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coxphMIC: An R Package for Sparse
Estimation of Cox Proportional Hazards
Models via Approximated Information
Criteria
by Razieh Nabi and Xiaogang Su

Abstract In this paper, we describe an R package named coxphMIC, which implements the sparse
estimation method for Cox proportional hazards models via approximated information criterion (Su
et al., 2016). The developed methodology is named MIC which stands for “Minimizing approximated
Information Criteria". A reparameterization step is introduced to enforce sparsity while at the same
time keeping the objective function smooth. As a result, MIC is computationally fast with a superior
performance in sparse estimation. Furthermore, the reparameterization tactic yields an additional
advantage in terms of circumventing post-selection inference (Leeb and Pötscher, 2005). The MIC
method and its R implementation are introduced and illustrated with the PBC data.

Introduction

Time to event (survival time) is often a primary outcome of interest in many research areas, especially
in medical research such as time that takes to respond to a particular therapy, time to death, remission,
or relapse. Survival times are typically right skewed and subject to censoring due to study termination,
loss of follow ups, or withdrawals. Moreover, covariates may vary by time.

Cox Proportional Hazards (PH) model (Cox, 1972) is commonly used to model survival data.
Given a typical survival data set that consists of {(Ti, δi, zi) : i = 1, . . . , n}, where Ti is the observed
event time, δi is the 0-1 binary censoring indicator, and zi ∈ Rp is the covariate vector associated with
the i-th subject, the Cox PH model formulates the hazard function h(t|zi) for the ith subject as

h(t|zi) = h0(t) exp(βT zi),

where zi ∈ Rp denotes the p-dimensional covariate vector associated with subject i, β = (β j) ∈ Rp is
the unknown regression parameter vector, and h0(t) is the unspecified baseline hazard function. The
vector of β can be estimated by maximizing the partial log-likelihood (Cox, 1975), which is given by

l(β) =
n

∑
i=1

δi

[
zi

T β− log
n

∑
i′=1

{
I(Ti′ ≥ Ti) exp(zi′

T β)
}]

.

Let β̂ denote the resultant maximum partial likelihood estimator (MPLE).

Since the true β is often sparse, we need to look for methods that identify the zero components in
β and at the same time estimate the nonzero ones. Best subset selection (BSS) and regularization are
among two major algorithms used in survival analyses for variable selection. Both are derived from a
penalized partial likelihood. Let pen(β) and λ denote the penalty function and penalty parameter,
respectively. The general objective function in both of the techniques is as follows:

min
β
− 2l(β) + λ · pen(β).

In BSS, the penalty function is set to pen(β) = ∑
p
j=1 I{β j 6= 0} (number of nonzero coefficients),

and the penalty parameter is fixed as λ = 2 for AIC (Akaike, 1974) or λ = ln(n0), where n0 is the
total number of uncensored failures, with a slight modification of BIC (Vollinsk and Raftery, 2000).
In regularization, the penalty function is set to pen(β) = ∑

p
j=1 |β j|, and the penalty parameter is not

fixed and is appropriately chosen. The sparse estimation is reformulated into a continuous convex
optimization problem. The optimization of the two techniques is a two-step process. In BSS, one
needs to fit every model with the maximum partial likelihood method and then compare the fitted
models according to an information criterion such as AIC (Akaike, 1974) or BIC (Schwarz, 1978). This
makes the BSS infeasible for moderately large p. In regularization, one need to solve the objective
function for every fixed positive value of λ to obtain a regularization path {β̃(λ) : λ > 0}, and then
select the best λ according to an information criterion such as AIC or BIC along the path. Since such
a search is only along the regularization path (a one-dimensional curve in Rp), the search space is
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much reduced and hence, it may not perform as well as the estimator obtained with BSS, if AIC or
BIC is used as the yardstick. Beside the computational burden, both methods face the post-selection
inference challenge. A new technique is developed by Su et al. (2016) on the basis of Su (2015) for
conducting sparse estimation of Cox PH models to help address the aforementioned deficiencies.

The MIC method

A new method, named MIC for “Minimizing approximated Information Criteria", is developed to
conduct sparse estimation of Cox PH models. MIC borrows strength from both BSS and regularization.
The main issue with BSS is the indicator function, I(β 6= 0), involved in the `0 penalty function,
leading to a discrete optimization problem. To overcome this difficulty, MIC proposes to approximate
the indicator function by a continuous or smooth unit dent function. One reasonable approximation is
the hyperbolic tangent function given by

w(β) = tanh(aβ2) =
exp

(
aβ2)− exp

(
−aβ2)

exp (aβ2) + exp (−aβ2)
,

where a is a nonnegative scale parameter that controls the sharpness of the approximation.
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Figure 1: MIC penalty and the reparameterization step: (a) the hyperbolic tangent penalty tanh(aβ2)
versus β; (b) β = γ tanh(aγ2) versus γ; (c) tanh(aγ2) as a penalty function of β. Three values of
a ∈ {1, 10, 100} are illustrated.

As shown in Figure 1(a), w(β) provides a smooth approximation to the discrete function I{β 6=
0}. However, the curve does not have zero as a singular point. If we estimate β by minimizing
−2 l(β) + ln(n0) ∑

p
j=1 w(β j), we will not obtain sparse estimates. To enforce sparsity, MIC devises

a reparameterization step. The reparameterization is based on the decomposition β = β I{β 6= 0}.
Set γ = β and approximate I{β 6= 0} with w(γ) = tanh(aγ2). This leads to a reparameterization of
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β = γw(γ). The objective function in MIC is given by

Qn(β) = − 2 l(Wγ) + λ0 tr(W), (1)

where the penalty parameter λ0 is fixed as ln(n0) for BIC (Vollinsk and Raftery, 2000) and matrix W
is p× p diagonal with diagonal elements wj = w(γj) and hence trace tr(W) = ∑

p
j=1 tanh(aγ2

j ). With
this notation, it follows that β = Wγ.

The above reparameterization offers several important conveniences:

1. Sparsity now becomes achievable in estimating β. The penalty w(γ) as a function of β =
γw(γ) = γ tanh(γ) is a unit dent function that is smooth everywhere except at β = 0, as shown
in Figure 1(c). This is a necessary condition to ensure sparsity as indicated by Fan and Li (2002).
On this basis, the oracle properties of the MIC estimator β̃ obtained by minimizing Qn(β) in (1)

β̃ = arg min
β

Qn(β) = arg min
β
−2 l(β) + ln(n0)

p

∑
j=1

w(γj)

can be established under regularity conditions. The asymptotic results entails an = O(n). For
this reason, we fix an = n0, the number of non-censored failures. In practice, the empirical
performance of MIC is large stable with respect to the choice of a, as demonstrated in Su (2015).
Thus simply fixing a at a reasonably large value (say, a ≥ 10) could do as well practically.

2. In terms of practical optimization, it is preferable to consider γ as the decision vector. Namely,
we minimize Qn(γ) with respect to γ by treating it as a function of γ. Let γ̃ be the resultant
MIC estimator of γ

γ̃ = arg min
γ

Qn(γ) = arg min
γ
−2 l(Wγ) + ln(n0)

p

∑
j=1

w(γj). (2)

One immediate advantage of doing so is that Qn(γ) is smooth in γ and hence many optimization
routines can be applied directly. Since no selection of tuning parameters is involved, MIC is
computationally efficient.

3. One consequence of post-selection inference is that no standard error formula is available for
zero estimates of β j. As depicted in Figure 1(b), β j and γj have a one-to-one correspondence
with β = 0 iff γ = 0. This motivates us to test H0 : β j = 0 by equivalently testing H0 : γj = 0.
The MIC estimator γ̃ can be viewed as an M-estimator with smooth objective function Qn(γ)
and hence standard arguments can be used to make inference.

Implementation in R

The R package coxphMIC implements MIC on the basis of R package survival (Therneau and
Grambsch, 2000) and is hosted at CRAN. Type the following command in R console in order to install
the package:

> install.packages("coxphMIC")

To summarize, MIC can be simply formulated as the following optimization problem

min
γ
− 2l(Wγ) + ln(n0)

p

∑
j=1

tanh(n0γ2
j ). (3)

Owing to the non-convex nature, a global optimization method is helpful in solving (3). While other R
routines (Mullen, 2014) are available, we have found using the SANN method combined with the BFGS
method in R function optim() is fast and quite effective. The simulated annealing (SA) implemented
by SANN helps locate a nearly minimum point globally. Then the quasi-Newton BFGS method makes
sure that the algorithm stops at a critical point.

There are two functions included in the coxphMIC package: an internal function LoglikPen()
that computes the partial log-likelihood and a wrapper function coxphMIC() that does the MIC sparse
estimation. The function coxphMIC() has the following usage:

coxphMIC(formula = Surv(time, status) ~ ., data, method.beta0 = "MPLE",
beta0 = NULL, theta0 = 1, method = "BIC", lambda0 = NULL, a0 = NULL,
scale.x = TRUE, maxit.global = 300, maxit.local = 100,
rounding.digits = 4, zero = sqrt(.Machine$double.eps),

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 232

Censoring Method
n p Rate Full Stepwise MIC LASSO ALASSO SCAD

200 10 25% 0.007 0.307 0.067 0.157 0.163 5.923
40% 0.000 0.320 0.060 0.150 0.170 4.900

50 25% 0.027 18.957 0.063 0.397 0.417 5.587
40% 0.027 18.107 0.057 0.453 0.480 5.480

100 25% 0.060 189.040 0.057 1.450 1.387 —
40% 0.067 181.147 0.057 2.053 1.897 —

2000 10 25% 0.020 0.907 0.243 0.903 0.837 415.097
40% 0.017 0.880 0.240 0.893 0.823 328.150

50 25% 0.110 81.380 0.243 1.590 1.153 —
40% 0.093 72.887 0.237 1.613 1.163 —

100 25% 0.333 894.607 0.223 2.383 2.103 —
40% 0.240 673.503 0.187 2.073 1.357 —

Table 1: Comparison of computation time: CPU time (in seconds) averaged over three runs.

compute.se.gamma = TRUE, compute.se.beta = TRUE,
CI.gamma = TRUE, conf.level = 0.95,
details = FALSE)

We briefly explain some of the important options. The formula argument is a formula object similar
to that in survival, with the response on the left of the ~ operator being a survival object as returned
by the Surv function, and the terms on the right being predictors. The arguments method.beta0, beta0,
and theta0 pertains to the initial starting values. By default, the maximum partial likelihood estimator
with the option MPLE is used. Otherwise, one can use the ridge estimator with option ridge. The theta0
corresponds to the tuning parameter in ridge estimation. User defined starting values can also be
used such as β = γ = 0 by specifying beta0. By default, the approximated BIC (Vollinsk and Raftery,
2000) is recommended. However, one can use AIC (Akaike, 1974). Alternatively, user-specified penalty
is allowed by specifying lambda0. The default value for a is n0. The option maxit.global allows for
specification of the maximal iteration steps in SANN while maxit.local specifies the maximal iteration
steps for BFGS. MIC computes the standard errors (SE) for both β̃ and γ̃. For β̃, the SE computation is
only applicable for its nonzero components. The option maxit.global asks whether the user wants to
output the confidence intervals for γj at the confidence level specified by conf.level (with 95% as
default).

The output of Function coxphMIC() is an object of S3 class coxphMIC, which is essentially a list of
detailed objects that can be used for other purposes. In particular, the item result presents the most
important results, where one can see the selected model and inference based on testing γ. Two generic
functions, print and plot, are made available for exploring a coxphMIC object.

Other R packages for variable selection in Cox PH models

Several other R packages are available for variable selection of Cox PH models. The best subset
selection (BSS) is available in the R Package glmulti (Calcagno and de Mazancourt, 2010) with AIC
only, but it is very slow owing to the intensive computation involved. For large p, a stepwise selection
procedure could be used as a surrogate. LASSO (Tibshirani, 1997) can be computed via R Package
glmnet (Friedman et al., 2010). Zhang and Lu (2007) have made their R codes for implementing
ALASSO for Cox models available at http://www4.stat.ncsu.edu/~hzhang/paper/cox_new.tar. But
the program was written without resorting well to available R routines and it takes an unnecessarily
long running time. One alternative way to compute ALASSO is first transform the design matrix
Z := Z diag(|β̂|) so that LASSO could be applied and then transform the resultant estimates back.
SCAD for Cox PH models (Fan and Li, 2002; Fan et al., 2010) can be computed with an earlier version
of the R package SIS (Saldana and Feng, 2016), but it is no longer available in its current version. One
is referred to Table 1, which is presented as Table B1 in Su et al. (2016), for a comparison study of these
above-mentioned methods. MIC clearly stands out as the top or among-the-top performer in both
sparse estimation and computing time.
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Examples

We illustrate the usage of coxphMIC via an analysis of the PBC (primary biliary cirrhosis) data, available
from the survival package (Therneau and Grambsch, 2000).

Data preparation

To proceed, some minor data preparation is needed. First of all, we want to make sure that the
censoring indicator is 0-1 binary.

> library(survival); data(pbc);
> dat <- pbc; dim(dat);
[1] 418 20
> dat$status <- ifelse(pbc$status == 2, 1, 0)

Next, we explicitly created dummy variable for categorical variables. The factor() function could be
used instead. Also, grouped sparsity could be used to handle these dummy variables so that they are
either all selected or all excluded. We plan to explore this possibility in future research.

> dat$sex <- ifelse(pbc$sex == "f", 1, 0)

Another necessary step is to handle missing values. This current version does not automatically treat
missings. Here, the listwise deletion is used so that only the 276 subjects with complete records are
used for further analysis.

> dat <- na.omit(dat);
> dim(dat);
[1] 276 20
> head(dat)
id time status trt age sex ascites hepato spiders edema bili chol

1 1 400 1 1 58.76523 1 1 1 1 1.0 14.5 261
2 2 4500 0 1 56.44627 1 0 1 1 0.0 1.1 302
3 3 1012 1 1 70.07255 0 0 0 0 0.5 1.4 176
4 4 1925 1 1 54.74059 1 0 1 1 0.5 1.8 244
5 5 1504 0 2 38.10541 1 0 1 1 0.0 3.4 279
7 7 1832 0 2 55.53457 1 0 1 0 0.0 1.0 322
albumin copper alk.phos ast trig platelet protime stage

1 2.60 156 1718.0 137.95 172 190 12.2 4
2 4.14 54 7394.8 113.52 88 221 10.6 3
3 3.48 210 516.0 96.10 55 151 12.0 4
4 2.54 64 6121.8 60.63 92 183 10.3 4
5 3.53 143 671.0 113.15 72 136 10.9 3
7 4.09 52 824.0 60.45 213 204 9.7 3

The data set now contains 20 variables. Except id, time, and status, there are a total of 17 predictors.

MIC starting with MPLE

To apply coxphMIC, one simply proceeds in the usual way of using coxph formula. By default, all
predictors are standardized; the approximated BIC (λ0 = ln(n0) is used with a = n0; and the MPLE is
used as the starting point.

> fit.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat, CI.gamma = FALSE)
> names(fit.mic)
[1] "opt.global" "opt.local" "min.Q" "gamma" "beta" "VCOV.gamma"
[7] "se.gamma" "se.beta" "BIC" "result" "call"

The output of coxphMIC contains the minimized Qn value, the final estimates of γ and β, the variance-
covariance matrix and SE for γ̃, SE for nonzero β̃, BIC value for the final model, and a summary
table result. In order for the user to be able to inspect the convergence and other detailed info of the
optimization algorithms, we also output two objects opt.global and opt.local, which result from
the global (SANN by default) and local optimization (BFGS by default) algorithms.

The output fit.mic is a S3 object of coxphMIC class. Two generic functions, print and plot, are
available. The print function provides a summary table as below:
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> print(fit.mic)
beta0 gamma se.gamma z.stat p.value beta.MIC se.beta.MIC

trt -0.0622 0.0000 0.1071 0.0000 1.0000 0.0000 NA
age 0.3041 0.3309 0.1219 2.7138 0.0067 0.3309 0.1074
sex -0.1204 0.0000 0.1086 -0.0002 0.9998 0.0000 NA
ascites 0.0224 0.0000 0.0991 0.0000 1.0000 0.0000 NA
hepato 0.0128 0.0000 0.1259 0.0000 1.0000 0.0000 NA
spiders 0.0460 0.0000 0.1118 -0.0001 1.0000 0.0000 NA
edema 0.2733 0.2224 0.1066 2.0861 0.0370 0.2224 0.0939
bili 0.3681 0.3909 0.1142 3.4237 0.0006 0.3909 0.0890
chol 0.1155 0.0000 0.1181 0.0002 0.9999 0.0000 NA
albumin -0.2999 -0.2901 0.1248 -2.3239 0.0201 -0.2901 0.1103
copper 0.2198 0.2518 0.1050 2.3986 0.0165 0.2518 0.0868
alk.phos 0.0022 0.0000 0.0837 0.0000 1.0000 0.0000 NA
ast 0.2308 0.2484 0.1128 2.2023 0.0276 0.2484 0.1025
trig -0.0637 0.0000 0.0858 0.0000 1.0000 0.0000 NA
platelet 0.0840 0.0000 0.1129 0.0000 1.0000 0.0000 NA
protime 0.2344 0.2293 0.1046 2.1917 0.0284 0.2293 0.1022
stage 0.3881 0.3692 0.1476 2.5007 0.0124 0.3692 0.1243

The above results are presented as Table 4 in Su et al. (2016). In this example, MIC started with MPLE
given by the first column named beta0. Columns 2–5 present estimation of γ and the hypothesis
testing results on H0 : γj = 0. The estimates of β are given in the last two columns. It can be seen
that eight variables are selected in the final model, which are age, edema, bili, albumin, copper, ast,
protime, and stage.

The plot function provides error bar plots based on the MIC estimator of both β and the reparam-
eterized γ :

> plot(fit.mic, conf.level = 0.95)

as shown in Figure 2. Essentially, the 95% confidence intervals (CI) are plotted. One can modify the
confidence level with the conf.level option. To compare two plots conveniently, they are made with
the same range on the vertical y-axis. Note that CI is not available for any zero β j estimate in Panel (b),
which corresponds to an unselected variable. Those selected variables are highlighted in green color
in Panel.
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Figure 2: Error bar plots for MIC estimates of γ in (a) and β in (b). The 95% confidence intervals (CI)
are plotted. The selected variables are highlighted in green in Panel (b).
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Multiple starting points

Trying out multiple starting point is a common strategy in facing global optimization problems. We
may consider starting with the 0 vector, which corresponds to the null model. Having beta0 = 0 is
actually the default option if method.beta0 is neither ‘MPLE’ nor ‘ridge’ and a specific value for beta0
is not given, i.e., setting beta0 = NULL.

> fit0.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat,
+ method = "BIC", scale.x = TRUE, method.beta0 = "zero")

> c(fit.mic$min.Q, fit0.mic$min.Q)
[1] 974.3340 978.1232

We can compare the minimized objective function min.Q to decide which fitting result is preferable
(i.e., the smaller one). The above result suggests that the fit with MPLE as starting point remains
preferable.

Concerning sparse estimation, the vectors with 0/+1/-1 values obtained by applying a threshold
to the MPLE |β̂| could be reasonable choices for the starting point too, i.e.,

β0j := sgn(β̂ j) I
{
|β̂ j| > c0

}
,

where c0 > 0 is a threshold close to 0. For example, setting c = 0.06 yields

> beta.MPLE <- fit.mic$result[, 1]
> beta0 <- sign(beta.MPLE)*sign(abs(beta.MPLE) > .06);
> cbind(beta.MPLE, beta0)

beta.MPLE beta0
[1,] -0.0622 -1
[2,] 0.3041 1
[3,] -0.1204 -1
[4,] 0.0224 0
[5,] 0.0128 0
[6,] 0.0460 0
[7,] 0.2733 1
[8,] 0.3681 1
[9,] 0.1155 1
[10,] -0.2999 -1
[11,] 0.2198 1
[12,] 0.0022 0
[13,] 0.2308 1
[14,] -0.0637 -1
[15,] 0.0840 1
[16,] 0.2344 1
[17,] 0.3881 1

In the above example, we applied a threshold of 0.06 to the MPLE to obtain a 0/+1/-1 valued vector.
To start with this user-supplied starting point, one proceeds as follows.

> fit1.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat,
+ method = "BIC", scale.x = TRUE, method.beta0 = "user-supplied", beta0 = beta0)
> c(fit.mic$min.Q, fit0.mic$min.Q, fit1.mic$min.Q)
[1] 974.3340 978.1232 979.6826

Again, the fitting starting at MPLE seems the best in this example, by giving the smallest minimized
value.

Different a values

We may consider obtaining the regularization path with respect to a. According to asymptotic results,
a = O(n) is desirable and the recommended value is a = n0 the number of uncensored deaths, which
is n0 = 111 in the PBC data under study.

We try out a spread of a values that range from 10 to 200, as prescribed by the R object A0.

> set.seed(818)
> n <- NROW(dat); n0 <- sum(dat$status == 1)
> A0 <- 10:200
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> p <- NCOL(dat)-3
> BETA <- matrix(0, nrow = length(A0), ncol = p) # USE ARRAY
> for (j in 1:length(A0)){

su.fit <- coxphMIC(formula = Surv(time, status)~.-id, data = dat, a0 = A0[j],
method = "BIC", scale.x = TRUE)

BETA[j, ] <- su.fit$beta
}

> BETA <- as.data.frame(BETA)
> colnames(BETA) <- colnames(dat)[-(1:3)]
> row.names(BETA) <- A0
> head(BETA, n = 5)

trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos
10 0 0.2983 0 0 0 0 0.2024 0.4135 0 -0.2799 0.2495 0
11 0 0.2987 0 0 0 0 0.2015 0.4159 0 -0.2799 0.2491 0
12 0 0.2992 0 0 0 0 0.2006 0.4181 0 -0.2799 0.2487 0
13 0 0.3000 0 0 0 0 0.1998 0.4200 0 -0.2801 0.2482 0
14 0 0.3009 0 0 0 0 0.1992 0.4216 0 -0.2804 0.2478 0

ast trig platelet protime stage
10 0.1937 0 0 0.1912 0.3583
11 0.1924 0 0 0.1895 0.3612
12 0.1914 0 0 0.1878 0.3642
13 0.1906 0 0 0.1862 0.3672
14 0.1901 0 0 0.1847 0.3701

A plot of the regularization path with respect to a, as shown in Figure 3, can be obtained as follows:

> par(mar = rep(5,4), mfrow = c(1,1))
> x.min <- min(A0); x.max <- max(A0)
> plot(x = c(x.min, x.max), y = c(min(BETA), max(BETA)), type = "n",
+ xlab = "a", cex.lab = 1.2, las = 1, ylab = expression(tilde(beta)))
> for (j in 1:ncol(BETA)){
+ lines(x = A0, y = BETA[,j], col = "red", lty = 1, lwd = 1)
+ points(x = A0, y = BETA[,j], col = "red", pch = j, cex = .3)
+ vname <- colnames(BETA)[j]
+ if (abs(BETA[nrow(BETA),j]) > .00001) {

# text(x.max+5, BETA[nrow(BETA),j], labels = vname, cex = 1, col = "blue")
+ mtext(text = vname, side = 4, line = 0.5, at = BETA[nrow(BETA),j], las = 1,
+ cex = 1, col = "blue", font = 1)
+ }
+ }
> abline(h = 0, col = "gray25", lwd = 2)
> abline(v = n0, col = "gray45", lwd = 1.5)
> text(n0+5, -0.2, expression(paste("a = ", n[0], " = ", 111, sep = "")), cex = 1.2,
+ col = "gray35")

From Figure 3, it can be seen that the regularization path is essentially flat with respect to a, especially
for relatively large a values. This indicates that treating a as a tuning parameter is unnecessary.

Summary

The paper presents the coxphMIC package to implement the MIC method for Cox proportional hazards
models. Compared to several other competitive methods, MIC has three main advantages by offering
a superior empirical performance for it aims to minimize BIC (albeit approximated) without reducing
the search space, great computational efficiency since it does not involve selection of any tuning
parameter, and a leeway to perform significance testing that is free of the post-selection inference.
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