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Update of the nlme Package to Allow a
Fixed Standard Deviation of the Residual
Error
by Simon H. Heisterkamp, Engelbertus van Willigen, Paul-Matthias Diderichsen, John Maringwa

Abstract The use of linear and non-linear mixed models in the life sciences and pharmacometrics
is common practice. Estimation of the parameters of models not involving a system of differential
equations is often done by the R or S-Plus software with the nonlinear mixed effects nlme package.
The estimated residual error may be used for diagnosis of the fitted model, but not whether the
model correctly describes the relation between response and included variables including the true
covariance structure. The latter is only true if the residual error is known in advance. Therefore, it
may be necessary or more appropriate to fix the residual error a priori instead of estimate its value.
This can be the case if one wants to include evidence from past studies or a theoretical derivation;
e.g., when using a binomial model. S-Plus has an option to fix this residual error to a constant, in
contrast to R. For convenience, the nlme package was customized to offer this option as well. In this
paper, we derived the log-likelihoods for the mixed models using a fixed residual error. By using some
well-known examples from mixed models, we demonstrated the equivalence of R and S-Plus with
respect to the estimates. The updated package has been accepted by the Comprehensive R Archive
Network (CRAN) team and will be available at the CRAN website.

Introduction

Life science and pharmacometric studies almost always involve an application of linear (Laird and
Ware, 1982) and non-linear (Davidian and Giltinan, 1995) mixed models. In pharmacometrics, the use
of nonlinear mixed effects modelling (NONMEM) software (Beal and Sheiner, 1988) for models with
systems of differential equations is predominant. Simpler pharmacokinetic (PK) or pharmadynamic
(PD) models may be based on curve fitting, for which software such as S-Plus and R are preferred.
Both programs use a similar mixed model package, respectively, nlme and nlme library, both of which
were originally developed by the authors Pinheiro and Bates (Pinheiro and Bates, 2001). In most cases,
the estimates of the parameters are the same at least to the third significant digit, although the same
model and data might occasionally lead to convergence problems (e.g., in R and not in S-Plus, and
vice versa), although larger differences may occur e.g., when performing an analysis of variance with
the function anova, as shown in 2.6. Typically, the estimated fixed and random coefficients have a
practical interpretation. The fixed coefficients usually refer to the parameters of interest for the study;
i.e. treatment, gender differences, half-life of the drug substance etc., while the random parameters are
interpreted as variation in the population represented by the study. The residual error of the fitted
model is an important indicator for the goodness of fit. Whether the goodness of fit is assessed by the
log-likelihood ratio, the Akaike information criterion (AIC) (Akaike, 1980) or the Bayesian information
criterion (BIC) (Schwartz, 1978) criteria, all criteria implicitly or explicitly use the residual error of the
fit.

For some applications, it is not appropriate to estimate the residual error, especially when it is
known in advance based on evidence from past studies, or a theoretically derived scaling parameter.
An example of the former are meta-analyses where the standard deviation of individual patient
outcomes in each study is reported. An example of the latter is a data transformation, implying
a fixed scaling parameter; e.g., the square root arcsine or logit transformation may be used as an
approximation of the binomial distribution.

As pointed out by an anonymous reviewer, other applications may be considered as well (Littel
et al., 2006). For example simulation of new observations from the fitted model while keeping sigma
constant or performing power calculations where commonly the expected error is assumed to be
known and kept constant. In both cases one must bear in mind that the simulated data will not cover
the whole range of possible outcomes, and in case of power calculation the actual power may be well
below the nominal power one aimed at.

The fitting functions from the nlme library in S-Plus allow the residual standard error to be fixed
and kept constant during the fitting process. This feature was not described in Pinheiro and Bates
(Pinheiro and Bates, 2001) but has been added as an argument to the respective control functions.
This feature was not available in the R package nlme but is included from version 3.1.123 (released
2016-01-17) onward.

We present this feature of the control functions used in linear mixed effects lme, non-linear mixed
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effects nlme, generalized linear least squares gls and generalized non-linear least squares gnls. Utilities
as summary, anova, print and intervals have been adapted as well.

From a coding point of view these changes were significant, as they required, among others, a
change of the likelihood functions in both the R and C source codes. This paper discusses the statistical
background in Section 2. In Section 3 the similarities and differences of the output of S-Plus version 8.2
are given for selected examples from Pinheiro and Bates (Pinheiro and Bates, 2001) as well as a case
study describing a model-based meta-analysis of outcomes in rheumatoid arthritis. In the last Section
proposals for change in nlme are put forward to address some of these similarities and differences.

The general linear and linear mixed model

The mixed model is an extension of the general linear model. The extension to a mixed model allows
other parameters of the general linear model to have a statistical normal distribution (Laird and Ware,
1982). These models are also known as multilevel models in different fields of application, as they
describe a hierarchy of levels in the data. For example, in a clinical trial, the first level might be the
trial centre, the second might be the patients within the trial centre, and the third might be the time
points at which the observations are acquired for an individual patient.

The reason for such a break-down of the random variation is that, within a centre, the variation
between subjects may be different than between centres; e.g., differences in environment, skills of the
operators, measurement devices, or the mixture of ethnicity of the patients. Variation within patients
is likely to be different and correlation of longitudinal observations within a patient may be present.

The expected outcome may be linear in the design parameters, including linear combinations
of polynomials and general additive models (Wood, 2006). Similarly parameters of the non-linear
models are allowed to be linear combinations (Davidian and Giltinan, 1995). General linear and mixed
linear models are fitted with gls and lme respectively. The corresponding non-linear models (e.g. a
Michaelis-Menten model curve) are fitted with gnls and nlme.

Mixed models have two sets of parameters. The fixed parameters are often of primary interest of
the study. For example, differences in treatment or gender, the half-life of a drug or factors for which
one wants to control like co-medication. The random parameters are used to describe variation within
respective levels of the study and are generally not controllable. For example, variation between and
within a population of patients. The random parameters might be dependent on some or all of the fixed
parameters or perhaps a function of the fitted values. Common statistical analysis seeks to estimate all
fixed and random parameters simultaneously using the same data without prior knowledge.

In the next subsections, we describe the mathematical model extending from the general linear to
the linear mixed and non-linear mixed model with knowledge of the residual error. The notation and
the terminology with regard to the number of hierarchical levels follows closely to that in Pinheiro and
Bates (Pinheiro and Bates, 2001). Throughout the paper we will use Greek characters to indicate the
true but unknown values of the model parameters, while the corresponding character superscripted
by ˆ denotes its estimate.

General linear model

The general linear model with only the basic random level of the residuals is presented here. A
comparison is made between the likelihood for the usual model with an estimated residual error and
the one with a fixed value of the latter. For further details of the derivation see (Pinheiro and Bates,
2001). If there were M groups (e.g. subjects) with ni possibly correlated observations each, the total

number of observations is: N =
M
∑
i

ni.The model is expressed for each group by the following formula:

yi = Xiβ + εi εi ∼ N
(

0, σ2Λi

)
(1)

Here, X is the ni × p design matrix and β is a column vector of length p. The matrix Λi, the covariance
matrix of each of the subjects, is a ni × ni positive-definite matrix is multiplied by σ2. Note that in
this model, we do not assume any between-groups variance; σ2 is the same for each of the M groups.
Assuming that the M groups are all statistically independent; e.g., subjects in a trial the total N × N
covariance matrix Λ is block-diagonal and each block represents the matrix Λi. If all observations
within a group were statistically independent as well Λi reduced to identity matrices I of the same
dimensions, and the model becomes an ordinary (multiple) regression model with covariance matrix I
multiplied by σ2 and can be solved by standard multiple regression software.

To solve model (1), one may reduce the model to an ordinary least squares model by transforming
both sides of the equation such that the covariance matrices are again diagonal and equal to σ2I. For
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details, see Appendix .1, where it is shown that formula (1) is equivalent to the least squares model
following expression:

y∗
i
= X∗

i
β + ε∗

i
ε∗

i
∼ N

(
0, σ2I

)
(2)

The superscript ∗ indicates the corresponding transformed vectors and matrices. This model appears
to be an ordinary least squares model, however, its solution depends on unknown parameters in Λi,
not explicitly in the equation. Thus, conditionally on the values of Λi, the fixed coefficients β of the
model—indicated by β̂—with the usual least squares equations are estimated, yielding:

β̂ =
[
(X∗)TX∗

]−1
(X∗)Ty∗

The matrices Λi usually depend on a set of only a few parameters with unknown values, which
we denote as λ. This means that the estimate β̂ depends on the unknown λ as well, but to simplify
the notation we write β̂ (λ), instead of β̂

(
λ̂
)
. Estimation of β̂ (λ), implies estimation of λ as well. The

method employed in the package nlme maximizes the profiled (minus) log-likelihood which includes
λ and β̂ (not β) (Pinheiro and Bates, 2001). The maximization is done for both β and λ in a stepwise
manner and at each step the residual variance is estimated as:

σ̂2 =

∥∥y∗ − X∗ β̂ (λ)
∥∥2

Np

The number Np is the degrees of freedom left for this residual variance. It equals N for the
maximum likelihood method of estimation and N − p for the restricted maximum likelihood and the
least squares method. The number p is the sum of the numbers of fixed parameters and the numbers
of parameters used in the function of the covariance matrix Λ. The estimate σ̂2 is plugged into all
other expressions; e.g., the standard errors of the estimates and the student tests to compare the fixed
parameters and the goodness of fit criteria.

The estimation of λ, β and σ is iterative because λ̂, β̂ and σ̂2 are interdependent. The (minus)
profiled log-likelihood of the general linear model equals :

llik
(
λ
∣∣y, σ̂, β̂

)
=

Np

2

[
log
(

Np
)
− log (2π)− 1− log

(∥∥y∗ − X∗ β̂ (λ)
∥∥2
)]

(3)

+ 1
2

M

∑
i=1

log |Λi|

However, if the residual variance is fixed, the profiled likelihood will be different. To see this, one
has to derive the original log likelihood function without substitution of σ̂2. This profiled likelihood
now depends on σ2 instead of σ̂2, as the former is a fixed scalar which does not enter the equations.

llik
(
λ
∣∣y, σ, β̂

)
=

Np

2

[
− log (2π)− log

(
σ2
)]
−
∥∥y∗ − X∗ β̂ (λ)

∥∥2

2σ2 (4)

+ 1
2

M

∑
i=1

log |Λi|

Note that if σ̂2 is substituted in (4), the expression is exactly the same as (3). The striking difference
between both profiled likelihoods is that, for known σ, the function (4) is linear in the residual sum of
squares, while for unknown σ, (3) is linear in the log of the residual sum of squares. The estimated
parameters λ̂ and β̂ will change accordingly. If the fixed scalar σ and the estimated σ̂ are close to each
other, the differences between the estimates will be quite small. Least squares estimation uses (4) with
the appropriate Np. Neither λ̂ or β̂ changes compared to maximum likelihood, although N rather than
Np is used in (4), as the first term in (4) is constant relative to λ. In contrast, when using the restricted

maximum likelihood, the profiled likelihood is modified by adding − 1
2

M
∑

i=1
log
∣∣∣(X∗)TX∗

∣∣∣ to (4), which

will change the dependency from λ and the parameters λ̂ and β̂ as well. For general and mixed linear
models, the nlme package uses, by default, the restricted maximum likelihood method.

If the co-variance matrix only depends on the variance σ2 because Λ is a constant matrix, the
equations (3) and (4) will attain their maximum at the same values of β. Thus, the estimates of the
fixed parameters β will be identical regardless of whether σ is kept fixed or estimated and only the
standard errors of the fixed coefficients will change.
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The linear mixed model

The extension of the general linear model to a mixed linear model complicates the likelihood and
subsequently, the estimation of its parameters. The model is known as the Laird-Ware model (Laird
and Ware, 1982), but the original proposal for solving the equations is credited to Harville (Harville,
1977). If M independent groups and Q hierarchical levels are above the basic null level, a general
mixed model complicates the presentation of its expression. As an illustration, a linear mixed model
with one hierarchical random level only is presented here:

yi = Xiβ + Zibi + εi bi ∼ N (0, Ψ) εi ∼ N
(

0, σ2Λi

)
(5)

The matrices Xi and Zi are the design matrices for p fixed parameters and q1 random effects, respec-
tively. The fixed parameters and random effects are vectors of length p and q1 respectively, while y is
a column vector of length ni. A model with Q random levels would have [qj, j = 1 , . . . , Q random
effects in total. It is assumed that bi and εi are independently normally distributed with a mean of zero.
The covariance matrix between each of the separate observations - sometimes called the basic random
level - is similar to the one in (1), allowing different dependencies within this basic random level;
e.g., correlations over time of observations grouped by subjects. The covariance matrix Ψ is the same
for all groups. The latter may depend on a small number of parameters θ similar to the covariance
matrices Λi, which depend on parameters λ. The parameters θ are called random coefficients. In (5)
the expectation of bi is assumed to be zero. The latter presents no restriction, as the expectations can be
part of the fixed model parameters βi. The expression (5) is redundant in the sense that the matrices Ψ

and Λi could have been combined, but the previous formulation is mathematically more convenient.
Likewise, in equation (2), an appropriate transformation of both sides of the expression will change
the model into a standard linear mixed model with independent errors conditionally on the unknown
parameters λ and θ.

A particularity of model (5) is that the vectors bi are neither observed nor are parameters of the
model itself. In analogy to Bayesian modelling, the effects bi are integrated out of the formula (5).
The resulting likelihood depends only on β, σ2, θ, and λ. The mathematical difficulty is that the
random parameters θ are unknown and moreover the integration is multidimensional. Once the
random parameters including σ2 are estimated, these are plugged into the model to estimate the fixed
parameters, similar to the general linear model. This approach is also known as empirical Bayesian
estimation of a mixed model. In contrast to other approaches used in PROC MIXED and PROC
GLIMMIX from SAS, the algorithm in nlme does not perform the integration numerically. In contrast,
Pinheiro uses an analytical approach and integrates ’manually’, which results in a solution exclusively
in terms of ordinary matrix algebra, as in the general linear model (Pinheiro and Bates, 2001). In theory,
this algorithm should be faster and more stable than that of PROC MIXED or PROC GLIMMIX from
statistical analysis software (SAS). Stability in the sense of convergence depends on the model itself
and is changeable. The drawback of the algorithm used by Pinheiro is that its derivation depends
completely on the use of normal distributions, while the SAS algorithm can more easily be adapted for
other distributions (such as binomial or Poisson). Both of the SAS procedures allow a full Bayesian
solution by Monte Carlo Markov Chain (MCMC). Although bi are not formally part of the model,
these may be estimated and are called the random residuals of the model for grouped observations
(e.g., subjects) and might be used to detect outlying groups.

In the following example, the (minus) log-likelihood of the standard mixed model for one hierar-
chical level (Q = 1) is compared to its equivalent of the model with known σ. For clarity of notation,
the superscript ∗ is excluded from all design matrices, but one must bear in mind that the latter
matrices now depend on the random parameters θ̂ as well as λ̂. Thus changing the estimates of the
latter parameters will change all the others as well. Similar to the general linear model, the use of the
normal or restricted maximum likelihood will change the parameters as well, but for mixed models
also the fixed parameters. As noted in Pinheiro and Bates (Pinheiro and Bates, 2001), the profiled
(minus) log-likelihood is formulated as:

llik (λ, θ |y, σ ) =
Np
2

[
log
(

Np
)
− log (2π)− 1−

M
∑

i=1
log
(∥∥∥ci

−1

∥∥∥2
)]

+
M
∑

i=1
log
∣∣∣ ∆

Ri

∣∣∣
The vectors ci

−1
and the matrices Ri are the result of a so-called QR decomposition of the design

matrices Xi. See Appendix .2 for details of the properties of QR decomposition. The matrices ∆ are
relative precision factors, which may actually be a vector of scalars. In Pinheiro and Bates (Pinheiro
and Bates, 2001) the precision factors are defined as any matrix ∆ that satisfies

σ2 Ψ−1 = ∆T∆ (6)
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Analogous to (4) the profiled (minus) log-likelihood can be expressed as:

llik (λ, θ |y, σ ) =
Np

2

[
− log (2π)− log

(
σ2
)]
−

M
∑

i=1

∥∥∥ci
−1

∥∥∥2

2σ2 +
M

∑
i=1

log
∣∣∣∣ ∆

Ri

∣∣∣∣ (7)

The profiled log-likelihood with fixed σ depends linearly on a term that is similar to the residual
sum of squares, while the equation of the usual mixed model depends on the log of the latter
quantity. Again, Np with the maximum likelihood of estimation equals N, while for restricted
maximum likelihood (REML), Np = N − p. In case of REML-estimation equation (7) is augmented

by: log (|R00 |) = 0.5 log
(∣∣∣∣ M

∑
i=1

XT
i Σ−1

i Xi

∣∣∣∣) where the matrix R00 is part of the QR decomposition.

Maximizing the augmented equation causes different estimates of the random parameters especially
as compared to those from the maximum likelihood method (ML). The method of estimation by lme is,
by default, the restricted maximum likelihood.

The non-linear mixed model

The non-linear mixed model is not only more complicated, its model structure is also different. In
a linear model, the expectation of response is directly modelled as a linear combination of the row
vectors of the design matrix X. The fixed coefficients of the model define these linear combinations,
while the random coefficients weight the latter for each group of the hierarchical level. By contrast,
in the non-linear models, the expectation of the response is a non-linear function and each of its
arguments is given by a mixed model. The non-linear model is described in detail by Davidian and
Giltinan (Davidian and Giltinan, 1995) and its algorithms in Bates and Chambers (Bates and Chambers,
1988), (Bates and Watts, 1992), (Lindstrom and Bates, 1990) and Pinheiro and Bates (Pinheiro and
Bates, 2001). The inclusion of the random parameters considerably complicates maximizing the
log likelihood. In this section, the model and the profiled likelihood are outlined. For details and
alternative algorithms for the same model, see Pinheiro and Bates (Pinheiro and Bates, 2001). As a
point of departure, a single hierarchical level, repeated measures, non-linear model is explained next.
For each of i = 1, . . . , M groups and j = 1, . . . , nij observations within a group, we have:

yij = f
(

φij, vij

)
+ εij εij ∼ N

(
0, σ2I

)
φij = Aijβ + Bijbi bi ∼ N (0, Ψ)

Again, the vector β are fixed parameters and the vectors bi are the random effects. The matrices Aij
and Bij play a similar role as Xi and Zi, respectively, in (5). The symbol f stands for a continuous
non-linear differentiable function of one dimension, and vij is a vector of covariates. The model
assumes that for each group (e.g., subjects), the arguments of the function may be different but its
form is the same for all groups. The model can be straightforwardly extended for more levels of the
hierarchy, or even by omitting the random terms as in gnls.

The nlme algorithm consists of alternating between a penalized non-linear least squares step
(PNLS) and the linear mixed model step (NLM), which is similar and explained in the linear mixed
model section. Therefore, only the consequences of fixing σ in the PNLS step have to be considered.
The PNLS step minimizes:

M

∑
i=1

[
‖yi − fi (β, bi)‖2 + ‖∆ bi‖2

]
(8)

The minimum is found by keeping in each step the precision factor (6) and the random coefficients bi
fixed. A convenient technique is to transform (8) into an ordinary least squares problem by augmenting
the response for each group with a vector of 0’s and the vector of function values by the column vector
∆ bi. The sum of squares (8) is then identical to

M
∑

i=1

[∥∥ỹi − f̃i (β, bi)
∥∥2
]

with ỹi and f̃i are the augmented vectors. Thus in the PNLS step, the sum of

squares is conditional on the value of σ and either estimation in the mixed model step or substitution
with a prior known value will yield the same solution. Only the likelihood function in the NLM step is
affected by the choice of substitution of a known σ or one that is estimated. For the non-linear mixed
model algorithm within each PNLS step, the same correction can be used as in the linear mixed model.
A strong point of the algorithm devised by Pinheiro for the (non) linear mixed model is the strategy of
getting solutions, not only by the classical root finding of the derivatives of the likelihood, but also by
means of the expectation-maximization (EM)-algorithm. The latter does not require any derivatives.
The EM algorithm is powerful because starting values of the parameters may be far from optimal
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Model type nlme Function Data set Model name Model function Reference

Generalized linear gls Orthodont fm1Orth.gls p. 251

Non-linear gnls Dialyzer fm1Dial.gnls SSasympOff p. 402

Mixed linear lme Orthodont fm1Orth.lme p. 147
lme Orthodont fm3Orth.lme p. 177
lme Wafer fm1Wafer.lme p. 172

Mixed non-linear nlme Theophylline fm1Theo.nlme SSfol p. 363, 516
nlme Theophylline fm2Theo.nlme SSfol p. 364, 516
nlme Theophylline fm3Theo.nlme SSfol p. 365, 516
nlme Orange fm1Oran.nlme SSlogis p. 358, 519

Table 1: Examples used for comparison of R and S-Plus output with and without fixed σ. References
are to Pinheiro and Bates (2001).

values. As on the other hand convergence slows when actually approaching the optimal values, the
root finding takes over. Again, this property makes the algorithm quite robust in theory, though
in practice, different starting values may cause differences in estimated values. Another difference
between the algorithm of R and SAS is that in the former, the likelihood is re-parameterized using
log (σ) rather than in σ, thus preventing the algorithm to crash if σ̂ is close to zero. This problem is
encountered frequently for over-parameterized models when using SAS. The nlme package contains
a function gnls for the general non-linear model analogous to the general linear model function gls .
It uses basically the same algorithm as nlme by stripping the random component.

Implementation and examples

From the viewpoint of the user, the only change in a function call of gls, is an extra argument in the
control functions glsControl, gnlsControl, lmeControl and nlmeControl respectively. The option is
implemented exactly as the corresponding control functions in S-Plus; for example, using a simple
model and data from the S-Plus and R libraries. The output object of the functions lme, nlme, gls, and
gnls contained a logical flag as component to signal whether σ is either fixed or estimated. The flag is
used in the utility functions print, summary, anova, and intervals. Table 1 gives an overview of the
examples used to test the new feature. The former are taken from Pinheiro and Bates (Pinheiro and
Bates, 2001). All examples ran both in R and S-Plus.

In the next subsections the output from package nlme of R and library nlme of S-Plus are compared.
Striking differences are given in the discussion. All scripts, output and difference files- in HTML
format- are made available to the editors of the journal. Not all models converged. They were either in
both R and S-Plus or in R or S-Plus only. The package nlme has a choice for two different optimizing
algorithms but only the default has been used as this is the only one available in S-Plus. Thus, non-
convergence in R might be caused by the use of the default algorithm. However, this has not been
tested systematically. The same starting values have been used in both R and S-Plus, except in the
examples with the self-starting functions in nlme. For the latter, starting values had to be supplied.
The same examples for estimated σ have been run both for the original nlme version and the updated
version. As the output was completely the same, eventual differences between S-Plus and R in case
of estimated σ cannot be attributed to the update of the package. We have chosen to compare the
R-output and the actual output of S-Plus 8.2 rather than the published one (Pinheiro and Bates, 2001),
as in some cases, differences in the case of estimated σ were found between the latter and the actual
version of S-Plus 8.2. At the time of its publication, fixed σ was not yet implemented.

General linear and general non-linear models

As an example, the code for the general linear and general non-linear model are given below for fixed
σ.

fm1Orth.gls <- gls( distance ~ Sex * I( age - 11), Orthodont)

While the same model with a fixed σ = 2 is declared as:

fm1Orth_fix.gls <- gls( distance ~ Sex * I( age - 11), Orthodont,
control = glsControl(sigma = 2)).

The default estimates σ and the argument sigma to glsControl or gnlsControl (below) can be omitted
or set to 0 or NULL. For both estimated and fixed σ, the results from the R and S-Plus estimates of the
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coefficients were identical to the third decimal using either the estimation method of the maximum
likelihood (ML) or the restricted maximum likelihood method (REML). However, for both the default
of estimated σ and fixed σ, the equivalence of the correlation structure and the confidence limits of the
coefficients might be limited only to the second decimal. An example of the general non-linear model
is scripted as:

fm1Dial.gnls <- gnls( rate ~ SSasympOff( pressure, Asym, lrc, c0), Dialyzer,
params = list( Asym + lrc ~ QB, c0 ~ 1),
start = c(53.6, 8.6, 0.51, -0.26, 0.225),
control = gnlsControl(sigma = NULL))

For fixed σ the argument sigma to the gnlsControl function should be changed to 1. The function
gnls can only produce a least squares solution and rarely uses the C-library. Note that although the
function SSasympOff is a self-starting function, starting values had to be supplied in R, but not in
S-Plus.

Mixed linear models

The gls example from above was also fitted as a mixed model with the appropriate changes in the
script:

fm1Orth.lme <- lme( distance ~ I(age-11), Orthodont)

and

fm1Orth_fix.lme <- lme( distance ~ I(age-11), Orthodont,
control = lmeControl(sigma = 1))

Similar results as for the gls model were found for the ML method. However, both in R and S-Plus
the REML estimation method for both estimated and fixed σ stopped due to a convergence error. The
latter is remarkable as the estimates for the REML method are given in Pinheiro and Bates (Pinheiro
and Bates, 2001)). The third example uses a covariance structure and is given as:

fm3Orth.lme <- lme( distance ~ Sex * I( age - 11), Orthodont,
weights = varIdent(form = ~ 1 | Sex))

While the same model with a fixed σ = 2 is declared as:

fm3Orth_fix.lme <- lme( distance ~ Sex * I( age - 11), Orthodont,
weights = varIdent(form = ~ 1 | Sex),
control = list(sigma = 2)).

The ML method of estimation for both estimated and fixed σ were equal in the third digit, with the
exception of the random effects and the interval estimates, in both cases of estimated and fixed σ.
Differences were sometimes found to the second decimal. The same applies to the method of REML
estimation. Finally, the corresponding R code for the linear mixed model example:

fm1Wafer.lme <- lme( current ~ voltage + I( voltage^2 ), Wafer,
random = list( Wafer = pdDiag( ~ voltage + I( voltage^2 )),
Site = pdDiag( ~ voltage + I( voltage^2 )) ),
control = lmeControl( sigma = NULL))

For fixed σ, one has to substitute NULL by 1 in the argument sigma of lmeControl. Similar results are
found in the two previous examples. But notable differences in the confidence limits of the random
effects were seen when using the REML method with fixed σ, although the point estimates of the
coefficients themselves were the same. For the interpretation of the correlation between the random
effects, this might have consequences, as in R the latter did not contain 0 in the interval as opposed to
the result from S-Plus 8.2. The latter could be caused by the difference in the degrees of freedom of the
t-distribution, as our implementation of these might have changed if σ is kept fixed.

Non-linear mixed models

The nlme function for solving a non-linear problem defaults to the ML method as opposed to lme.
During testing it was discovered that the option of the restricted maximum produced exactly the same
estimates as for ML, with and without estimation of σ. In our opinion, this is not correct, but as far as
we know, has never been reported. The example codes as:
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fm1Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL))

Fitting σ requires the same change as in the above examples. The ML estimates using estimated σ
were the same for R and S-Plus to the third digit. However, for fixed σ the example in S-Plus did not
converge, and no comparison can be made. For the REML method, neither of the estimations (free or
fixed) converged. R required starting values, even if SSfol was supposed to be self-starting. The next
example from Table 1 is an extension of the above and the code is:

fm2Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL),
random = pdDiag( lKe + lKa + lCl ~ 1))

The estimates of the fixed coefficients are equal to the second or third place in all cases. In contrast
differences between the random parameters for ML, REML, and estimated and fixed σ are larger. Also,
the approximate variance-covariance matrix of the random effects is nearly singular, which causes the
95% lower and upper limits for lKe to be near infinity. In S-Plus, the covariance matrix of the REML
random estimates was not estimated at all due to singularity of the Hessian matrix. This may indicate
that the parametrization of model is not correct, probably for parameter lKe. The next example uses
the same data set but omits lKe from the random parameter list:

fm2Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL),
random = pdDiag( lKa + lCl ~ 1))

Now the outcomes of all the models are in better agreement, and the covariance of the random effects
is available for S-Plus. There are still differences from the third digit onwards for the random effects
confidence limits, especially for the REML method.

Note that for all of the above models we have changed the degrees of freedom of the log likelihood
in case σ is held fixed, which coincides with the output of S-Plus. This may cause differences in the
confidence limits especially when the degrees of freedom of the t-distribution is small.

A case study illustrating the application of a non-linear mixed model with
a binomial response

A summary clinical outcome dataset including clinical outcome data from 14 randomized controlled
trials of 4 drugs was extracted from the Quantify RA clinical database developed by Quantitative
Solutions (drug and trial names blinded). Three endpoints were included describing the proportion
of patients with ACR20, ACR50, and ACR70 responses. These endpoints are based on the American
College of Rheumatology (ACR) criteria used to assess improvement in tender or swollen joint counts
and improvement in three of the following five parameters: acute phase reactant (such as sedimentation
rate), patient and physician assessment, pain scale, and a disability/functional questionnaire. For
ACR20 response, a 20 percent improvement in tender or swollen joint counts as well as 20 percent
improvement in three of the other five criteria is required. Similarly, for ACR50 and ACR70, a 50
and 70 percent improvement is required, respectively. Outcomes were available up to 6 months (24
weeks) after the start of treatment with one of the drugs, up to 12 weeks with the two other drugs,
while the last drug was only observed in a 4-week trial. The analysis dataset was analyzed using
two non-linear regression models and a mixed effects model with random effects on the level of trial
assuming binomial distributed data. The probability of ACR20/50/70 response is confined to the
interval between zero and one. In this example, the logit transformation was used as a link function
between the probability of response p and a hidden model variable X:

p =
eX

1 + eX
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Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

E0 -1.06 (10%) -1.11 (4%)
αACR50 -1.05 (5%) -1.07 (3%)
αACR70 -1.97 (3%) -2.00 (2%)
EMAX 2.02 (10%) 2.06 (4%)

log ED50,drug1 2.22 (63%) 2.14 (31%)
log ED50,drug2 1.75 (20%) 1.68 (9%)
log ED50,drug3 4.11 (16%) 4.04 (8%)
log ED50,drug4 1.22 (36%) 1.22 (15%)

Res. error 1.924 1 (fixed)

Table 2: Parameter estimates with uncertainty based on a gnls model with constant placebo.
Results for estimated and fixed σ in left and right column respectively.

A convenient property of the logit transformation is that the log odds ratio (OR) of two probabilities
translates into the difference between the corresponding hidden model variables:

log OR = log

( p1
1−p1

p2
1−p2

)
= X1 − X2

If X is described by a linear model, correction for any predictor can be done by subtraction. Specifically,
if the probability of response is modelled as the inverse logit of the sum of a placebo(E0) and a drug
effect(g), the log OR of the treated versus the untreated response is simply given by function g; (see
11). The logit transformed observed proportion of ACR20/50/70 responders was described as the
sum of an unstructured placebo response (E0,it) and drug-dependent drug effects described by EMAX
models with common EMAX and drug-specific ED50 estimates.

Nresponse,kijt ∼ binomial
(

P(response)kijt, Nkijt

)
(9)

P(response)kijt = logit−1
(

E0,it + gk

(
Drugij, Doseij

)
+ αk

)
(10)

gk

(
Drugij, Doseij

)
=

EMAX · Doseij

ED50,Drugij
+ Doseij

(11)

Where Nresponse,kijt is the number of subjects in treatment arm j of trial i with ACRk response at the tth
visit out of Nkijt subjects. The coefficient αk estimated for ACR50 and ACR70 describes the constant
log OR of these endpoints relative to ACR20. Three variations of the model described in (11) were
investigated using fixed and estimated residual standard error. Model 1 was a gnls model including a
constant placebo model across trials and visits; i.e. E0,it = E0. Model 2 was a gnls model including
an unstructured placebo model estimating a non-parametric placebo response at each visit in each
trial; E0,it as shown in (11). Model 3 was a non-linear mixed effects model including an unstructured
placebo model with uncorrelated random effects on EMAX and αk on the level of trial. All three models
included a compound symmetry model correlating outcomes from different endpoints and visits
within a trial. An overview of the parameter estimates for the three models are in Tables 2 , 3, and 4
respectively.

It is interesting to note that comparison with anova showed significant differences between free
estimated and fixed σ for models GNLS models 1 and 2, whereas the same comparison for the nlme
model 3, did not show a significant difference. The (lack of) differences appeared for the criteria AIC
and BIC, as well for the likelihood ratio test. For the former criteria the usual difference of 2 was
used as a threshold. See Tables 5, 6 and 7. Comparison between models 1, 2 and 3 are not shown but
from the tables it is clear that these models have an increasingly lower AIC and BIC, and better log
likelihood ratio’s either for free or fixed σ.

Conclusions and discussion

The estimates of the fixed coefficients of S-Plus and R are often identical to three significant digits,
except in the case of over-parameterized models, which may cause non-convergence and inaccurate
estimation of the covariance matrix of the random parameters. Differences might occur even for the
default model with estimation of σ. For the non-linear mixed models differences between R and
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Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

Mean∗ E0 -1.16 -1.22
αACR50 -1.08 (3%) -1.09 (3%)
αACR70 -2.05 (2%) -2.06 (2%)
EMAX 2.24 (8%) 2.26 (5%)

log ED50,drug1 2.87 (69%) 2.80 (50%)
log ED50,drug2 1.94 (13%) 1.92 (9%)
log ED50,drug3 4.47 (21%) 4.42 (15%)
log ED50,drug4 1.66 (28%) 1.44 (22%)

Res. error 1.313 1 (fixed)
E0
∗ : Mean of 34 unstructured placebo parameters

Table 3: Parameter estimates with uncertainty based on a gnls model with unstructured placebo.
Results for estimated and fixed σ in left and right column respectively.

Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

Mean∗ E0 -1.28 -1.26
αACR50 -1.08 (8%) -1.08 (8%)
αACR70 -2.08 (5%) -2.08 (5%)
EMAX 2.34 (11%) 2.33 (11%)

log ED50,drug1 2.97 (50%) 2.99 (54%)
log ED50,drug2 1.78 (10%) 1.76 (11%)
log ED50,drug3 4.66 (16%) 4.67 (17%)
log ED50,drug4 1.59 (33%) 1.71 (32%)

sd(αACR50) 0.260 0.257
sd(αACR70) 0.351 0.344
sd(EMAX) 0.761 0.745

Res. error 0.938 1 (fixed)
E0
∗ : Mean of 34 unstructured placebo parameters

Table 4: Parameter estimates with uncertainty based on a nlme model with unstructured placebo.
Results for estimated and fixed σ in left and right column respectively.

Model df AIC BIC logLik L.Ratio p-value

model 1 free σ 10 -740.2 -700.1 380.1
model 1 fix σ 9 -271.1 -235.0 144.5 471.2 <.0001

Table 5: Analysis of variance table for comparison of gnls model 1 between free and fixed σ

Model df AIC BIC logLik L.Ratio p-value

model 2 free σ 43 -1100.5 -928.0 593.3
model 2 fix σ 42 -1076.8 -908.4 580.4 25.7 <.0001

Table 6: Analysis of variance table for comparison of gnls model 2 between free and fixed σ

Model df AIC BIC logLik L.Ratio p-value

model 3 free σ 46 -1215.8 -1031.3 653.9
model 3 fix σ 45 -1215.8 -1035.3 652.9 2.0 0.16

Table 7: Analysis of variance table for comparison of nlme model 3 between free and fixed σ
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S-Plus were more likely to occur when using REML estimation. Sometimes REML estimation was not
possible in either R or S-Plus due to lack of degrees of freedom.

There are some differences between R and S-Plus in the code of the functions. As the code of the
C-functions in S-Plus is not public, differences in the code itself could not be checked. The R functions,
in particular the interaction between the R-code and the C-functions were fragile in the sense that
input was often changed within a function and then used as output. Thus, a small change in code in
one part could have unexpected results in other parts of the output.

The code of the nlme package is far from modular; e.g., parts of both user-accessible and hidden
functions of lme were used in nlme or gls causing lack of transparency. For example, within the
function print.summary.gls, at some point the function print.summary.lme was used, which caused
difficulties with passing the right degrees of freedom of the likelihood. Different definitions of the
likelihood functions coded in C were used in the R-code of the same parent functions, amongst others
in lme. Another critical point is that utilities as print, summary or print.summary functions tend to
recalculate again some statistics such as the likelihood, AIC or BIC. For these reasons, debugging has
been time consuming and given the complexity of the nlme package the number of tests provided by
CRAN is simply too small. Thus, the warning ’the use of free software comes with no guarantee’ in
the code of each of the functions must be taken in earnest.

A general drawback of the algorithm used in nlme is that it is completely geared to the use of
the normal distribution. The latter makes it difficult - though not impossible - to adapt the algorithm
for other distributions such as binomial or Poisson. The CRAN-library already contains the package
nlme4 allowing non-normal distributions, but at this time lacks the feature of the use of correlated
observations. Perhaps a future update will be available that contains on option for fixing the scale
parameter σ.

In the nlme library of S-Plus the degrees of freedom for residual error and consequently, the t-tests,
are not properly adapted for fixed σ. However, in the function anova, the degrees of freedom has been
changed in S-Plus to allow comparison between models with and without fixed σ. This correction
affects both AIC an BIC. For example, AIC will always decrease by 2 while BIC will decrease by
2× log (N). Apart from that, the value of the profiled log likelihood for the REML estimation should
change, because the degrees of freedom is part of the latter function. For reasons of compatibility with
S-Plus, the changes in the degrees of freedom in the t-tests have not be implemented in nlme of R.

When comparing the output of nlme between R and S-Plus, a flaw became apparent in the output
of anova if used with a single object. The F-tests for the (grouped) parameters differed between both
programs. The F-values from R can be made equivalent to those from S-Plus by multiplying the
F-values by N

N−p . The same applies to the standard errors of the fixed estimates. There the factor

should be
√

N
N−p . We believe that the output from S-Plus is correct considering that a t-test with one

degree of freedom is equivalent to an F-test with one degree in the numerator in which case, the latter
is equivalent to the square of the former. The finding that, in the function nlme in R, that there is no
difference between ML and REML estimation is remarkable and may be due to an error in the code or
to a compelling reason by the maintainer of the package.

From a statistical point of view, a warning should be issued on the use of the likelihood ratio test
when comparing two models; one with a fixed and one with an estimated σ. In fact, the usual F-test is
not appropriate. The reason is that the log of both numerator and denominator have an approximate
Chi-square distribution up to the log of the true value of σ, which is unknown if σ is estimated. The
difference in the log-ratio between the known and estimated value of σ does not go away, which
causes a bias and invalidates the F-distribution of the log ratio. A safe way to test whether the a priori
value is right, is to use AIC or BIC using the recommendations by Raftery (Raftery, 1980). As Raftery
states, difference between AICs of 2 or less is ’hardly worth mentioning’. As previously mentioned,
an increase of one degree of freedom of the model already causes a decrease of 2 in the AIC, even if
the likelihood does not change. One could than be tempted to prefer the model with more degrees of
freedom although Raftery seems not to recommend this. The influence on the BIC is even stronger, as
its decrease will be at least 2× log (σ). With the developed patches, we have successfully back-ported
the ability to fix the residual standard error in the nlme package from S-Plus to R. Following review,
the patches have been accepted into the official version nlme (available through CRAN). This will
allow users to correctly estimate models where the residual standard error is known, using standard
and publicly available open-source tools.
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De-correlation of the normal model

Starting from a normal model with correlated errors, it is shown below that this model can be converted
into a model with independent errors and equal variance. Let Λ be a positive-definitive matrix, then

a non-singular square root of that matrix exists, Λ =
(

Λ
1/2
)T

Λ
1/2 . Similarly, for the inverse of the

matrix. The original response vector y and the errors ε are now both multiplied by the inverse of

the square root matrix, and are y∗ =
(

Λ−
1/2
)T

y and ε∗ =
(

Λ−
1/2
)T

ε respectively. The transformed

design matrix is X∗ =
(

Λ−
1/2
)T

X. The covariance matrix of the transformed observations is then

V (ε∗) = σ2
(

Λ−
1/2
)T

Λ Λ−
1/2 = σ2I, and the fixed coefficients β of the model can now be solved with

the usual least squares method.

QR decomposition

A N × p matrix X of rank p may be decomposed in an orthogonal matrix Q of dimension n× n and a
p× p upper triangular matrix R. More specifically

X = Q
[

R
0

]
= QtR

The matrix Qt is the truncated matrix Q consisting of the first p columns of the latter matrix. An
orthogonal matrix is defined as (Qt)

TQt = I.The decomposition is performed in the model (5) for all
matrices to simplify the actual numerical computations as well as the representation of the estimation
equations. The reason is that multiplication of a vector y augmented with p 0’s conserves the Euclidian

norm of that vector. So
∥∥∥(Qt)

Ty
∥∥∥2

= ‖y‖2. Similarly, the vector of residuals of a regression model

‖y− β X‖2 is conserved and equals ‖c1 − R β‖2 + ‖c2‖2. The vector cT = (c1, c2) with length p
and n− p and equals (Qt)

Ty. Maximizing the corresponding log likelihood yields the least squares
estimator β̂ = R−1c1 and the residual sum of squares equals ‖c2‖2.
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