
CONTRIBUTED RESEARCH ARTICLE 437

checkmate: Fast Argument Checks for
Defensive R Programming
by Michel Lang

Abstract Dynamically typed programming languages like R allow programmers to write generic,
flexible and concise code and to interact with the language using an interactive Read-eval-print-loop
(REPL). However, this flexibility has its price: As the R interpreter has no information about the
expected variable type, many base functions automatically convert the input instead of raising an
exception. Unfortunately, this frequently leads to runtime errors deeper down the call stack which
obfuscates the original problem and renders debugging challenging. Even worse, unwanted conver-
sions can remain undetected and skew or invalidate the results of a statistical analysis. As a resort,
assertions can be employed to detect unexpected input during runtime and to signal understandable
and traceable errors. The package checkmate provides a plethora of functions to check the type and
related properties of the most frequently used R objects and variable types. The package is mostly
written in C to avoid any unnecessary performance overhead. Thus, the programmer can conveniently
write concise, well-tested assertions which outperforms custom R code for many applications. Fur-
thermore, checkmate simplifies writing unit tests using the framework testthat (Wickham, 2011) by
extending it with plenty of additional expectation functions, and registered C routines are available
for package developers to perform assertions on arbitrary SEXPs (internal data structure for R objects
implemented as struct in C) in compiled code.

Defensive programming in R

Most dynamic languages utilize a weak type system where the type of variable must not be declared,
and R is no exception in this regard. On the one hand, a weak type system generally reduces the code
base and encourages rapid prototyping of functions. On the other hand, in comparison to strongly
typed languages like C/C++, errors in the program flow are much harder to detect. Without the type
information, the R interpreter just relies on the called functions to handle their input in a meaningful
way. Unfortunately, many of R’s base functions are implemented with the REPL in mind. Thus, instead
of raising an exception, many functions silently try to auto-convert the input. E.g., instead of assuming
that the input NULL does not make sense for the function mean(), the value NA of type numeric is
returned and additionally a warning message is signaled. While this behaviour is acceptable for
interactive REPL usage where the user can directly react to the warning, it is highly unfavorable in
packages or non-interactively executed scripts. As the generated missing value is passed to other
functions deeper down the call stack, it will eventually raise an error. However, the error will be
reported in a different context and associated with different functions and variable names. The link to
origin of the problem is missing and debugging becomes much more challenging. Furthermore, the
investigation of the call stack with tools like traceback() or browser() can result in an overwhelming
number of steps and functions. As the auto-conversions cascade nearly unpredictably (as illustrated
in Table 1), this may lead to undetected errors and thus to misinterpretation of the reported results.

Return value of
Input mean(x) median(x) sin(x) min(x)

numeric(0) NaN NA numeric(0) Inf (w)
character(0) NA_real_ (w) NA_character_ [exception] NA_character_ (w)
NA NA_real_ NA NA_real_ NA_integer_
NA_character_ NA_real_ (w) NA_character_ [exception] NA_character_
NaN NaN NA NaN NaN
NULL NA (w) NULL (w) [exception] Inf (w)

Table 1: Input and output for some simple mathematical functions from the base package (R-3.4.0).
Outputs marked with “(w)” have issued a warning message.

As a final motivating example, consider the following function which uses the base functions
diff() and range() to calculate the range r = xmax − xmin of a numerical input vector x:

myrange <- function(x) {
diff(range(x))

}

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 438

This function is expected to return a single numerical value, e.g. myrange(1:10) returns 9. However,
the calls myrange(NULL) and myrange(integer(0)) also return such an unsuspicious, single numeric
value: -Inf. Both calls signal warnings, but warnings can rather easily be overlooked and are hard to
track down. It would arguably be much better to directly get an error message informing the user that
something unintended is happening. In the worst case the warnings do not surface and – if this piece
of code is embedded in a larger analysis – wrong conclusions are drawn.

The described problems lead to a concept called “defensive programming” where the programmer
is responsible for manually checking function arguments. Reacting to unexpected input as soon
as possible by signaling errors instantaneously with a helpful error message is the key aspect of
this programming paradigm. A similar concept is called “design by contract” which demands the
definition of formal, precise and verifiable input and in return guarantees a sane program flow if all
preconditions hold. For myrange(), it would be necessary to insist that x is a numeric vector with
at least one element to ensure a meaningful result. Additionally, missing values must be dealt with,
either by completely prohibit them or by ensuring a meaningful return value. The package checkmate
assists the programmer in writing such assertions in a concise way for the most important R variable
types and objects. For myrange(), adding the line

assertNumeric(x, min.len = 1, any.missing = FALSE)

would be sufficient to ensure a sane program flow.

Related work

Many packages contain custom code to perform argument checks. These either rely on (a) the base
function stopifnot() or (b) hand-written cascades of if-else blocks containing calls to stop().
Option (a) can be considered a quick hack because the raised error messages lack helpful details or
instructions for the user. Option (b) is the natural way of doing argument checks in R but quickly
becomes tedious. For this reason many packages have their own functions included, but there are also
some packages on CRAN whose sole purpose are argument checks.

The package assertthat (Wickham, 2017) provides the “drop-in replacement” assert_that() for
R’s stopifnot() while generating more informative help messages. This is achieved by evaluating the
expression passed to the function assert_that() in an environment where functions and operators
from the base package (e.g. as.numeric() or `==`) are overloaded by more verbose counterparts. E.g.,
to check a variable to be suitable to pass to the log() function, one would require a numeric vector
with all positive elements and no missing values:

assert_that(is.numeric(x), length(x) > 0, all(!is.na(x)), all(x >= 0))

For example, the output of the above statement for the input c(1,NA,3) reads "Error: Elements 2
of !is.na(x) are not true". Additionally, assertthat offers some additional convenience functions
like is.flag() to check for single logical values or has_name() to check for presence of specific names.
These functions also prove useful if used with see_if() instead of assert_that() which turns the
passed expression into a predicate function returning a logical value.

The package assertive (Cotton, 2016) is another popular package for argument checks. Its func-
tionality is split over 16 packages containing over 400 functions, each specialized for a specific class of
assertions: For instance, assertive.numbers specializes on checks of numbers and assertive.sets offers
functions to work with sets. The functions are grouped into functions starting with is_ for predicate
functions and functions starting with assert_ to perform stopifnot()-equivalent operations. The
author provides a “checklist of checks” as package vignette to assist the user in picking the right
functions for common situations like checks for numeric vectors or for working with files. Picking up
the log() example again, the input check with assertive translates to:

assert_is_numeric(x)
assert_is_non_empty(x)
assert_all_are_not_na(x)
assert_all_are_greater_than_or_equal_to(x, 0)

The error message thrown by the first failing assertion for the input c(1,NA,3) reads "is_not_na
: The values of x are sometimes NA.". Additionally, a data.frame is printed giving detailed
information about “bad values”:

There was 1 failure:
Position Value Cause

1 2 NA missing

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=checkmate
https://CRAN.R-project.org/package=assertthat
https://CRAN.R-project.org/package=assertive
https://CRAN.R-project.org/package=assertive.numbers
https://CRAN.R-project.org/package=assertive.sets

CONTRIBUTED RESEARCH ARTICLE 439

Moreover, the package assertr (Fischetti, 2016) focuses on assertions for magrittr (Bache and
Wickham, 2014) pipelines and data frame operations in dplyr (Wickham and Francois, 2016), but is
not intended for generic runtime assertions.

The checkmate package

Design goals

The package has been implemented with the following goals in mind:

Runtime To minimize any concern about the extra computation time required for assertions, most
functions directly jump into compiled code to perform the assertions directly on the SEXPs. The
functions also have been extensively optimized to first perform inexpensive checks in order to
be able to skip the more expensive ones.

Memory In many domains the user input can be rather large, e.g. long vectors and high dimensional
matrices are common in text mining and bioinformatics. Basic checks, e.g. for missingness, are
already quite time consuming, but if intermediate objects of the same dimension have to be
created, runtimes easily get out of hand. For example, any(x < 0) with x being a large numeric
matrix internally first allocates a logical matrix tmp with the same dimensions as x. The matrix
tmp is then passed in a second step to any() which aggregates the logical matrix to a single
logical value and tmp is marked to be garbage collected. Besides a possible shortage of available
memory, which may cause the machine to swap or the R interpreter to terminate, runtime is
wasted with unnecessary memory management. checkmate solves this problem by looping
directly over the elements and thereby avoiding any intermediate objects.

Code completion The package aims to provide a single function for all frequently used R objects
and their respective characteristics and attributes. This way, the built-in code completion of
advanced R editors assist in finding the suitable further restrictions. For example, after typing
the function name and providing the object to check ("assertNumeric(x,"), many editors look
up the function and suggest additional function arguments via code completion. In this example,
checks to restrict the length, control the missingness or setting lower and upper bounds are
suggested. These suggestions are restrictions on x specific for the respective base type (numeric).
Such context-sensitive assistance helps writing more concise assertions.

The focus on runtime and memory comes at the price of error messages being less informative
in comparison to assertthat or assertive. Picking up the previous example with input c(1,NA,3),
checkmate’s assertNumeric(x,any.missing = FALSE,lower = 0) immediately raises an exception
as soon as the NA is discovered at position 2. The package refrains from reporting an incomplete
list of positions of missing values, instead the error message just reads "Assertion on 'x' failed:
Contains missing values.". Thus, the implementations in assertive or assertr are better suited to
find bad values in data and especially in data frames. checkmate is designed to amend functions with
quick assertions in order to ensure a sane program flow. Nevertheless, the provided information is
sufficient to quickly locate the error and start investigations with the debugging tools provided by R.

Naming scheme

The core functions of the package follow a specific naming scheme: The first part (prefix) of a function
name determines the action to perform w.r.t. the outcome of the respective check while the second
part of a function name (suffix) determines the base type of the object to check. The first argument of
all functions is always the object x to check and further arguments specify additional restrictions on x.

Prefixes

There are currently four families of functions, grouped by their prefix, implemented in checkmate:

assert* Functions prefixed with “assert” throw an exception if the corresponding check fails and the
checked object is returned invisibly on success. This family of functions is suitable for many
different tasks. Besides argument checks of user input, this family of functions can also be used
as a drop-in replacement for stopifnot() in unit tests using the internal test mechanism of R as
described in Writing R Extensions (R Core Team, 2016), Subsection 1.1.5. Furthermore, as the
object to check is returned invisibly, the functions can also be used inside magrittr pipelines.

test* Functions prefixed with “test” are predicate functions which return TRUE if the respective check
is successful and FALSE otherwise. This family of functions is best utilized if different checks
must be combined in a non-trivial manner or custom error messages are required.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=assertr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 440

expect* Functions prefixed with “expect” are intended to be used together with testthat (Wickham,
2011): the check is translated to an expectation which is then forwarded to the active testthat
reporter. This way, checkmate extends the facilities of testthat with dozens of powerful helper
functions to write efficient and comprehensive unit tests. Note that testthat is an optional
dependency and the expect-functions only work if testthat is installed. Thus, to use checkmate
as an testthat extension, checkmate must be listed in Suggests or Imports of a package.

check* Functions prefixed with “check” return the error message as a string if the respective check
fails, and TRUE otherwise. Functions with this prefix are the workhorses called by the “assert”,
“test” and “expect” families of functions and prove especially useful to implement custom
assertions. They can also be used to collect error messages in order to generate reports of
multiple check violations at once.

The prefix and the suffix can be combined in both “camelBack” and “underscore_case” fash-
ion. In other words, checkmate offers all functions with the “assert”, “test” and “check” prefix in
both programming style flavors: assert_numeric() is a synonym for assertNumeric() the same way
testDataFrame() can be used instead of test_data_frame(). By supporting the two most predom-
inant coding styles for R, most programmers can stick to their favorite style while implementing
runtime assertions in their packages.

Suffixes

While the prefix determines the action to perform on a successful or failed check, the second part of
each function name defines the base type of the first argument x, e.g. integer, character or matrix.
Additional function arguments restrict the object to fulfill further properties or attributes.

Atomics and Vectors The most important built-in atomics are supported via the suffixes *Logical,
*Numeric, *Integer, *Complex, *Character, *Factor, and *List (strictly speaking, “numeric” is not an
atomic type but a naming convention for objects of type integer or double). Although most operations
that work on real values also are applicable to natural numbers, the contrary is often not true. Therefore
numeric values frequently need to be converted to integer, and *Integerish ensures a conversion
without surprises by checking double values to be “nearby” an integer w.r.t. a machine-dependent
tolerance. Furthermore, the object can be checked to be a vector, an atomic or an atomic vector (a
vector, but not NULL).

All functions can optionally test for missing values (any or all missing), length (exact, minimum
and maximum length) as well as names being (a) not present, (b) present and not NA/empty, (c) present,
not NA/empty and unique, or (d) present, not NA/empty, unique and additionally complying to R’s
variable naming scheme. There are more type-specific checks, e.g. bound checks for numerics or
regular expression matching for characters. These are documented in full detail in the manual.

Scalars Atomics of length one are called scalars. Although R does not differentiate between scalars
and vectors internally, scalars deserve particular attention in assertions as arguably most function
arguments are expected to be scalar. Although scalars can also be checked with the functions that work
on atomic vectors and additionally restricting to length 1 via argument len, checkmate provides some
useful abbreviations: *Flag for logical scalars, *Int for an integerish value, *Count for a non-negative
integerish values, *Number for numeric scalars and *String for scalar character vectors. Missing values
are prohibited for all scalar values by default as scalars are usually not meant to hold data where
missingness occurs naturally (but can be allowed explicitly via argument na.ok). Again, additional
type-specific checks are available which are described in the manual.

Compound types The most important compound types are matrices/arrays (vectors of type logical,
numeric or character with attribute dim) and data frames (lists with attribute row.names and class
data.frame storing atomic vectors of same length). The package also includes checks for the popular
data.frame alternatives data.table (Dowle et al., 2017) and tibble (Wickham et al., 2017). Some
checkable characteristics conclude the internal type(s), missingness, dimensions or dimension names.

Miscellaneous On top of the already described checks, there are functions to work with sets
(*Subset, *Choice and *SetEqual), environments (*Environment) and objects of class “Date” (*Date).
The *Function family checks R functions and its arguments and *OS allows to check if R is running on
a specific operating system. The functions *File and *Directory test for existence and access rights of
files and directories, respectively. The function *PathForOutput allows to check whether a directory
can be used to store files in it. Furthermore, checkmate provides functions to check the class or names
of arbitrary R objects with *Class and *Names.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=tibble

CONTRIBUTED RESEARCH ARTICLE 441

Custom checks Extensions are possible by writing a check* function which returns TRUE on success
and an informative error message otherwise. The exported functionals makeAssertionFunction(),
makeTestFunction() and makeExpectationFunction() can wrap this custom check function to create
the required counterparts in such a way that they seamlessly fit into the package. The vignette
demonstrates this with a check function for square matrices.

DSL for argument checks

Most basic checks can alternatively be performed using an implemented Domain Specific Language
(DSL) via the functions qassert(), qtest() or qexpect(). All three functions have two arguments:
The arbitrary object x to check and a “rule” which determines the checks to perform provided as a
single string. Each rules consist of up to three parts:

1. The first character determines the expected class of x, e.g. “n” for numeric, “b” for boolean, “f”
for a factor or “s” for a string (more can be looked up in the manual). By using a lowercase letter,
missing values are permitted while an uppercase letter disallows missingness.

2. The second part is the length definition. Supported are “?” for length 0 or length 1, “+” for
length ≥ 1 as well as arbitrary length specifications like “1”/“==1” for exact length 1 or “<10”
for length < 10.

3. The third part triggers a range check, if applicable, in interval notation (e.g., “[0, 1)” for values
0 ≤ x < 1). If the boundary value on an open side of the interval is missing, all values of x will
be checked for being > −∞ or < ∞, respectively.

Although this syntax requires some time to familiarize with, it allows to write extensive argument
checks with very few keystrokes. For example, the previous check for the input of log() translates to
the rule "N+[0,]". More examples can be found in Table 2

Base R DSL

Single string
is.character(x) && length(x) == 1 "s1"

Factor with minimum length 1, no missing values
is.factor(x) && length(x) >= 1 && all(!is.na(x)) "F+"

List with no missing elements (NULL interpreted as missing for lists)
is.list(x) && !any(sapply(x,is.null)) "L"

Integer of length 3 with positive elements
is.integer(x) && length(x) == 3 && all(x >= 0) "i3[0]"

Single number representing a proportion (x ∈ [0, 1])
is.numeric(x) && length(x) == 1 && !is.na(x) && x >= 0 && x <= 1 "N1[0,1]"

Numeric vector with non-missing, positive, finite elements
is.numeric(x) && all(!is.na(x) & x >= 0 & is.finite(x)) "N[0,)"

NULL or a single string with at least one character
is.null(x) || (is.character(x) && length(x) == 1 && nzchar(x)) "0", "s1[1]"

Table 2: Exemplary checks using base R and the abbreviations implemented in the DSL.

As the function signature is really simplistic, it is perfectly suited to be used from compiled code
written in C/C++ to check arbitrary SEXPs. For this reason checkmate provides header files which
third-party packages can link against. Instructions can be found in the package vignette.

Benchmarks

This small benchmark study picks up the log() example once again: testing a vector to be numeric
with only positive, non-missing values.

Implementations

Now we compare checkmate’s assertNumeric() and qassert() (as briefly described in the previ-
ous Section DSL for argument checks) with counterparts written with R’s stopifnot(), assertthat’s
assert_that() and a series of assertive’s assert_*() functions:

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 442

checkmate <- function(x) { assertNumeric(x, any.missing = FALSE, lower = 0) }
qcheckmate <- function(x) { qassert(x, "N[0,]") }
R <- function(x) { stopifnot(is.numeric(x), all(!is.na(x)), all(x >= 0)) }
assertthat <- function(x) { assert_that(is.numeric(x), all(!is.na(x)), all(x >= 0)) }
assertive <- function(x) { assert_is_numeric(x); assert_all_are_not_na(x);
assert_all_are_greater_than_or_equal_to(x, 0) }

To allow measurement of failed assertions, the wrappers are additionally wrapped into a try()
statement. Note that all functions perform the checks in the same order: First they check for type
numeric, then for missing values and finally for all elements being non-negative. The source code for
this benchmark study is hosted on checkmate’s project page in the directory inst/benchmarks.

Setup

The benchmark was performed on an Intel i5-6600 with 16 GB running R-3.4.0 on a 64bit Arch Linux
installation using a 4.10.11 kernel. The package versions are 1.8.2 for checkmate, 0.2 for assertthat
and 0.3.5 for assertive. R, the linked OpenBLAS and all packages have been compiled with the
GNU Compiler Collection (GCC) in version 6.3.1 and tuned with march=native on optimization level
-O2. To compare runtime differences, microbenchmark (Mersmann, 2015) is set to do 100 replica-
tions. The implemented wrappers have also been compared to their byte-compiled version (using
compiler::cmpfun) with no notable difference in performance. The just-in-time compiler which is
enabled per default as of R-3.4.0 causes a small but non-crucial decrease in performance for all imple-
mentations. The presented results are extracted from the uncompiled versions of these wrappers, with
the JIT enabled on the default level 3.

Memory consumption is measured with the benchexec (Beyer et al., 2015) framework, version 1.10.
Unlike R’s gc() which only keeps track of allocations of SEXPs, benchexec measures all allocations
(e.g., using C’s malloc) and also works well with threads and child processes. Note that setting an
upper memory limit is mandatory to ensure comparable measurements for memory consumption.
Here, all processes are started with an upper limit of 2 GB.

Results

The benchmark is performed on four different inputs and the resulting timings are presented in Figure 1.
Note that the runtimes on the x-axis are on log10-scale and use different units of measurement.

assertive

assertthat

R

qcheckmate

checkmate

100 1000

Time [microseconds]

x = "a"

assertive

assertthat

R

qcheckmate

checkmate

10 100

Time [microseconds]

x = runif(1)

assertive

assertthat

R

qcheckmate

checkmate

10 1000

Time [milliseconds]

x = runif(1e6)

assertive

assertthat

R

qcheckmate

checkmate

1e+04 1e+06

Time [microseconds]

x = replace(runif(1e6), 1, NA)

Figure 1: Violin plots of the runtimes on log10-scale of the assertion “x must be a numeric vector with
all elements positive and no missing values” on different input x.

top left Input x is a scalar character value, i.e. of wrong type. This benchmark serves as a measurement
of overhead: the first performed (and cheapest) assertion on the type of x directly fails. In fact, all

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLE 443

assertion frameworks only require microseconds to terminate. R directly jumps into compiled
code via a Primitive and therefore has the least overhead. checkmate on the other hand
has to jump into the compiled code via the .Call interface which is comparably slower. The
implementation in assertthat is faster than checkmate (as it also primarily calls primitives) but
slightly slower than stopifnot(). The implementation in assertive is the slowest. However, in
case of assertions (in comparison to tests returning logical values), the runtimes for a successful
check are arguably more important than for a failed check because the latter raises an exception
which usually is a rare event in the program flow and thus not time-critical. Therefore, the next
benchmark might be more relevant for many applications.

top right Here, the input x is a valid numeric value. The implementations now additionally check for
both missingness and negative values without raising an exception. The DSL variant qassert()
is the fastest implementation, followed by checkmate’s assertNumeric(). Although qassert()
and assertNumeric() basically call the same code internally, qassert() has less overhead due
to its minimalist interface. R’s stopifnot() is a tad slower (comparing the median runtimes)
but still faster than assertthat (5x slowdown in comparison to qassert()). assertive is >70x
slower than qassert().

bottom left Input x is now a long vector with 106 numeric elements. This vector is generated us-
ing runif() and thus all values are valid (no negative or missing values). checkmate has
the fastest versions with a speedup of approximately 3.5x compared to R’s stopifnot() and
assert_that(). In comparison to its alternatives, checkmate avoids intermediate objects as
described in Design goals: Instead of allocating a logical(1e6) vector first to aggregate it in
a second step, checkmate directly operates on the numeric input. That is also the reason why
stopifnot() and assertthat() have high variance in their runtimes: The garbage collector
occasionally gets triggered to free memory which requires a substantial amount of time.
assertive is orders of magnitude slower for this input (>1200x) because it follows a completely
different philosophy: Instead of focusing on speed, assertive gathers detailed information while
performing the assertion. This yields report-like error messages (e.g., the index and reason why
an assertion failed, for each element of the vector) but is comparably slow.

bottom right Input x is again a large vector, but the first element is a missing value. Here, all
implementations first successfully check the type of x and then throw an error about the missing
value at position 1. Again, checkmate avoids allocating intermediate objects which in this
case yields an even bigger speedup: While the other packages first check 106 elements for
missingness to create a logical(1e6) vector which is then passed to any(), checkmate directly
stops after analyzing the first element of x. This obvious optimization yields a speedup of 25x
in comparison to R and assertthat and a 7000x speedup in comparison to assertive.
Note that this is the best case scenario for early stopping to demonstrate the possible effect
memory allocation can have on the runtime. Triggering the assertion on the last element of the
vector results in runtimes roughly equivalent to the previous benchmark displayed at bottom
left. A randomly placed bad value yields runtimes in the range of these two extremes.

Memory has been measured using x = runif(1e7) as input (similar to the setup of the benchmark
shown in the bottom left of Figure 1). Measurements are repeated 100 times in independent calls of
Rscript via the command line tool runexec and summarized by the mean and standard deviation. A
no-operation (startup of R, creating the vector x and terminating) requires 105.0± 0.4 MB. The same
script which additionally loads the checkmate package and performs the assertion with the above
defined wrapper checkmate() does not increase the memory footprint (105.1± 0.2 MB) notably. Same
for the previously defined wrapper qcheckmate() (105.0± 0.1 MB). The equivalent assertion using
base R requires 185.1± 0.1 MB, about the same as the implementation in assertthat (185.1± 0.1 MB).
Using assertive, 1601.8± 0.6 MB are required to run the script.

Summed up, checkmate is the fastest option to perform expensive checks and only causes a small
decrease in performance for trivial, inexpensive checks which fail quickly (top left). Although the
runtime differences seem insignificant for small input (top right), the saved microseconds can easily
sum up to minutes or hours if the respective assertion is located in a hot spot of the program and
therefore is called millions of times. By avoiding intermediate objects, assertions have virtually no
memory overhead. This saves runtime in the garbage collection, and even becomes much more
important as data grows bigger.

Conclusion

Runtime assertions are a necessity in R to ensure a sane program flow, but R itself offers very limited
capabilities to perform these kind of checks. checkmate allows programmers and package developers
to write assertions in a concise way without unnecessarily sacrificing runtime performance nor

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 444

increasing the memory footprint. Compared to the presented alternatives, assertions with checkmate
are faster, tailored for bigger data and (with the help of code completion) more convenient to write.
They generate helpful error messages, are extensively tested for correctness and suitable for large and
extensive software projects (mlr (Bischl et al., 2016), BatchJobs (Bischl et al., 2015) and batchtools (Lang
et al., 2017) already make heavy use of checkmate). Furthermore, checkmate offers capabilities to
perform assertions on SEXPs in compiled code via a domain specific language and extends the popular
unit testing framework testthat with many helpful expectation functions.

Acknowledgments

Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained
Analysis”, project A3 (http://sfb876.tu-dortmund.de).

Bibliography

S. M. Bache and H. Wickham. Magrittr: A Forward-Pipe Operator for R, 2014. URL https://cran.r-
project.org/package=magrittr. [p439]

D. Beyer, S. Löwe, and P. Wendler. Benchmarking and Resource Measurement. In Model Checking
Software, pages 160–178. Springer-Verlag, 2015. URL https://doi.org/10.1007/978-3-319-23404-
5_12. [p442]

B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, and C. Weihs. BatchJobs and BatchExperiments:
Abstraction Mechanisms for Using R in Batch Environments. Journal of Statistical Software, 64(11):
1–25, 2015. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v064.i11. [p444]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones.
Mlr: Machine Learning in R. Journal of Machine Learning Research, 17(170):1–5, 2016. URL http:
//www.jmlr.org/papers/v17/15-066.html. [p444]

R. Cotton. Assertive: Readable Check Functions to Ensure Code Integrity, 2016. URL https://cran.r-
project.org/package=assertive. R package version 0.3-5. [p438]

M. Dowle, A. Srinivasan, J. Gorecki, T. Short, S. Lianoglou, and E. Antonyan. Data.table: Extension of
’data.frame’, 2017. URL https://cran.r-project.org/package=data.table. [p440]

T. Fischetti. Assertive Programming for R Analysis Pipelines, 2016. URL https://cran.r-project.
org/package=assertr. R package version 1.0.2. [p439]

M. Lang, B. Bischl, and D. Surmann. Batchtools: Tools for R to work on batch systems. The Journal
of Open Source Software, 2(10), 2017. ISSN 2475-9066. URL https://doi.org/10.21105/joss.00135.
[p444]

O. Mersmann. Microbenchmark: Accurate Timing Functions, 2015. URL https://cran.r-project.
org/package=microbenchmark. R package version 1.4-2.1. [p442]

R Core Team. Writing R Extensions, 2016. URL https://cran.r-project.org/doc/manuals/r-
release/R-exts.html. [p439]

H. Wickham. Testthat: Get Started with Testing. The R Journal, 3(1):5–10, 2011. URL https://journal.
r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p437, 440]

H. Wickham. Assertthat: Easy pre and post assertions, 2017. URL https://cran.r-project.org/
package=assertthat. R package version 0.2. [p438]

H. Wickham and R. Francois. Dplyr: A Grammar of Data Manipulation, 2016. URL https://cran.r-
project.org/package=dplyr. R package version 0.5.0. [p439]

H. Wickham, R. Francois, K. Müller, and RStudio. Tibble: Simple Data Frames, 2017. URL https:
//cran.r-project.org/package=tibble. [p440]

Michel Lang
TU Dortmund University, Faculty of Statistics
Vogelpothsweg 87, 44227 Dortmund

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=BatchJobs
https://CRAN.R-project.org/package=batchtools
http://sfb876.tu-dortmund.de
https://cran.r-project.org/package=magrittr
https://cran.r-project.org/package=magrittr
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.18637/jss.v064.i11
http://www.jmlr.org/papers/v17/15-066.html
http://www.jmlr.org/papers/v17/15-066.html
https://cran.r-project.org/package=assertive
https://cran.r-project.org/package=assertive
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=assertr
https://cran.r-project.org/package=assertr
https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=microbenchmark
https://cran.r-project.org/package=microbenchmark
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://cran.r-project.org/package=assertthat
https://cran.r-project.org/package=assertthat
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=tibble

CONTRIBUTED RESEARCH ARTICLE 445

Germany
ORCiD: 0000-0001-9754-0393
lang@statistik.tu-dortmund.de

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://orcid.org/0000-0001-9754-0393
mailto:lang@statistik.tu-dortmund.de

	checkmate: Fast Argument Checks for Defensive R Programming
	Defensive programming in R
	Related work
	The checkmate package
	Design goals
	Naming scheme
	DSL for argument checks

	Benchmarks
	Implementations
	Setup
	Results

	Conclusion
	Acknowledgments

