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dGAselID: An R Package for Selecting a
Variable Number of Features in High
Dimensional Data
by Nicolae Teodor Melita and Stefan Holban

Abstract The dGAselID package proposes an original approach to feature selection in high dimen-
sional data. The method is built upon a diploid genetic algorithm. The genotype to phenotype
mapping is modeled after the Incomplete Dominance Inheritance, overpassing the necessity to define
a dominance scheme. The fitness evaluation is done by user selectable supervised classifiers, from a
broad range of options. Cross validation options are also accessible. A new approach to crossover,
inspired from the random assortment of chromosomes during meiosis is included. Several mutation
operators, inspired from genetics, are also proposed. The package is fully compatible with the data
formats used in Bioconductor and MLInterfaces package, readily applicable to microarray studies,
but is flexible to other feature selection applications from high dimensional data. Several options for
the visualization of evolution and outcomes are implemented to facilitate the interpretation of results.
The package’s functionality is illustrated by examples.

Introduction

Recent advances in information technology provide tools for gathering an immense amount of data
on various scopes. Investigators have increasingly improved tools to collect data describing different
areas of research. The need to efficiently manage, analyze and extract the important features from
high dimensional data is also growing with the different exploration areas benefiting from these
technologies.

The DNA microarray technology is widely used for exploring the differential gene expression. The
method is very established and offers a very good opportunity to develop new methods for selecting
features in real high dimensional data. The vast amount of microarray data that is freely available
along with the results obtained by employing other exploratory techniques, belonging to statistics or
artificial intelligence, provide a unique opportunity to evaluate the performance of newly developed
techniques.

The Genetic Algorithms (GAs) were extensively used to select features in various high dimensional
data, for different research goals. The GA designs evolved and were adapted with particular explo-
ration interests since they were introduced (Holland, 1975). Different GA designs were specifically
adapted to address optimizations or diverse feature selection (Xue et al., 2016) assignments.

The literature on GAs is comprehensive and covers various aspects of interest. The fundamentals of
GAs, including the schema theorem, are covered in very instructive introductory books (Mitchell, 1998)
and (Goldberg, 1989). Other authors propose exhaustive investigations in the GAs’ behavior (Berard
and Bienvenue, 2003) and properties (Rudolph, 1994). The genetic operators and their impact on
evolution, with emphasis on mathematical details (Doerr and Doerr, 2015) were extensively examined.
The genetic algorithms model the naturally occurring evolution and are designed to solve particular
problems. In consequence, the theoretical foundations are yet to catch up with the practically applied
algorithms. Nevertheless, the theory of genetic algorithms is emerging (Droste et al., 2002).

The project R offers a great environment for developing methods for high dimensional data analysis.
The variety of techniques already implemented by numerous contributors and the availability of
the methods, source code, countless data, and results as well as the very forthcoming community
make it the environment of choice for implementing our method. Moreover, the Bioconductor project
(Huber et al., 2015) available in R, offers a wide range of methods and tools for analyzing microarray
data, as well as real data sets to experiment with and compare the results. Our package dGAselID
was developed to be cohesive with Bioconductor. The "ExpressionSet class" used in Bioconductor
was adopted as standard for our package; any data formatted accordingly can be analyzed with our
method.

Different GA implementations are available as contributors’ packages in R. Implementations of
GAs for both floating-point and binary chromosomes are included in the genalg (Willighagen and
Ballings, 2015) package. The GA (Scrucca, 2016), nsga2R (Tsou, 2015), and gaoptim (Tenorio, 2013)
packages are dedicated to optimizations using GAs. A GA designed for determining training popula-
tions (Akdemir et al., 2015) is offered in the STPGA package. The package kofnGA (Wolters, 2015)
aims to select a fixed-size set of integers. Variable selection applications of GAs are proposed in the
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mogavs (Pajala, 2016) and gaselect (Kepplinger, 2015) packages for regression and high-dimensional
data respectively.

Algorithm

Haploid GAs were previously employed to address feature selection in microarray studies (Melita
et al., 2008). In this type of data, the number of samples is significantly lower than the number
of features and the utilization of cross validation techniques is necessary for reliable results. The
diploid GAs offer better performance than the haploid implementations for selecting features in a
cross validation scenario in general, and for microarray data (Melita and Holban, 2016b) in particular.

The GA implementation in the dGAselID package uses a diploid representation. All the features
in the data form a genome, and each feature retains a specific locus in the genome, the position in the
original data. Every individual in the population will consist of two such genomes.

The fitness evaluation function is a supervised classifier. Any implementation of supervised classi-
fier available in MLInterfaces package (Carey et al., 2016) is a possible choice for fitness evaluation
function in dGAselID. The fitness value is the accuracy of the given classifier in discerning between
samples belonging to different classes.

Every feature in the data, inputted according to the format in the "ExpressionSet class", is
represented by a gene in the genome. Every gene has two alleles, represented as 0 and 1. The allele 1
codes for the corresponding feature to be present in the classifier. The allele 0 cyphers for discarding
the gene from the classifier. A genome with a limited number of alleles = 1, codes for the supervised
classifier working on a subset of features from the data. The number of desired features is user
selectable at the initialization of the algorithm.

Our implementation offers the possibility to divide the genomes into a variable number of chro-
mosomes. The number of chromosomes to split the genomes in is user selectable. The value 1 for
the number of chromosomes will result in the genome being treated as a single chromosome, like in
the classical GA implementation. The default value in the dGAselID is 22. In this case, the genome
is parted into 22 chromosomes, the total of human autosomes. The chromosomes will have variable
length, with different number of genes, following the dispersal found in the human autosomes, as
illustrated in the Table 1. The number of genes found on each chromosome will follow the spread
found in the human autosomes with different values for the number of chromosomes. We chose the
default value 22 to emphasize the foundation of our evolutionary approach. Different values will
serve diverse practical applications. This parameter is particularly important when variables belong to
several previously known categories, as with the custom microarray chips. When no such information
is known, an appropriate value can be empirically determined.

The initial population is randomly generated from a discrete uniform distribution. The user can
specify the number of genomes in the population, the number of activated genes in each genome and
the number of chromosomes to split the genomes in. The population will encompass individuals, with
each individual consisting of two sets of haploid chromosomes, randomly assigned.

In a diploid GA it is mandatory to determine how different alleles on heterozygous chromosomes
influence the phenotype. The dominance schemes typically used in genetic algorithms are built upon
the Complete Dominance model, described in biology by Gregor Mendel in 1865. In this model,
one of the alleles, called dominant, produces effects into phenotype and masks the existence of the
other allele in genotype. The alternative that does not affect the phenotype is called recessive allele.
The Complete Dominance model describes only a few of the interactions between alleles in nature.
Various models were later developed to describe different interactions between alleles. In Incomplete
Dominance model, the phenotype of an individual is considered to be in between the phenotypes
resulting from each of the inherited alleles. Both alleles influence the phenotype and the existence of
none is masked in genotype. The main difference between the two models is illustrated in Figure 1. We
can suppose that a gene that codes for the color of an organism has two alleles; one of them produces
a red individual and the alternative shapes a blue entity. With the Complete Dominance model, one of
the alleles is dominant and masks the presence of the other. In our example, the allele that codes for the
red color is dominant and is noted with capital letter (R). Every diploid organism that inherits at least
one allele R will be a red entity. Only if a diploid organism inherits two copies of the recessive allele
(b), the phenotype will be influenced by it, resulting in a blue individual. The interaction described by
the Incomplete Dominance model results in three different phenotypes. In this case, an individual can
be red, blue or purple. Both alleles affect the phenotype and are noted with capital letters (R and B).

The Incomplete Dominance inheritance is an alternative to genotype to phenotype dominance
schemes (Melita and Holban, 2016b) in genetic algorithms and is the approach adopted in our algo-
rithm. Moreover, this method does not require an explicit scheme for genotype-phenotype mapping.
The fitness of each individual is consequently evaluated as the mean accuracy of the two classifiers,
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Chromosome No. No. of features

1 9.17%
2 7.64%
3 5.81%
4 4.89%
5 5.19%
6 5.81%
7 5.50%
8 4.28%
9 4.28%
10 4.28%
11 6.11%
12 4.89%
13 2.44%
14 3.66%
15 3.66%
16 3.97%
17 4.89%
18 1.83%
19 5.19%
20 2.75%
21 1.22%
22 2.44%

Table 1: Default distribution of features on chromosomes.

Figure 1: Complete vs. Incomplete Dominance.
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each set of haploid chromosomes in the individual. With this approach it is possible to maintain a better
variability in the late generations, as features from the poorly performing genotypes will be present in
later generations when compared to the classical technique. Exploitation of the Incomplete Dominance
model is optional. The value "ID2" for the parameter ID enables the Incomplete Dominance model,
while the value "ID1" turns it off. In evaluating the fitness of an individual, any supervised classifier
available in MLInterfaces package can be selected. The package offers a unified way to call super-
vised classifiers on data formatted according to "ExpressionSet class" specifications with several
options (svmI, ldaI, rdaI, knnI, knn.cvI, randomForrestI, dldaI, nnetI, qdaI, naiveBayesI, etc). The
cross-validation techniques implemented in MLInterfaces are also available for fitness evaluation in
our package, and are accessible through the trainTest parameter. The default value "LOG" for the
trainTest parameter enables the leave-out-group cross-validation, while specifying "LOO", the user
can opt for the leave-one-out cross-validation. Moreover, is if possible to shape the data into training
and testing sets. A value of the form x:y for the trainTest parameter identifies the samples with
indexes from x to y as training examples while all the others are used as testing set.

In the next step, the individuals are ranked according to their fitness. Our implementation offers
the option of applying an elitist selection over the ranked individuals. The default value for elitism
is NA, but a user can decide on the desired value for elitism, keeping the chosen number of best
performing genotypes in the population.

Crossovers are applied next, between the two haploid sets of chromosomes in each individual.
Two-point crossovers were preferred to the single-point alternative which preferentially affects the
string ends. The two-point crossover follows the classical implementation. One two-point crossover is
applied between homologous chromosomes, in each individual. A parameter to explicitly specify the
chance for a crossover to occur is not implemented in our algorithm. The number of chromosomes
implicitly affects the number of crossovers.

Another approach to crossover, modeled after the Random Assortment of Chromosomes in meiosis
is also available. The Random Assortment of Chromosomes Crossover (Melita and Holban, 2016a)
takes advantage of splitting the genomes in a number of chromosomes with variable size. When
selected, two-point crossovers are performed between homologous chromosomes. After the crossovers
are applied, the chromosomes are randomly assorted and distributed to one of the chromosomes set in
each individual. This process, models the events that occur during meiosis I in eukaryotes. The user
can choose at the initialization of the algorithm if the chromosomes will be randomly assorted through
the randomAssortment parameter. The default value is TRUE. This operator is especially important
when selecting a small number of features from a very large poll. In this case, the two-point crossover
frequently recombines strings containing only zeros, with no effect on the very long genotypes. The
Random Assortment operator offers a significant advantage in these situations. The distinctions
between these approaches to recombination are highlighted in Figure 2, a part of the R output using
the code:

> library(dGAselID)
> set.seed(1357)
> c1<-rep(0, 10)
> c2<-rep(1, 10)
> individual<-rbind(c1, c2)
> individual

> chrConf01<-rep(1, 10)
> chrConf01

> #Two-point crossover on genotypes with 1 chromosome
> Crossover(individual [1, ], individual [2, ], chrConf01)

> chrConf03<-c(rep(1, 4), rep(2, 3), rep(3, 3))
> chrConf03

> #Two-point crossovers on genotypes with 3 chromosomes
> cr3<-Crossover(individual [1, ], individual [2, ], chrConf03)
> cr3

> #Random Assortment on the recombined genotypes with 3 chromosomes
> RandomAssortment(cr3, chrConf03)

Subsequently, the haploid sets of chromosomes with a higher fitness are kept and the others are
discarded from each individual and mutations are applied with a chance that is specified by the user
when initializing the algorithm. These haploid sets and the genotypes obtained thru crossovers are
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Figure 2: Recombination operators a) classical two-point crossover with 1 chromosome, b) two-point
crossover with 3 chromosomes, c) two-point crossover with 3 chromosomes and Random Assortment

then assembled and a new generation of randomly generated individuals is created. Six different
operators for mutation are available in the package. They can be used solitarily or in any combination,
to support exploration with the genetic algorithm. The classical point mutation is implemented.
However, when selecting a small number of features from a large poll with a genetic algorithm, the
point mutation has the tendency to progressively increase the number of activated genes in genotypes,
with every generation. To address this drawback, we implemented several mutation mechanisms
inspired from genetics. These operators take advantage of the genotypes being partitioned on different
chromosomes. The alternatives to point mutation available in the dGAselID package are:

1. Nonsense Mutation,

2. Frameshift Mutation,

3. Large Segment Deletion,

4. Whole Chromosome Deletion,

5. Transposons.

The Nonsense Mutation operator annuls all the genes on a chromosome following a randomly
selected locus (treated as a stop codon). The other chromosomes in the genotype are not influenced by
the nonsense mutation. The Frameshift Mutation operator randomly selects a locus on an arbitrarily
selected chromosome. The gene at the selected locus is deleted and all the following chain is shifted
with one position to the left. The last locus on the implicated chromosome is subsequently annulled to
conserve its length. Other chromosomes in the genotype are not altered by the mutation. The Large
Segment Deletion operator annuls all the genes in a randomly generated interval on an arbitrarily
selected chromosome. The Whole Chromosome Deletion operator acts in a similar fashion, but
on the whole chromosome rather than an interval. The Transposons operator randomly selects a
chromosome, a gene on that chromosome and a distance for relocation. The elected gene is then
transferred at a locus indicated by the generated distance. All the mutation operators occur with
chances specified by designated parameters. The mutated genotypes are verified to have at least 4
active genes and the invalid mutations are not inherited, to prevent errors during the subsequent
fitness evaluations. The following code demonstrates the mutation operators. The R output is partially
presented in Figure 3.

> library(ALL)
> data(ALL)
>
> demoALL<-ALL[1:12, 1:8]
>
> set.seed(1234)
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> population<-InitialPopulation(demoALL, 4, 9)
> individuals<-Individuals(population)
> individuals
>
> set.seed(123)
> pointMutation(individuals, 4)
>
> chrConf<-splitChromosomes(demoALL, 2)
> chrConf
> individuals
>
> set.seed(123)
> nonSenseMutation(individuals, chrConf, 20)
>
> set.seed(123)
> frameShiftMutation(individuals, chrConf, 20)
>
> set.seed(123)
> largeSegmentDeletion(individuals, chrConf, 20)
>
> set.seed(123)
> wholeChromosomeDeletion(individuals, chrConf, 20)
>
> set.seed(123)
> transposon(individuals, chrConf, 20)

Figure 3: Partial R output illustrating the mutation operators

Iteration with the new generation follows. The number of generations is established at the
initialization of the algorithm.
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Argument Description

x The dataset in "ExpressionSet class" format
response The response variable
method Supervised classifier for fitness evaluation
trainTest Specifies the training set or the cross-validation method
startGenes Number of alleles=1 in the starting genomes
populationSize Initial populations size
iterations Number of generations
noChr The number of desired chromosomes
elitism Elitism in percentages
ID Dominance
pMutationChance Chance for a point mutation to occur
nSMutationChance Chance for a Nonsense Mutation to occur
fSMutationChance Chance for a Frameshift Mutation to occur
lSDeletionChance Chance for a Large Segment Deletion to occur
wChrDeletionChance Chance for a Whole Chromosome Deletion to occur
transposonChance Chance for a Transposon mutation to occur
randomAssortment Random Assortment of chromosomes for recombinations
embryonicSelection Remove chromosomes with fitness < specified value
EveryGeneInInitialPopulation Request for every gene to be present in the initial population
nnetSize For nnetI
nnetDecay For nnetI
rdaAlpha For rdaI
rdaDelta For rdaI

Table 2: Parameters accepted by the dGAselID() function.

Working with the dGAselID package

The dGAselID package is structured around the dGAselID() function. This function manages the
initial parameters for the algorithm and, depending on the user selected options, sets the stage for
the experiment. The dGAselID() function calls other functions for the different steps and options in
the algorithm. The arguments accepted by dGAselID() along with short descriptions are presented
in Table 2. The other functions, for different operators used during the genetic algorithm search, are
summarized in Table 3.

Graphical representations of the evolution are available with the built-in functions in real-time.
The maximum and average accuracy, accompanied by the most frequently selected genes can be
displayed after each generation, offering a very intuitive image of the evolution. Evidence about the
number of individuals in the current population, crossovers or the number of mutations are displayed
for each generation.

The algorithm retains various data about the evolution for further analysis. For each gene, the
frequency of selection across generations is recorded, along with other characteristics of the evolution.
The output data format with a hypothetical result is shown below, together with a description of the
recorded variables in the Table 4.

> ## Not run:
> names(result) #hypothetical result
[1] "DGenes" "dGenes" "MaximumAccuracy" "MeanAccuracy"
[5] "MinAccuracy" "BestIndividuals"
> ## End(Not run)

Example

We illustrate the functionality of the dGAselID package with the ALL dataset (Li, 2009), a very known
set of real DNA microarray data, available in Bioconductor. We are searching for the differentially
expressed genes that could characterize the patients suffering from acute lymphoblastic leukemia but
have different BCR/ABL classification, negative or positive. For this example, we use a subset of the
original ALL data, non-specifically and specifically filtered to 628 features and 79 samples, from the
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Function Description

dGAselID() Main function
AnalyzeResults() Ranks individuals according to their fitness and records

the results
Crossover() Operator for the two-point crossover
Elitism() Performs elitism for the desired threshold
EmbryonicSelection() Deletes individuals with a fitness below a specified

threshold
EvaluationFunction() Evaluates the individuals’ finesses

after each iteration
frameShiftMutation() Operator for the Frameshift Mutation
Individuals() Generates individuals from haploid chromosome sets
InitialPopulation() Generates the initial random haploid chromosome sets
largeSegmentDeletion() Operator for the Large Segment Deletion mutation
nonSenseMutation() Operator for the Nonsense Mutation
PlotGenAlg() Plots the evolution after each generation
pointMutation() Operator for the point mutation
RandomAssortment() Performs the Random Assortment of chromosomes
RandomizePop() Creates the random population for the next generation
splitChromosomes() Divides the genotypes in a set with the desired number

of chromosomes
transposon() Operator for the Transposon mutation
wholeChromosomeDeletion() Operator for the Whole Chromosome Deletion mutation

Table 3: Functions in the dGAselID package.

Variable Description

DGenes The occurrences in selected genotypes for every gene
dGenes The occurrences in discarded genotypes for every gene
MaximumAccuracy Maximum accuracy in every generation
MeanAccuracy Average accuracy in every generation
MinAccuracy Minimum accuracy in every generation
BestIndividuals Best individual in every generation

Table 4: dGAselID() output.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 26

12625 features and 128 patients in the complete data set. The data was filtered using the capabilities
offered in the genefilter package (Gentleman et al., 2016). The algorithm works as well on the original
data set, but the filtered data is searched faster. However, our experiments with real data show that
more reliable results are obtained with full featured data.

The code for constructing the dataset used in the following examples is presented below:

> library(genefilter)
> library(ALL)
> data(ALL)
> bALL = ALL[, substr(ALL$BT,1,1) == "B"]
> smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
> smallALL$mol.biol = factor(smallALL$mol.biol)
> smallALL$BT = factor(smallALL$BT)
> f1 <- pOverA(0.25, log2(100))
> f2 <- function(x) (IQR(x) > 0.5)
> f3 <- ttest(smallALL$mol.biol, p = 0.1)
> ff <- filterfun(f1, f2, f3)
> selectedsmallALL <- genefilter(exprs(smallALL), ff)
> smallALL = smallALL[selectedsmallALL, ]

An example of function call is:

> set.seed(149)
> resNoID<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0.0075,
+ elitism = 4)

The choice for evaluation function was knn.cvI from the MLInterfaces package, with the param-
eters k=3 and l=2. This is the default method in the package. The evaluation function used in this
example, knn.cvI, is a kNN classifier with the leave-one-out cross validation embedded. For this
reason, the requirement for the trainTest parameter is special, addresses all the instances in the data,
1:79. For any other supervised classifier, the trainTest parameter shapes the training and testing
subsets in the same fashion as the trainInd parameter in MLInterfaces. When cross-validation is
required, the trainTest parameter specifies the desired method as "LOO" or "LOG", and is equivalent
to xvalSpec("LOO") or xvalSpec("LOG") respectively, in MLInterfaces package. An illustration of
the evolution is presented in Figure 4. The figure pictures a juncture during the search, including
the information provided by the verbose mode and graphical representations of the evolution, as
they appear in real-time on the computer screen. The evolutions of the Maximum Accuracy, Average
Accuracy and the most frequently selected genes are presented after each generation.

Figure 4: Screenshot of the algorithm execution after 18 generations.

After the desired number of generations, the evolution of the Maximum Accuracy and Average
Accuracy in every generation and the most frequently selected genes can be displayed with the
included functions. The Figure 5 represents the most frequently selected genes after the specified
number of generations, 300 in our example. Their characteristics can be acquired with methods already
implemented in Bioconductor. The 10 most selected genes are presented and could be obtained using
hgu95av2.db (Carlson, 2016) with the code below. The selected genes can be studied and evaluated
with all the methods available in Bioconductor. For reliable and interpretable results, an adequate
number of replications are mandatory in such an experiment, due to the stochastic makeup of the
genetic algorithms. The evolution of the maximum accuracy and the average accuracy can be plotted
as illustrated in the Figure 6 and Figure 7, respectively.
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Figure 5: The most frequently selected genes after 300 generations.

Figure 6: Evolution of the maximum accuracy after 300 generations.
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Figure 7: Evolution of the average accuracy after 300 generations.

> library(hgu95av2.db)
> DGenes<-resNoID$DGenes
> selectedD<-colnames(DGenes)[order(DGenes, decreasing = TRUE)]
> mget(selectedD, hgu95av2GENENAME, ifnotfound=NA)[1:10]
$`1635_at`
[1] "ABL proto-oncogene 1, non-receptor tyrosine kinase"

$`39730_at`
[1] "ABL proto-oncogene 1, non-receptor tyrosine kinase"

$`39070_at`
[1] "fascin actin-bundling protein 1"

$`34362_at`
[1] "solute carrier family 2 member 5"

$`39338_at`
[1] "S100 calcium binding protein A10"

$`40091_at`
[1] "B-cell CLL/lymphoma 6"

$`1135_at`
[1] "G protein-coupled receptor kinase 5"

$`38385_at`
[1] "destrin, actin depolymerizing factor"

$`40396_at`
[1] "purinergic receptor P2X 5"

$`38069_at`
[1] "chloride voltage-gated channel 7"
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Other graphical representation tools offered in R are readily available for further investigation. An
image of the evolution for the best individual in every generation can be depicted as in Figure 8. The
tendency to increment the number of active genes in the genotypes with the successive generations,
induced by the point mutation, becomes apparent. In contrast, the transposon mutation does not
convey this inconvenience, as illustrated in Figure 9. The graphical representations are accessible with
the code:

> bestsNoID<-resNoID$BestIndividuals
> dev.off()
> image(1:ncol(bestsNoID), 1:nrow(bestsNoID), t(bestsNoID),
+ xlim = c(0, ncol(bestsNoID)), ylim = c(0, nrow(bestsNoID)), col = c("white", "red"),
+ cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, lty = 1, lwd = 2, las= 2, xaxs = "r",
+ yaxs = "r", pty = "m", ylab = "Generation no.", xlab = "Gene no.",
+ main = "Best Individuals with the Point Mutation")

> set.seed(149)
> restransp<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0,
+ transposonChance = 2, elitism= 4)

> beststransp<-restransp$BestIndividuals
> dev.off()
> image(1:ncol(beststransp), 1:nrow(beststransp), t(beststransp),
+ xlim = c(0, ncol(beststransp)), ylim = c(0, nrow(beststransp)),
+ col = c("white", "red"), cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, lty = 1,
+ lwd = 2, las = 2, xaxs = "r", yaxs = "r", pty = "m", ylab = "Generation no.",
+ xlab = "Gene no.", main = "Best Individuals with the Transposon Mutation")

Figure 8: Evolution of the best individual after 300 generations with Point Mutation.

Figure 9: Evolution of the best individual after 300 generations with Transposon Mutation.
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An illustrative comparison between the classical and the Incomplete Dominance implementations
is accessible with the subsequent code. The two approaches can be assessed in terms of evolutions of
the maximum and average fitness, as depicted in Figure 10 and Figure 11, respectively. The scales
package (Wickham, 2016) is very useful for the direct visual comparison. The most frequently selected
features are compared in Figure 12. It is noticeable that the Incomplete Dominance approach favors
exploration, while still evolving very solidly. This behavior is desirable when selecting features with a
genetic algorithm. The same tendency is perceptible when examining Figure 12, where the number
of significant features is higher with the Incomplete Dominance method. Multiple replications of an
experiment are mandatory to draw reliable conclusions. This example is presented for illustration
purpose only.

Figure 10: Comparative evolution of the maximum fitness over 300 generations.

> library(scales)
> set.seed(149)
> resID<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0.0075,
+ elitism = 4, ID = "ID2")

> dev.off()
> par("xlog"=FALSE)
> plot(resNoID$MaximumAccuracy, type = "o", col = alpha("red", 0.5), pch = 1,
+ cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, lty = 3, lwd = 0.5,
+ xlab = "Generation no.", ylab = "Maximum Accuracy", main = "Maximum Accuracy")
> points(resID$MaximumAccuracy, type = "o", col = alpha("darkblue", 0.5), pch = 1,
+ lty = 3, lwd = 0.5)
> legend(120, 0.92, c("Classical", "Incomplete Dominance"), cex = 1.2,
+ col = c("red", "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))

> plot(resNoID$MeanAccuracy, type = "o", col = alpha("red", 0.5), pch = 1, lwd = 0.5,
+ cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, xlab = "Generation no.",
+ ylab = "Mean Accuracy", main = "Mean Accuracy")
> points(resID$MeanAccuracy, type = "o", col = alpha("darkblue", 0.5), pch = 1,
+ lty = 3, lwd = 0.5)
> legend(120, 0.8, c("Classical", "Incomplete Dominance"), cex = 1.2,
+ col = c("red", "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))
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Figure 11: Comparative evolution of the average fitness over 300 generations.

Figure 12: Comparatison of the most selected genes after 300 generations.
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> DGenes1<-resNoID$DGenes[sort(resNoID$DGenes, decreasing = TRUE,
+ index.return = TRUE)$ix]
> DGenes2<-resID$DGenes[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix]
> significant1<-DGenes1[sort(resNoID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix] > floor(5*max(DGenes1)/100)
> significant2<-DGenes2[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix] > floor(5*max(DGenes2)/100)
> barplot(DGenes1[significant1], main = "Genes inheritance", xlab = "Gene",
+ ylab = "Occurrences", col = alpha("red", 0.5), beside = FALSE, add = FALSE)
> barplot(DGenes2[significant2], main = "Genes inheritance", xlab = "Gene",
+ ylab = "Occurrences", col = alpha("darkblue", 0.5), beside = FALSE, add = TRUE)
> legend(50, 900, c("Classical", "Incomplete Dominance"), cex = 1.2, col = c("red",
+ "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))

Conclusions

The dGAselID package provides a creative approach to feature selection in high dimensional data.
The package utilizes the data format used in Bioconductor and is readily operational for microarray
data analysis. The algorithm is flexible for high dimensional data other than microarray, when data
is provided according to the "ExpressionSet class" specifications. In our experience, the diploid
implementation offers advantages over the haploid GA, especially when cross-validation techniques
are engaged. The Incomplete Dominance approach allows for a diploid framework, bypassing the
requirement to specify a dominance scheme. Also, the Incomplete Dominance inheritance models an
evolution process present in nature, tested by billions of years of evolution. Moreover, the diploid
structure is a foundation for crossover and mutation operators that model the natural processes
and provide improvements in performance over the classical versions. In our tests, the Random
Assortment of Chromosomes provides an important performance advantage, in many situations.

Future development

The main disadvantages of the algorithm presented in dGAselID package are the necessity to replicate
an experiment several times for reliable results, given the fortuity in generating the initial population,
and the tendency of the GA to converge in local optima. Following the conduit in evolutionary
computation, we will reconsider the principles of evolution and accurately model operators for
crossover and mutation to offer a better tension between exploration and exploitation.
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