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BayesBinMix: an R Package for Model
Based Clustering of Multivariate Binary
Data
by Panagiotis Papastamoulis and Magnus Rattray

Abstract The BayesBinMix package offers a Bayesian framework for clustering binary data with or
without missing values by fitting mixtures of multivariate Bernoulli distributions with an unknown
number of components. It allows the joint estimation of the number of clusters and model parameters
using Markov chain Monte Carlo sampling. Heated chains are run in parallel and accelerate the
convergence to the target posterior distribution. Identifiability issues are addressed by implementing
label switching algorithms. The package is demonstrated and benchmarked against the Expectation-
Maximization algorithm using a simulation study as well as a real dataset.

Introduction

Clustering data is a fundamental task in a wide range of applications and finite mixture models are
widely used for this purpose (McLachlan and Peel, 2000; Marin et al., 2005; Frühwirth-Schnatter,
2006). In this paper our attention is focused on clustering binary datasets. A variety of studies
aims at identifying patterns in binary data including, but not limited to, voting data (Ilin, 2012), text
classification (Juan and Vidal, 2002), handwritten digit recognition (Al-Ohali et al., 2003), medical
research (Sun et al., 2007), animal classification Li (2005) and genetics (Abel et al., 1993).

Throughout this paper the term cluster is used as a synonym of mixture component . Finite mixture
models can be estimated under a frequentist approach using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). However, the likelihood surface of a mixture model can exhibit many
local maxima and it is well known that the EM algorithm may fail to converge to the main mode if it is
initialized from a point close to a minor mode. Moreover, under a frequentist approach, the selection
of the number of clusters is not straightforward: a mixture model for each possible value of number of
clusters is fitted and then the optimal one is selected according to penalized likelihood criteria such
as the Bayesian information criterion (Schwarz, 1978) or the integrated complete likelihood criterion
(Biernacki et al., 2000). The reader is also referred to Lindsay (1995); Böhning (2000) for non-parametric
likelihood estimation of a mixture model.

On the other hand, the Bayesian framework allows to put a prior distribution on both the number
of clusters as well as the model parameters and then (approximately) sample from the joint posterior
distribution using Markov chain Monte Carlo (MCMC) algorithms (Richardson and Green, 1997;
Stephens, 2000a; Nobile and Fearnside, 2007; White et al., 2016). However this does not mean that
the Bayesian approach is not problematic. In general, vanilla MCMC algorithms may require a very
large number of iterations to discover the high posterior density areas and/or sufficiently explore the
posterior surface due to the existence of minor modes. Second, identifiability issues arise due to the
label switching phenomenon (Redner and Walker, 1984) which complicate the inference procedure.

The BayesBinMix package explicitly takes care of the previously mentioned problems for the
problem of clustering multivariate binary data:

1. Allows missing values in the observed data,

2. Performs MCMC sampling for estimating the posterior distribution of the number of clusters
and model parameters,

3. Produces a rapidly mixing MCMC sample by running parallel heated chains which can switch
states,

4. Post-processes the generated MCMC sample and produces meaningful posterior mean estimates
using state of the art algorithms to deal with label switching.

The rest of the paper is organised as follows. The mixture model is presented in Section 2.2. Its
prior assumptions and the corresponding hierarchical model is introduced in Section 2.3. The basic
MCMC scheme is detailed in Section 2.4.1. Section 2.4.2 deals with post-processing the generated
MCMC sample in order to overcome identifiability issues due to the label switching problem. Finally,
the basic sampler is embedded in a Metropolis-coupled MCMC algorithm as described in Section 2.4.3.
The main function of the package is described in Section 2.5. Simulated and real datasets are analyzed
in Sections 2.6.1 and 2.6.2, respectively.
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Model

Let x = (x1, . . . , xn) denote a random sample of multivariate binary data, where xi = (xi1, . . . , xid);
d > 1, for i = 1, . . . , n. Assume that the observed data has been generated from a mixture of
independent Bernoulli distributions, that is,

xi ∼
K

∑
k=1

pk

d

∏
j=1

f
(

xij; θkj

)

=
K

∑
k=1

pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
I{0,1}(xij), (1)

independently for i = 1, . . . , n, where θkj ∈ Θ = (0, 1) denotes the probability of success for the
k-th cluster and j-th response for k = 1, . . . , K; j = 1, . . . , d, p = (p1, . . . , pK) ∈ PK−1 = {pk; k =

1, . . . , K− 1 : 0 6 pk 6 1; 0 6 pK = 1−∑K−1
k=1 pk} corresponds to the vector of mixture weights and

IA(·) denotes the indicator function of a (measurable) subset A.

It is straightforward to prove that the variance-covariance matrix of a mixture of independent
Bernoulli distributions is not diagonal (see e.g. Bishop (2006)), which is the case for a collection of
independent Bernoulli distributions. Therefore, the mixture model exhibits richer covariance structure
thus it can prove useful to discover correlations in heterogeneous multivariate binary data.

The observed likelihood of the model is written as

LK(p, θ; x) =
n

∏
i=1

K

∑
k=1

pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
, (p, θ) ∈ PK−1 ×ΘKd (2)

where x ∈ X n = {0, 1}nd. For any fixed value of K, Equation (2) can be further decomposed by
considering that observation i has been generated from the zi-th mixture component, that is,

xi|zi = k ∼
d

∏
j=1

f
(

xij; θkj

)
, independent for i = 1, . . . , n. (3)

Note that the allocation variables zi ∈ ZK = {1, . . . , K}; i = 1, . . . , n are unobserved, so they are
treated as missing data. Assume that

P (zi = k|p, K) = pk, k = 1, . . . , K (4)

and furthermore that (xi, zi) are independent for i = 1, . . . , n. Data augmentation (Tanner and Wong,
1987) considers jointly the complete data {(xi, zi); i = 1, . . . , n} and it is a standard technique exploited
both by the Expectation-Maximization algorithm (Dempster et al., 1977) as well as the Gibbs sampler
(Gelfand and Smith, 1990). The complete likelihood is defined as

Lc
K (p, θ; x, z) =

n

∏
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pzi
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xij
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(
1− θzi j
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=
K
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d
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θ
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kj

(
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)nk−skj
, (p, θ) ∈ PK−1 ×ΘKd (5)

where nk = ∑n
i=1 I(zi = k) and skj = ∑n

i=1 I(zi = k)xij, k = 1, . . . , K; j = 1, . . . , d, for a given
(x, z) ∈ X n ×Zn

K .

Prior assumptions

Note that the quantities p, θ, z are defined conditionally on K. For convenience we will assume that
K ∈ K = {1, . . . , Kmax}, where Kmax denotes an upper bound on the number of clusters. Hence,
under a model-based clustering point of view, the vector

(K, p, θ, z) ∈ A := K×PK−1 ×ΘKd ×Zn
K

summarizes all unknown parameters that we wish to infer.
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Figure 1: Representation of the hierarchical model (9) as a directed acyclic graph. Squares and circles
denote observed/fixed and unknown variables, respectively.

The following prior assumptions are imposed

K ∼ Discrete{1, . . . , Kmax} (6)

p|K ∼ Dirichlet(γ1, . . . , γK) (7)

θkj|K ∼ Beta(α, β), (8)

independent for k = 1, . . . , K; j = 1, . . . , d. The discrete distribution in Equation (6) can be either a
Uniform or a Poisson distribution with mean λ = 1 truncated on the set {1, . . . , Kmax}. Equations
(7) and (8) correspond to typical prior distributions for the mixture weights and success probabilities,
that furthermore enjoy conjugacy properties. Typically, we set γ1 = . . . = γK = γ > 0 so that the
prior assumptions do not impose any particular information that separates the mixture components
between them, which is also a recommended practice in mixture modelling.

According to Equations (4), (5), (6), (7) and (8), the joint probability density function of the model
is

f (x, K, z, p, θ) = f (x|K, z, θ) f (z|K, p) f (p|K) f (θ|K) f (K) , (9)

and its graphical representation is shown in Figure 1.

Inference

Allocation sampler

Let CK = Γ(∑K
k=1 γk)

∏K
k=1 Γ(γk)

{
Γ(α+β)

Γ(α)Γ(β)

}Kd
. From Equation (9) the joint posterior distribution of (K, p, θ, z) can

be expressed as:

f (θ, z, p, K|x) ∝ CK f (K)
K

∏
k=1

pnk+γk−1
k

d

∏
j=1

θ
α+skj−1
kj (1− θkj)

β+nk−skj−1

 IA(K, p, θ, z). (10)

From the last expression it is straightforward to derive the full conditional distributions of the compo-
nent specific parameters and latent allocation variables as follows:

p|K, z ∼ Dirichlet (γ1 + n1, . . . , γK + nK) (11)

θkj|K, z, x ∼ Beta
(

α + skj, β + nk − skj

)
(12)

P (zi = k|K, xi, p, θ) ∝ pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
, k = 1, . . . , K,

independent for i = 1, . . . , n; k = 1, . . . , K; j = 1, . . . , d.

A general framework for updating the number of mixture components (K) is given by trans-
dimensional MCMC approaches, such as the reversible jump MCMC (Green, 1995; Richardson and
Green, 1997; Papastamoulis and Iliopoulos, 2009) or the Birth-Death MCMC (Stephens, 2000a) method-
ologies. However, the conjugate prior assumptions used for the component specific parameters (p, θ)
allow us to use simpler techniques by integrating those parameters out from the model and perform
collapsed sampling (Liu, 1994) on the space of (K, z). We use the allocation sampler (Nobile and
Fearnside, 2007) which introduced this sampling scheme for parametric families such that conjugate
prior distributions exist and also applied it in the specific context of mixtures of normal distributions.
This approach was recently followed by White et al. (2016) which also allowed for variable selection.
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Let A0 = ΘKd ×PK−1 and A1 = K× {1, . . . , K}n. Integrating out (θ, p) from (10) we obtain

f (K, z|x) =
∫
A0

f (z, θ, p, K|x)dθdp

∝ CK f (K)IA1 (K, z)
∫
A0

K

∏
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d

∏
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α+skj−1
kj

(
1− θkj

)β+nk−skj−1
dθdp

∝ CK f (K)
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Γ
(

n + ∑K
k=1 γk

) K

∏
k=1

d

∏
j=1

Γ
(

α + skj

)
Γ
(

β + nk − skj

)
Γ (α + β + nk)

IA1 (K, z). (13)

Let now z[−i] = {z1, . . . , zi−1, zi+1, . . . , zn} and also define the following quantities, for i = 1, . . . , n:

n[i]
k = ∑

h 6=i
I(zh = k), k = 1, . . . , K

s[i]kj = ∑
h 6=i

I(zh = k)xhj, k = 1, . . . , K; j = 1, . . . , d

A[i]
1 = {j = 1, . . . , d : xij = 1}

A[i]
0 = {j = 1, . . . , d : xij = 0}.

From Equation (13), the (collapsed) conditional posterior distribution of zi is

P
(

zi = k|z[−i], K, x
)

∝
n[i]

k + γk(
α + β + n[i]

k

)d ∏
j∈A[i]

1

(
α + s[i]kj

)
∏

j∈A[i]
0

(
β + nk − s[i]kj

)
, (14)

k = 1, . . . , K; i = 1, . . . , n.

It is well known that draws from the conditional distributions in Equation (14) exhibit strong
serial correlation, slowing down the convergence of the MCMC sampler. The mixing can be improved
by proposing simultaneous updates of blocks of z|K, by incorporating proper Metropolis-Hastings
moves on z|K. Following Nobile and Fearnside (2007), we also propose jumps to configurations that
massively update the allocation vector as follows:

1. Move 1: select two mixture components and propose a random reallocation of the assigned
observations.

2. Move 2: select two mixture components and propose to move a randomly selected subset of
observations from the 1st to the 2nd one.

3. Move 3: select two mixture components and propose a reallocation of the assigned observations
according to the full conditional probabilities given the already processed ones.

Each move is accepted according to the corresponding Metropolis-Hastings acceptance probability,
see Nobile and Fearnside (2007) for details.

The final step of the allocation sampler is to update the number of clusters (K). According to
Nobile and Fearnside (2007), this is achieved by performing a Metropolis-Hastings type move, namely
a pair of absorption/ejection moves which decrease/increase K, respectively. Assume that the current
state of chain is {K, z}. The following pseudocode describes the Absorption/Ejection step:

1. Attemp ejection with probability pe
K , where pe

K = 1/2, K = 2, . . . , Kmax − 1, pe
1 = 1 and

pe
Kmax

= 0. Otherwise, an absorption move is attempted.

2. Suppose that an ejection is attempted. The candidate state is {K′, z′} with K′ = K + 1.

(a) Propose reallocation of observations assigned to the ejecting component between itself
and the ejected component according to the Beta(α̃, α̃) distribution.

(b) Accept the candidate state with probability min{1, R} where

R = R(α̃) =
f (K′, z′|x)
f (K, z|x)

P({K′, z′} → {K, z})
P ({K, z} → {K′, z′}) (15)

3. If an absorption is attempted:

(a) all observations allocated to the absorbed component are reallocated to the absorbing
component.
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(b) the candidate state is accepted with probability min{1, 1/R(α̃)}.

The parameter α̃ is chosen in a way that ensures that the probability of ejecting an empty component
is sufficiently large. For full details the reader is referred to Nobile and Fearnside (2007).

The allocation sampler for mixtures of multivariate Bernoulli distributions is summarized in the
following algorithm.

Algorithm 1 (Allocation sampler for Bernoulli mixtures) Given an initial state {K(0), z(0)} ∈ A1 iter-
ate the following steps for t = 1, 2, . . .

1. For i = 1, . . . , n

(a) Compute n[i]
k = ∑h 6=i I(zh = k), s[i]kj = ∑h 6=i I(zh = k)xhj, k = 1, . . . , K(t); j = 1, . . . , d.

(b) Update z(t)i |z[−i], · · · according to Equation (14).

2. Propose Metropolis-Hastings moves M1, M2 and M3 to update z(t).

3. Propose an Absorption/Ejection move to update {K(t), z(t)}.

Note in step 1.(a):

zh =

{
z(t)h , h < i

z(t−1)
h , h > i.

Finally, we mention that after the last step of Algorithm 1 we can also simulate the component-
specific parameters p and θ from their full conditional posterior distributions given in (11) and (12),
respectively. Although this is not demanded in case that the user is only interested in inferring K, z|x,
it will produce an (approximate) MCMC sample from the full posterior distribution of K, p, θ, z|x.
If the observed data contains missing entries an extra step is implemented in order to simulate
the corresponding values. For this purpose we use the full conditional distribution derived from
Equation (3), taking only into account the subset of {1, . . . , d} that contains missing values for a given
i = 1, . . . , n.

Label switching issue and identifiability

Label switching (Redner and Walker, 1984) is a well known identifiability problem occurring in MCMC
outputs of mixture models, arising from the symmetry of the likelihood with respect to permutations
of components’ labels. A set of sufficient conditions under a general framework of missing data
models that lead to label switching and its consequences is given in Papastamoulis and Iliopoulos
(2013). If an MCMC sample exhibits label switching, the standard practice of estimating the posterior
means and other parametric functions by ergodic averages becomes meaningless. In order to deal
with this identifiability problem we have considered two versions of ECR algorithm (Papastamoulis
and Iliopoulos, 2010; Papastamoulis, 2014; Rodríguez and Walker, 2014) as well as the KL algorithm
(Stephens, 2000b). These algorithms are quite efficient and in most cases exhibit almost identical results,
but ECR is significantly faster and computationally lightweight compared to KL. The implementation
was performed in the R package label.switching (Papastamoulis, 2016).

Note here that in the case that d = 1, Equation (1) collapses to a single Bernoulli distribution.
Hence, there are two types of identifiability issues in mixture models: the first one is related to the fact
that the model is identifiable only up to a permutation of the parameters (label switching). The second
one is strict non-identifiability which relates to the fact that for a mixture of discrete distributions
(such as the multivariate Bernoulli) totally different parameter values can correspond to the same
distribution. We are not dealing with this second source of identifiability problems since it has been
empirically demonstrated that estimation can still produce meaningful results in practice (Carreira-
Perpiñán and Renals, 2000). In addition, Allman et al. (2009) showed that finite mixtures of Bernoulli
products are in fact generically identifiable despite their lack of strict identifiability.

Metropolis-coupled MCMC sampler

There are various strategies for improving MCMC sampling, see e.g. chapter 6 in Gilks et al. (1996). In
this study, the Metropolis-coupled MCMC (MC3) (Geyer, 1991; Geyer and Thompson, 1995; Altekar
et al., 2004) strategy is adopted. An MC3 sampler runs m chains with different posterior distributions
fi(ξ); i = 1, . . . , m. The target posterior distribution corresponds to i = 1, that is, f1(ξ) = f (ξ), while
the rest of them are chosen in a way that the mixing is improved. This is typically achieved by
considering heated versions of the original target, that is, fi(ξ) = f (ξ)hi where h1 = 1 and 0 < hi < 1
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Figure 2: Trace of sampled values of the number of clusters (K) for 10 different runs, using one of the
synthetic datasets of Section 2.6.1 with Ktrue = 10. Each run was initialized from K = 1 and every
10th iteration is displayed (labeled as MCMC cycle on the x axis) until most chains start to explore
K = 10. Left: standard allocation sampler , right: MC3 sampler (using 4 heated chains).

for i = 2, . . . , m represents the heat value of the chain. Note that when raising the posterior distribution
to a power 0 < hi < 1 makes the modified posterior surface flatter, thus, easier to explore compared
to f (ξ). Only the chain that corresponds to the target posterior distribution is used for the posterior
inference, however, after each iteration a proposal attempts to swap the states of two randomly chosen
chains. This improves the mixing of the chain since it is possible that an accepted swap between the
cold and a heated chain will make the former move to another mode.

Let ξ
(t)
i denote the state of chain i at iteration t and that a swap between chains i and j is proposed.

Note that in our setup ξ = (K, z) and f is given in (13) (up to a normalizing constant). The proposed
move is accepted with probability

min

1,
fi

(
ξ
(t)
j

)
f j

(
ξ
(t)
i

)
fi

(
ξ
(t)
i

)
f j

(
ξ
(t)
j

)
 = min

1,
f
(

ξ
(t)
j

)hi
f
(

ξ
(t)
i

)hj

f
(

ξ
(t)
i

)hi
f
(

ξ
(t)
j

)hj

 .

Figure 2 sketches the difference in convergence speed between the standard allocation sampler and
an MC3 sampler which are used to infer the same posterior distribution of the number of clusters.
Although a single MCMC cycle of MC3 is more expensive than a cycle of the allocation sampler, it is
evident that the MC3 sampler can recover the true number of clusters (Ktrue = 10) in a remarkably
smaller number of iterations than the standard allocation sampler. In addition, the standard allocation
sampler rarely switches between the symmetric modes of the posterior distribution, a fact which
typically indicates poor mixing of MCMC samplers in mixture models (Marin et al., 2005). On the
contrary, the MC3 sampler produces a chain where label switching occurs in a rate proportional to the
swap acceptance rate.

In order to take full advantage of computing power in modern-day computers, our MC3 sampler
utilizes parallel computing in multiple cores. This is achieved by running each chain in parallel using
the R packages foreach (Revolution Analytics and Weston, 2014) and doParallel (Revolution Analytics
and Weston, 2015). Every 10-th iteration a swap is proposed between a pair of chains.

Using package BayesBinMix

The main function of the BayesBinMix package is coupledMetropolis, with its arguments shown in
Table 1. This function takes as input a binary data array (possibly containing missing values) and runs
the allocation sampler for a series of heated chains which run in parallel while swaps between pairs of
chains are proposed. In the case that the most probable number of mixture components is larger than
1, the label switching algorithms are applied.

As the function runs it prints some basic information on the screen such as the progress of the
sampler as well as the acceptance rate of proposed swaps between chains. The output which is returned
to the user mainly consists of "mcmc" objects, a class imported from the coda package (Plummer et al.,
2006). More specifically, the coupledMetropolis() function returns the objects detailed in Table 2. We
note that this is just a subset of the full output of the sampler which consists of several additional
quantities, such as the raw MCMC values corresponding to the whole set of generated values of K.
Usually this information is not necessary to the average user, thus, it is saved to a separate set of files
in the folder specified by outPrefix.
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Argument Description

Kmax Maximum number of clusters (integer, at least equal to two).
nChains Number of parallel (heated) chains.
heats nChains-dimensional vector specifying the temperature of each chain: the 1st

entry should always be equal to 1 and the rest of them lie on the set:(0, 1].
binaryData The observed binary data (array). Missing values are allowed as long as the

corresponding entries are denoted as NA.
outPrefix The name of the produced output folder. An error is thrown if the directory

exists.
ClusterPrior Character string specifying the prior distribution of the number of clusters.

Available options: poisson or uniform. It defaults to the (truncated) Poisson
distribution.

m The number of MCMC cycles. At the end of each cycle a swap between a pair of
heated chains is attempted. Each cycle consists of 10 iterations.

alpha First shape parameter of the Beta prior distribution (strictly positive). Defaults
to 1.

beta Second shape parameter of the Beta prior distribution (strictly positive). Defaults
to 1.

gamma Kmax-dimensional vector (positive) corresponding to the parameters of the Dirich-
let prior of the mixture weights. Default value: rep(1,Kmax).

z.true An optional vector of cluster assignments considered as the ground-truth clus-
tering of the observations. It is only used to obtain a final permutation of the
labels (after the label switching algorithms) in order to maximise the similarity
between the resulting estimates and the real cluster assignments. Useful for
simulations.

ejectionAlpha Probability of ejecting an empty component. Defaults to 0.2.
burn Optional integer denoting the number of MCMC cycles that will be discarded as

burn-in period.

Table 1: Arguments of the coupledMetropolis() function.

Examples

In this section the usage of BayesBinMix package is described and various benchmarks are presented.
At first we demonstrate a typical implementation on a single simulated dataset and inspect the
simulated parameter values and estimates. Then we perform an extensive study on the number of
estimated clusters and compare our findings to the FlexMix package (Leisch, 2004; Grün and Leisch,
2007, 2008). An application to a real dataset is provided next.

Simulation study

At first, a single simulated dataset is used in order to give a brief overview of the implementation.
We simulated n = 200 observations from the multivariate Bernoulli mixture model (1). The true
number of clusters is set to K = 6 and the dimensionality of the multivariate distribution is equal to
d = 100. The mixture weights are drawn from a Dirichlet D(1, 1, 1, 1, 1, 1) distribution resulting in
(50, 46, 30, 36, 12, 26) generated observations from each cluster. For each cluster, true values for the
probability of success were generated from a Uniform distribution, that is, θkj ∼ U (0, 1), independently
for k = 1, . . . , K; j = 1, . . . , d. Furthermore, we introduce some missing values to the generated data:
each row is allowed to contain missing values with probability 0.2: for such a row the total number of
missing entries is drawn from the binomial distribution B(100, 0.3). Finally, the observed data is saved
to the 200× 100 array x which contains a total of 1038 missing values corresponding to 34 rows.

We will run 4 parallel chains with the following temperatures: (1, 0.8, 0.6, 0.4). Observe that the
first chain should correspond to the actual posterior distribution, so its temperature equals to 1. Now
apply the coupledMetropolis() function as follows.

> library('BayesBinMix')
> nChains <- 4
> heats <- seq(1, 0.4, length = nChains)

# using the truncated Poisson prior distribution on the number of clusters
> cm1 < - coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats,

binaryData = x, outPrefix = "bbm-poisson", ClusterPrior = "poisson",
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Object Description

K.mcmc Object of class "mcmc" (see coda package) containing the simulated
values (after burn-in) of the number of clusters for the cold chain.

parameters.ecr.mcmc Object of class "mcmc" containing the simulated values (after burn-
in) of θkj (probability of success per cluster k and feature j) and
πk (weight of cluster k) for k = 1, . . . , Kmap; j = 1, . . . , d, where
Kmap denotes the most probable number of clusters. The output
is reordered according to ECR algorithm.

allocations.ecr.mcmc Object of class "mcmc" containing the simulated values (after burn-
in) of zi (allocation variables) for i = 1, . . . , n, given K = Kmap.
The output is reordered according to ECR algorithm.

classificationProbabilities.ecr Data frame of the reordered classification probabilities per obser-
vation after reordering the most probable number of clusters with
the ECR algorithm.

clusterMembershipPerMethod Data frame of the most probable allocation of each observation
after reordering the MCMC sample which corresponds to the
most probable number of clusters according to ECR, STEPHENS
and ECR-ITERATIVE-1 methods.

K.allChains m×nChains matrix containing the simulated values of the number
of clusters (K) per chain.

chainInfo Number of parallel chains, cycles, burn-in period and acceptance
rate of swap moves.

Table 2: Output returned to the user of the coupledMetropolis() function.

m = 1100, z.true = z.true, burn = 100)

# using the uniform prior distribution on the number of clusters
> cm2 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats,

binaryData = x, outPrefix = "bbm-uniform", ClusterPrior = "uniform",
m = 1100, z.true = z.true, burn = 100)

Note that we have called the function twice using either the truncated Poisson or the Uniform prior
on the set {1, . . . , 20}. The total number of MCMC cycles corresponds to m = 1100 and the first 100
cycles will be discarded as burn-in period. Recall that each cycle contains 10 usual MCMC iterations,
so this is equivalent to keeping every 10th iteration of a chain with 11,000 iterations. Since we are
interested to compare against the true values used to generate the data, we also supply z.true which
contains the true allocation of each observation. It is only used for making the inferred clusters agree
to the labelling of the true values and it has no impact on the MCMC or label switching algorithms.

Printing, summarizing and plotting the output

In this section we illustrate summaries of the basic output returned to the user, using only the run
which corresponds to the Poisson prior distribution (cm1). The print() method of the package returns
a basic summary of the fitted model:

> print(cm1)

* Run information:
Number of parallel heated chains: 4
Swap acceptance rate: 63.5%
Total number of iterations: 11000
Burn-in period: 1000
Thinning: 10.

* Estimated posterior distribution of the number of clusters:

6 7 8
0.971 0.026 0.003

* Most probable model: K = 6 with P(K = 6|data) = 0.971
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* Estimated number of observations per cluster conditionally on K = 6 (3 label switching
algorithms):
STEPHENS ECR ECR.ITERATIVE.1

1 50 50 50
2 46 46 46
3 30 30 30
4 36 36 36
5 12 12 12
6 26 26 26

* Posterior mean of probability of success per feature and cluster (ECR algorithm):
cluster_1 cluster_2 cluster_3 cluster_4 cluster_5 cluster_6

theta_1 0.33364058 0.8465393 0.7023264 0.3340989 0.08364937 0.8933767
theta_2 0.71919239 0.6653526 0.3227822 0.3982836 0.22369486 0.5936094
theta_3 0.49869339 0.2285653 0.3605507 0.3570447 0.07206039 0.1883581
theta_4 0.22360156 0.9148123 0.3359406 0.7889224 0.15476900 0.5924109
theta_5 0.01867034 0.8296381 0.8107050 0.1121773 0.78051586 0.1442368

<+ 95 more rows>

Next we present summaries of the marginal posterior distributions of the (reordered) MCMC
sample of parameters conditionally on the selected number of clusters. The reordered MCMC sample
of θkj and pk (after burn-in) is returned to the "mcmc" object parameters.ecr.mcmc. Hence we can use
the summary() method of the coda package, which prints empirical means, standard deviations, as
well the quantiles for each variable. This is done with the following command.

> summary(cm1$parameters.ecr.mcmc)

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
theta.1.1 0.33364 0.06504 0.0020874 0.0020874
... ... ... ... ...
theta.6.1 0.89338 0.05552 0.0017816 0.0017816

<+ 99 blocks of 6 rows>
p.1 0.24663 0.02869 0.0009208 0.0009208
... ... ... ... ...
p.6 0.13270 0.02276 0.0007304 0.0007304

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
theta.1.1 0.2115064 0.289971 0.32896 0.37502 0.46542
... ... ... ... ... ...
theta.6.1 0.7676282 0.859599 0.90175 0.93405 0.97556

<+ 99 blocks of 6 rows>
p.1 0.1950401 0.225938 0.24436 0.26611 0.31012
... ... ... ... ... ...
p.6 0.0905194 0.117203 0.13206 0.14795 0.17993

The user can also visualize the output with a trace of the sampled values and a density estimate for
each variable in the chain using the plot() method of the coda package. For illustration, the following
example plots the trace and histogram for θkj and pk for cluster k = 2 and feature j = 1. The produced
plot is shown in Figure 3.

mat <- matrix(c(1:4), byrow = TRUE, ncol = 2)
layout(mat, widths = rep(c(2, 1), 2), heights = rep(1, 4))
mcmcSubset <- cm1$parameters.ecr.mcmc[ , c("theta.2.1", "p.2")]
plot(mcmcSubset, auto.layout = FALSE, ask = FALSE, col = "gray40")

The reader is also referred to the coda package which provides various other functions for calculating
and plotting MCMC diagnostics.
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Figure 3: MCMC trace and density estimate for the reordered values of θkj and pk for cluster k = 2
and feature j = 1, conditionally on the selected number of clusters (K = 6).

Further inspection of the output

Figures 4.(a) and 4.(b) illustrate the sampled values of K per chain according to the Poisson and
uniform prior distribution, respectively. This information is returned to the user as an m×nChains
array named K.allChains. The actual posterior distribution corresponds to the blue line. Note that as
the temperature increases the posterior distribution of K has larger variability. In both cases, the most
probable state corresponds to K = 6 clusters, that is, the true value.

Next we inspect the MCMC output conditionally on the event that the number of clusters equals 6
and compare to the true parameter values. At first, we can inspect the raw MCMC output, which is
not identifiable due to the label switching problem. Thus, this information is not directly returned
to the user, however it is saved to the file ‘rawMCMC.mapK.6.txt’ in the output directory specified
by the output argument. For illustration we plot the raw values of mixture weights. As shown in
Figures 4.(c) and 4.(d), the sample is mixing very well to the symmetric posterior areas, since in every
iteration labels are changing. The corresponding reordered values (according to the ECR algorithm)
are returned to the user as an "mcmc" object named parameters.ecr.mcmc, shown in Figures 4.(e) and
4.(f). Note that the high posterior density areas are quite close to the true values of relative frequencies
of generated observations per cluster (indicated by horizontal lines). Finally, Figures 4.(g) and 4.(h)
display the posterior mean estimates (arising from the reordered MCMC sample) versus the true
values of θkj, k = 1, . . . , 6; j = 1, . . . , 100.

Model selection study

Next we are dealing with model selection issues, that is, selecting the appropriate number of clus-
ters. For this reason we compare BayesBinMix with the EM-algorithm implementation provided
in FlexMix. Under a frequentist framework, the selection of the number of mixture components is
feasible using penalized likelihood criteria, such as the BIC (Schwarz, 1978) or ICL (Biernacki et al.,
2000), after fitting a mixture model for each possible value of K. We used the ICL criterion since it
has been shown to be more robust than BIC, see e.g. Papastamoulis et al. (2016). We considered that
the true number of clusters ranges in the set {1, 2, . . . , 10} and for each case we simulated 10 datasets
using the same data generation procedure as previously but without introducing any missing values
due to the fact that FlexMix does not handle missing data. The number of observations varies in the
set n ∈ {200, 300, 400, 500}. For each simulated data the general call is the following.

> library("BayesBinMix")
> library("flexmix")
> nChains <- 8
> heats <- seq(1,0.4,length = nChains)
> cm <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,

outPrefix = "sampler", ClusterPrior = "poisson", m = 330, burn = 30)
# now run flexmix for binary data clustering
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CONTRIBUTED RESEARCH ARTICLE 413

0 200 400 600 800 1000

2
4

6
8

10
12

mcmc cycle

K

f(K|x)^0.4
f(K|x)^0.6

f(K|x)^0.8
f(K|x)^1

0 200 400 600 800 1000

5
10

15
20

mcmc cycle

K

f(K|x)^0.4
f(K|x)^0.6

f(K|x)^0.8
f(K|x)^1

(a) (b)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

iteration

ra
w

 w
ei

gh
t

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

iteration

ra
w

 w
ei

gh
t

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

(c) (d)

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●●

●
●

●
●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●
●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●●

●

●

●

●

●●

●
●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●
●

●●

●●

●

●●

●

●●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●

●
●●

●

●

●●●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●
●●●

●
●
●●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●
●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●●

●
●
●●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

iteration

re
or

de
re

d 
w

ei
gh

t

●

●●
●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●
●●●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●
●●

●

●
●●

●

●

●●

●
●●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●●●

●
●

●●●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●
●
●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●
●
●

●

●●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●●

●●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●
●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●●

●
●
●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●●

●

●●

●●
●●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●●●

●

●

●●
●
●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●
●
●
●

●

●

●

●

●

●
●

●●●

●

●●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●

●

●

●●
●
●
●●

●

●

●

●

●

●
●
●●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●●

●●●

●

●●
●

●●

●
●

●

●

●
●
●

●
●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●
●●
●●

●

●
●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●

●

●

●●
●
●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●●●
●●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●●

●
●
●

●
●●
●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●●
●

●

●

●

●

●
●
●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●●

●

●
●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●●●
●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●●
●●

●●
●●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●●
●

●
●●
●●

●

●

●●
●
●

●

●

●
●
●

●

●
●

●●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●●

●

●
●

●
●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●
●
●●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●
●●

●●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●●●●

●

●●

●

●

●●●
●

●

●

●
●●
●●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●
●
●
●

●

●

●
●●
●●
●●●
●

●●

●

●
●
●

●
●●

●●●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●●
●
●

●●●

●

●●

●●
●

●

●

●
●

●

●

●
●

●●

●●●
●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●●●

●●

●●
●●
●
●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●
●●●

●

●●●●
●
●●

●●

●●

●●

●

●

●

●

●
●
●

●

●
●

●●

●●
●●
●

●

●

●

●

●●
●
●

●

●

●

●●
●

●●●●●

●●

●

●

●

●

●
●●

●
●

●

●
●

●

●●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●●

●●

●

●

●●

●
●

●
●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●
●
●

●

●

●
●

●
●

●

●

●●●

●

●

●
●●

●

●●

●

●●●
●
●

●

●

●

●
●●

●

●

●

●

●
●
●●●●

●

●●
●

●●
●

●

●

●

●

●
●
●●●

●

●
●●●

●

●
●
●
●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●●
●

●
●

●

●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●
●●●
●●
●

●●
●
●
●

●

●
●
●●

●

●

●

●

●

●

●
●
●
●
●
●

●●

●●

●

●
●●

●

●

●

●

●

●●●

●●●

●

●

●●

●

●
●●
●

●●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●●
●
●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●

●

●
●
●
●

●
●●●
●

●

●
●

●●

●●
●

●

●

●

●
●
●●
●●

●

●

●

●

●●

●
●

●
●

●

●●

●

●
●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●●

●

●
●
●

●
●

●

●

●
●

●

●

●

●●
●●

●

●
●
●

●●

●
●
●●

●
●
●

●

●
●

●

●

●●
●

●
●

●

●

●
●
●

●
●●

●

●
●
●

●●

●

●●

●
●●
●

●
●●
●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●
●●

●

●

●●
●
●●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●●
●●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●
●●●●●

●

●

●●

●

●

●●

●●●●

●
●
●●●

●

●

●

●●

●

●

●●

●

●

●●
●
●
●

●●●
●
●
●

●

●

●

●
●
●●
●
●

●●

●
●

●

●

●●●
●
●●
●
●●
●

●

●

●

●

●

●
●

●
●●●
●

●

●
●
●●

●●●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●●
●●

●

●

●
●
●

●
●

●

●

●●

●

●●●●

●
●
●●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●
●
●

●

●
●●
●

●

●●

●

●
●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●●

●

●

●

●
●
●
●

●●
●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●
●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●●●
●●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●●

●
●

●

●

●

●●
●
●●
●
●

●

●●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●

●●

●
●

●

●●

●
●

●
●

●

●

●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●
●

●●●

●

●●●
●●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●●
●●
●

●

●●●
●●●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●
●●
●●
●●
●

●

●

●

●●
●
●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●●●

●
●
●

●

●

●

●●●

●

●●●

●

●

●

●●●
●

●
●

●
●
●

●

●●
●

●

●

●

●

●●

●●

●
●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●
●

●

●●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

●

●

●

●

●

●

●

●●
●

●●●

●

●
●

●
●

●

●

●

●

●●●●●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●●
●●

●

●

●
●
●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●●
●

●
●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●●

●●

●

●

●

●●

●
●
●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●●

●

●

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

iteration

re
or

de
re

d 
w

ei
gh

t

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●

●●●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●●●

●

●
●
●●

●
●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●●●

●

●●●

●

●
●

●

●

●

●
●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●●
●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●●●
●

●●
●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●●●●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●●
●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●●

●

●●

●●

●

●●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●●

●

●

●

●
●●

●●
●●

●

●
●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●●

●

●
●

●●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●●
●
●

●
●●●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●●
●
●

●
●
●

●

●
●
●●

●

●●
●
●
●

●

●

●
●

●

●
●●●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

●

●

●●●

●

●●

●
●

●

●
●

●

●

●

●

●

●●
●●

●

●●●
●
●

●●●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●●●

●

●●●

●●

●

●
●
●

●

●

●

●
●
●●
●

●

●

●
●

●

●●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●●

●
●
●
●

●
●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●●

●

●

●●
●

●

●

●●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●●

●
●●●

●

●●

●

●●

●●

●●

●●

●●

●

●

●●
●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●●
●

●
●

●●●

●

●●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●
●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●●
●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●●

●●
●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●
●
●●

●●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●
●
●●

●

●
●●

●

●
●●
●
●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●
●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●
●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●
●●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●
●
●

●

●
●

●

●

●
●
●

●

●●
●
●●
●

●

●●

●

●
●

●

●
●
●
●
●

●
●

●

●●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●
●●

●

●●●
●●●

●
●

●

●

●
●

●
●●
●●

●
●

●
●●

●

●

●

●

●

●●

●
●
●
●●

●

●
●

●●

●
●
●
●

●

●
●●

●

●●●●

●
●

●

●
●
●●
●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●
●
●

●

●●
●

●
●●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●●
●

●

●
●

●●
●
●●●
●

●●
●●●

●

●●
●●

●
●

●

●

●
●●

●
●
●●●

●

●●

●

●

●
●

●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●●
●
●●

●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●●
●
●●

●

●●●

●

●

●

●
●

●

●
●
●●

●●
●●

●

●
●
●●
●●

●

●
●●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●
●

●

●

●
●

●●●
●

●●
●●

●
●

●●
●

●

●
●

●
●●

●

●

●

●
●
●
●
●

●
●●●●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●●●
●

●

●

●
●

●

●

●

●●●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●
●

●
●

●●

●

●●
●
●
●
●●

●

●
●

●
●

●
●
●
●

●
●

●

●

●

●

●

●

●
●●●
●
●
●

●

●
●
●

●

●●

●●

●

●

●●
●●
●

●

●

●

●

●

●
●

●
●

●

●●●●
●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●
●

●
●●
●

●

●
●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●●
●

●

●
●
●

●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●●

●

●

●●●

●

●

●●

●
●
●

●
●●

●

●
●

●
●
●●

●

●●

●
●●
●
●

●

●

●●●
●

●
●

●

●

●

●

●
●

●
●
●
●●

●
●●
●

●

●

●

●

●●
●

●
●●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●
●

●
●
●

●
●●

●

●

●●●●
●
●
●

●●

●
●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●
●

●

●

●

●

●●

●
●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●
●
●

●
●

●

●
●●
●

●
●

●

●

●

●

●
●
●

●

●●●●●
●
●●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●●

●●

●
●
●
●

●
●

●

●

●

●

●●

●

●●●●
●●

●
●●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●●
●●
●
●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●
●
●

●
●

●

●
●●
●
●
●
●

●

●

●

●
●

●

●
●●

●

●●

●

●

●●

●

●
●
●

●

●

●

●●

●

●
●
●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●
●
●
●
●●

●

●

●
●●●

●

●

●●

●

●

●●●

●

●
●●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●●

●

●

●

●
●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●●

●
●●●
●
●

●●

●●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●●

●

●
●

●

●●
●

●

●
●●●

●

●
●

●●
●

●
●

●
●

●●

●●

●●
●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●
●●
●

●
●
●

●

●

●
●

●

●

●

●

●●●
●●
●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●●●

●
●●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●
●●

●●

●

●

●

●●●

●●●
●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

(e) (f)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

true value

po
st

er
io

r 
m

ea
n

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

true value

po
st

er
io

r 
m

ea
n

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

component 1
component 2
component 3

component 4
component 5
component 6

(g) (h)

Figure 4: Results for simulated data with Ktrue = 6 using the Poisson (left) or uniform (right) prior
distribution on the number of clusters (K). (a) and (b): generated values of K per heated chain. (c) and
(d): raw output of p1, . . . , pK conditionally on K = 6. (e) and (f): reordered sample according to ECR
algorithm. Horizontal lines indicate true values of relative number of observations per cluster. (g) and
(h): posterior mean estimates of Bernoulli parameters per cluster versus true values.
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Figure 5: Model selection comparison between BayesBinMix and FlexMix. The x axis corresponds
to the true number of clusters and the y axis to the estimated value. Each boxplot corresponds to 10
simulated datasets from a mixture of Bernoulli distributions.

> ex <- initFlexmix(x ~ 1, k = 1:20, model = FLXMCmvbinary(),
control = list(minprior = 0), nrep = 10)

Note that for both algorithms the number of clusters varies in the set {1, . . . , 20}. Eight heated
chains are considered for the MCMC scheme, while each run of the EM algorithm is initialised using
nrep = 10 different starting points in FlexMix. Here we used a total of only m = 330 MCMC cycles
in order to show that reliable estimates can be obtained using small number of iterations. Figure
5 displays the most probable number of mixture components estimated by BayesBinMix and the
selected number of clusters using FlexMix, for each possible value of the true number of clusters used
to simulate the data. Observe that when the number of clusters is less than 5 both methods are able
to estimate the true number of mixture components. However, FlexMix tends to underestimate the
number of clusters when K > 5, while BayesBinMix is able to recover the true value in most cases.

Real data

We consider the zoo database available at the UC Irvine Machine Learning Repository (Lichman, 2013).
The database contains 101 animals, each of which has 15 boolean attributes and 1 discrete attribute
(legs). The partition of animals into a total of 7 classes (mammal, bird, reptile, fish, amphibian, insect
and invertebrate) can be considered as the ground-truth clustering of the data, provided in the vector
z.ground_truth. Following Li (2005), the discrete variable legs is transformed into six binary features,
which correspond to 0, 2, 4, 5, 6 and 8 legs, respectively. Also we eliminate one of the two entries
corresponding to frog, as suggested by Li (2005). In total we consider an 100× 21 binary array x as
the input data.

Recall that the Bernoulli mixture in Equation (1) assumes that each cluster consists of a product
of independent Bernoulli distributions. Here this assumption is not valid due to the fact that the six
new binary variables arising from legs are not independent: they should sum to 1. Nevertheless, it is
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Figure 6: Zoo dataset: Estimated posterior distribution of the number of clusters when using different
parameters (α, β) on the beta prior of θkj. Both choices of the prior on the number of clusters are
considered: truncated Poisson (red) and uniform (green).

interesting to see how our method performs in cases that the data is not generated by the assumed
model.

We test our method considering both prior assumptions on the number of clusters, as well as
different hyper-parameters on the prior distribution of θkj in Equation (8): we consider α = β = 1
(default values) as well as α = β = 0.5. Note that the second choice corresponds to the Jeffreys
prior (Jeffreys, 1946) for a Bernoulli trial. Figure 6 displays the estimated posterior distribution of the
number of clusters K when K ∈ {1, . . . , 20}. This is done with the following commands.

# read data
> xOriginal <- read.table("zoo.data", sep = ",")
> x <- xOriginal[ , -c(1, 14, 18)]
> x <- x[-27, ] # delete 2nd frog
# now transform v14 into six binary variables
> v14 <- xOriginal[-27, 14]
> newV14 <- array(data = 0, dim = c(100, 6))
> for(i in 1:100){
+ if( v14[i] == 0 ){ newV14[i,1] = 1 }
+ if( v14[i] == 2 ){ newV14[i,2] = 1 }
+ if( v14[i] == 4 ){ newV14[i,3] = 1 }
+ if( v14[i] == 5 ){ newV14[i,4] = 1 }
+ if( v14[i] == 6 ){ newV14[i,5] = 1 }
+ if( v14[i] == 8 ){ newV14[i,6] = 1 }
+ }
> x <- as.matrix(cbind(x, newV14))

# apply BayesBinMix using 8 heated chains
> library("BayesBinMix")
> nChains <- 8
> heats <- seq(1, 0.6, length = nChains)

# K ~ P{1,...,20}, theta_{kj} ~ Beta(1, 1)
> c1 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats =

heats, binaryData = x,
+ outPrefix = "poisson-uniform", ClusterPrior = "poisson",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ U{1,...,20}, theta_{kj} ~ Beta(1, 1)
> c2 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
+ outPrefix = "uniform-uniform", ClusterPrior = "uniform",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ P{1,...,20}, theta_{kj} ~ Beta(0.5, 0.5)
> c3 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
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Figure 7: Zoo dataset clustering conditionally on the most probable number of clusters K = 6 when
using the truncated Poisson prior on K and the Jeffreys prior on θkj. The ground-truth classification of
the animals to seven classes is illustrated using different colour for each class.

+ outPrefix = "poisson-jeffreys", ClusterPrior = "poisson",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ U{1,...,20}, theta_{kj} ~ Beta(0.5, 0.5)
> c4 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
+ outPrefix = "uniform-jeffreys", ClusterPrior = "uniform",
+ m = 4400, burn = 400, z.true = z.ground_truth)

Next, we compare the estimated clusters (for the most probable value of K) with the classification
of the data into 7 classes (given in the vector z.ground_truth). For this reason we provide the rand
index (adjusted or not) based on the confusion matrix between the estimated and ground-truth clusters,
using the package flexclust (Leisch, 2006).

> library("flexclust")
> z <- array(data = NA, dim = c(100, 4))
> z[ , 1] <- c1$clusterMembershipPerMethod$ECR
> z[ , 2] <- c2$clusterMembershipPerMethod$ECR
> z[ , 3] <- c3$clusterMembershipPerMethod$ECR
> z[ , 4] <- c4$clusterMembershipPerMethod$ECR
> rand.index <- array(data = NA, dim = c(4, 3))
> rownames(rand.index) <- c("poisson-uniform", "uniform-uniform",

"poisson-jeffreys", "uniform-jeffreys")
> colnames(rand.index) <- c("K_map", "rand_index", "adjusted_rand_index")
> findMode <- function(x){ as.numeric( names(sort(-table(x$K.mcmc)))[1] ) }
> rand.index[ , 1] <- c( findMode(c1), findMode(c2), findMode(c3), findMode(c4) )
> for(i in 1:4){
+ rand.index[i, 2] <- randIndex(table(z[ , i], z.ground_truth), correct = FALSE)
+ rand.index[i, 3] <- randIndex(table(z[ , i], z.ground_truth))
+ }
> rand.index

K_map rand_index adjusted_rand_index
poisson-uniform 4 0.9230303 0.7959666
uniform-uniform 5 0.9408081 0.8389208
poisson-jeffreys 6 0.9505051 0.8621216
uniform-jeffreys 7 0.9490909 0.8525556

Note that both rand indices (raw and adjusted) are larger for z[,3], that is, the six-component
mixture model that corresponds to the Poisson prior on K and the Jeffreys prior on θkj. A detailed view
on the estimated clusters for this particular model is shown in Figure 7. We conclude that the estimated
groups are characterized by animals belonging to the same taxonomy with very small deviations from
the true clusters. Interestingly, in the case that an animal is wrongly assigned to a cluster, notice that
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Figure 8: Wall clock time of the coupledMetropolis() function when running nChains = 4 heated
chains on the same number of parallel threads for m = 1100 cycles, with each cycle consisting of 10
MCMC iterations. At most Kmax = 20 clusters are allowed. For all sample sizes (n), the dimension of
the multivariate data equals to d = 100.

the estimated grouping might still make sense: e.g. the sea mammals dolphin, porpoise and seal are
assigned to the fourth cluster which is mainly occupied by the group “fish”.

Summary and remarks

The BayesBinMix package for fitting mixtures of Bernoulli distributions with an unknown number of
components has been presented. The pipeline consists of a fully Bayesian treatment for the clustering of
multivariate binary data: it allows the joint estimation of the number of clusters and model parameters,
deals with identifiability issues as well as produces a rapidly mixing chain. Using a simulation study
we concluded that the method outperforms the EM algorithm in terms of estimating the number of
clusters and at the same time produces accurate estimates of the underlying model parameters. In the
real dataset we explored the flexibility provided by using different prior assumptions and concluded
that the estimated clusters are strongly relevant to the natural grouping of the data.

For the prior distribution on the number of clusters our experience suggests that the truncated
Poisson distribution performs better than the uniform (see also Nobile and Fearnside (2007)). Re-
garding the prior distribution on the Bernoulli parameters we recommend to try both the uniform
distribution (default choice) as well as the Jeffreys prior, especially when the sample size is small. An
important parameter is the number of heated chains which run in parallel, as well as the tempera-
ture of each chain. We suggest to run at least nChains = 4 heated chains. The heat parameter for
each presented example achieved an acceptance ratio of proposed swaps between pairs of chains
between 10% and 70%. The default choice for the temperature vector is heats = seq(1,0.3,length
= nChains), however we advise to try different values in case that the swap acceptance ratio is too
small (e.g. < 2%) or too large (e.g. > 90%). Finally, we recommend running the algorithm using at
least m = 1100 and burn = 100 for total number of MCMC cycles and burn-in period, respectively.
For these particular values of nChains and m, Figure 8 displays the wall clock time demanded by the
coupledMetropolis() function.
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