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PGEE: An R Package for Analysis of
Longitudinal Data with

High-Dimensional Covariates
by Gul Inan and Lan Wang

Abstract We introduce an R package PGEE that implements the penalized generalized estimating
equations (GEE) procedure proposed by Wang et al. (2012) to analyze longitudinal data with a large
number of covariates. The PGEE package includes three main functions: CVfit, PGEE, and MGEE. The
CVfit function computes the cross-validated tuning parameter for penalized generalized estimating
equations. The function PGEE performs simultaneous estimation and variable selection for longitudinal
data with high-dimensional covariates; whereas the function MGEE fits unpenalized GEE to the data for
comparison. The R package PGEE is illustrated using a yeast cell-cycle gene expression data set.

Introduction

Longitudinal data arises from repeated measurements on the same subjects over time. A popular
approach to analyzing longitudinal data is generalized estimating equations (GEE), which were
proposed by Liang and Zeger (1986) and Zeger and Liang (1986). The GEE approach fits a marginal
regression model to the longitudinal data. Instead of specifying the full joint likelihood, it only
requires to specify the first two marginal moments. This is particularly attractive when the responses
are discrete as specifying a joint distribution for multivariate discrete distribution is known to be
challenging. Furthermore, although the GEE procedure relies on a working correlation model, it
produces a consistent and asymptotically normal estimator even if the working correlation structure is
misspecified. If the specified working correlation structure is close to the true correlation structure,
further efficiency gain can be expected. Some commonly used working correlation structures include
the exchangeable (Exch), first-order autoregressive (Ar(1)), stationary-1-dependent (MV_1) and so on.
The generalized estimating equations are now implemented in two nice R packages: the gee package
(Carey, 2015) and the geepack package (Halekoh et al., 2006).

With the advent of technology in data-collection, longitudinal data with a large number of co-
variates, in other words, high-dimensional longitudinal data, have now been commonly observed in
fields such as health and genomic studies, economics and behavioral sciences. Including redundant
covariates in model results in loss of accuracy in both estimation and inference. In the modern “large
n, diverging p” framework, Wang (2011) studied the consistency and asymptotic normality of GEE
regression estimators and verified the validity of the sandwich variance formula of GEE estimators
and the large-sample Wald test under regularity conditions. Wang et al. (2012) further proposed
penalized GEE for simultaneous variable selection and estimation for the cases where the number
of covariates in the model is large. Similarly as GEE, the penalized GEE procedure only requires to
specify the first two marginal moments and a working correlation matrix and assumes that missing
data is valid only under missing completely at random, which means that missingness is independent
of both observed and unobserved data. It leads to consistent variable selection performance even if
the working correlation structure is misspecified, that is, with probably approaching one, the true
model is selected if it is one of the candidate models. Recently, there has been growing interest in
high-dimensional longitudinal data analysis, see for example Lian et al. (2014) and Wang et al. (2014).

In this paper, we present the R package PGEE (Inan et al., 2017) which implements the penalized
generalized estimating equations procedure in Wang et al. (2012) to analyze the longitudinal data
with high-dimensional covariates. The package PGEE is available on CRAN at https://cran.r-
project.org/web/packages/PGEE. The rest of the paper is organized as follows. Section 2.2 provides
a brief overview for both GEE and PGEE. Section 2.3 describes the main features of the functions in
the PGEE package. Section 2.4 illustrates the use of PGEE via a yeast cell-cycle gene expression data
set. Section 2.5 concludes the paper.

An overview for penalized generalized estimating equations

Data structure

Consider a longitudinal study where for the ith (i = 1,2,...,N) subject at time ¢ (t = 1,2,...,n;)
we observe a response variable Yj; and a p x 1 vector of covariates Xj;. Let Y; = (Yj1,..., Yin,) T and
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Xi= (Xit,eeereons Xini)T denote 11; X 1 vector of responses and n; x p matrix of covariates for the ith
subject, respectively. The observations obtained from the same subject are correlated whereas those
obtained from different subjects are assumed to be independent.

Background on generalized estimating equations

Liang and Zeger (1986) assume that the first two marginal moments of Y;; are ;;(B) := E(Y[X;;) =
1(0;) and 02 (B) := Var(Yy|X;;) = 1(6;), where 0;; = XLB,and B = (B1,... ,Bp)T is p x 1 vector of
unknown regression coefficients of interest, i = 1,2,...,N,t =1,2,...,n;. These moment assumptions
would follow when the marginal response variable has a canonical exponential family distribution
with scaling parameter one.

Let V; = Var(Y;|X;;) be the n; x n; covariance matrix of the ith subject, i = 1,..., N. In practice,
Liang and Zeger (1986) suggest to estimate V; via a working correlation structure. Specifically, let

Vi = A}/ani(a)A}/z, (1)

where A; is an n; X n; diagonal matrix with the marginal variance of responses on the diagonals,
and Ry, («) represents an n; x n; working correlation matrix indexed by a vector of parameters «.
From now on, we will use R(a) rather than Ry, («) for simplicity. The popular choices for R(«)
may be independence (Indep), exchangeable (Exch), first-order autoregressive (Ar(1)), stationary-
m-dependent (MV_m), and non-stationary-m-dependent (NMV_m) (m denotes the lag order), and
unstructured (UN) working correlation structure. A good review of the commonly used working
correlation matrices is given in Horton and Lipsitz (1999).

Let A;(B) = diag(c3(B),...,0%(B)) and p;(B) = (4 (B),--., pn,(B))T. Liang and Zeger (1986)
proposed to estimate the regression parameters by solving the following set of estimating equations

N
S(B) = Y XTAV2R () A7V2(Y; — ) =0, )
=1

1=

where R~!(a) denotes the estimated working correlation matrix. The estimating equations can be
solved using a modified Fisher scoring algorithm. Within the iterative Fisher scoring algorithm, the
parameter « in R(&) can be estimated by residual-based moment method, see Hardin and Hilbe (2003).
Liang and Zeger (1986) showed that the resulted estimator is consistent even if R is misspecified.

Penalized generalized estimating equations for longitudinal data with high-dimensional
covariates

With high-dimensional covariates, it is often reasonable to assume that many of these covariates are
not relevant for modeling the marginal mean of the response variable, in other words, the regression
coefficients vector § can be assumed to be sparse in the sense that most of its components are
exactly zero. Wang et al. (2012) introduced penalized generalized estimating equations (PGEE) for
simultaneous estimation and variable selection in this setting. More specifically, they propose to
estimate B by B, which solves the following set of penalized estimating equations

U(B) = S(B) — q(|Bl) osign(B) ®)

where q; (I8]) = (91(IB1]),---,ax(IBy]))", sign(B) = (sign(B1), ...,sign(Bp))", and g, (B]) o

sign(B) denotes the Hadamard product (element-wise product) of these two vectors. The penalty
function g, (|B;|), the jth component of q, (|B]), takes a zero value for a large value of |3;| and takes a
large value for a small value of |;|. Consequently, the generalized estimating equation S(f;), the jth
component of §(), is not penalized if |B;| is large in magnitude, whereas S(B;) is penalized if |B;] is
smaller than a cut-off value (greater than zero). Hence, the role of the penalty function g, (|;|) is to
shrink the estimates of small coefficients toward zero. The coefficients whose estimates are shrunken
to zero are excluded from the final model. The cut-off value is chosen as 1073 as in Cho and Qu (2013),
Wang et al. (2012), and Wang et al. (2007). The penalty has a tuning parameter A that controls the
model complexity. Wang et al. (2012) studied the SCAD penalty function (Fan and Li, 2001) which is
defined on [0, +0] as

() :A{I(t</\)+%l(t2/\)}, @
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where A > 0,4 > 2 and by = bI(b > 0) for a real number b. Following the recommendation
of Fan and Li (2001), we use a = 3.7 and find it usually works well. The nonconvex SCAD penalty
function alleviates the main drawback of L penalty function in that it avoids over-penalizing large
coefficients and hence leads to consistent variable selection under more relaxed conditions. Under

regularity conditions, the estimated coefficients for redundant covariates are shrunken to exactly zero.

Motivated by Johnson et al. (2008), Wang et al. (2012) proposed to solve the penalized estimated
equations in Equation (3) by combining the minorization-maximization (MM) algorithm with a
Newton-Raphson (NR) algorithm. At the jth iteration,

F=p "y e N ) (s - NeE T, ®)

where

. N . .
HE ) = L XA R @Al 2B
i=1
N . (6)
a1y _ o faa(lpl+) (Bl +)
B =g e

where € is a small value (e.g., 107¢). Wang et al. (2012) derived the asymptotic theory of PGEE
in a high-dimensional framework where the number of covariates p increases as N increases, and p
can reach the same order as N. An important feature of PGEE is that even if the working correlation
structure is misspecified, the consistency of model selection holds, that is, with probability approaching

one, it correctly identifies the zero coefficients to be zero and the nonzero coefficients to be nonzero.

They also suggested a sandwich formula to estimate the asymptotic covariance matrix of the penalized
GEE estimator as follows:

Cov(B) ~ [H(B) + NE(B)] "'M(B)[H(B) + NE(B)] ", %)

where

N
M(B) = Y X A2 (BIR teie] RTAT2(B)X;, ®)
i=1

where ¢; = A V2(B)(Y; — ).

The tuning parameter A in Equation (4) can be selected using K-fold cross-validation, where K is
a positive integer. The data is divided into non-overlapping K sub-samples of equal sizes. The kth
sub-sample being left out as the testing data set, and the remaining data are used as the training data
set,k =1,...,K. We use the set N_j to denote the indice set of the subjects in the training data set and
use |N_| to denote the cardinality of N_j. We fit the PGEE under working independence assumption
using the training data and then evaluate the prediction error using the test data by PE_(A), which is
defined as

1 1 & T2
= Sy (Ve — g(XEB)),
IN_| ie%k ni tg{( w8l lt‘B))

PE_i(A)

We repeat the above computation for each of the K subsamples, and the overall cross-validated
prediction error is given by

CV(A)=— Y PE_ (1) 9

Given a set of A values over a grid, we choose the value of A that yields the smallest CV(A).

PGEE estimation algorithm

The algorithm for solving penalized generalized estimating equations is summarized as follows:

1. Determine a reasonable grid of values for A.

2. Given a value of A:

* Assign an initial value for B.
e Compute U(B), H(B), and E(B) for current value of B.
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¢ Update the current estimate of B through formula in Equation (5).

¢ Stop the iteration sequence if a convergence criterion is satisfied such as when the L; norm
of the difference of estimated B between iterations is below a threshold (e.g., 10~2) and
denote the estimated value at convergence as S.

¢ Compute the cross-validation value of A via Equation (9).

3. Repeat step 2 for each value of A over the grid and find the value of A that gives the smallest
cross-validation prediction error.

4. Find the estimated parameter 8 corresponding to the selected A, and compute the sandwich
covariance matrix by Equation (7).

The PGEE package

The R package PGEE consists of three core functions: CVfit, PGEE, and MGEE, respectively. The main
function PGEE fits PGEEs to the longitudinal data with high-dimensional covariates. Prior to model
fitting with PGEE, the cross-validated tuning parameter should be computed via the function CVfit.
The package also includes the function MGEE which fits the unpenalized GEEs to the data. The PGEE and
MGEE functions are written by the authors. The R package PGEE depends on the R packages MASS
(Ripley, 2015) and mvinorm (Genz et al., 2015) only.

In this section, we introduce the input arguments of the functions CVfit and PGEE, whereas the
function MGEE shares the same arguments with the function PGEE except the arguments lambda, pindex,
and eps.

The usage and input arguments of CVfit function are summarized as follows:

CVfit(formula, id, data, family, scale.fix = TRUE, scale.value = 1, fold, lambda.vec,
pindex, eps, maxiter, tol)

The function CVfit applies the step 3 in the estimation algorithm in Section 2.2.4 via Equation
(9). It uses the function PGEE inside such that both functions share common input arguments. The
input argument formula is a formula expression in the form of response predictors asin Imand glm
functions. The argument id is a vector for identifying subjects/clusters and the argument data is a
data frame which stores the response and covariates in formula with id variable as in gee function
in R package gee. Please note that the function PGEE requires the covariates to be numeric variables
and does not work with factor covariates. The argument family is a list of functions and expressions
for defining link and variance functions. While families supported in the R package PGEE are
binomial, gaussian, gamma, and poisson, link functions supported are identity, log, logit, inverse,
probit, and cloglog. The argument scale. fix is a logical variable. The default value is TRUE. On the
other hand, if scale.fix = TRUE, scale.value assigns a numeric value to which the scale parameter
should be fixed at. Otherwise, the default value is 1. The arguments fold, pindex, and eps are
the main buildings of the function CVfit for cross-validation. The argument fold is the number of
folds used in cross-validation. The argument lambda. vec is a vector of tuning parameters used in
cross-validation. The argument pindex is an index vector showing the parameters which are not
subject to penalization. The default value is NULL. However, in case of a model with intercept, the
intercept parameter should be never penalized. The argument eps is a numerical value for the € used
in Equation (6). The default value is 107°. The argument maxi ter is the number of iterations that is
used in the estimation algorithm. The default value is 30. The argument tol is the tolerance level that
is used in the estimation algorithm to evaluate algorithm convergence. The default value is 10~3. The
function CVfit returns an object class of CVfit. Applying the function print to the object returned by
function CVfit provides detailed information related to cross-validation and gives the value of A that
minimizes the cross-validated value of prediction error.

PGEEs (Wang et al., 2012) and, in turn, the function CVfit in R package PGEE accommodate
the SCAD penalty. Fan and Li (2001) demonstrated that the SCAD penalty function is a popular
nonconvex penalty function that satisfies three desirable properties of variable selection (e.g., sparsity,
unbiasedness, and continuity) simultaneously. Recently, a number of R packages have been developed
for estimation and variable selection problems in linear regression models, logistic regression models,
quantile regression models, and Cox proportional hazards models for cross-sectional data with high-
dimensional covariates; see the R package ncvreg (Breheny and Huang, 2011) for linear and logistic
regression models with SCAD and MCP penalization functions, the R package penalized (Goeman,
2010) for generalized linear regression models and Cox proportional hazards models with L; and
L, penalty functions, the R package glmnet (Friedman et al., 2010) for generalized linear regression
models and Cox proportional hazards models with LASSO and elastic-net penalty functions, and the R
package rqPen (Sherwood and Maidman, 2016) for quantile regression penalized quantile regression
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with LASSO, SCAD, and MCP functions. However, these packages do not apply to the clustered data
setting which we consider in this paper.

The usage and input arguments of PGEE function are summarized as follows:

PGEE(formula, id, data, na.action = NULL, family = gaussian(link = "identity"),
corstr = "independence”, Mv = NULL, beta_int = NULL, R = NULL, scale.fix = TRUE,
scale.value = 1, lambda, pindex = NULL, eps = 10%-6, maxiter = 30, tol = 10*-3,
silent = TRUE)

The input arguments formula, data, id, and family are the same as those in the CVfit function.
Here, the default value for family is gaussian. The argument na.action is a function to remove
missing values from the data, where only na.omit is allowed. The argument corstr is a character
string, which specifies the type of correlation structure within the repeated measurements of a subject.
The correlation structures supported in the R package PGEE are "AR-1","exchangeable”, "fixed",
"independence”, "stat_M_dep”, "non_stat_M_dep”, and "unstructured”. The default corstr type is
"independence”. If either "stat_M_dep” or "non_stat_M_dep"” is specified in corstr, then the argu-
ment Mv assigns a numeric value for Mv, which is one minus less than the largest number of repeated
measurements of a subject has in the data. Otherwise, the default value is NULL. When the longitudinal
data is unbalanced, the use of "non_stat_M_dep” and "unstructured” is not allowed in the argument
corstr. If corstr = "fixed" is specified, then the argument R is a user specified square correlation
matrix of dimension maximum of the number of repeated measurements of a subject has in the data.
Otherwise, the default value is NULL. The argument beta_int is a user specified vector of initial values
for regression parameters including the intercept. The default value is NULL which gets initial values
through fitting a glm to the whole longitudinal data. The argument lambda is a numerical value
returned by CVfit function. The input arguments scale. fix, scale.value, pindex, eps, maxiter, and
tol are the same as those in the CVfit function. The argument silent is a logical variable; if false, the
regression parameter estimates at each iteration are printed. The default value is TRUE.

The function PGEE returns an object class of PGEE. Applying the functions print and summary to
an object returned by function PGEE provides detailed information related to the model fitting and
summarizes the results as illustrated in the next section.

The function MGEE closely follows the syntax of the function gee in the R package gee except that
the argument subset for data sub-setting and the argument contrasts for coding factor variables in
terms of dummy variables are not used in the function MGEE. Furthermore, while any lag order can
be assumed in the argument corstr = "AR-M" of the function gee, only first-order lag is allowed in
the function MGEE (e.g., corstr = "AR-1"). On the other hand, there is much discrepancy between
the arguments of the function MGEE and the function geeglm in the R package geepack since the
latter inherits its arguments mostly from the function glm. As the result, arguments in geepack such
as weights, subset, etastart, mustart, offset, and waves are not available in our function MGEE.
Its corstr menu consists of "AR-1","exchangeable”, "fixed”, "independence”, and "unstructured”
structures, which is less comprehensive compared to the corstr menu of the function MGEE. Lastly, in
addition to the sandwich variance estimator, the function geeglm offers jackknife variance estimator
for data sets with small number of clusters via the argument std.err.

Example

In this section, we demonstrate the use of the R package PGEE using a yeast cell-cycle gene expression
data set collected in the CDC15 experiment of Spellman et al. (1998). The experiment measured
genome-wide mRNA levels of 6178 yeast open reading frames (ORFs) (translates DNA sequences
into its corresponding amino acid sequences which will appear in the final protein). This experiment
covered two cell-cycle periods, where measurements were taken at 7-minute intervals over a 119-
minutes period yielding a total of 18 time points.

As discussed in Wang et al. (2012) and Wang et al. (2007), the cell-cycle process is a regulated life
process where the cell grows, replicates its DNA and prepares itself for cell-division. This process is
generally divided into M/G1-G1-S-G2-M stages, where M refers to “mitosis”, G1 refers “GAP 1”7, S
refers to DNA “synthesis”, and G2 refers to “GAP 2”, respectively. Spellman et al. (1998) identified
a total of 800 genes that showed periodic variation during the cell-cycle process. However, to better
understand the phenomenon underlying cell-cycle process, it is important to identify transcription
factors (TFs) that regulate the gene expression levels of cell cycle-regulated genes. Specifically, TFs are
proteins that control gene regulation by determining the rate of transcription of genetic information
from DNA to mRNA.

As Wang et al. (2012) and Wang et al. (2007), we used a subset of 297 cell-cycled-regularized genes
and the binding probabilities of a total of 96 TFs obtained from a mixture model approach of Wang
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et al. (2007) based on the ChIP data of Lee et al. (2002). We applied PGEE to identify the TFs that are
significantly associated with gene expression level at M/G1, G1, S, G2, and M stages (each stage has
different number of time points from the cycle). We fitted the following PGEE to each stage with three
different working correlation matrices (independence, exchangeable, and Ar(1)):

9%
it = 0 + 1timei + Y BpXip, (10)
p=1

where time;; is the time variable and x;,’s are standardized transcription factor values (p =
1,2,...,96). When fitting PGEE, only B,’s were subject to penalization. Table 1 summarizes the
number of TFs which are identified as statistically significant for each stage under three different
working correlation structures.

Correlation M/GI GI S G2 M

Independence 16 12 14 8 9
Exchangeable 15 13 12 8 7
Ar(1) 15 13 13 8 8

Table 1: Number of TFs selected at each stage in the yeast cell-cycle process with PGEE

For illustration, we used the yeast data from “G1” stage. Specifically, like the R package gee,
the package PGEE requires the response and covariate columns to be ordered by id column and
within id column according to time column. In our example, the yeast data was saved under the
name of yeastG1 object. The first column was id column, which identifies the genes. Then, while the
continuous responses were placed under the column y, the time variable and the standardized values
of 96 TFs were placed subsequently. Due to space limitation, we illustrated a portion of the yeastG1
data as follows:

> # load data
> data(yeastG1)
> data = yeastGl
> # get the column names
> colnames(data)[1:9]
[1] "id" "y" "time" "ABF1" "ACE2" "ADR1" "ARG8Q" "ARG81" "AR080@"
> # see some portion of yeast G1 data
> head(data,5)[1:9]

id y time ABF1 ACE2 ADR1 ARG80 ARG81 ARO80
1 0.88 3 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
10.32 4 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
1.09 12 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
0.73 13 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
2 0.66 3 -0.34618104 -0.1418099 -0.1397801 -0.1476834 -0.08486203 -0.1073536

g w N =
—_

Prior to model fitting with the function PGEE, we needed to compute the cross-validated value of
tuning paremeter over a grid via the function CVfit. This process requires a trial-error period, where
one can start with a wide grid interval and then narrow it down. As described in Section 2.3, we
determined the main input arguments of the function CVfit as follows:

library(PGEE)

# define the input arguments

formula <- "y ~.-id"

family <- gaussian(link = "identity")

lambda.vec <- seq(0.01,0.2,0.01)

# find the optimum lambda

cv <- CVfit(formula = formula, id = id, data = data, family = family, scale.fix = TRUE,
scale.value = 1, fold = 4, lambda.vec = lambda.vec, pindex = c(1,2), eps = 10"-6,
maxiter = 30, tol = 10%-6)

# print the results

print(cv)

Call:

CVfit(formula = formula, id = id, data = data, family = family,

scale.fix = TRUE, scale.value = 1, fold = 4, lambda.vec = lambda.vec,

pindex = c(1, 2), eps = 10%-6, maxiter = 30, tol = 10%-6)

VV + +V VYV VVVYV

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

399

4-fold CV results:

lambda Cv
[1,]1] ©0.01 720.6857
[2,] 0.02 482.1046
[3,] 0.03 382.6932
[4,1] ©0.04 358.1970
[5,1] 0.05 344.1034
[6,1] 0.06 338.4713
[7,1 ©0.07 335.7137
[8,] 0.08 333.5432
[9,1] 0.09 330.7405
[10,] .10 327.8395
[11,1] 0.11 326.3243
[12,] 0.12 325.3068
[13,] 0.13 324.6835
[14,] 0.14 324.5388
[15,] 0.15 324.8667
[16,] 0.16 325.7849
[17,1 Q.17 327.1245
[18,] 0.18 328.4365
[19,]1 .19 329.5468
[20,] 0.20 330.6265

Optimal tuning parameter:
Best lambda
0.14
> # see the returned values by CVfit
> names(cv)
[1] "fold" "lam.vect” "cv.vect” "lam.opt”
> # get the optimum lambda
> cv$lam.opt
[1] 0.14

'cv.min”

"call”

After selecting the tuning parameter A via the function CVfit, we apply the PGEE function with the

working correlation matrix type corstr = "independence” as follows:

> # fit the PGEE model

> myfitl <- PGEE(formula = formula, id = id, data = data, na.action = NULL,
+ family = family, corstr = "independence”, Mv = NULL,

+ beta_int = c(rep(@,dim(data)[2]-1)), R = NULL, scale.fix = TRUE,

+ scale.value = 1, lambda = cv$lam.opt, pindex = c(1,2), eps = 10*-6,

+ maxiter = 30, tol = 10%-6, silent = TRUE)

For comparison, we also fit the same model with corstr = "exchangeable” and corstr =

"AR-1" (see Table 1). Here, we use 0 initial values for the regression coefficients for g, v1, and §,’s
(r=1,2,...,96) by assigning 0’s for beta_int. Alternatively, the initial estimates could be obtained
via fitting a glm while setting beta_int = NULL. We specify the vector of index for unpenalized
parameters as pindex = c(1,2) since the first two regression coefficients ¢ and 1 in Equation (10)
are not subject to penalization. Furthermore, the returned values of myfit1 object (in a similar way
summary (myfit1) object) can be found out by the names function:

> # get the values returned by myfit object
> names(myfit1)

[1] "title" "version” "model”

[4] "call” "terms"” "nobs"

[7] "iterations” "coefficients” "nas”

[10] "linear.predictors” "fitted.values” "residuals”

[13] ”familyll Ily" Ilid"

[16] "max.id" "working.correlation” "scale”

[19] "epsilon” "lambda.value” "robust.variance”
[22] "naive.variance” "xnames" "error"”

The returned objects by PGEE function are in similar format as those returned by gee function in R
package. For example, while we could obtain whole model fitting results by summary (myfit1) object,
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we could also obtain the summary of the model fitting results, i.e., estimate of regression coefficients,
their corresponding naive and robust standard errors as well as z-values through coefficients

method for summary(myfit1) object as follows:

> # see a portion of the results returned by coef(summary(myfit1))

> head(coef (summary(myfit1)),7)

.684975e-07

.334557e-02 2.2691533
.274155e-03 2.9853891
.054339e-03 -1.9629245

634333e-06 1162135

2322903

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 9.835775e-02 0.0603431824 1.629972904 4
time 9.774627e-03 0.0065644728 1.489019375 3
ABF1 -4.032513e-03 0.0095653833 -0.421573608 2
ACE2 1.824265e-06 0.0002669801 ©.006832963 1.
ADR1 1.911308e-07 0.0001733864 ©0.001102340 7
ARG80 2.017436e-07 0.0001741572 ©.001158399 8
ARG81 2.374483e-05 0.0007900111 0.030056320 2

Any regression estimate less than 1073 in magnitude can be considered as equal to 0 (and thus not
selected) in PGEE. In this sense, we obtained the variables whose regression estimates greater than

1073 and their summary statistics as follows:

> # see the variables which have non-zero coefficients

1.
.611678e-07 ©.2511020

0.

1.

.296590e-05

0339165

> index1 <- which(abs(coef (summary(myfit1))[,"Estimate”]) > 10%-3)

> names(abs(coef (summary(myfit1))[index1,"Estimate”]))

[1] "(Intercept)” "time" "ABF1" "FKH1" "FKH2"

[7]1 "GCR2" "MBP1" "MSN4" "NDD1" "PHD1"
[13] "RLM1" "SMP1" "SRD1" "STB1" "SWI4"
> # see the PGEE summary statistics of these non-zero variables
> coef (summary(myfit1))[index1,]

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) ©.098357752 0.060343182 1.6299729 0.043345573 2.269153
time 0.009774627 0.006564473 1.4890194 0.003274155 2.985389
ABF1 -0.004032513 0.009565383 -0.4215736 0.002054339 -1.962925
FKH1 -0.009152898 0.013746477 -0.6658359 0.004173178 -2.193268
FKH2 -0.091503036 0.029629441 -3.0882471 ©.017178993 -5.326449
GAT3 0.009780852 0.014721289 0.6644019 0.002192983 4.460067
GCR2 -0.005837966 0.011396288 -0.5122690 0.003227041 -1.809077
MBP1 0.102623543 0.028474614 3.6040363 0.017389748 5.901382
MSN4 0.011652400 0.015301265 0.7615318 0.004533629 2.570215
NDD1 -0.068098866 0.027962789 -2.4353389 0.017078278 -3.987455
PHD1 0.018224333 0.017586392 1.0362747 0.006676215 2.729740
RGM1 0.031474714 0.022152842 1.4207980 0.006025010 5.224010
RLM1 0.004245315 0.009823147 0.4321746 0.003155203 1.345497
SMP1 0.018181353 0.017691495 1.0276889 0.007614400 2.387759
SRD1 -0.009422532 0.013882871 -0.6787164 0.005117179 -1.841353
STB1 0.038198667 0.022075228 1.7303860 0.017485954 2.184534
SWI4 0.007370389 0.012622711 ©.5838990 0.004184668 1.761284
SWI6 0.033957904 0.022673644 1.4976818 0.013225660 2.567577

For comparison, we fitted the unpenalized GEEs via MGEE function under the same settings defined

above as follows:

# fit the GEE model

family = family, corstr = "independence”, Mv = NULL,

+ + + V V

Finally, we obtain the TFs which were significantly associated with the gene expression levels at

G1 stage via PGEE and GEE analyses, respectively.

myfit2 <- MGEE(formula = formula, id = id, data = data, na.action = NULL,

beta_int = c(rep(@,dim(data)[2]-1)), R = NULL, scale.fix = TRUE,
scale.value = 1, maxiter = 30, tol = 10*-6, silent = TRUE)

> # see the significantly associated TFs in PGEE analysis
> names (which(abs(coef (summary(myfit1))[index1,"Robust z"1) > 1.96))

[1]1 "(Intercept)” "time" "ABF1" "FKH1"
[7] "MBP1" "MSN4" "NDD1" "PHD1"
[13] "sSTB1" "SWI6"

"FKH2"
"RGM1"

> # see the significantly associated TFs in GEE analysis
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"GAT3"
n RGM‘I n
"SWI6"

"GAT3"
"SMP1”
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> names(which(abs(coef (summary(myfit2))[, "Robust z"]1) > 1.96))

[1] "(Intercept)” "time" "ABF1" "ARG81" "ASH1" "CAD1"
[7] "GAT3" "GCN4" "GCR1" "GRF10.Pho2." "MBP1" "MET31"
[13] "MET4" "MTH1" "NDD1" "PDR1" "ROX1" "STB1"
[19] "STP1" "YAP5" "ZAP1"

When the results of PGEE and GEE analysis are compared, it is observed that while TFs such that
FKH1, FKH2, MSN4, PHD1, RGM1, and SMP1 are determined as significantly associated by PGEE
analysis, these TFs are not detected by GEE analysis. The direct use of classical unpenalized GEE in
high-dimensional longitudinal data analysis may lead to misleading results as the efficiency of PGEE
over GEE has been showed in the simulation studies presented in Wang et al. (2012).

We repeat the steps above for each M/G1, G1, S, G2, and M stages under three different working
correlation matrices (independence, exchangeable, and Ar(1)) and identify the number of TFs selected
at each stage where the results are presented in Table 1. The results in Table 1 suggest that PGEE is
robust to working correlation matrix specification and the selected TFs do not change significantly
across working correlation matrix types within a stage. Furthermore, the analysis also reveals that
different TFs may play different roles on gene expression levels in each cell-cycle process and there
may be a small overlap in the selected TFs at different stages (e.g., only FKH1, FKH2, and SMP1 are
related to all stages of the yeast cell-cycle process).

Conclusion

In this paper, we present the R package PGEE which implements the PGEEs approach in Wang et al.
(2012). The PGEE procedure performs simultaneous estimation and variable selection for longitudinal
data analysis with high-dimensional covariates. We believe that this package is useful to practitioners
in diverse fields where high-dimensional longitudinal data commonly arises such as genetics and
large-scale health studies.
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