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spcadjust: An R Package for Adjusting for
Estimation Error in Control Charts
by Axel Gandy and Jan Terje Kvaløy

Abstract In practical applications of control charts the in-control state and the corresponding chart
parameters are usually estimated based on some past in-control data. The estimation error then
needs to be accounted for. In this paper we present an R package, spcadjust, which implements a
bootstrap based method for adjusting monitoring schemes to take into account the estimation error.
By bootstrapping the past data this method guarantees, with a certain probability, a conditional
performance of the chart. In spcadjust the method is implement for various types of Shewhart,
CUSUM and EWMA charts, various performance criteria, and both parametric and non-parametric
bootstrap schemes. In addition to the basic charts, charts based on linear and logistic regression
models for risk adjusted monitoring are included, and it is easy for the user to add further charts. Use
of the package is demonstrated by examples.

Introduction

Control charts for statistical process monitoring are commonly used in a variety of different areas like
industrial process control, medicine, finance, insurance, environmental science etc. See for instance
Stoumbos et al. (2000), Woodall (2006), Frisén (2008), Schmid (2007a), and Schmid (2007b) for an
overview.

A challenge in most practical applications of control charts is that the in-control state of the process
to be monitored needs to be estimated. This introduces estimation error which needs to be accounted
for. A common convention in many applications has been to assume the in-control distribution to be
known and ignore the estimation error (e.g. Grigg and Farewell, 2004; Bottle and Aylin, 2008; Biswas
and Kalbfleisch, 2008; Fouladirad et al., 2008; Gandy et al., 2010). However, there is an increasing
awareness that the estimation error might have a detrimental effect on the performance of control
charts and many authors have addressed this for various specific charts (e.g. Jones, 2002; Jones et al.,
2004; Albers and Kallenberg, 2004, 2005; Albers et al., 2005; Jensen et al., 2006; Champ and Jones-
Farmer, 2007; Chatterjee and Qiu, 2009; Capizzi and Masarotto, 2009; Zhang et al., 2011; Saleh et al.,
2015; Zhang et al., 2016).

Gandy and Kvaløy (2013) presented a bootstrap based method for adjusting for estimation error
which applies to a wide variety of control charts and different performance measures. The method can
in particular be used to give a guaranteed conditional in-control performance of the chart. A typical
application is to calculate an adjusted signal limit of a chart to guarantee with high probability that the
in-control average run length or hitting probability is not below/above a specified value. Theoretical
properties and conditions needed for the method to apply are worked out in Gandy and Kvaløy (2013).
A similar bootstrap approach was also briefly mentioned in Jones and Steiner (2012) in a study of
risk-adjusted CUSUM charts.

We have developed an R package called spcadjust (Gandy and Kvaløy, 2016) which implements
the bootstrap method for a number of different charts, with different performance measures and both
parametric and non-parametric bootstrapping procedures. The package covers the most common
set-ups for Shewhart, CUSUM and EWMA charts, including risk-adjusted charts. Moreover, it is easy
for the user to add further charts, data models and estimation procedures.

There exist several other R packages for control charts. The surveillance package (Salmon et al.,
2016) provides a variety of methods for monitoring, simulation and visualization of temporal and
spatio-temporal data. The packages spc (Knot, 2016), qcc (Scrucca, 2004), IQCC (Scrucca, 2014) and qcr
(Flores, 2016) provide functions for calculating various performance measures, signal limits, graphical
displays etc. for a selection of classical control charts. The edcc package (Zhu and Park, 2013) has
functions for economic design of control charts, while the MSQC package (Santos-Fernández, 2013)
provides a tool kit for multivariate process monitoring. However, none of these packages include
methods for taking into account the impact of estimation error on the performance of the charts, which
is the main novelty of the spcadjust package.

In the next section, we give a brief introduction to the problem and describe the bootstrap approach
for adjusting for estimation error. In the two sections thereafter we first illustrate basic use of the
spcadjust package, then we describe details of the package and illustrate more advanced use. In the
last section, a real data example is provided.

Stable versions of the package spcadjust are available on CRAN. Development versions are
available in an open git repository (https://bitbucket.org/agandy/spcadjust/). We welcome con-
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tributions to the functionality of the package.

Adjusting for estimation error in control charts

Control charts are a set of statistical techniques for monitoring a stream of data over time. A typical
application is to monitor whether a stream of measurements follows a certain distribution, often
called the in-control distribution, over time. If the distribution of the measurements deviates from the
in-control distribution in a certain way the control chart should quickly detect this. In more advanced
situations, regression adjustments are needed, and the monitoring is based on detecting deviations
from the regression model.

In most common control charts like Shewhart, CUSUM and EWMA charts, a function of the
observations is plotted for each new observation and a signal is given if this function crosses a certain
threshold. Both the parameters of the function and the threshold are in most cases calculated according
to estimates of the in-control distribution. This implies that estimation error will affect the performance
of the control charts. For instance, measurement errors might lead to control charts that give false
alarms far too often.

We first give a motivating example, and then our bootstrap method for handling estimation error
is described.

Motivating example

We consider an example with a CUSUM chart for monitoring changes in the mean of a stream
of normally distributed data. Assume first that we know that the stream consists of independent
observations X1, X2, . . . following a N(µ, σ) distribution in the in-control situation, and that we want
to quickly detect if there is a change in the mean to the out-of-control situation µ + ∆. A standard
CUSUM chart for this would be to plot St versus t where

St = max
(

0, St−1 +
Xt − µ− ∆/2

σ

)
, S0 = 0, (1)

where the chart signals once St > c. The threshold c is calculated to give a certain performance of the
chart if no change occurs. Often, c is chosen to give a pre-specified in-control mean number of steps
until a false alarm (often called average run length, ARL). Thus the CUSUM chart and the threshold c
should be calculated using the true N(µ, σ) in-control distribution.

However, in practice, the true in-control distribution N(µ, σ) is usually unknown, but estimated
based on n past in-control observations X−n, . . . , X−1. For example, we can estimate the in-control
mean by µ̂ = 1

n ∑−1
i=−n Xi and the in-control variance by σ̂2 = 1

n−1 ∑−1
i=−n(Xi − µ̂)2. The CUSUM chart

is then given by

St = max
(

0, St−1 +
Xt − µ̂− ∆/2

σ̂

)
, S0 = 0,

which signals when St > ĉ where ĉ is calculated using the estimated in-control distribution N(µ̂, σ̂).

Since the future in-control data come from the true in-control distribution N(µ, σ) rather than the
estimated distribution N(µ̂, σ̂), the performance of the chart might be substantially wrong, leading to
more (or less) false alarms than expected.

A typical application of our bootstrap method described in the next subsections will be to calculate
an adjustment to the naive threshold estimate ĉ such that a certain in control behavior of the chart can
be guaranteed with high probability.

As an illustration we generated n = 100 past data from a N(0, 1) distribution giving estimates
µ̂ = −0.028, σ̂ = 0.921. We want to monitor for an increase in the mean of the distribution by ∆ = 1
and achieve an in-control ARL of 500.

Assuming (incorrectly) that the estimated parameters are the true parameters this would lead to a
threshold of ĉ = 4.1. Our bootstrap method leads to an adjusted threshold of 5.5, calculated such that
the ARL of 500 is achieved with a probability of 90%.

The result of running the CUSUM chart with these estimated parameters on a stream of N(0, 1)
in-control data is illustrated in the top row of Figure 1. There is a false alarm with the unadjusted
threshold, but not with the adjusted threshold.

In the bottom row of Figure 1 the same CUSUM chart is run on data which are out of control
from observation 81 and onwards. There is only a slight delay in the detection of the out-of-control
situation with the adjusted threshold. Also, there are two false alarms in the first 80 observations with
the unadjusted threshold.
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Figure 1: CUSUM charts for the motivating example. Top row: in-control data. Bottom row: data
which switch to out-of-control from observation 81. The left figures show the observed data streams,
the right the resulting CUSUM charts which were run with the estimated parameters. Adjusted and
unadjusted thresholds are indicated.

Homogeneous observations

In this section we describe our bootstrap procedure for situations with homogeneous observations.
Assume that in-control we have a stream of independent observations X1, X2, . . . , following a distribu-
tion P. A control chart is used to detect when observations are no longer coming from P, also called an
out of control situation, for instance a shift in mean or variance.

To run such a chart, certain parameters, ξ, calculated from P are usually needed. However, in
most applications the exact distribution P is unknown, we only have an estimate of the distribution,
and thus have to run the chart with estimated parameters. In the example in the previous section,
the parameters needed to run the chart are ξ = (µ, σ) and the unknown in-control distribution P is
N(µ, σ).

Common performance measures for control charts are the ARL and the hitting probability of
the chart within a certain number of steps. These depend both on the unknown P as well as on the
parameters ξ. Indeed, let τ denote the time (observation number) at which a chart gives a signal, e.g.
the first time a CUSUM chart has a value above c. The distribution of this stopping time τ depends
on P and ξ. We can express the ARL as ARL(P; ξ) = IE(τ(ξ)), where the expectation is with respect
to P. The probability of signaling within m time steps (for some finite m > 0) can be expressed as
hit(P; ξ) = P(τ(ξ) ≤ m).

The signal limit c is chosen to achieve a certain in-control performance of the chart. For charts
which signal when a threshold c is crossed we can express this as follows.

• cARL(P; ξ) = inf{c > 0 : ARL(P; ξ) ≥ γ} for some γ > 0, i.e. the threshold needed to give an
in-control ARL of γ.

• chit(P; ξ) = inf{c > 0 : hit(P; ξ) ≤ β} for some 0 < β < 1, which is the threshold needed to
give a false alarm probability of β.

Again, both cARL and chit depend on P and ξ.

Let P̂ and ξ̂ = ξ(P̂) denote the estimated distribution and estimated parameters, estimated from
past in-control data X−n, . . . , X−1. Since we have to run the chart with ξ̂ while future in-control data
follow P ideally we should use the threshold cARL(P; ξ̂) or chit(P; ξ̂). These are unknown since P is
unknown. Instead in practice cARL(P̂; ξ̂) or chit(P̂; ξ̂) is often used, but this may lead to performance
substantially off from the nominal performance.

The suggestion in Gandy and Kvaløy (2013) is to calculate, by bootstrapping, an adjusted threshold
which with high probability will guarantee that the in-control performance is not worse than the
nominal value. For instance to calculate an adjustment to cARL(P̂; ξ̂) which with a probability 1− α
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guarantees that the true in-control ARL is at least as large as the nominal value.

To make a unified presentation of the bootstrap we let q be a common notation for quantities of
interest like cARL and chit, or simple transformations such as log(cARL) and log(chit). Further let pα be
a constant such that

P
(
q(P̂; ξ̂)− q(P; ξ̂) > pα

)
= 1− α,

which implies the following bound on the quantity of interest

P
(
q(P; ξ̂) < q(P̂; ξ̂)− pα

)
= 1− α.

Since P is unknown we cannot calculate pα, but an approximation can be obtain by bootstrapping. Let
P̂∗ denote a parametric or non-parametric bootstrap replicate of the estimated in-control distribution
P̂, based on the same sample size n as P̂, and let ξ̂∗ = ξ(P̂∗). Then we can approximate pα by p∗α where

P
(
q(P̂∗; ξ̂∗)− q(P̂; ξ̂∗) > p∗α|P̂

)
= 1− α.

Then an approximate upper bound which guarantees a certain performance with an approximate
probability of 1− α is q(P̂; ξ̂)− p∗α. We can also think of(

−∞, q(P̂; ξ̂)− p∗α
)

as a sort of one-sided (approximate) confidence interval for q(P; ξ̂). The bootstrap distribution has
to be approximated by simulations, easily performed by generating B bootstrap samples from P̂ and
calculating q(P̂∗; ξ̂∗)− q(P̂; ξ̂∗) for each bootstrap sample. For further details, including theoretical
properties, we refer to Gandy and Kvaløy (2013).

If we return to the example in the previous section and consider the threshold needed to get
a certain in-control ARL value γ, we adapt the above procedure with either q = cARL or q =
log(cARL). The latter is recommended as the log-transform usually improves the precision (Gandy
and Kvaløy, 2013). Then B bootstrap samples of size n are generated from P̂ and from these we
calculate P̂∗1 , . . . , P̂∗B and ξ̂∗1 , . . . , ξ̂∗B. With q = log(cARL) we then calculate p∗α as the 1 − α empir-
ical quantile of log cARL(P̂∗b ; ξ̂∗b ) − log cARL(P̂; ξ̂∗b ), b = 1, . . . , B, and obtain the adjusted threshold
exp(log cARL(P̂; ξ̂)− p∗α) = cARL(P̂; ξ̂) exp(−p∗α). With this adjusted threshold there is an approximate
1− α probability that the actual ARL of the charts is at least γ.

Risk-adjusted charts

In many applications of control charts the units being monitored are heterogeneous, for instance when
monitoring data from human beings. To make reasonable monitoring systems in such situations the
explainable part of the difference between units should be accounted for by regression models. Charts
based on regression models are often called risk-adjusted, an overview of some such charts is found in
Grigg and Farewell (2004).

For risk-adjusted charts the regression model has to be estimated based on past data, and the
impact of estimation error thus has to be taken into account. The bootstrap procedure outlined in the
previous section also applies to risk adjusted charts. Let the stream of observations now be denoted
(Y1, X1), (Y2, X2), . . ., where Yi is a response variable and Xi a corresponding vector of covariates.
Further let P denote the joint distribution of (Yi, Xi). For regression models we recommend to use
a non-parametric bootstrap. Let P̂ be the empirical distribution which puts weight 1/n on each of
the n past observations (Y−n, X−n), . . . , (Y−1, X−1). Then by resampling from this P̂ the bootstrap
procedure also applies to a wide variety of risk adjusted charts (Gandy and Kvaløy, 2013).

As an example consider a CUSUM chart for a linear regression model. Suppose that in-control
IE(Yi|Xi) = Xiβ (where the first component of Xi is 1) and we want to detect a change in the mean
response to IE(Yi|Xi) = ∆ + Xiβ for some ∆ > 0. For linear regression models it is natural to base the
monitoring on the residuals of the model (Horváth et al., 2004). A CUSUM to monitor changes in the
mean can for instance be defined by

St = max (0, St−1 + Yt − Xtβ− ∆/2) , S0 = 0,

which signals when St ≥ c. In practice since β and the distribution of the residuals, Pε, are estimated
the CUSUM is run with β̂ and a threshold calculated e.g. as cARL(P̂ε; β̂). This might lead to an ARL far
off from the nominal (Gandy and Kvaløy, 2013).

To account for the estimation error we can use the bootstrap procedure from the previous section
with e.g. q = log(cARL) and non-parametric bootstrapping as outlined above to calculate the adjusted
threshold exp(log cARL(P̂ε; β̂) − p∗α) = cARL(P̂ε; β̂) exp(−p∗α). Using this adjusted threshold there
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class name data model

"SPCModelNormal" normally distributed updates of the form (Xt − µ− ∆/2)/σ
(Sections CUSUM chart with estimated in-control state and
Shewhart chart with estimated in-control state)

"SPCModelNonparCenterScale" updates (Xt − µ− ∆/2)/σ, no distributional assumptions
(Section CUSUM chart with estimated in-control state)

"SPCModelNonpar" user defined updates, no distributional assumptions
"SPCModellm" linear regression model with updates Yt − Xtβ− ∆/2

(Sections CUSUM chart with linear regression model and
EWMA chart with linear regression model)

"SPCModellogregLikRatio" logistic regression model, likelihood ratio updates
(Section Application to cardiac surgery data)

"SPCModellogregOE" logistic regression model, observed minus expected
updates

Table 1: Overview of pre-implemented data models.

is an approximate 1− α probability that the actual ARL of the charts is at least as large as desired.
Further risk-adjusted charts are discussed in Section EWMA chart with linear regression model and
Section Application to cardiac surgery data.

Other adjustments

So far we have focused on how to adjust the signal limit of the control chart to achieve a certain
performance with a high probability. In practice that will be a typical application, but it is easy to
change focus to other quantities. For instance, instead of adjusting the threshold to obtain a certain
ARL we could instead fix the threshold and calculate which ARL we with high probability at least
will achieve. For instance with Shewhart charts it is very common to use c = 3 standard deviations as
signal limit, and if we with estimated parameters still choose to stick with this limit we can use the
bootstrap approach to calculate a lower limit of the achieved ARL. In practice this is done by defining
the appropriate q-function and then run the general bootstrap procedure as before. For the Shewhart
example with fixed c and focus on ARL the q would simply be the ARL or log(ARL). See Gandy and
Kvaløy (2013) for details and Section Shewhart chart with estimated in-control state for an example.

Another variant which we consider further in Section Implementing a new type of chart is Shewhart
charts with non-symmetric signal limits for skew distributions. For such charts the signal limit can
be defined in terms of the quantiles corresponding to a certain tail probability α. Then we can via
the bootstrap find the appropriate adjustment of this α to achieve a certain performance with high
probability.

Basic usage of the package

In this section we discuss how the package can be used for pre-implemented chart types and data
models. The framework provided in the package can also easily be extended to work with other charts,
data models and/or estimation procedures as will be explained in Section Details of the package and
advanced usage.

An important basic structure of the package is that chart types and data models are implemented
in separate objects and in such a way that they can be flexibly combined. The implemented chart
types are the Shewhart chart (SPCShew), the CUSUM chart (SPCCUSUM) and the EWMA chart (SPCEWMA).
Table 1 lists the implemented data models.

Calculation of charts and chart properties like thresholds, ARLs and hitting probabilities are
defined with the chart type object. Estimation of chart parameters, the form and cdf of updates and
the bootstrap procedure are defined in the data model object. With updates we mean the quantity
added to the chart in each step. Parametric bootstraping is used in the normal model, nonparametric
bootstraping in all the other pre-implemented models.

The parameter ∆ in the updates in some of the data models listed in Table 1 specifies the out-of-
control situation for CUSUM charts, but should be set to the default value Delta = 0 for Shewhart
and EWMA charts.

The main steps for basic usage of the package is to define a chart object with the new() function
and to calculate the properties of interest with the SPCproperty() function. A generic description of
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these functions is given below.

To define a chart object we need to specify the combination of chart type and data model as follows:

chartgeneric <- new("Charttype", model = Datamodel(Delta = x),...)

Here "Charttype" should be one of "SPCShew", "SPCCUSUM" or "SPCEWMA" and "Datamodel" should be
one of the class names listed in Table 1. Finally x should be 0 for Shewhart and EWMA chart and set to
the desired value for CUSUM charts.

The following function invokes the bootstrap procedure and calculate the property of interest for
the chart:

SPCproperty(data, nrep, property = "specifyproperty",chart = chartgeneric,
params = list(specifyparameters), covprob=0.9, parallel=1,...)

Here data are the past observations (usually a vector) and nrep is the number of bootstrap replications.
Further, specifyproperty specifies the property of interest, with choices calARL, calhitprob, ARL
and hitprob. The two first choices calculate a calibrated threshold to achieve, with high probability,
a desired ARL or a desired hitting probability . Based on a specified choice of threshold, the two
last choices calculate the smallest ARL or the largest hitting probability that is attained with high
probability. Necessary parameters are given in specifyparameters (depending on the property this
includes the desired ARL, the desired hitting probability or the threshold). Finally, covprob, gives the
desired coverage probability 1− α with a default of 90%. The bootstrap can be sped up by parallel
processing by specifying the number of cores to be used via the ‘parallel’ option.

Further functions and details are explained in the examples below. In the two first subsections
below we consider situations with homogeneous observations, in the next subsections, we consider
situations with risk-adjusted charts.

CUSUM chart with estimated in-control state

We now return to the motivating example in Section Motivating example. Recall that we want to run a
CUSUM chart of the form (1) to monitor for a change in the mean in a stream of normally distributed
data. We first define the chart object by specifying chart type and data model.

> library(spcadjust)
> chart <- new("SPCCUSUM", model = SPCModelNormal(Delta = 1))

Here "SPCCUSUM" specifies that it should be a CUSUM chart, and SPCModelNormal(Delta = 1) specifies
that it is a model with normally distributed updates of the form (Xt − µ− ∆/2)/σ with ∆ = 1.

Next we generate n = 100 past observations and use the function xiofdata to calculate the
estimated chart parameters ξ̂.

> X <- rnorm(100)
> xihat <- xiofdata(chart, X)
> str(xihat)

List of 3
$ mu: num -0.0284
$ sd: num 0.921
$ m : int 100

Now we can use the function SPCproperty() to calculate the naive and adjusted threshold:

> cal <- SPCproperty(data = X, nrep = 50, property = "calARL",
+ chart = chart, params = list(target = 500), covprob = 0.9,quiet = TRUE)
> cal
90 % CI: A threshold of 5.513 gives an in-control ARL of at least 500.
Unadjusted result: 4.101
Based on 50 bootstrap repetitions.

Here property = "calARL" specifies that the chart should be calibrated to achieve a certain ARL, this
ARL is specified to be 500 (target = 500) and the probability of attaining at least this ARL specified to
be 90% (covprob = 0.9). The adjusted threshold of 5.5 is calculated using parametric bootstrapping
with nrep replications assuming normality of the observations. For real applications nrep should of
course be more than 50. If nonparametric bootstrapping is preferred the model specification in the
definition of the chart should be replaced by SPCModelNonparCenterScale().

If we rather would like to calibrate the chart according to a certain hitting probability, for instance
a hitting probability of 0.05 within 100 steps, this is achieved by specifying property = "calhitprob"
and params = list(target = 0.05,nsteps = 100):
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> SPCproperty(data = X, nrep = 50, property = "calhitprob",
+ chart = chart, params = list(target = 0.05, nsteps=100), covprob = 0.9,
+ quiet = TRUE)
90 % CI: A threshold of 7.137 gives an in-control false alarm probability
of at most 0.05 within 100 steps.

Unadjusted result: 5.285
Based on 50 bootstrap repetitions.

The function runchart is used to run the chart on future data, and the option xi specifies which
parameters to use when running the chart:

> newX <- rnorm(100)
> S <- runchart(chart, newdata = newX, xi = xihat)

The following code produces the plots in the first row of Figure 1, using the ARL calibrated threshold
calculated above:

> par(mfrow = c(1, 2), mar = c(4, 5, 0, 0))
> plot(newX, xlab = "t")
> plot(S, ylab = expression(S[t]), xlab = "t", type = "b",
+ ylim = range(S, cal@res+2, cal@raw))
> lines(c(0,100), rep(cal@res, 2), col = "red")
> lines(c(0,100), rep(cal@raw, 2), col = "blue", lty = 2)
> legend("topleft", c("Adjusted threshold","Unadjusted threshold"),
+ col = c("red", "blue"), lty = 1:2)

Shewhart chart with estimated in-control state

Next we consider a two-sided Shewhart chart, assuming that all observations are normally dis-
tributed. The in-control mean and standard deviation are estimated from n past in-control observations
X−n, . . . , X−1. For new observations X1, X2, . . . a two-sided Shewhart chart is defined by

St =
Xt − µ̂

σ̂
,

which signals when |St| > c for some threshold c. A common choice for Shewhart charts is to set c = 3,
corresponding to three standard deviations if the chart is run with the correct in-control mean and
standard deviation.

We first define the chart by

> chartShew <- new("SPCShew", model = SPCModelNormal(), twosided = TRUE)

and then generate n = 250 past observations and estimate the chart parameters:

> X <- rnorm(250)
> xihat <- xiofdata(chartShew, X)
> str(xihat)
List of 3
$ mu: num 0.0251
$ sd: num 1.05
$ m : int 250

If the Shewhart chart is run with the standard threshold c = 3, we can use the bootstrap method to
calculate a lower limit for the actual ARL of the chart by specifying property = "ARL" and params =
list(threshold = 3):

> SPCproperty(data = X, nrep = 50, property = "ARL", chart = chartShew,
+ params = list(threshold = 3), quiet = TRUE)
90 % CI: A threshold of 3 gives an in-control ARL of at least 213.1.
Unadjusted result: 370.4
Based on 50 bootstrap repetitions.

A two-sided Shewhart chart for normally distributed data with true parameters and a threshold of
c = 3 will correspond to an ARL of roughly 370. We can thus compute an adjusted threshold that with
roughly 90% probability results in an average run length of at least 370 in control:

> cal <- SPCproperty(data = X, nrep = 50, property = "calARL", chart = chartShew,
+ params = list(target = 370), quiet = TRUE)
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Figure 2: Shewhart charts with estimated parameters run on data which are in-control until observation
100 and with a shift in the mean from observation 101 an onwards.

> cal
90 % CI: A threshold of 3.209 gives an in-control ARL of at least 370.
Unadjusted result: 3
Based on 50 bootstrap repetitions.

Finally we run the chart with new observations. The simulated new observations are in-control for
the first 100 observations, and then there is a shift in the mean from observations 101 an onwards. The
corresponding plot is given in Figure 2.

> newX <- rnorm(150, mean = c(rep(0, 100), rep(2, 50)))
> S <- runchart(chartShew, newdata = newX, xi = xihat)

CUSUM chart with linear regression model

The set up is as described in Section Risk-adjusted charts, and with estimated regression coefficients β̂
the CUSUM is

St = max
(
0, St−1 + Yt − Xt β̂− ∆/2

)
, S0 = 0.

The following generates a data set of past observations from the model IE(Y) = 2 + x1 + x2 + x3
with standard normal noise and distribution of the covariate values as specified below.

> n <- 500
> Xlinreg <- data.frame(x1 = rbinom(n, 1, 0.4), x2 = runif(n, 0, 1), x3 = rnorm(n))
> Xlinreg$y <- 2 + Xlinreg$x1 + Xlinreg$x2 + Xlinreg$x3 + rnorm(n)

Next, we initialize the chart

> chartlinregCUSUM <-
+ new("SPCCUSUM", model = SPCModellm(Delta = 1, formula = "y~x1+x2+x3"))

where SPCModellm() uses non-parametric bootstrapping as explained in Section Risk-adjusted charts.
The estimated parameters for running the chart, β̂, are:

> xihat <- xiofdata(chartlinregCUSUM, Xlinreg)
> xihat
Call:
lm(formula = formula, data = P)

Coefficients:
(Intercept) x1 x2 x3

2.0222 1.0360 1.0350 0.9711

Next we find the threshold that with roughly 90% probability results in an average run length of
at least 100 in control.

> cal <- SPCproperty(data = Xlinreg, nrep = 50, property = "calARL",
+ chart = chartlinregCUSUM, params = list(target = 100), quiet = TRUE)
> cal
90 % CI: A threshold of 3.138 gives an in-control ARL of at least 100.
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Figure 3: CUSUM chart for a linear regression model with estimated parameters. The data shift from
in-control to out-of-control from observation 101 an onwards.

Unadjusted result: 2.745
Based on 50 bootstrap repetitions.

Finally, we run the chart with new observations that are in-control for the first 100 observations
and then switches to out-of-control. A plot of the resulting CUSUM is given in Figure 3.

> n <- 120
> newXlinreg <- data.frame(x1 = rbinom(n, 1, 0.4), x2 = runif(n, 0, 1),
+ x3 = rnorm(n))
> outind <- c(rep(0, 100), rep(1, n-100))
> newXlinreg$y <-
+ 2 + newXlinreg$x1 + newXlinreg$x2 + newXlinreg$x3 + rnorm(n) + outind
> S <- runchart(chartlinregCUSUM, newdata = newXlinreg, xi = xihat)

EWMA chart with linear regression model

An EWMA chart based on the residuals of a linear regression model can be defined by

Mt = λ(Yt − Xtβ) + (1− λ)Mt−1, M0 = 0,

where λ is a smoothing parameter determining how to weight the most recent observation versus the
past data. We can now set up the chart, calculate adjusted thresholds and run the chart on the new
data with estimated parameters in the same manner as for the CUSUM chart. The only differences are
that we have to specify "SPCEWMA", Delta = 0 and a value of λ when the chart is initialized.

> chartlinregEWMA <- new("SPCEWMA", model = SPCModellm(Delta = 0,
+ formula = "y~x1+x2+x3"), lambda = 0.1)
> calEWMA <- SPCproperty(data = Xlinreg, nrep = 50, property = "calARL",
+ chart = chartlinregEWMA, params = list(target = 100), quiet = TRUE)
> calEWMA
90 % CI: A threshold of +/- 0.5337 gives an in-control ARL of at least 100.
Unadjusted result: 0.496
Based on 50 bootstrap repetitions.
> xihat <- xiofdata(chartlinregEWMA, Xlinreg)
> M <- runchart(chartlinregEWMA, newdata = newXlinreg, xi = xihat)

A plot of the resulting EWMA chart is given in Figure 4.

Further usage of risk-adjusted charts will be demonstrated in Section Application to cardiac surgery
data where a CUSUM for logistic regression will be explained and used.

Details of the package and advanced usage

A basic structure of the package is, as explained in the introduction of Section Basic usage of the package,
a definition of two types of objects. We will now look further into the details of these two objects and
how they can be used to add new charts, new data models and other estimation procedures.
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Figure 4: EWMA chart for a linear regression model with estimated parameters. The data shift from
in-control to out-of-control from observation 101 an onwards.

One object is an S3 class of type "SPCDataModel" that implements how observed data are used to
fit the model and how updates for the chart are being computed. The second object is an S4 class of
type "SPCchart" which implements how these updates are converted into charts and how the charts
are being calibrated. The main advantage of this separation into two different objects is that it reduces
the amount of redundancy in the code.

The package was originally developed with S4 classes only, to take advantage of the more flexible
method dispatch. However, to improve performance, the data model classes, whose methods are
called very frequently, were switched to S3 classes.

Bespoke data model

We first focus on how to generate a bespoke data model. For this one needs to implement a class of type
"SPCDataModel". Every element of the class has to consist of a list of the following functions: updates,
getcdfupdates, Pofdata, resample, xiofP, which have to be of a specific form. The arguments gen-
erally have the following meaning: xi denotes the parameter vector needed to create updates for
running the chart from observed data, data is observed data, P is a data model.

• updates(xi,data): Returns updates for the chart using the parameter xi and the observed data
data.

• Pofdata(data): Estimates a probability model from the data.

• xiofP(P): Computes the parameter xi needed to compute updates from an (estimated) proba-
bility model P.

• resample(P): Generates a new data set from the probability model P.

• getcdfupdates(P,xi): Returns the cumulative distribution function (CDF) of updates with
data generated from the probability model P and updates computed using the parameter xi.

In the following we give some examples.

Robust estimation

Consider again the example discussed in Sections Motivating example and CUSUM chart with estimated
in-control state of a CUSUM chart which assumes a normal distribution of the observations with
unknown mean and standard deviation. We now demonstrate how to change the estimators to use
the median the mean absolute deviation (MAD) instead of using the mean and the sample standard
deviation. Using these robust estimators could be desirable if there could be outliers present in the
past in-control data.

For this we only need to override one function of the existing data model "SPCModelNormal",
the method Pofdata that estimates the parameters. The format of the input and output for the new
Pofdata function needs to be unchanged. The following code first list the old function and then
overrides it with the new.

> model <- SPCModelNormal(Delta = 1)
> model$Pofdata
function (data)
{
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list(mu = mean(data), sd = sd(data), m = length(data))
}
> model$Pofdata <- function(data){
+ list(mu = median(data), sd = mad(data), m = length(data))
+ }

Properties of this chart can then be computed as before:

> X <- rnorm(100)
> chartrobust <- new("SPCCUSUM", model = model)
> SPCproperty(data = X, nrep = 50, property = "calARL",
+ chart = chartrobust, params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of 4.162 gives an in-control ARL of at least 100.
Unadjusted result: 2.987
Based on 50 bootstrap repetitions.

Parametric exponential CUSUM chart

In this example we illustrate how to construct a CUSUM chart that assumes that the observations
are coming from an exponential distribution with unknown rate λ in control. Again, only the data
model needs to be defined, but now all functions are needed from scratch. I.e. we need to define all
the functions updates, Pofdata, xiofP, resample and getcdfupdates. The basic CUSUM chart class
“SPCCUSUM” will be used without changes.

The updates for a CUSUM chart can in general situations be based on the log likelihood ratio
between an out-of-control model and the in-control model (Hawkins and Olwell, 1998). I.e. the
CUSUM can be written

St = max (0, St−1 + Rt) , S0 = 0,

where the update Rt is the log likelihood ratio for observation t. Suppose that we want to detect a
change of the rate to λ∆ for some given ∆ > 0, ∆ 6= 1. To define the updates, we need to compute the
log likelihood ratio between the out-of-control and the in-control model for an observation Xt, which
gives

Rt = log
(

λ∆ exp(−λ∆Xt)

λ exp(−λXt)

)
= log(∆)− λ(∆− 1)Xt,

defining the function updates.

To define the data model the CDF of these updates must also be computed. This can be done in
closed form, but requires distinguishing the case ∆ > 1 and ∆ < 1 and taking into account that the
rate parameter used in the updates typically differs from the true rate parameter. Let λ̂ be the rate
parameter used in the updates (typically an estimated parameter) and λ be the true parameter. Then
the cdf (conditional on the value of λ̂) is

P(log(∆)− λ̂(∆− 1)Xi ≤ x) =
{

1− exp(−λ(x− log(∆))/(λ̂(1− ∆)) for ∆ < 1
exp(−λ(log(∆)− x)/(λ̂(∆− 1)) for ∆ > 1,

which needs to be implemented in getcdfupdates. We decide to use parametric resampling of the data
(resample) and we decide to estimate the parameter λ based on the past observations X−n, . . . , X−1
using the maximum likelihood estimator λ̂ = n/ ∑n

i=1 X−i.

The following code implements this.

> SPCModelExponential = function(Delta = 1.25){
+ structure(list(
+ Pofdata = function(data){
+ list(lambda = 1/mean(data), n = length(data))
+ },
+ xiofP = function(P) P,
+ resample = function(P) rexp(P$n, rate = P$lambda),
+ getcdfupdates = function(P, xi) {
+ if (Delta<1)
+ function(x)
+ pmax(0, 1-exp(-P$lambda*(x-log(Delta))/(xi$lambda*(1-Delta))))
+ else
+ function(x)
+ pmin(1, exp(-P$lambda*(log(Delta)-x)/(xi$lambda*(Delta-1))))
+ },
+ updates = function(xi, data) log(Delta)-xi$lambda*(Delta-1)*data
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+ ), class = "SPCDataModel")
+ }

Next, we put this into practice. First we initiate the chart.

> ExpCUSUMchart <- new("SPCCUSUM", model = SPCModelExponential(Delta = 1.25))

The following creates some past observations and compute the threshold needed to achieve an
ARL of 1000.

> X <- rexp(500)
> cal <- SPCproperty(data = X, nrep = 50, property = "calARL", chart = ExpCUSUMchart,
+ params = list(target = 1000), covprob = 0.9, quiet = TRUE)
> cal
90 % CI: A threshold of 4.054 gives an in-control ARL of at least 1000.
Unadjusted result: 3.165
Based on 50 bootstrap repetitions.

Finally, we generate some new data and make a CUSUM plot with thresholds which is displayed
in Figure 5.

●●●●●
●

●
●

●●
●

●
●

●
●●

●
●●

●

●●
●

●●
●●

●

●
●

●

●●
●

●

●
●

●●

●
●●

●●

●

●●
●

●●
●

●●

●
●●

●
●

●
●

●●
●

●
●●●

●
●

●
●

●
●

●●
●

●
●

●●●

●
●

●●
●

●●
●

●●

●
●

●
●

●

●

●
●●

0 20 40 60 80 100

0
1

2
3

4
5

t

S
t

Adjusted threshold
Unadjusted threshold

Figure 5: CUSUM chart for the rate of an exponential distribution with estimated parameters. The
data are in control.

Implementing a new type of chart

We now discuss the chart model and how to implement new charts. Every chart is an S4 class derived
from the class "SPCchart". It has one slot, model, which contains the data model to be used with the
chart. The main method that needs to be implemented is the method getq, which computes desired
properties of a given control chart. It receives two arguments: which property to report (a string,
e.g. ARL, hitprob, calARL, calhitprob) and additional parameters for this property, e.g. a threshold
when computing the ARL (property ARL), a threshold and a number of steps when computing hitting
probabilities (property hitprob), a desired ARL when calibrating the threshold (property calARL).

We now give one example of how to implement a new chart. Suppose the in-control distribution is
assumed to have a distribution with continuous cdf F, which does not need to be symmetric. Then we
can define a Shewhart type chart which signals if an observation X is in the upper α/2 or lower α/2
quantile for a given threshold α > 0, i.e. if

X ≤ F−1(α/2) = fα/2 or X ≥ F−1(1− α/2) = f1−α/2.

This can be termed a Shewhart chart with asymetric control limits (Chen and Kuo, 2010).

The main work in implementing a chart is implementing functions that compute properties of
the chart (e.g. ARL in control, threshold needed to give a certain ARL or hitting probabilities within
certain steps). These properties need to be computed given the parameter that is used for running the
chart (xi) and given the distribution of the observations (P).

In this example we implement two methods: one for computing the ARL (ARL) and one for
computing the α needed to give a certain ARL (calARL). The ARL for the Shewhart chart with
asymetric control limits run with estimated parameters will be

1
P(X ≤ f̂α/2) + P(X ≥ f̂1−α/2)

=
1

F( f̂α/2) + 1− F( f̂1−α/2)
,
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and in the implementation below we make a log transform of this to increase the accuracy of the
bootstrap. To implement the property calARL, the α needed to achieve a certain ARL is found by a
numerical search using the above expression (we have implemented this with ad hoc choices for the
boundaries of the numeric search). A logit transform is here used in the implementation to improve
the bootstrap.

> setClass("SPCShewAsym", contains = c("SPCchart"))
> setMethod("getq", signature = "SPCShewAsym", function(chart, property, params){
+ if (property == "calARL"){
+ list(
+ q = function(P, xi){
+ pobs <- function(alpha)(
+ getcdfupdates(chart, xi = xi, P = P)(xi$quant(alpha/2))
+ +(1-getcdfupdates(chart, xi = xi, P = P)(xi$quant(1-alpha/2))))
+ res <- uniroot(function(x) params$target-(1/pobs(x)),
+ lower = 1e-7,upper = 0.4)$root
+ as.double(log(res/(1-res)))
+ },
+ trafo = function(x) exp(x)/(1+exp(x)),
+ lowerconf = FALSE,
+ format = function(res)
+ paste("A threshold of alpha=", format(res, digits = 4),
+ " gives an in-control ARL of at least ",
+ params$target, ".", sep = "", collapse = "")
+ )
+ }else if (property == "ARL"){
+ list(
+ q = function(P, xi){
+ -log(getcdfupdates(chart, xi = xi, P = P)(xi$quant(params$alpha/2))
+ +(1-getcdfupdates(chart, xi = xi, P = P)(xi$quant(1-params$alpha/2)))
+ )},
+ trafo = function(x) exp(x),
+ lowerconf = FALSE,
+ format = function(res)
+ paste("A threshold defined by alpha=", params$alpha,
+ " gives an in-control ARL of at least ",
+ format(res, digits = 4), ".", sep = "",collapse = "")
+ )
+ }else stop("property ", property, " not implemented.")
+ })
[1] "getq"

Now we want to use this chart for the example of a gamma distribution. For this we need to
implement a basic data model, which uses the observations directly as updates. We estimate the
parameter of the gamma distribution via the method of moments (Pofdata). To run the chart we need
the quantile function to calculate the estimates of the quantiles fα/2 and f1−α/2 (this appears in xiofP).
Resampling is again parametric resampling under the assumed Gamma distribution (resample).

> X <- rgamma(100, scale = 3, shape = 2)
> modGammaBasic = structure(
+ list(
+ Pofdata = function(data){
+ list(scale = var(data)/mean(data),
+ shape = mean(data)^2/var(data),
+ n = length(data))
+ },
+ xiofP = function(P){
+ res <- P;
+ res$quant <- function(alpha)
+ qgamma(alpha, shape = P$shape, scale = P$scale);
+ res
+ },
+ resample = function(P) {
+ rgamma(P$n, shape = P$shape, scale = P$scale)
+ },
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+ getcdfupdates = function(P, xi) {
+ function(x) pgamma(x, shape = P$shape, scale = P$scale)
+ },
+ updates = function(xi, data) data
+ ),
+ class = "SPCDataModel")
> chartAsym <- new("SPCShewAsym", model = modGammaBasic)
> SPCproperty(data = X, nrep = 50, chart = chartAsym,
+ property = "ARL", params = list(alpha = 0.01), quiet = TRUE)
90 % CI: A threshold defined by alpha=0.01 gives an in-control ARL of at
least 34.54.

Unadjusted result: 100
Based on 50 bootstrap repetitions.
> SPCproperty(data = X, nrep = 50,
+ property = "calARL", chart = chartAsym,
+ params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of alpha=0.002869 gives an in-control ARL of at least
100.

Unadjusted result: 0.009998
Based on 50 bootstrap repetitions.

To show the advantage of the modular setup we now modify the data model to assume that
the data is coming from an exponential distribution, in other words that the shape parameter of the
gamma distribution is 1. We just need to redefine the function PofData to accomplish this.

> modExp = modGammaBasic
> modExp$Pofdata <- function(data){
+ list(scale = mean(data),
+ shape = 1,
+ n = length(data))
+ }
> chartAsymExp <- new("SPCShewAsym", model = modExp)
> X <- rexp(100)
> SPCproperty(data = X, nrep = 50, chart = chartAsymExp,
+ property = "ARL", params = list(alpha = 0.01), quiet = TRUE)
90 % CI: A threshold defined by alpha=0.01 gives an in-control ARL of at
least 84.08.

Unadjusted result: 100
Based on 50 bootstrap repetitions.
> SPCproperty(data = X, nrep = 50,
+ property = "calARL", chart = chartAsymExp,
+ params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of alpha=0.007553 gives an in-control ARL of at least
100.

Unadjusted result: 0.009998
Based on 50 bootstrap repetitions.

Application to cardiac surgery data

In this section we illustrate use of the package with an application to a data set on the outcome of
cardiac surgery from a UK centre for cardiac surgery over the period 1992-1998. These data were first
analysed by Steiner et al. (2000) and have later been used for illustration by several authors (e.g. Sego
and Woodall, 2009; Jones and Steiner, 2012; Zhang et al., 2016). A random subset of these data with
some random noise added is available in the data frame cardiacsurgery in spcadjust. In this data
frame the date of surgery, a surgeon number, the time until death if the patient died during the follow
up time and the Parsonnet score of the patient is given. The Parsonnet score is a well established
scoring system in cardiac surgery which combines a number of risk factors into a risk score for the
patient. The data frame contains 5595 cases.

> data(cardiacsurgery)

Like Steiner et al. (2000) we will focus on the 30-day post-operative mortality rate and use a logistic
regression model with Parsonnet score as covariate for taking into account the differences in risk
between patients, and use a CUSUM for monitoring.
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CUSUM for logistic regression models

We first describe the general set up for CUSUM monitoring with logistic regression models and then re-
turn to the cardiac surgery example. Assume we have n past in-control data (Y−n, X−n), . . . , (Y−1, X−1),
where Yi is a binary response variable and Xi is a corresponding vector of covariates. Suppose that in
control logit(P(Yi = 1|Xi)) = Xiβ. A maximum likelihood estimate β̂ is obtained based on the past
data.

For detecting a change to logit(P(Yi = 1|Xi)) = ∆ + Xiβ, a CUSUM chart based on the cumulative
sum of log likelihood ratios of the out-of-control versus in-control model can be defined by (Steiner
et al., 2000)

St = max (0, St−1 + Rt) , S0 = 0,

where

exp(Rt) =
exp(∆ + Xtβ)Yt /(1 + exp(∆ + Xtβ))

exp(Xtβ)Yt /(1 + exp(Xtβ))
= exp(Yt∆)

1 + exp(Xtβ)

1 + exp(∆ + Xtβ)
.

Like in the linear regression case we apply non-parametric bootstrap as described in Section Risk-
adjusted charts.

Cardiac surgery data

The two first years of data, containing 1769 cases, are used for estimating the parameters of the logistic
regression model. The effect of the Parsonnet score turns out to be non-linear on the logit scale,
applying a square root transform of the score sorts out this. We thus set up data for estimating the
chart parameters (phase I sample) and for running the chart (phase II sample) as follows:

> #Use dead within 30 days as response
> dead30 <- as.numeric(cardiacsurgery$time <= 30)
> #Use the two first years of data as phase I sample
> phaseone <- cardiacsurgery$date <= 730
> estdata <-data.frame(y = dead30[phaseone],
+ x = sqrt(cardiacsurgery$Parsonnet[phaseone]))
> #Use the five last years of data as phase II sample
> phasetwo <- !phaseone
> rundata <- data.frame(y = dead30[phasetwo],
+ x = sqrt(cardiacsurgery$Parsonnet[phasetwo]),
+ z = cardiacsurgery$surgeon[phasetwo],
+ year = (cardiacsurgery$date[phasetwo]-730)/365)

Next we set up charts for monitoring against roughly a doubling and a halving of the mortality
rate, respectively. With a baseline rate of 6.1% this corresponds to ∆ = 0.75 and ∆ = −0.75.

> chartlogregd <-
+ new("SPCCUSUM", model = SPCModellogregLikRatio(Delta = 0.75, formula = "y~x"))
> chartlogregh <-
+ new("SPCCUSUM", model = SPCModellogregLikRatio(Delta = -0.75, formula = "y~x"))

For calculating the thresholds we specify an in control ARL of 10 000, i.e. a false alarm should on
average only occur once per 10 000 procedures.

> cald <- SPCproperty(data = estdata, chart = chartlogregd, property = "calARL",
+ nrep = 50, params = list(target = 10000, gridpoints = 250),
+ parallel = Inf)
> cald
90 % CI: A threshold of 6.157 gives an in-control ARL of at least 10000.
Unadjusted result: 5.065
Based on 50 bootstrap repetitions.
> calh <- SPCproperty(data = estdata, chart = chartlogregh, property = "calARL",
+ nrep = 50, params = list(target = 10000, gridpoints = 250),
+ parallel = Inf)
> calh
90 % CI: A threshold of 6.271 gives an in-control ARL of at least 10000.
Unadjusted result: 4.469
Based on 50 bootstrap repetitions.

The option parallel = Inf speeds up the bootstrap, but this option must be skipped if the code is
run in an environment which does not support parallel processing.
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Figure 6: CUSUM charts based on logistic regression model with estimated parameters monitoring
against increased mortality. Individual charts for four surgeons.
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Figure 7: CUSUM charts based on logistic regression model with estimated parameters monitoring
against decreased mortality. Individual charts for four surgeons.
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Assuming that the distribution of Parsonnet scores is roughly the same for the patients each
surgeon receives, and that the distribution remains approximately the same in the remainder of the
period as in the first two years, the thresholds calculated above can be used for running individual
charts for each of the surgeons. Notice that in such a setting where several charts are run with the same
estimated parameters a threshold adjustment which achieves a guaranteed conditional performance is
particularly relevant (Gandy and Kvaløy, 2013).

The resulting CUSUM plots for four of the surgeons are shown in Figures 6 and 7. In Figures 6 the
CUSUM for the second surgeon starts to increase after a while and passes both the unadjusted and the
adjusted threshold. This could e.g. be due to this surgeon starting to receive more difficult cases, not
sufficiently accounted for by the adjustment for Parsonnet score.

For the monitoring against decreased mortality in Figures 7 there is a signal for one of the surgeons,
indicating better survival than explained by the adjustment for Parsonnet score. The CUSUM for the
third surgeon crosses the unadjusted threshold, but not the adjusted and is thus not regarded as a true
signal.
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