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OrthoPanels: An R Package for
Estimating a Dynamic Panel Model with
Fixed Effects Using the Orthogonal
Reparameterization Approach
by Mark Pickup, Paul Gustafson, Davor Cubranic and Geoffrey Evans

Abstract This article describes the R package OrthoPanels, which includes the function opm(). This
function implements the orthogonal reparameterization approach recommended by Lancaster (2002) to
estimate dynamic panel models with fixed effects (and optionally: wave specific intercepts). This article
provides a statistical description of the orthogonal reparameterization approach, a demonstration of
the package using real-world data, and simulations comparing the estimator to the known-to-be-biased
OLS estimator and the commonly used GMM estimator.

Introduction

Panel data includes observations on N cases repeated over multiple, T > 1, time points (waves). A
dynamic panel model is one that includes one or more lagged dependent variables. When fixed effects
are included in such models, the OLS estimator is biased when T is fixed (small). This has become
known as Nickell bias (Nickell, 1981). A maximum likelihood estimation of such a model leads to
an incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000). Lancaster proposes an
orthogonal reparameterization approach to produce a conditional likelihood estimator that is exact
and consistent as N → ∞ for T ≥ 2 (Lancaster, 2002).1

This article provides an introduction to the R package OrthoPanels, which includes the function
opm(). This function implements the orthogonal reparameterization approach recommended by
Lancaster (2002) to estimate dynamic panel models with fixed effects (and optionally: wave specific
intercepts). In this article, we first provide a brief review of the methods implemented in OrthoPanels,
and then discuss an empirical illustration using some of the features of the function opm(). Finally, we
conduct some Monte Carlo simulations to demonstrate the performance of the opm() function under
different assumptions about the data generating process.

Review of methods

Panel models are used when we have observations on N cases repeated over T time points. These
models allow us to account for unobservable individual effects (unobserved heterogeneity) that can
neither be identified nor controlled with cross-sectional models (Finkel, 2008; Hsiao, 2014, pages 4–10).
The most general approach to accounting for unobservable individual effects, in that it makes the
fewest assumptions, is a fixed effects panel model (Hsiao, 2014, pages 47–56).

A dynamic panel model contains one or more lags of the dependent variable on the right-hand side.
A dynamic model is necessary if the dependent variable is autoregressive (Arellano, 2003, page 129).
We would expect a dependent variable to be autoregressive if we believe that subsequent to something
happening that temporarily changes the value of the dependent variable (e.g., a temporary shift in
an independent variable), the dependent variable will return partly but not entirely to its original
value before the next observation. The consequence is that we have a dependent variable in which
values that are above/below average at one observation are more likely than not to be above/below
average at the next observation. This autoregressive relationship between current and past values of
the dependent variable is not due to an omitted variable that links current and past values and not
due to correlation between the current and past values of the errors. The autoregressive relationship
is due to past values of the dependent variable having a direct effect on current values (Finkel, 2008,
page 486). A simple example of a data generating process that might require a dynamic model with
fixed effects (and wave specific intercepts) is:

yit = ρyit−1 + β1xit + τt + µit (1)

µit = ηi + εit, εit ∼ NID(0, σ2)

1Note this means two waves of data used in the estimation and data on the dependent variable from a third
earlier wave (T = 0). This is due to the need to have values for the lagged dependent variable at T = 1.
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where i = 1, ...N and t = 1, ..., T; yit is the value of the dependent variable y for case i at time t;
xit is the value of the independent variable x for case i at time t; and ρ and β are parameters. The
process is first order autoregressive with one lag of the dependent variable on the right-hand side.
For each case, there is a case-specific fixed effect ηi, also known as unobservable individual effects.
These represent (over time) average differences between cases. There may also be over time changes
in the average value of yit across cases, τt. These are changes common to all cases at a particular point
in time and include trending as a special case. The following discussion holds whether or not τt are
included. They are a useful control for dynamics like trending and global wave effects but need not be
included if such dynamics do not exist in the data.

The estimation of (1) presents a challenge. The OLS fixed-effects estimator with a lag dependent
variable is biased with a fixed (small) T. In the analysis of econometric panel data this has become
known as Nickell bias. Nickell (1981) provided the analytical expressions of the bias that had been
previously well documented by Monte Carlo work (Nerlove, 1967, 1971). Nickell showed that if the
autoregressive parameter, ρ in (1), is positive, the bias will be negative. He also demonstrated that this
bias persists even as ρ goes to zero. As we will see, the bias in the estimation of the autoregressive
parameter has important biasing effects on the estimation of the short and long-run effects (Greene,
2012, pages 422–423) of dynamic variables (e.g., xit).

A popular alternative to the OLS estimation is the Anderson and Hsiao (1981) instrumental
variable approach and more generally the Arellano and Bond GMM estimator (1991), and other GMM
estimators (Arellano and Bover, 1995; Blundell et al., 2000). The downside of these estimators is that
they are inefficient (Behr, 2003). Further, the GMM approach uses approximate inference methods and
requires assumptions about the appropriateness of past values of the dependent variable (and possibly
independent variables) as instruments. These assumptions may or may not be valid. Lancaster
(2000) argues the GMM estimator contains no data or information that is not already contained in the
likelihood for the model. Hsiao et al. (2002) propose a transformed-likelihood approach to dealing with
the incidental parameters problem. Lancaster (2002) proposes a conditional likelihood estimator (also
a type of transformed-likelihood approach) that can analytically compute the conditional probability
distributions, over our variables of interest, exactly. Such likelihood-based estimators require no
instrumental variable assumptions. We refer to the approach suggested by Lancaster as orthogonal
reparameterization (or OPM for orthogonalized panel model). This approach can be conceived of as a
Bayesian version of the frequentist, transformed-likelihood approach proposed and tested by Hsiao,
Pesaran and Tahmiscioglu (2002). See (Pesaran, 2015, pages 692–695) and (Hsiao, 2014, pages 80–135)
for a review of likelihood-based methods developed to estimate linear dynamic panel models with
fixed effects. The transformed-likelihood approach has been shown to perform better than GMM
estimators (Hsiao, 2014; Hsiao et al., 2002), particularly when the autoregressive parameter is close
to 1. The advantage of the OPM approach, over the transformed-likelihood estimators proposed by
Hsiao et al. (2002) is that the latter requires knowing the appropriate assumptions regarding the initial
conditions for yit at t = 0 and their relationship with the unobservable individual effects. This is often
not known and if the wrong assumptions are made, the estimator is no longer consistent (Anderson
and Hsiao, 1981; Hsiao, 2014, pages 86–98). This is not a requirement of the OPM approach.

The orthogonal reparameterization (OPM) approach

The Lancaster likelihood-based estimator proceeds as follows. The maximum likelihood estimation
of model (1) with a fixed (small) T leads to an incidental parameters problem. Maximum likelihood
estimation is consistent as N increases relative to the number of parameters estimated. With fixed
T, the number of fixed-effects (ηi) approaches infinity at the same rate as N → ∞. In other words,
each time we add a case, we add a parameter to be estimated. Therefore, N relative to the number
of parameters cannot increase and we cannot rely on asymptotics as N → ∞ and the application of
maximum likelihood leads to inconsistent estimates. Lancaster (2002) suggested a solution to this
particular incidental parameters problem.

The key to this approach is that we are not actually interested in estimates of the incidental
parameters (ηi). We are interested in estimates of the “common parameters” – in (1) this is the effect of
dynamic variable xit (β1), and τt , ρ, and σ2. Therefore, we seek a reparameterization of the incidental
parameters so that the incidental and common parameters are information orthogonal. This puts us in
a position to produce an N → ∞ consistent likelihood-based estimate of the parameters of interest that
is independent of the values of the incidental parameters. Therefore, we continue to have incidental
parameters but not an incidental parameter problem.

A straightforward example of the OPM approach (Lancaster, 2002) is as follows. We wish to
estimate a model that includes parameters ηi, τt, ρ and β1 and error variance σ2 – where ηi represents
the fixed effects, τt represents wave specific effects, ρ is the first order autoregressive parameter and
β1 represents the effect of dynamic variable xit. We denote the likelihood function for the data for a
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single case as `i(ηi, τt, ρ, β1, σ2).

Suppose the fixed effects can be reparameterized so that the likelihood function for the data for a
single case factors as:

`i(ηi, τt, ρ, β1, σ2) = `i1(ηi)`i2(τt, ρ, β1, σ2) (2)

Where `i1 and `i2 are themselves likelihood functions. If the parameters (ηi) and (τt, ρ, β1, σ2) are also
variation independent, they are orthogonal. If ∏ `i2 is the product of the `i2 for all observations, it can
then be shown that the application of maximum likelihood to ∏ `i2 produces consistent estimates of
(τt, ρ, β1, σ2) (Lancaster, 2002) as N → ∞ for any T ≥ 2.

Not all likelihoods can be transformed so that the incidental parameters are orthogonalized.
However, a solution with an equivalent intuition may be available. It may be possible to reparameterize
the fixed effects so that they are information orthogonal. If we denote the log of the likelihood for the
data for observation i as Li, then the fixed effects are information orthogonal to a parameter (e.g., β1)
if the following condition is met:

E
(

∂2Li
∂ηi∂β1

)
= 0 (3)

This can be interpreted as meaning that the slope of the log likelihood with respect to ηi is independent
of the slope of the log likelihood with respect to β1. If a transformation of the fixed effects can be
found that meets this condition (and the equivalent condition for the other parameters – in this case
τt, ρ and σ2), it may be possible to place priors on the parameters and integrate out the fixed effects.
Specifically, we use flat priors for the ηi and the remaining parameters. This is essentially a Bayesian
estimation technique. This gives us the marginal posterior for the remaining parameters. Lancaster
(2002) demonstrates how this can be done for the lagged dependent variable model with fixed effects.

Once we have the marginal posterior for our parameters of interest, we can use Monte Carlo
methods to sample values from the marginal posterior to produce estimates and credible intervals for
the parameters, as follows. We wish to estimate (1). To generalize a little, let us allow for K dynamic
variables, so that βXi,t = ∑K

k=1 βkxi,t,k. To simplify the notation, we express Xi,t, yi,t and yi,t−1 in
vector terms Xi, yi and yi−. As the τt are optional, depending on the data generating process, we leave
them out of the following discussion. The appropriate reparameterization of the fixed effects, forming
uniform priors on ρ, β1, σ2, and {ηi}, and integrating out the fixed effects results in the following
posterior density function2:

p(ρ, β, σ2|data) ∝ σ−(N(T−1)−2)exp
{N

T

T−1

∑
t=1

(
T − t

t
ρt
)
− 1

2σ2

N

∑
i=1

(yi − ρyi− − βXi)
′H(yi − ρyi− − βXi)

}
(4)

where H is defined as an operator that subtracts the mean. For example, if

ωi = yi − ρyi− − β1Xi

then H(ωi) ≡ ωi − ω̄.

Sampling from this posterior (4) gives us estimates (distributions) for ρ, β and σ2. To do this we
begin by integrating β out of (4). This gives us the following joint posterior density:

p(ρ, σ2|data) ∝ σ−(N(T−1)−K−2)exp
{N

T

T−1

∑
t=1

(
T − t

t
ρt
)}

exp

{
− 1

2σ2

( N

∑
i=1

(Xi)
′H(yi − ρyi−)

)′ (
N

∑
i=1

(Xi)
′H(Xi)

)−1( N

∑
i=1

(Xi)
′H(yi − ρyi−)

)} (5)

Next, we integrate out σ2 from (5) giving us the marginal posterior density:

p(ρ|data) ∝
exp

{
N
T ∑T−1

t=1

(
T−t

t ρt
)}

(
(yi − ρyi−)′H(yi − ρyi−)−

(
∑N

i=1(Xi)′H(yi − ρyi−)
)′ (

∑N
i=1(Xi)′H(Xi)

)−1 (
∑N

i=1(Xi)′H(yi − ρyi−)
))( N(T−1)−K

2

)

(6)

We can now proceed to sample triplet values (ρ, β, 1/σ2) by: first sampling ρ from (6); then, given
ρ, sample 1/σ2 from (5); then given ρ and 1/σ2, sample β from (4). When we sample values of 1/σ2

from (5) given ρ, we are sampling from a gamma distribution. When we sample values of β from
(4) given ρ and 1/σ2, we are sampling from a multivariate normal. The medians of the sampled

2This varies slightly from 3.24 in Lancaster (2002). The prior density for σ2 had not been included.
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values give us our parameter estimates and the 2.5 and 97.5 percentiles give us our 95 percent credible
intervals.

The limitation of this approach is that it must be worked out for each family of models. For
example, the necessary reparameterization will differ for a panel probit model. Lancaster (2000)
provides reparameterizations for Poisson count models, static linear panel models and dynamic
(stationary and nonstationary) linear panel models. Estimates of dynamic, binary models by this
approach are still in their early days (é and Kyriazidou, 2000; Arellano and Bonhomme, 2009). The
approach relies on the Bayesian idea of integrating out the fixed effects to give us the marginal posterior
distribution for the remaining parameters – although, this has many similarities to the frequentist idea
of a conditional likelihood (Cox and Reid, 1987). For a review and comparison of these approaches,
see Lancaster (2000).

The OrthoPanels package: empirical example

In this section, we demonstrate the use of the OrthoPanels package with an empirical example.3 The
data we will use is from the 2010 British Election Study, using 3 waves of panel survey data with 1845
respondents. Our dependent variable is government approval. The wording of the survey question
that produced the variable is: “On a scale that runs from 0 to 10, where 0 means strongly dislike and
10 means strongly like, how do you feel about the Labour Party?” Response categories were from 0
‘Strongly dislike’ to 10 ‘Strongly like’, and ‘Don’t Know’. Independent variables (xit) included in the
model are:

1. Evaluations of the leaders of the Conservative, Liberal Democrat and Labour parties, measured
using the question: “On a scale that runs from 0 to 10, where 0 means strongly dislike and 10
means strongly like, how do you feel about (David Cameron/Nick Clegg/Gordon Brown)?”
‘0<Strongly dislike’; ‘10>Strongly like’; ‘Don’t Know’.

2. A standard retrospective assessment of the national economic situation, or ‘sociotropic’ evalua-
tion, using the question: “How do you think the general economic situation in this country has
changed over the last 12 months? Has it:” Response options are: ‘got a lot worse’ (1); ‘got a little
worse’ (2); ‘stayed the same’ (3); ‘got a little better’ (4); ‘got a lot better’ (5); ‘Don’t Know’.

3. Two policy evaluation questions. These are evaluations of how the government has handled
the NHS and terrorism.4 For example: “How well do you think the present government has
handled the National Health Service?” ‘Very well’ (5); ‘Fairly well’ (4); ‘Neither well nor badly’
(3); ‘Fairly badly” (2); ‘Very badly’ (1); ‘Don’t Know’.

4. A measure of the respondent’s ideology based on preference for increasing or cutting taxes, using
the question: “Using the 0 to 10 scale below, where the end marked 0 means that government
should cut taxes a lot and spend much less on health and social services, and the end marked
10 means that government should raise taxes a lot and spend much more on health and social
services, where would you place yourself on this scale?” ‘0<Government should cut taxes a lot
and spend much less on health and social services’; ‘10>Government should increase taxes a lot
and spend much more on health and social services’; ‘Don’t Know’.

5. And a measure of whether the respondent identifies with the governing Labour party, using
the question: “Generally speaking, do you think of yourself as Labour, Conservative, Liberal
Democrat or what?” This is recoded 1 for Labour and 0 otherwise.

For each variable, a ‘Don’t know’ response was identified as missing and the corresponding
case was deleted. Note though that OrthoPanels can accomodate unbalanced panel data under the
assumption that the data is missing at random.

Data structure

The variables for the model to be estimated can be contained in a frame, list, or environment and the
model can be specified symbolically with a formula as described below.

The variables for our empirical example are included in the data frame BES_panel. This data frame
is included with the OrthoPanels package.

> head(BES_panel)
n t Econ Clegg Brown Cameron Approve NHS Terror PID Tax

1 1 1 3 0 9 0 7 0 0 1 6

3We include a second empirical example in Appendix 1.
4The terrorism question in 2010 is replaced with a handling of the war in Afghanistan question.
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2 2 1 4 0 10 0 8 0 0 1 8
3 3 1 3 0 5 4 7 0 0 0 6
4 4 1 2 0 7 3 4 0 0 1 6
5 5 1 2 0 0 0 0 0 0 0 5
6 6 1 2 0 7 0 8 0 0 1 4

In this data frame, "Econ" refers to evaluations of the national economy; "Clegg" refers to evalua-
tions of the Liberal Democrat leader; "Brown" refers to evaluations of the Labour leader; "Cameron"
refers to evaluations of the Conservative leader; "Approval" refers to government approval; "NHS"
refers to evaluations on how the government has handled the NHS; "Terror" refers to evaluations
on how the government has handled terrorism; "PID" refers to whether the individual identifies as
Labour; and "Tax" refers to the respondent’s ideology based on their preference for cutting taxes. In
addition to the variables, the data frame contains the vectors "n" and "t" indicating the case number
and wave for each observation. If the independent and dependent variables are contained in 3- and
2-dimension arrays, these vectors are unnecessary because the index is implicit in the organization of
the arrays.

Interface

We begin by specifying our model using a formula, indicating the data to be used, and the case and
time variables:

> BES.opm.model<-opm(Approve ~ Econ + Clegg + Brown + Cameron + NHS + Terror + PID + Tax,
data = BES_panel, index = c('n','t'), n.samp = 10000, add.time.indicators = TRUE)

The first argument is a formula specifying the model symbolically: response ∼ term1 + term2.
This is consistent with the lm() function. It is not necessary to include the lagged dependent variable
or the fixed effects in the model specification. This is done automatically.

The other arguments are: data which specifies the data frame, list or environment containing
the variables in the model; n.samp which specifies the number of Monte Carlo iterations to use to
estimate the parameters; index which is a two-element vector containing the names of the case
and time variables, respectively; and add.time.indicators which is a logical argument. If the
add.time.indicators is TRUE, the model includes dummy variables for each wave (time point). The
default is FALSE. The data and index arguments are optional. If data is not specified, the variables are
taken from the environment from which opm() is called. If index is not specified, the first two vectors
are assumed to be the case and time indices, respectively. An additional optional argument is subset.
This is a vector specifying a subset of observations to be used in the estimation.

The function opm() returns an object of class "opm" which includes a list, samples, with the fol-
lowing elements: "rho", a vector of n.samp parameter samples of ρ; "v", a vector of n.samp parameter
samples of σ2; and "beta", a n.samp by x variable matrix of parameter samples of β. If included in
the model, the parameters for the time dummies are included in this matrix. The summary of the
object provides us with the median, 68% equal tailed credible intervals and 95% equal tailed credible
intervals for each parameter.

> summary(BES.opm.model)
Call:
opm(x = Approve ~ Econ + Clegg + Brown + Cameron + NHS + Terror +
PID + Tax, data = BES_panel, index = c("n", "t"), n.samp = 10000,
add.time.indicators = TRUE)

Parameter estimates:
<--95CI <--68CI med 68CI--> 95CI-->

rho 0.128000 0.15800000 0.189000 0.224000 0.25800000
sig2 1.611477 1.68193076 1.759734 1.846594 1.93906618
beta.Econ -0.038086 0.00077932 0.041545 0.081118 0.12235574
beta.Clegg -0.020535 0.00060795 0.022996 0.045020 0.06678845
beta.Brown 0.297306 0.31959250 0.343490 0.367214 0.39072453
beta.Cameron -0.124476 -0.10195910 -0.077744 -0.054332 -0.03195979
beta.NHS -0.235810 -0.18692841 -0.136087 -0.085502 -0.03647700
beta.Terror -0.153162 -0.11566089 -0.077034 -0.037453 -0.00036214
beta.PID 0.488818 0.64660493 0.804710 0.959541 1.10995704
beta.Tax 0.017598 0.04022762 0.063176 0.086574 0.10903010
beta.tind.2 0.217953 0.27900281 0.342908 0.406506 0.46890678
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The package includes functions that may be of use in exploring the results. The function confint()
computes equal tailed credible intervals for one or more parameters in the fitted opm model. We can
calculate 90% equal tailed credible intervals as follows:

> confint(BES.opm.model, level = 0.90)
5% 95%

rho 0.13800000 0.24700000
sig2 1.63217694 1.90996203
beta.Econ -0.02625512 0.10794038
beta.Clegg -0.01312387 0.06009414
beta.Brown 0.30435125 0.38292909
beta.Cameron -0.11665040 -0.03883916
beta.NHS -0.21928907 -0.05272413
beta.Terror -0.14110536 -0.01271258
beta.PID 0.53904739 1.05947755
beta.Tax 0.02570175 0.10189246
beta.tind.2 0.23669235 0.4483367

The function caterplot() creates side-by-side plots of credible intervals of the opm model param-
eters. The intervals are displayed as horizontal lines, with the 90% interval using a thicker line width
and the 95% interval a thinner one. The posterior median is indicated with a dot.

caterplot(BES.opm.model)
abline(v=0)

We can use the function plot() to obtain the posterior density of each parameter.

plot(BES.opm.model, "rho")

In a dynamic model, the β coefficients are the immediate effects of a change in each of the covariates.
This is known as the short-run effect. However, in a dynamic model, the short-run effect is not the full
effect of a change in a covariate. As the future value of the dependent variable depends on the current
value, the effect of a change in a covariate has a knock on effect into the future. Assuming a stationary
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process, the effects asymptotically declined to zero over time. The cumulation of all these effects is
known as the long-run effect and is estimated as β/(1− ρ), where ρ is the autoregressive parameter
(Wooldridge, 2013; Pickup, 2014). We can calculate the median and 95% equal tailed credible intervals
for the long-run effects from the parameter samples. For example, for the first independent variable
(the economy):

> quantile(BES.opm.model$samples$beta[, 1] / (1 - BES.opm.model$samples$rho),
+ probs = c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
-0.04723233 0.05098789 0.15025695

The opm() function: Monte Carlo simulations

To demonstrate the performance of the OPM estimator operationalized by the opm() function, we
use it to estimate models from simulated data with a known data generating process.5 We use the
following data generating process to generate our simulated data sets:

yit = ρyit−1 + βxit + µit

µit = ηi + ε1it

xit = 0.75ηi + ε2it

ε1it ∼ NID(0, 1); ε2it ∼ NID(0, 16)

We use β = 0.50 and we generate data sets with two values for ρ (0.5 and 0.9). The unobserved
fixed values ηi, are generated from a uniform distribution: U(−1, 1). Note that both the yit and xit are
a function of the fixed effects, with xit containing 75 percent of the fixed effect for yit. As a consequence,
it is necessary to account for the ηi in our data model in order to get an unbiased estimate of β and ρ.6

We generate panel data sets with an N of 1000 and a T of 2, 3, 4, and 9. A T of 2 means we collected
three waves of data but we lose the first wave in order to have a measure of the lagged dependent
variable in the second wave. This effectively means we have 2 waves of data for the purposes of
estimation. This is as small of a T as we can get and still estimate a dynamic model. We generate 1000
data sets for each value of T and ρ.

Table 1, panels A through D, report the results of the simulations when the autoregressive parame-
ter, ρ, is 0.9. This is a ‘close to worst case scenario’ in that the autoregressive parameter is very high.
This is when Nickell bias and the incidental parameters problem will be at their worst. However, the
autoregressive parameter is not so high that we have to begin worrying about issues of near integrated
data. The tables present the results when the number of waves of data available is 3, 4, 5 and 10
respectively (i.e., T of 2, 3, 4, and 9).

The table reports the average value estimated for the autoregressive parameter (ρ), the β and the
long-run effect. This is an indication of how accurate the estimator is on average. The tables also
include the median value estimated for the long-run effect, for reasons described later. The tables
include the proportion of estimates in which the true value for each parameter is included in the 95
percent confidence/credible interval (the coverage probability). This is an indicator of how useful
the estimator is for hypothesis testing. Finally, tables report the root mean squared error for each
parameter. This is an indication of how far off the true value the estimator will be on average. If an
estimator is on average correct but could, for any given estimation, produce estimates far off the true
value, its functionality is greatly diminished.

In addition to presenting the results for the opm() function (denoted OPM), the tables also present
the results from an OLS fixed effects estimation and from a GMM estimation (Blundell and Bond,
1998; Arellano and Bover, 1995). The OLS fixed effects results demonstrate the estimation bias that
the OPM estimator is designed to rectify. It is also a commonly used estimator for this type of panel
data, despite the known bias (Nickell, 1981).The GMM approach is probably the most commonly
used alternative and appears to be the next best performing estimator compared to likelihood-based
estimators (Hsiao et al., 2002). There are a number of variations on the GMM approach (Croissant and
Millo, 2008). We used a difference GMM with a two-step estimator. We use the available lags of the
dependent variable as instruments. This specification was chosen as it seemed to produce the best
results given our data generating process. We used the plm package to produce the GMM estimates
(Croissant and Millo, 2008). This is a very versatile package for estimating panel models within R.

5Example code for running such simulations is provided in the vignette included in Appendix 2.
6When generating the data sets, we set yi0 equal to the series equilibrium and include a burn-in period of 50

waves.
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A (T=2; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.59 0.42 1.05 1.04 0 0 0 0.31 0.08 3.95
GMM 0.92 0.5 1.98 2.21 0.97 0.97 0.72 0.18 0.05 36.57
OPM 0.9 0.5 5.89 5.17 0.93 0.94 0.92 0.03 0.01 2.79

B (T=3; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.71 0.45 1.54 1.54 0 0 0 0.19 0.05 3.46
GMM 0.9 0.5 6.17 3.67 0.95 0.96 0.80 0.09 0.02 60.75
OPM 0.9 0.5 5.29 5.03 0.92 0.94 0.91 0.02 0.007 1.26

C (T=4; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.76 0.47 1.93 1.92 0 0 0 0.14 0.03 3.07
GMM 0.9 0.5 50.22 4.46 0.94 0.94 0.85 0.06 0.01 1633.78
OPM 0.9 0.5 5.09 4.98 0.94 0.94 0.93 0.01 0.005 0.68

D (T=9; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.84 0.49 3.07 3.07 0 0.02 0 0.06 0.01 1.93
GMM 0.9 0.5 4.92 4.81 0.92 0.92 0.88 0.02 0.005 0.92
OPM 0.9 0.5 5.02 5.02 0.95 0.94 0.94 0.005 0.003 0.26

E (T=2; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.29 0.45 0.63 0.63 0 0 0 0.21 0.05 0.37
GMM 0.5 0.5 1.01 1.00 0.96 0.95 0.96 0.04 0.01 0.11
OPM 0.5 0.5 1.01 1.01 0.93 0.94 0.92 0.03 0.01 0.07

F (T=3; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.37 0.47 0.75 0.75 0 0.008 0 0.13 0.03 0.25
GMM 0.5 0.5 1.00 1.00 0.94 0.95 0.94 0.02 0.01 0.06
OPM 0.5 0.5 1.00 1.00 0.92 0.94 0.92 0.02 0.01 0.04

Table 1: Simulation Results
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Beginning with a T of 2 (Table 1, Panel A), we can see just how badly biased the OLS fixed
effects estimates are. With true values ρ = 0.9, β = 0.5 and LR effect of 5. The OLS estimator
produces, on average, values of ρ = 0.59, β = 0.42 and LR effect of 1.05. The bias is substantial for all
parameters. Partly as a result of these very large biases, this approach virtually never produces 95
percent confidence intervals that include the true values of the parameters. The root mean squared
errors are particularly large for the long-run effects and ρ. Clearly, this approach is not appropriate
under these circumstances.

When we look at the results for the OPM and GMM approaches (again with T = 2), both look
very good for the average estimates of ρ and β. There is essentially no bias for either. The 95 percent
confidence intervals include the true values around 95 percent of the time and the root mean squared
errors are generally small, although the root mean squared error for rho is 83 percent smaller for the
OPM approach. When we look at the results for the long-run effects, the two approaches diverge.
Using the average estimate of the long-run effect as a measure of performance, the OPM estimator
overestimates the long-run effect with a bias of 0.89, while the GMM estimator underestimates the
long-run effect with a bias of 3.02. Further, while the 95 percent confidence intervals of the OPM
estimator include the true value about 92 percent of the time, the GMM confidence intervals only
include the true value about 72 percent of the time.

It may seem curious that the GMM estimator is so poor at estimating the long-run effect, when,
on average, it is good at estimating ρ and β – especially since the long-run effect is simply a function
of ρ and β: β/(1− ρ). The problem occurs because of the reasonable but slightly large root mean
squared error on the estimates of ρ. With the true value of 0.9 for ρ, the root mean squared error of the
GMM estimates means it sometimes produces values very close to 1 for ρ. The division of 1− ρ in
the calculation of the long-run effect means that such values for ρ can translate into large errors in
the estimate of the long-run effect.7 Because of a smaller root mean squared error, the OPM estimator
suffers far less from this problem.

It must be noted then that for the reasons just discussed the mean estimate is not a very stable
measure of the performance of the GMM estimates of the long-run effect. For the GMM estimator,
under these circumstances, small differences in the estimates of ρ produce large differences in the
average estimate of the long-run effect. A more stable measure is the median estimated long-run effect.
For the GMM approach this is closer to the true value (2.21). However, the median OPM estimate is
much better (5.17). Further, while the median GMM estimate is better than the mean GMM estimate,
it does not change the fact that in any given application of the estimator, a very large error in the
long-run effect can occur. This is the story of the root mean squared error for the long-run effect. These
are moderate for the OPM estimator, 2.79, but extremely problematic for the GMM estimator: 36.57.
This last result is worse than that for the OLS estimator. As we will see, when the true value of ρ is
smaller or T is bigger, these problems are not so great but when T is very small and ρ is close to 1, the
OPM estimator has the advantage of avoiding these large errors to a much greater degree.

As T increases to 3 and then 4 (Table 1, Panels B & C), the OLS fixed effects estimator continues to
exhibit substantial biases and confidence intervals that are essentially useless for hypothesis testing.
The OPM and GMM approaches continue to produce good estimates of ρ and β. As for the long-run
effects, the OPM approach improves quickly, while the GMM approach continues to suffer from large
root mean squared errors. By the time T increases to 9 (Table 1, Panel D), however, both the OPM and
GMM approaches are performing well for all parameters and the OLS approach continues to perform
poorly.

Table 1, Panels E & F, present the results with a reduced ρ of 0.5. With a smaller ρ, we would expect
less extreme estimation problems. Unfortunately, the OLS fixed effects estimator continues to perform
badly at very small values of T. The GMM and OPM estimators, on the other hand, perform very well
for all parameters. The only real distinction is that the OPM estimator performs a little better, in terms
of the root mean squared error, than the GMM estimator in the estimation of the long-run effect when
T is at its smallest possible value of 2.

Overall, the simulations demonstrate that under the conditions considered (specifically a low T
with a large N), the OLS fixed effects estimator exhibits considerable bias for all parameters. The
GMM estimator is a large improvement on OLS with fixed effects but the OPM estimator consistently
performs as well as or better. The superiority of the OPM results is in the estimation of the long-run
effects when T is very small and ρ is close to 1, which appears to be the primary weakness of the GMM
estimator.

Beyond the poor estimates for the long-run effect under specific conditions, we have also in-
dicated that one of the downsides of GMM estimators is the need to make assumptions about the
appropriateness of instrumental variables. Up to this point, we have been using lagged levels of the

7One should always be cautious whenever the estimate of ρ is close to 1. This suggests that either a poor
estimation has occurred or that the data is (near) integrated and therefore not stationary, for the purposes of
estimation.
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Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

(T=3; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.93 0.51 7.74 7.63 0.06 0.62 0.17 0.03 0.01 2.95

(T=4; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.93 0.51 7.45 7.36 0.02 0.48 0.04 0.03 0.01 2.56

(T=9; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.91 0.5 -6.99 4.11 0.05 0.06 0.07 0.07 0.03 147.93

(T=3; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)
0.53 0.51 1.08 0.52 0.48 0.29 0.28 0.03 0.01 0.09

Table 2: Simulation Results, GMM using lagged IVs and instruments

dependent variable as instruments in the GMM estimator. An extension of this is to use the lagged
differences of the dependent variable as instruments (Arellano and Bover 1995; Blundell and Bond
1998). This is possible once the researcher has a T > 2. This can, under the right conditions, improve
the performance of the GMM estimator but it makes assumptions about the suitability of variables as
instruments. If these assumptions are not met, the inclusion of these additional moment conditions
may produce worse results. Table 2 reports the results of using these additional moment conditions.
We see that for the data generating processes we have been using in our simulations, these additional
moment conditions do indeed result in poorer estimates. The additional moment conditions result
in greater bias and confidence intervals that rarely contain the true value. Clearly we do not want
to include these additional moment conditions for our simulated data but the problem is that we
typically do not know if it is appropriate to do so or not. The orthogonal reparameterization approach,
on the other hand, does not require the researcher to make such decisions — decisions which can have
a substantial impact on the validity of the estimation results. This is one further advantage of the OPM
estimator.
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Appendix 1

As a second empirical example, we model the dynamics of labour demand of firm i in the United
Kingdom in year t as a function of real product wages, gross capital stock and industry output. This is
done using the data used by Arellano and Bond (1991). The variables for our second empirical example
are included in the data frame ‘abond_panel’. This dataframe is included with the OrthoPanels
package.

We estimate the following:

> abond.opm.model <- opm(n ~ w + l_w + k + l_k + l2_k + ys + l_ys + l2_ys + yr1980
+ yr1981 + yr1982 + yr1983 + yr1984, data = abond_panel, index = c('id','year'),
n.samp = 10000, add.time.indicators = FALSE)

where n is the log of employment in firm i at time t; w is the log of the real product wage; k is the
log of the gross capital stock; and ys is the log of the gross industry output.

> summary(abond.opm.model)
Call:
opm(x = n ~ w + l_w + k + l_k + l2_k + ys + l_ys + l2_ys + yr1980 +
yr1981 + yr1982 + yr1983 + yr1984, data = abond_panel, index = c("id",
"year"), n.samp = 10000, add.time.indicators = FALSE)

Parameter estimates:
<--95CI <--68CI med 68CI--> 95CI-->

rho 0.123000 0.1400000 0.160000 0.179000 0.198000
sig2 0.042789 0.0452270 0.047862 0.050739 0.053676
beta.w -0.741396 -0.6200462 -0.497854 -0.376953 -0.262932
beta.l_w -0.321563 -0.2077651 -0.088837 0.030969 0.146837
beta.k 0.452300 0.5184428 0.585200 0.655670 0.718653
beta.l_k -0.088889 0.0042183 0.097407 0.188744 0.279613
beta.l2_k -0.031549 0.0319986 0.097301 0.163611 0.229459
beta.ys 0.207566 0.4594758 0.714674 0.971791 1.234787
beta.l_ys -1.055967 -0.6944647 -0.329579 0.030539 0.392799
beta.l2_ys -0.240888 0.0202597 0.301264 0.580882 0.844360
beta.yr1980 -0.040064 -0.0050531 0.029723 0.064730 0.099077
beta.yr1981 -0.057071 -0.0135131 0.029364 0.073729 0.115364
beta.yr1982 -0.019645 0.0192744 0.063018 0.106132 0.146820
beta.yr1983 0.031298 0.0759822 0.121946 0.167622 0.211210
beta.yr1984 0.050123 0.1021425 0.156051 0.207324 0.258260

We calculate 90% equal tailed credible intervals as follows:

> confint(abond.opm.model, level = 0.90)
5% 95%

rho 0.128000000 0.19200000
sig2 0.043604899 0.05267575
beta.w -0.699216408 -0.29845898
beta.l_w -0.283471542 0.10825151
beta.k 0.474339992 0.69903010
beta.l_k -0.057501600 0.25006782
beta.l2_k -0.010780489 0.20708355
beta.ys 0.293130802 1.15175284
beta.l_ys -0.938412547 0.28266139
beta.l2_ys -0.161339807 0.76612707
beta.yr1980 -0.028266743 0.08774348
beta.yr1981 -0.042205375 0.10218775
beta.yr1982 -0.006818364 0.13445195
beta.yr1983 0.045990409 0.19575660
beta.yr1984 0.067247279 0.24236211

We create side-by-side plots of credible intervals of the OPM model parameters. The intervals are
displayed as horizontal lines, with the 90% interval using a thicker line width and the 95% interval a
thinner one. The posterior median is indicated with a dot.
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caterplot(abond.opm.model)
abline(v=0)
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Appendix 2

Let’s investigate the accuracy of opm()’s parameter estimates on 200 simulated datasets.

First, let’s define the parameters used by the data-generating process:

rho <- .5
beta <- .5
sig2 <- 1
set.seed(321)

The following function generates a synthetic dataset of desired dimensions (N cases and T time
points) and distribution parameters ((ρ =rho), (β =beta), and (σ2 = sig2)):

generate <- function(N, T, rho, beta, sig2) {
LT <- T + 50
f <- runif(N, -1, 1)
x <- array(.75 * f, dim = c(N, LT)) + rnorm(N * LT, sd = 4)
y <- matrix(0, N, LT)
for (t in 1:LT) {

yy <- if (t > 1)
y[, t - 1]

else
((f + beta * .75 * f)/(1 - rho))

y[, t] <- rho * yy + f + x[, t] * beta +
rnorm(N, sd = sqrt(sig2))

}
data.frame(i = rep(seq(N), LT - 50),

t = rep(seq(LT - 50), each = N),
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x1 = c(x[(50 * N + 1):(LT * N)]),
y = c(y[(50 * N + 1):(LT * N)]))

}

Now we generate 200 datasets with N = 1000 cases and T = 3 time points (after a 50 wave
burn-in):

N <- 1000
T <- 3
reps <- 200

ds <- replicate(n = reps,
generate(N = N, T = T, rho = rho, beta = beta, sig2 = sig2),
simplify = FALSE)

Now we fit the OPM model to the datasets and save the results:

library(OrthoPanels)
library(knitr)

set.seed(421)
opms <- lapply(ds, function(d) {
opm(y ~ x1, data = d, n.samp = 1000)

})

Let’s check the sampled parameters:

true_param <- c(rho = rho, sig2 = sig2, beta = beta)
est_param <- sapply(opms, coef)
resid <- sweep(est_param, 1, true_param)
rmse <- sqrt(rowMeans(resid ^ 2))
kable(rbind(`True` = true_param,

`Est` = rowMeans(est_param),
`Bias` = rowMeans(resid),
`RMSE` = rmse))

rho sig2 beta

True 0.5000000 1.0000000 0.5000000
Est 0.5038800 1.0050657 0.5018072
Bias 0.0038800 0.0050657 0.0018072
RMSE 0.0252336 0.0517390 0.0106620

Density plot for each parameter, with true value marked with a vertical line:

plot(density(sapply(opms, coef)[1,]),
main = 'Density of median of posterior samples of rho')

abline(v = rho, col = 'darkred')
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plot(density(sapply(opms, coef)[2,]),
main = 'Density of median of posterior samples of sig2')

abline(v = sig2, col = 'darkred')
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plot(density(sapply(opms, coef)[3,]),
main = 'Density of median of posterior samples of beta')

abline(v = beta, col = 'darkred')
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The proportion of time the 95% credible interval includes the true value of the parameter:
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cis <- sapply(lapply(opms, confint),
function(ci) {
ci[, '2.5%'] <= c(rho, sig2, beta) &
ci[, '97.5%'] >= c(rho, sig2, beta)

})
rowSums(cis) / reps

rho sig2 beta

0.930 0.955 0.925
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