of the design matrix that would be constructed from xj = x and x∗−j. Then

the equation of the line is y = λ(x)T β̂ and the confidence interval at x is based on

V(x) = V
{

λ(x)T β̂
}
= λ(x)TV(β̂)λ(x).

In both conditional and contrast plots, the confidence interval at x is then formed around the
estimate in the usual manner by adding and subtracting tn−p,1−α/2

√
V(x), where tn−p,1−α/2 is 1− α/2

quantile of the t distribution with n− p degrees of freedom. Examples of contrast plots and conditional
plots are given in Figures 2 and 3. Both plots depict the same relationship between wind and ozone
level as estimated by the same model (details given in the following section). Note the difference,
however, in the vertical scale and confidence bands. In particular, the confidence interval for the
contrast plot has zero width at x∗j ; all other things remaining the same, if we do not change Xj, we can
say with certainty that E(Y) will not change either. There is still uncertainty, however, regarding the
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actual value of E(Y), which is illustrated in the fact that the confidence interval of the conditional plot
has positive width everywhere.

This description of confidence intervals focuses on Wald-type confidence intervals of the form
of estimate ± multiple of the standard error, constructed on the scale of the linear predictor. This
is the most common type of interval provided by modeling packages in R, and the only one for
which a widely agreed-upon, object-oriented consensus has emerged in terms of what the predict
method returns. For this reason, this is usually the only type of interval available for plotting by
visreg. However, it should be noted that these intervals are common for their convenience, not due to
superiority; it is typically the case that more accurate confidence intervals exist (see, for example, Efron,
1987; Withers and Nadarajah, 2012). In principle, one could plot other types of intervals, but visreg
does not calculate intervals itself so much as plot the intervals that the modeling package returns.
Thus, unless the modeling package provides methods for calculating other types of intervals, visreg is
restricted to plotting Wald intervals.

Contrast plots can only be constructed for regression-based models, as they explicitly require an
additive decomposition in terms of a design matrix and coefficients. Conditional plots, however, can
be constructed for any model that produces predictions. Denote this prediction f (x), where x is a
vector of predictors for the model. Writing this as a one-dimensional function of predictor j with the
remaining predictors fixed at x∗−j, let us express this prediction as f (x|x∗−j). In a conditional plot, the
partial residuals for predictor j are

rj = r + xj β̂ j + x∗−j β̂−j

= r + f (x|x∗−j),

which offers a clear procedure for constructing the equivalent of partial residual for general prediction
models. Note that this construction requires the model class to implement a residuals method. If a
model class lacks a residuals method, visreg will still produce a plot, but must omit the partial residu-
als; see “Non-regression models” for additional details. Likewise, visreg requires the predict method
for the model class to return standard errors in order to plot confidence intervals; see “Hierarchical
and random effect models” for an example in which standard errors are not returned.

It is worth mentioning that visreg is only concerned with confidence bands for the conditional
mean E(Y|X), not “prediction intervals” that have a specified probability of containing a future
outcome Y observed for a certain value of X. Unlike standard errors for the mean, very few model
classes in R offer methods for calculating such intervals – indeed, such intervals are often not well-
defined outside of classical linear models.

Additive linear models

We are now ready to describe the basic framework and usage of visreg. In this section, we will
fit various models to a data set involving the relationship between air quality (in terms of ozone
concentration) and various aspects of weather in the standard R data set airquality.

Basic framework

The basic interface to the package is the function visreg, which requires only one argument: the fitted
model object. So, for example, the following code produces Figure 1:

fit <- lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)
visreg(fit)

By default, visreg provides conditional plots for each of the explanatory variables in the model.
For the conditioning, the other variables in x∗−j are set to their median for numeric variables and to
the most common category for factors. All of these options can be modified by passing additional
arguments to visreg. For example, contrast plots can be obtained with the type argument; the following
code produces Figure 2.

visreg(fit, "Wind", type="contrast")
visreg(fit, "Wind", type="conditional")

The second argument specifies the explanatory variable to be visualized; note that the right plot in
Figure 2 is the same as the middle plot in Figure 1.

In addition to continuous explanatory variables, visreg also allows the easy visualization of
differences between the levels of categorical variables (factors). The following block of code creates a

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 60

0 50 150 250

0
20
40
60
80

100
120
140

Solar.R

O
zo

ne
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

5 10 15 20

0

50

100

150

Wind

O
zo

ne

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

60 70 80 90

0

50

100

150

Temp

O
zo

ne

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

Figure 1: Basic output of visreg for an additive linear model: conditional plots for each explanatory
variable.
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Figure 2: The estimated relationship between wind and ozone concentration in the same model, as
illustrated by two different types of plots. Left: Contrast plot. Right: Conditional plot.

factor called Heat by discretizing Temp, and then visualizes its relationship with Ozone, producing the
plot in Figure 3.

airquality$Heat <- cut(airquality$Temp, 3, labels=c("Cool", "Mild", "Hot"))
fit.heat <- lm(Ozone ~ Solar.R + Wind + Heat, data=airquality)
visreg(fit.heat, "Heat", type="contrast")
visreg(fit.heat, "Heat", type="conditional")
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Figure 3: Visualization of a regression function involving a categorical explanatory variable. Left:
Contrast plot. Right: Conditional plot.

Again, note that the confidence interval for the contrast plot has zero width for the reference
category. There is no uncertainty about how the expected value of ozone will change if we remain at
the same level of Heat; it is zero by definition. On the other hand, the width of the confidence interval
for Mild heat is wider for the contrast plot than it is for the conditional plot. There is less uncertainty
about the expected value of ozone on a mild day than there is about the difference in expected values
between mild and cool days.
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Transformations

Often in modeling, we introduce transformations of explanatory variables, transformations of the
response variable, or both. The visreg package automatically handles these transformations when
visualizing the regression model.

Linear models assume a linear relationship between the explanatory variables and the outcome. A
common way of extending the linear model is to introduce transformations of the original explanatory
variables. For example, to allow the effect of wind on ozone to be nonlinear, we may introduce a
quadratic term for wind into the model:

fit1 <- lm(Ozone ~ Solar.R + Wind + I(Wind^2) + Temp, data=airquality)

Transformations of the response are also common. For example, ozone levels must be positive.
However, as Figure 1 illustrates, a standard linear model allows the estimated relationship and its
confidence band to fall below 0. One way of remedying this is to model the log of ozone concentrations
instead of the ozone concentrations directly:

fit2 <- lm(log(Ozone) ~ Solar.R + Wind + Temp, data=airquality)

And of course, these elements may be combined:

fit3 <- lm(log(Ozone) ~ Solar.R + Wind + I(Wind^2) + Temp, data=airquality)

Visualization is particularly important in these models, as it is difficult to determine the exact nature
of the relationship between explanatory variable and response simply by looking at the regression
coefficients when that relationship is nonlinear. The visreg package provides a convenient way to
view such relationships. Transformations involving explanatory variables are handled automatically,
while transformations involving the response require the user to provide the inverse transformation.
The following code produces Figure 4.

visreg(fit1, "Wind")
visreg(fit2, "Wind", trans=exp, ylab="Ozone", partial=TRUE)
visreg(fit3, "Wind", trans=exp, ylab="Ozone", partial=TRUE)

By default, visreg suppresses partial residuals when trans is specified, as this can provide a distorted
view of outliers (a mild outlier can become an extreme outlier once a transformation has been applied,
and vice versa), but we include them here by explicitly specifying partial=TRUE.

5 10 15 20

50

100

150

Wind

O
zo

ne

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0

20

40

60

80

100

120

140

Wind

O
zo

ne ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

5 10 15 20

0

20

40

60

80

100

120

140

Wind

O
zo

ne

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Figure 4: Plots of the modeled relationship between wind and ozone concentration, as estimated by
different models. Left: The model contains a transformation of wind. Middle: The model contains a
transformation of ozone concentration. Right: The model contains transformations of both wind and
ozone.

Conditioning

As noted in “Basic framework”, the default behavior of visreg when constructing a conditional plot is
to fill in x∗−j with the median for continuous variables and the most common category for categorical
variables. This behavior can be modified using the cond argument. Note that this has no bearing on
contrast plots in additive models, which do not require a full specification of x∗−j.

The cond argument must be provided as a named list. Each element of that list specifies the
value for an element of x∗−j; any elements left unspecified are filled in with the median/most common
category. We revisit our initial model from “Basic framework” with this code, which produces Figure 5.
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visreg(fit, "Wind", cond=list(Temp=50))
visreg(fit, "Wind")
visreg(fit, "Wind", cond=list(Temp=100))
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Figure 5: Estimated relationship between wind and ozone concentration, conditioning on different
values of temperature. Left: Temperature=50 ◦F. Middle: The median temperature, 79 ◦F (default).
Right: Temperature=100 ◦F.

We make several observations concerning Figure 5: i) The values on the vertical axis differ; as
we condition on higher temperatures, the expected ozone concentration goes up since the regression
coefficient for temperature is positive. ii) The slope of the line, the distance from the line to each
residual, and the range of the residuals is the same in all three plots; conditioning on different values
of temperature merely adds a constant to the regression line and the partial residuals. iii) The width of
the confidence band does change, however: the data set has few observations at very high and very
low temperatures, so the standard errors are much larger for the plots on the right and left than for
the plot in the middle. iv) The shape of the confidence band also changes. In the middle plot, the
confidence band is narrowest in the middle and wider at the ends. In the left plot (conditioning on
low temperature), however, the confidence band is narrowest for high wind levels. This arises because
there is a negative correlation between wind and temperature (ρ̂ = −0.46), and thus, more cold windy
days in the data set than cold calm days. The opposite phenomenon happens in the right plot, where
the relative absence of hot windy days causes the confidence band to be wider for high winds than for
low winds.

Recall that this model had three explanatory variables; in the above example, visreg calculated
the conditional response by filling in solar radiation with its median value, as it was not specified
otherwise in the cond argument.

Linear models with interactions

Visualization is also very important for models with interactions – as with polynomial terms, in
these models the relationship between an explanatory variable and the response depends on multiple
regression coefficients, and a model’s fit is more readily understood with a visual representation than
by looking at a table of regression coefficients.

For models with interactions, we must simultaneously visualize the effect of two explanatory
variables. The visreg package offers two methods for doing this: cross-sectional plots, which plot
one-dimensional relationships between the response and one predictor for several values of another
predictor, and surface plots, which attempt to provide a picture of the regression surface over both
dimensions simultaneously.

Cross-sectional plots

To begin, let’s fit a model that involves an interaction between a continuous term and a categorical
term, using our derived variable Heat from “Basic framework”:

fit <- lm(Ozone ~ Solar.R + Wind * Heat, data=airquality)

The visreg package creates cross-sectional plots using, by default, the lattice package (Sarkar,
2008). To request a cross-sectional plot, the user specifies a by variable, as in the following code which
produces Figure 6.

visreg(fit, "Wind", by="Heat")
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Figure 6: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the continuous term on the horizontal axis.

Alternatively, one can use ggplot2 (Wickham, 2009) as the plotting engine using the option gg=TRUE,
as in the following code which produces Figure 7.

visreg(fit, "Wind", by="Heat", gg=TRUE)
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Figure 7: Same as Figure 6, but using ggplot2 as the plotting engine.

The cross-sectional plots in either Figure 6 or 7 allow us to see that the relationship between
wind and ozone concentration appears to become more pronounced depending on how hot the day
is. On cool days, wind has no effect on ozone concentration. Wind has a moderate effect on ozone
concentrations on mild days, and an even larger effect on hot days.

Note that visreg handles the partial residuals properly – the partial residuals for observations
collected on cool days appear only in the left panel, and so on. As with the earlier plots, this ensures
that the least squares line drawn through the residuals on the plot will yield the same slope as that
estimated by the full model fit. Furthermore, this allows us to see potentially influential observations
like the one in the middle panel, which has very low wind and very high ozone concentration. Finally,
the proper handling of partial residuals also allows us to observe the lack of hot windy days and cool
days with no wind that we commented on in “Conditioning”. Note that the confidence intervals in
these regions are comparatively wide.

Alternatively, we may wish to overlay these cross-sections. This allows for a more direct com-
parison between the different regression lines, although it often becomes difficult to include partial
residuals and confidence bands without crowding the figure. The visreg package allows an overlay
option for creating these plots:

visreg(fit, "Wind", by="Heat", overlay=TRUE, partial=FALSE)

The above code produces Figure 8, where the plotting of partial residuals has been turned off
for the sake of clarity (similarly, band=FALSE can be specified to turn off the confidence bands). If
partial=TRUE, the partial residuals are colored according to the existing scheme.

The above examples featured a continuous variable along the horizontal axis and a categorical
variable as the by variable. However, visreg allows each of these variables to be either continuous or
categorical. For example, let us try plotting the same model, but reversing the roles of Heat and Wind
(Figure 9).
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Figure 8: Cross-sectional plot depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), where the regression lines for each category are overlaid.

visreg(fit, "Heat", by="Wind")

The model is the same, but the emphasis of the plot is now on heat instead of wind. Figure 9
illustrates that heat has a pronounced effect on ozone concentration when the day is not windy, but a
relatively insignificant effect on ozone for windy days.
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Figure 9: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the categorical term on the horizontal axis.

In contrast to Figure 6, where it was natural to construct a panel for each level of the categorical
variable, Figure 8 requires arbitrary decisions concerning how many cross-sections to take, and where
to place them. The default behavior of visreg is to take cross-sections at the 10th, 50th, and 90th
percentiles of the by variable, although both the number of points and their location can be modified
using the breaks option. Again, each residual appears only once, in the panel it is closest to. However,
the least squares estimates are no longer equivalent to drawing a line through the partial residuals
due to the continuous manner in which information is pooled across the panels.

We have been focusing here on conditional plots, but contrast plots can be made as well by
specifying type="contrast". It is worth noting that for a model containing an interaction, a basic
call to visreg (i.e., without a by argument) amounts to plotting a main effect in the presence of an
interaction. Because this has the potential to be misleading, visreg by default prints a message warning
the user of this and reminding him or her of the levels of the other variables at which the plot is
constructed. For example, since "Mild" is the most common level of Heat, visreg(fit,"Wind") will
produce the middle panel of Figure 6. The left and right panels, respectively, could be produced by
passing Heat="Cool" and Heat="Hot" to the cond argument.

Surface plots

Another approach to visualizing models with interactions is plotting the regression surface using
contour or perspective plots. Suppose we fit a complicated model involving a multiplicative interaction
between two-degree-of-freedom natural spline terms for wind and temperature (the function ns is
from the splines () package):
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fit <- lm(Ozone ~ Solar.R +ns(Wind, df=2)*ns(Temp, df=2), data=airquality)

Putting aside the question of whether or not this is a good model for analyzing these data, our
purpose here is to show that it is difficult to grasp the fit of the model by looking at the regression
coefficients directly, but easy to do so using visreg. In addition to the tools for creating cross-sectional
plots described in the “Cross-sectional plots”, the visreg package provides the function visreg2d,
which can be used to produce two-dimensional contour and perspective plots. The following code
produces Figure 10:

visreg2d(fit, "Wind", "Temp", plot.type="image")
visreg2d(fit, "Wind", "Temp", plot.type="persp")
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Figure 10: Representations of the regression surface as a function of wind and temperature. Left:
Filled contour plot. Right: Perspective plot.

The advantage of these kinds of plots compared with those in “Cross-sectional plots” are that
they allow us to visualize the effect of simultaneously varying two factors. The disadvantage is that
there is no convenient way of superimposing either residuals or confidence intervals. These plots
are most useful when both variables are continuous, as one is not forced to take cross-sections over a
continuous variable. The visreg2d function still functions correctly when one or both of its arguments
is a categorical variable, although in our opinion, the cross-section plots of “Cross-sectional plots” are
more useful in these settings.

In addition to the static perspective plot presented above, visreg2d can also create interactive
perspective plots using the rgl package (Adler and Murdoch, 2011), which allow the user to rotate, tilt,
and spin the regression surface. This makes it considerably easier to comprehend its three-dimensional
shape. Such plots can be constructed with the code:

visreg2d(fit, x="Wind", y="Temp", plot.type="rgl")

Visualization of higher-order interactions, such as three-way or four-way interactions, becomes
increasingly difficult. To some extent, visreg facilitates visualization of such models through the use
of the cond argument. For example, code such as the following could be used to visualize a three-way
interaction:

fit <- lm(Ozone ~ Solar.R * Wind * Temp, data=airquality)
visreg2d(fit, "Wind", "Temp", cond=list(Solar.R=100))
visreg2d(fit, "Wind", "Temp", cond=list(Solar.R=300))

Other models

As mentioned at the outset, the goal in creating the visreg package was to implement visualization in
an object-oriented manner, so that it works with as many classes of models from different functions
and packages as possible. All that it requires is functioning model.frame and predict methods for
the fitted model object (plotting of partial residuals requires a residuals method as well). Thus,
the visreg package and all its options work not only with linear model objects produced by lm, but
with generalized linear models produced by glm, proportional hazards models produced by coxph
(Therneau, 2012), robust linear models produced by rlm (from MASS: Venables and Ripley, 2002),
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negative binomial models produced by glm.nb (from MASS), generalized additive models produced
by gam (from mgcv: Wood, 2012), local regression models produced by loess and locfit (Loader, 2010),
and many more. Indeed, the type of object does not even need to be part of an R package; user-defined
model classes can also be visualized with visreg, provided that they are compatible with model.frame
and predict. In this section, we briefly illustrate the use of visreg with some of the above types of
models.

Generalized linear models

We begin with a logistic regression model applied to a study investigating risk factors associated with
low birth weight (Hosmer and Lemeshow, 2000). The following code produces Figure 11.

data("birthwt", package="MASS")
fit <- glm(low ~ age + race + smoke + lwt, data=birthwt, family="binomial")
visreg(fit, "lwt", xlab="Mother's weight", ylab="Log odds (low birthweight)")
visreg(fit, "lwt", scale="response", rug=2, xlab="Mother's weight",

ylab="P(low birthweight)")
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Figure 11: Visualization of a logistic regression model. Left: Log odds scale. Right: Probability scale.

On the left side of Figure 11, the model is plotted on the scale of the linear predictor (the default
scale in visreg), where the model is indeed linear. The confidence intervals in the figure are Wald
confidence intervals based on standard errors returned by predict.glm. The partial residuals are
calculated based on Equation 2, with r the deviance residuals (the default residuals returned by
residuals.glm). The plot on the right is simply a transformed version of the plot on the left, where an
inverse logistic transformation has been applied to the regression line and confidence bands (this is
handled automatically by the scale="response" option).

Note that for the plot on the right, we have opted to plot a rug as opposed to the partial residuals.
The visreg package provides two types of rug annotations. With rug=TRUE or rug=1, a standard
rug along the bottom of the plot is provided. With rug=2, separate rugs are drawn on the top for
observations with positive residuals and on the bottom for observations with negative residuals (for
logistic regression, this corresponds to Y = 1 and Y = 0, respectively).

In practice, we have found plots like those on the left useful for visualizing the model fit and
observing potential departures from model assumptions such as outliers and influential points, and
plots like those on the right very useful for communicating modeling results to non-statisticians.

Other regression models

Here, we provide a brief demonstration applying visreg to some other types of models (note that these
are models for which the effects package is incompatible): a proportional hazards model, a robust
regression model, and a local regression model. The left side of Figure 12 presents a visualization of
the following proportional hazards model:

require("survival")
fit <- coxph(Surv(futime, fustat) ~ age + rx, data=ovarian)
visreg(fit, "age", ylab="log(Hazard ratio)")

Note that in proportional hazards models, baseline hazard functions are not explicitly estimated,
and therefore the meaning behind a conditional plot is questionable. For this reason, contrast plots
are (arguably) more appropriate. A similar phenomenon occurs with logistic regression applied to
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Figure 12: Visualizations of proportional hazards (left), robust regression (middle), and loess (right)
models.

case-control studies, in which an intercept is estimated, but is the estimate is biased by the study
design.

The middle of Figure 12 presents a visualization of the following robust regression model (using
rlm from the MASS package):

fit <- rlm(Ozone ~ Solar.R + Wind * Heat, data=airquality)
visreg(fit, "Wind", ylab="Ozone")

Note that the design matrix for the robust regression model is the same as that from “Cross-
sectional plots”, and that the plot in the middle of Figure 12 is analogous to the middle panel from
Figure 6. Note, however, that the robust regression model produces a different fit, due in part to
the reduced impact of the potential outlier mentioned in “Cross-sectional plots”. Specifically, the fit
produced by the robust regression model is flatter and does not predict negative ozone concentrations
for high wind levels as the linear regression model does.

Finally, we apply visreg to a local regression model fit with loess, producing a much more useful
visualization of the model than the default plot method for loess. This plot appears on the right side
of Figure 12.

fit <- loess(Ozone ~ Wind, airquality)
visreg(fit, "Wind", ylab="Ozone")

All of the features and options we mentioned earlier; in particular cross-section and surface plots work
in the same way for nonlinear models as they do for linear models.

Computationally, the extension of visreg to nonlinear models is straightforward due to its object-
oriented implementation, but it is worth making some comments about partial residuals for nonlinear
models. In particular, it is no longer the case that the regression line through the partial residuals
produces a line with the same slope as that produced by the model. Viewing nonlinear models as
reweighted least squares models, the observations have different weights and these weights are not
reflected in the partial residuals plotted by visreg. This phenomenon has been commented on by
many authors, with a variety of proposals for alternative types of reweighted partial residuals that
may be better at detecting outliers and influential observations (Pregibon, 1981; Landwehr et al., 1984;
O’Hara Hines and Carter, 1993).

Non-regression models

Moving even further from linear models, visreg is also compatible with modeling frameworks that are
not even regression-based, such as random forests and support vector machines. Such methods are
often thought of as “black boxes”, but visreg offers a convenient way to visualize the resulting fit and
possibly gain some insight into the model. The following code fits each of the aforementioned models
to the airquality data using the randomForest (Breiman et al., 2015) and e1071 (Meyer et al., 2017)
packages, and plots the resulting estimated association between ozone and temperature (Figure 13).
Some of these packages do not automatically handle missing data, so we first create a complete-case
data set aq:

aq <- na.omit(airquality)
fit1 <- randomForest(Ozone ~ Solar.R + Wind + Temp, data=aq)
fit2 <- svm(Ozone ~ Solar.R + Wind + Temp, data=aq)
visreg(fit1, "Temp", ylab="Ozone", ylim=c(0, 150))
visreg(fit2, "Temp", ylab="Ozone", ylim=c(0, 150))
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Figure 13: Left: Random forest. Right: Support vector machine.

Both of the results in Figure 13 appear reasonable with the default settings employed, although
neither of these models is able to provide confidence bands for fitted values, so no shaded bands
appear. A useful feature of plotting the model’s predictions, however, is that it illustrates the effect of
changing those settings. For example, consider the application of gradient boosting machines to this
same data using the gbm package (Ridgeway, 2017). First, it is worth noting that the gbm package
does not offer a residuals method. This would normally cause visreg to omit plotting the partial
residuals. However, we can supply our own user-defined residuals method, which enables visreg to
produce the plots in Figure 14.

residuals.gbm <- function(fit) fit$data$y - fit$fit
fit3 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq)
fit4 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq, n.trees=5000)
visreg(fit3, "Temp", ylab="Ozone", ylim=c(0, 150))
visreg(fit4, "Temp", ylab="Ozone", ylim=c(0, 150))
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Figure 14: Visualizations of gradient boosting machine. Left: Default setting (100 trees) Right: 5,000
trees.

Note that the default settings for gbm do not produce a very good fit here. In particular, the
default number of trees (100) is too low to capture the relationship between temperature and ozone.
By increasing the number of trees (to 5,000), we obtain a much more reasonable fit.

Hierarchical and random effect models

The ability of visreg to visualizing mixed effect models is hindered by the fact that incorporating
uncertainty about random effects into predictions is difficult from a frequentist perspective and most
R packages for such models do not offer confidence intervals for such estimates. Nevertheless, visreg
is still useful for visualizing the effects of fixed effects in such models using contrast plots, as well as
plotting effects without confidence intervals.

As an illustration, we consider a study involving the protein content of cows’ milk in the weeks
following calving (Diggle et al., 2002). Consider the following random-intercept, random-slope model,
fit using the lme4 package (Bates et al., 2012), which also contains a fixed effect for the type of diet
each cow was fed.

data(Milk, package="nlme")
fit <- lmer(protein ~ Diet + Time + (Time|Cow), Milk)
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In the lme4 package, the predict method does not return standard errors. This means that any
conditional plots constructed by visreg will lack confidence intervals, like those in Figures 13 and
14. This is another example of a situation where a contrast plot is useful: by considering the effect
of changing diet while other terms remain constant, the random effects drop out of the model and
standard errors/confidence intervals are straightforward, as illustrated in Figure 15. The following
code also illustrates how to change graphical options, as there is considerable overplotting of the
partial residuals under the default settings.

visreg(fit, "Diet", type="contrast", ylab=expression(Delta*'Protein'),
points.par=list(col="#55555540", cex=0.25))
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−0.5

0.0

0.5

Diet

∆P
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te
in

barley barley+lupins lupins

Figure 15: Contrast plot illustrating the fixed effect of diet in the Milk example.

The visreg package can also be used to plot random effects, although as mentioned earlier, the
plots will not include intervals. Below, we provide code to plot the modeled relationship between
protein content and time. Two aspects of the code are worth pointing out. First, note that according to
the object-oriented design of visreg, the predict method supplied by lme4 will used. It has its own
option, re.form, to control how random effects are used in the prediction, and this must be passed
through visreg accordingly. Second, for the sake of space we subset the plot to ten cows rather than all
79. This can be accomplished by returning, then subsetting, the raw visreg object prior to plotting.
Returning the data frames, estimates, confidence intervals, and residuals used in the construction of
its plots like this allows users to write their own extensions and modifications of visreg plots.

v <- visreg(fit, "Time", by="Cow", re.form=~(Time|Cow), plot=FALSE)
subCow <- sample(Milk$Cow, 10)
vv <- subset(v, Cow %in% subCow)
plot(vv, ylab="Protein", layout=c(10,1))

Time

P
ro

te
in

3.0

3.5

4.0

5 10 15

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

B17

5 10 15

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●
●

B21

5 10 15

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

B05

5 10 15

●

●

●

●

●

●

●

●

●
●

●

●
●

●

BL05

5 10 15

●

●

● ●

● ● ●

●
●

●

●
●

●

●

BL20

5 10 15

●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●

●

●

BL27

5 10 15

●

●

●

●
● ●

●

●
● ●

● ●

●
●

BL25

5 10 15

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

L19

5 10 15

●

●

●

●
●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

L20

5 10 15

●

●

●
●

●

●

●

●

●

●

●

●
●

●

L23

Figure 16: Subject-specific conditional plots for ten randomly chosen cows from the Milk example
illustrating the change in protein content over time.

Conclusion

Partial residuals and how useful they are in detecting influential observations and departures from
model assumptions depends on the model. Other types of plots, such as added variable plots
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(Atkinson, 1985), are also helpful for visualizing regression models and their fit. We feel that the
approach provided by visreg is reasonable and the best that can be expected from an object-oriented
tool that can be applied generically to a wide variety of models, although we certainly acknowledge
that other types of plots and visualizations may offer useful additional information for certain types of
models.

The visreg package provides a very useful set of tools for simultaneously visualizing the estimated
relationship between an explanatory variables and the outcome, the variability of that estimate, and
the observations from which the estimates derive. These tools have a simple interface and are readily
applied in an object-oriented manner to wide variety of models. We have found the development of
this package to provide a convenient and versatile tool to assist with regression modeling, both for
model exploration and for communicating modeling results.

More information about visreg, illustrating its various options with numerous examples can be
found at http://pbreheny.github.io/visreg.
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