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condSURV: An R Package for the
Estimation of the Conditional Survival
Function for Ordered Multivariate Failure
Time Data
by Luis Meira-Machado and Marta Sestelo

Abstract One major goal in clinical applications of time-to-event data is the estimation of survival
with censored data. The usual nonparametric estimator of the survival function is the time-honored
Kaplan-Meier product-limit estimator. Though this estimator has been implemented in several R
packages, the development of the condSURV R package has been motivated by recent contributions
that allow the estimation of the survival function for ordered multivariate failure time data. The
condSURV package provides three different approaches all based on the Kaplan-Meier estimator.
In one of these approaches these quantities are estimated conditionally on current or past covariate
measures. Illustration of the software usage is included using real data.

Introduction

One major goal in survival studies is the estimation of the survival function. The most popular method
for estimating this function is the well-known product-limit estimator also known as Kaplan-Meier
estimator (Kaplan and Meier, 1958). The popularity of the product-limit estimator is explained by its
simplicity and intuitive appeal while requiring very week assumptions. It simply takes into account
the empirical probability of surviving over a certain time. The method does not take into account
of covariates, so it is mainly descriptive. Discrete covariates can be included by splitting the sample
for each level of the covariate and applying the product-limit estimator for each subsample. This
approach is not recommended for continuous covariates. To account for this extra difficulty several
generalizations to the Kaplan-Meier estimator have been proposed throughout the last decades. Beran
(1981) was the first one who proposed an estimator of the conditional distribution (survival) function
with censored data in a fully nonparametric way. His estimator was further studied among others by
Dabrowska (1987), Akritas (1994), Gonzalez-Manteiga and Cadarso-Suárez (1994) and Van Keilegom
et al. (2001). All these estimators can be used to estimate the distribution (or survival) function
conditional on a continuous covariable in a regression model, when data are subject to censoring.
However, none of the above methods can be used to estimate the conditional survival when the
covariate is censored.

Several software packages in the form of R packages have been developed to estimate the survival
function. Though this function can be estimated parametrically or using nonparametric maximum
likelihood estimation, the product limit Kaplan-Meier estimator is still one of the best options for
estimating the survival function. Several R packages have been developed to implement the product-
limit Kaplan-Meier estimator. For instance, the survival package (Therneau, 2015) and the prodlim
package (Gerds, 2015) can be used to obtain Kaplan-Meier estimates. A comprehensive list of the
available packages which can be used to estimate the survival function can be seen in the CRAN Task
View “Survival Analysis” (Allignol and Latouche, 2016) of the Comprehensive R Archive Network
(CRAN).

In many longitudinal medical studies, patients may experience several events through a follow-up
period. In these studies, the analysis of sequentially ordered events are often of interest. The events
of concern can be of the same nature (e.g., recurrent disease episodes in cancer studies) or represent
different states in the disease process (e.g., “alive and disease-free”, “alive with recurrence” and
“dead”). If the events are of the same nature, this is usually referred as recurrent events (Cook and
Lawless, 2007), whereas if they are based on different disease categories they are usually modeled
through their intensity functions (Meira-Machado et al., 2009). Again, several R packages have been
developed to deal with problems that arise in these processes (see for example, Allignol and Latouche
2016). Some of these packages can be used to estimate occupation probabilities, transition probabilities
and the cumulative incidence functions. However, none can be used to estimate conditional survival
probabilities such as: P(T2 > y | T1 > x), P(T3 > y|T1 < x1, T2 > x2) or P(T3 > y|T1 > x1, T2 > x2)
where T1, T2 and T3 are ordered event times of successive events. This issue was recently considered
by Meira-Machado et al. (2016) who proposed nonparametric and semiparametric estimators for such
quantities.

This paper describes the R package condSURV (available from the Comprehensive R Archive
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Network at https://CRAN.R-project.org/package=condSURV/) and its capabilities for implement-
ing nonparametric and semiparametric estimators for conditional survival probabilities for two
multivariate ordered times. The package can also be used to estimate more general functions in-
volving more than two successive event times. The estimation of these quantities is essential for
long-term survival prognosis which arises in many medical contexts such as cancer studies, asthma,
HIV/AIDS, heart disease, dementia and Alzheimer’s disease, etc. The methods implemented in the
package also deal with the possible effect of covariates on the conditional survival probabilities (e.g.,
P(T2 > y | T1 > x1, Z = z) where Z denotes a continuous covariate). To account for the covariate
effect, a flexible approach is based on local smoothing by means of kernel weights based on local
constant (Nadaraya-Watson) regression. In this article we explain and illustrate how numerical and
graphical output for all methods can be obtained using the condSURV package.

The remainder of this paper is organized as follows. The following section provides a brief
introduction to the methodological background. All estimators for the conditional survival function
are presented. Then, a detailed description of the package is presented, and its usage is illustrated
through the analysis of a real data set; and finally, the last section contains the main conclusions of this
work. The use of the package to more than two consecutive events is illustrated in the Appendix.

Methodology background

Suppose that an individual may experience K consecutive events at times T1 < T2 < · · · < TK = T,
which are measured from the start of the follow-up. In this section different methods are proposed
to estimate conditional survival probabilities such as P(T2 > y | T1 > x) or P(T2 > y | T1 ≤ x),
where T1 and T2 are ordered event times of two successive events. The proposed methods are all
based on the Kaplan-Meier estimator and the ideas behind the proposed estimators can also be used
to estimate more general functions involving more than two successive event times. However, for ease
of presentation and without loss of generality, we take K = 2 in this section. The extension to K > 2 is
straightforward.

Let (T1, T2) be a pair of successive event times corresponding to two ordered (possibly consecutive)
events measured from the start of the follow-up. Let T = T2 denote the total time and assume that
both T1 and T are observed subject to a (univariate) random right-censoring variable C assumed to
be independent of (T1, T). Due to censoring, rather than (T1, T) we observe (T̃1, ∆1, T̃, ∆2) where
T̃1 = min(T1, C), ∆1 = I(T1 ≤ C), T̃ = min(T, C), ∆2 = I(T ≤ C), where I(·) is the indicator
function. Let (T̃1i, ∆1i, T̃i, ∆2i), 1 ≤ i ≤ n be independent and identically distributed data with the
same distribution as (T̃1, ∆1, T̃, ∆2).

Let S1 and S be the marginal survival functions of T1 and T; that is, S1(y) = P(T1 > y) and S(y) =
P(T > y). Introduce also the conditional survival probabilities P(T > y|T1 > x) and P(T > y|T1 ≤ x).
without loss of generality, we only consider the estimation of S(y|x) = P(T > y|T1 > x).

The Kaplan-Meier estimator, also known as the product-limit estimator, is the most frequently
used method to estimate survival for censored data. The most used representation of the Kaplan-Meier
estimator of the total time is through a product of the following form

Ŝ(y) = ∏
T̃i≤t

(
1− ∆2i

R(T̃i)

)
,

where R(t) = ∑n
i=1 I(T̃i ≥ t) denotes the number of individuals at risk just before time t. The censoring

is assumed to be independent in the sense that the additional knowledge of the right-censoring times
before any time y does not carry information on the risk of failure at time y. The Kaplan-Meier estimate
is a step function with jumps at event times. The size of the steps depends on the number of events
and the number of individuals at risk at the corresponding time. Below we introduce a weighted
average representation of the Kaplan-Meier estimator which will be used later to introduce estimators
for the conditional survival function

Ŝ(y) = 1−
n

∑
i=1

Wi I
(

T̃(i) ≤ y
)

,

where T̃(1) ≤ . . . ≤ T̃(n) denotes the ordered T̃-sample and

Wi =
∆2[i]

n− i + 1

i−1

∏
j=1

[
1−

∆2[j]

n− j + 1

]
is the Kaplan-Meier weight attached to T̃(i). In the expression of Wi notation ∆2[i] is used for the i-th
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concomitant value of the censoring indicator (that is, ∆2[i] = ∆2j if T̃(i) = T̃j).

In this work we are interested in the estimation of the conditional survival function, S(y | x) =
P(T > y | T1 > x). Below we provide estimators for this quantity, all based on the Kaplan-Meier
estimator.

The conditional survival function S(y | x) can be expressed as S(y | x) = P(T > y|T1 > x) =
1− P(T ≤ y | T1 > x) = 1− P(T1 > x, T ≤ y)/ (1− P (T1 ≤ x)). Then, the denominator of the term
at the right hand side can be estimated using the Kaplan-Meier estimator of survival of the first time;
the quantity at the numerator involves transformations of the pair (T1, T) which cannot be estimated
so simply. This quantity can be estimated using Kaplan-Meier weights pertaining to the distribution of
the total time to weight the bivariate data (Meira-Machado et al., 2016). The corresponding estimator
is given as follows:

ŜKMW(y | x) = 1−
∑n

i=1 Wi I
(

T̃1[i] > x, T̃(i) ≤ y
)

Ŝ1(x)
. (1)

Another way to introduce a (monotonic) nonparametric estimator for the conditional survival is by
considering the landmark approach (Van Houwelingen, 2007). Given the time point x, to estimate
S(y | x) = P(T > y | T1 > x) the analysis can be restricted to the individuals with an observed
first event time greater than x. Then, an estimator for the conditional survival function is just the
Kaplan-Meier estimator of the survival function of T computed from such a subset

ŜLDM(y | x) = Ŝx(y), (2)

where Ŝx(y) is the Kaplan-Meier estimator of survival computed from the
(

T̃, ∆2

)
-sample in

{
i :

T̃1i > x
}

ordered with respect to T̃.

The standard error of the nonparametric landmark estimator (LDM) may be large when the censoring
is heavy, particularly with a small sample size. Interestingly, the variance of this estimator may be
reduced by presmoothing (Dikta, 1998). Here, the idea of presmoothing involves replacing the
censoring indicators (in the expression of the Kaplan-Meier weights) by some smooth fit before the
Kaplan-Meier formula is applied. This preliminary smoothing may be based on a certain parametric
family such as the logistic (thus leading to a semiparametric estimator), or on a nonparametric
estimator of the binary regression curve. The corresponding presmoothed landmark estimator is then
given by

ŜPLDM(y | x) = 1−
nx

∑
i=1

wx
i I
(

T̃x
(i) ≤ y

)
, (3)

where wx
i is defined through

wx
i =

m
(

T̃x
(i)

)
nx − i + 1

i−1

∏
j=1

1−
m
(

T̃x
(i)

)
nx − j + 1

 , 1 ≤ i ≤ nx,

where
(

T̃x
(i), ∆x

2[i]

)
, i = 1, . . . , nx, is the

(
T̃, ∆2

)
-sample in

{
i : T̃1i > x

}
ordered with respect to T̃.

Here, m(t) = P(∆2 = 1 | T̃ = t), where m(T̃) belongs to a parametric (smooth) family of binary
regression curves, e.g., logistic. In practice, we assume that m(t) = m(t; β) where β is a vector of
parameters which will be computed by maximizing the conditional likelihood of the ∆2’s given T̃.

Note that ŜPLDM(y | x) is the presmoothed Kaplan-Meier estimator of survival computed from the(
T̃, ∆2

)
-sample in

{
i : T̃1i > x

}
ordered with respect to T̃.

The practical performance of the proposed estimators for the conditional survival function has
been investigated through simulations (Meira-Machado et al., 2016). It has been demonstrated that all
of the studied estimators perform well, approaching their targets as the sample size increases. Besides,
simulation results reveal that the landmark estimator (LDM) performs favorably when compared
with the first method (KMW). Furthermore, the reported simulation results reveal relative benefits of
presmoothing (PLDM) in the heavily censored scenarios or for small sample sizes.

Now we will explain how to introduce covariate information in the conditional survival func-
tion. Discrete covariates can be also included by splitting the sample for each level of the covariate
and repeating the described procedures for each subsample. This approach is not valid for con-
tinuous covariates. To estimate the survival probabilities conditionally on continuous covariates
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we propose to use local smoothing which is introduced using regression weights. Without loss of
generality the methodology will be explained in the build of the conditional survival probability
P(T > y|T1 > x, Z = z), where Z denotes a continuous covariate. To estimate S(y | x, z) = 1− P(T1 >
x, T ≤ y|Z = z)/ (1− P (T1 ≤ x|Z = z)) we need to estimate the following conditional expectations:
E (I(T1 > x, T ≤ y) | Z) and E (I(T1 ≤ x) | Z).

In the absence of censoring, to estimate these quantities, we may use kernel smoothing techniques
by calculating a local average of the indicator functions. For example, E[I(T1 > x, T ≤ y)|Z = z] could
be estimated as follows

Ê[I(T1 > x, T ≤ y)|Z = z] =
n

∑
i=1

NWi(z, an)I
(

T̃1 > x, T̃ ≤ y
)

,

where NWi(z, an) is a weight function which corresponds to the Nadaraya-Watson (Nadaraya, 1965;
Watson, 1964) estimator (NW) as follows

NWi(z, an) =
K ((z− Zi)/an)

∑n
j=1 K

(
(z− Zj)/an

) ,

where K is a known probability density function (the kernel function) and an is a sequence of band-
widths.

In our case, however, we allow the data to be right-censored. To handle right-censoring, inverse
probability of censoring weighting (IPCW; see for example, Satten and Datta 2001) can be used. In order
to introduce our estimators, note that, assuming that the support of the conditional distribution of T is
contained in that of C | Z, we have E[I(T1 > x, T ≤ y) | Z] = E[I(T̃1 > x, T̃ ≤ y)∆2/GZ(T̃) | Z)] and
E[I(T1 ≤ x) | Z] = E[I(T̃1 ≤ x)∆1/HZ(T̃1) | Z)] where GZ and HZ denote the conditional survival
functions of the censoring variable of the total time and the first event time, respectively, given Z.

The estimation of the conditional survival function, given a covariate under random censoring
has been considered in many papers. This topic was introduced by Beran (1981) and was further
studied by several authors (Dabrowska, 1987; Akritas, 1994; Gonzalez-Manteiga and Cadarso-Suárez,
1994; Van Keilegom et al., 2001). Their proposals can also be used to estimate the conditional survival
function of C | Z = z, say Ĝz. This can be done using the estimator introduced by Beran,

Ĝz(y) = ∏
Ti≤y,∆2i=0

[
1− NWi(z, an)

∑n
j=1 I(Tj ≥ Ti)NWj(z, an)

]
.

In order to introduce our estimators we propose to plug-in Beran’s estimator ĜZ and use NW to
compute

P̂(T1 > x, T ≤ y | Z = z) =
n

∑
i=1

NWi(z, an)
I(T̃1i > x, T̃i ≤ y)∆2i

ĜZi (T̃i)
.

Similarly, we propose to plug-in Beran’s estimator ĤZ and use NW to compute

P̂(T1 ≤ x | Z = z) =
n

∑
i=1

NWi(z, an)
I(T̃1i ≤ x)∆1i

ĤZi (T̃1i)
.

Then, we may introduce the IPCW estimator as follows:

ŜIPCW(y | x, z) = 1− P̂(T1 > x, T ≤ y | Z = z)/(1− P̂(T1 ≤ x | Z = z)). (4)

condSURV in practice

This section introduces an overview of how the package is structured. condSURV is a shortcut for
“conditional survival” and this is its major functionality: to provide estimates of the survival function
conditional to previous (possibly censored) events. This software enables both numerical and graphical
outputs to be displayed for all methods (KMW, LDM, PLDM and IPCW) described in the previous section.
This software is intended to be used with the R environment for statistical computing and graphics.
Our package is composed of 12 functions that allow users to obtain estimates for all proposed methods.
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Function Description

survCOND Conditional survival probabilities based on Kaplan-Meier
weights and the Landmark approaches. This function also im-
plements estimation methods for these quantities conditionally
on current or past covariate measures.

survCS Create a "survCS" object, usually used as a response variable in
a model formula.

plot.survCS Plot for an object of class "survCS".
summary.survCS Summary for an object of class "survCS".
print.survCS Print for an object of class "survCS".
KM Computes the Kaplan-Meier product-limit of survival.
PKM Computes the presmoothed Kaplan-Meier product-limit of sur-

vival.
Beran Computes the conditional survival probability P(T > y|T1 =

x) using Beran’s estimator.
KMW Returns a vector with the Kaplan-Meier weights.
PKMW Returns a vector with the presmoothed Kaplan-Meier weights.
LLW Returns a vector with the local linear weights.
NWW Returns a vector with the Nadaraya-Watson weights.

Table 1: Summary of functions in the condSURV package.

Details on the usage of the functions (described in Table 1) can be obtained with the corresponding
help pages.

It should be noted that to implement the methods described in Section Methodology background
one needs the following variables of data in a specific order (as shown): time1, event1, Stime and
event. The variable time1 represents the observed time to the first event of interest, and event1 the
corresponding status/censoring indicator (if the survival time is a censored observation, the value is 0
and otherwise the value is 1). The variable Stime represents the total survival time. If event1 = 0, then
the total survival time is equal to the observed time to the first event. The variable event is the final
status of the individual (takes the value 1 if the final event of interest is observed and 0 otherwise). The
illustration of the condSURV package for more than two event times is discussed in the Appendix.

Example of application

For illustration, we apply the proposed methods to data from a large clinical trial on Duke’s stage III
patients, affected by colon cancer, that underwent a curative surgery for colorectal cancer (Moertel
et al., 1990). This data set is freely available as part of the R survival package. The data is also available
as part of the R package condSURV. From the total of 929 patients, 468 developed a recurrence and
among these 414 died. For each individual, an indicator of his/her final vital status (censored or not),
the survival times (time to recurrence, time to death) from the entry of the patient in the study (in
days), and a vector of covariates including age (in years) and recurrence (coded as 1 = yes; 0 = no)
were recorded. The covariate recurrence is a time-dependent covariate which can be expressed as an
intermediate event. We will use the methods described in Section Methodology background to study
survival as well as the effect of recurrence on the final outcome (death).

In the following, we will demonstrate the package capabilities using this data. Below is an excerpt
of the data.frame with one row per individual.

> library("condSURV")
> data(colonCS)
> head(colonCS[, 1:7])

time1 event1 Stime event rx sex age
1 968 1 1521 1 Lev+5FU 1 43
2 3087 0 3087 0 Lev+5FU 1 63
3 542 1 963 1 Obs 0 71
4 245 1 293 1 Lev+5FU 0 66
5 523 1 659 1 Obs 1 69
6 904 1 1767 1 Lev+5FU 0 57

Individuals represented in lines 1, 3, 4, 5 and 6 experienced a recurrence of the tumor and have died;
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the individual represented in line 2 is alive and without recurrence at the end of follow-up. We note
that event1 = 1 and event = 0 corresponds to individuals with an observed recurrence that remain
alive at the end of the follow-up.

The development of the condSURV R package has been motivated by recent contributions that
allow the estimation of the (conditional) survival function for ordered multivariate failure time data.
This package contains the function survCS which takes the input data as an R formula and creates a
survival object among the chosen variables for analysis. This function will verify if the data has been
introduced correctly and will create a "survCS" object. Arguments in this function must be introduced
in the following order time1, event1, time2, event2, . . . , Stime and event, where time1, time2, . . . ,
Stime are ordered event times and event1, event2, . . . , event their corresponding indicator statuses.
This function plays a similar role as the Surv function in the survival R package.

The effect of “recurrence” is important on the patient outcome and can be studied through the
ordered multivariate event time data of time-to-event from enrolment, to recurrence and to death.
Results obtained from the estimation of the conditional survival probabilities, S(y | x) = P(T >
y|T1 > x), can be used to understand which individuals without recurring cancer after surgery are
most likely to survive from their disease and which would benefit from more personal attention, closer
follow-up and monitoring. Below we discuss how to estimate this and other quantities using the
condSURV package.

Estimates for the conditional survival probabilities are obtained using function survCOND. The first
argument of this function is a formula object with the response on the left of a ~ operator. The response
must be a "survCS" object which is obtained using the survCS function. A single covariate (qualitative
or quantitative) can be included in the right hand side of the formula allowing the estimation of
survival probabilities conditionally on current or past covariate measures. The use of the main
function survCOND is explained below.

In the absence of covariates, two methods can be used to estimate the conditional survival prob-
abilities: the method based on the use of Kaplan-Meier weights (KMW) and the method based on the
landmark approach (KMW). A smoothed version of the landmark approach is also implemented. Given
x = 365 (one year) and y = 1825 (five years), estimates for S(y | x) = P(T > y|T1 > x) can be
obtained using function survCOND with the method based on the use of Kaplan-Meier weights (method
= "KMW"):

> set.seed(123)
> colon.kmw.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365, y = 1825,
+ data = colonCS, method = "KMW")
> summary(colon.kmw.1)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
1825 0.7303216 0.697005 0.7562444

As can be seen, the survCOND function provides, by default, 95% pointwise confidence intervals (conf
= TRUE) using 200 bootstrap replicates (n.boot = 200). The construction of the pointwise confidence
intervals is obtained by means of the bootstrap percentile method by randomly sampling the n items
from the original data set with replacement (Davison and Hinkley, 1997). Intervals with other levels of
confidence besides 95% (the default value) can be obtained by setting the argument conf.level to the
desired level.

Given a fixed value of x, estimates for the conditional survival can be obtained for a vector of y
values. An example is given below:

> colon.kmw.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ y = 365 * 1:7, data = colonCS, method = "KMW")
> summary(colon.kmw.2)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9441430 0.9265015 0.9599035

1095 0.8624983 0.8353103 0.8843765
1460 0.7750519 0.7389898 0.8090082
1825 0.7303216 0.6920535 0.7664671
2190 0.6879923 0.6511133 0.7249555
2555 0.6548414 0.6114144 0.6940938
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If argument y is omitted, then the survCOND function allows the user to obtain estimates for all possible
y values. Then, one can use the summary function to get the estimated values at the desired values
(through argument times of the summary function). A truncated output for the following input
commands is shown below:

> colon.kmw.3 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
data = colonCS, method = "KMW")

> summary(colon.kmw.3)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
365.0 1.0000000 1.0000000 1.0000000
421.0 0.9985694 0.9956263 1.0000000
430.0 0.9971388 0.9928077 1.0000000
448.0 0.9957082 0.9900836 1.0000000
454.5 0.9942758 0.9871742 0.9985958
465.0 0.9928434 0.9853940 0.9985509
485.0 0.9914111 0.9826719 0.9971681
486.0 0.9899787 0.9808888 0.9958287
499.0 0.9885463 0.9797218 0.9956079
..... ......... ......... .........

Similarly, one can obtain the results for the landmark methods (LDM and PLDM) using the same function
survCOND. The unsmoothed landmark estimator is obtained using argument method = "LDM" whereas
for obtaining the presmoothed landmark estimator the argument presmooth = TRUE is also required.

> colon.ldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.ldm.1, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9441319 0.9296298 0.9614001

1095 0.8624695 0.8418715 0.8877858
1460 0.7750019 0.7413340 0.8002003
1825 0.7302521 0.6957642 0.7584186
2190 0.6878056 0.6515754 0.7196251
2555 0.6543273 0.6119221 0.6916915

> colon.pldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> summary(colon.pldm.1, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9429609 0.9236513 0.9590418

1095 0.8624778 0.8373879 0.8844013
1460 0.7788757 0.7430835 0.8137728
1825 0.7411599 0.7046557 0.7710392
2190 0.6795849 0.6377276 0.7118881
2555 0.6467549 0.6028921 0.6821533

In addition, one may also be interested in calculating the conditional survival function, S(y | x) =
P(T > y|T1 ≤ x). This is the probability of the individual to be alive at time y conditional that he/she
is alive with recurrence at a previous time x. This quantity can also be estimated using function
survCOND by considering the argument lower.tail = TRUE:

> colon.ldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", lower.tail = TRUE)
> summary(colon.ldm.2, times=c(90, 180, 365, 730, 1095, 1460, 1825))

y estimate lower 95% CI upper 95% CI
90 0.96956522 0.94541818 0.99122998

180 0.89565217 0.85836820 0.93278055
365 0.66086957 0.60452616 0.73021864
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730 0.25652174 0.20552495 0.30834239
1095 0.10434783 0.07551852 0.14219702
1460 0.06956522 0.04000000 0.10000000
1825 0.06086957 0.03553539 0.09006894

It is worth mentioning that, given x, lower.tail = TRUE provides the survival estimates conditional to
T1 ≤ x whereas lower.tail = FALSE provides the survival estimates conditional to T1 > x. It should
be noted that conditioning on T1 > x is the default behavior of survCOND.

The package also provides plots for all methods. The following input commands (shown below)
provide the plots for the conditional survival function P(T > y|T1 > x) along y ≥ x where x is a
predefined fixed value. The corresponding plots for the two landmark methods (LDM and PLDM) are
shown in Figure 1. The plots were obtained for fixed values x equal to 365 and 1095 days, along time y.
This figure allows for an inspection along time of the survival probability (i.e., of being alive with or
without recurrence) for the individuals who are disease free 1 and 3 years after surgery. All curves are
monotonously decreasing. It is also evident that the conditional survival probabilities are smaller for
lower x values. This feature was expected since the survival time increases with an increase in the
recurrence-free survival. Results also suggest that individuals with higher recurrence times are most
likely to survive from their disease.

To illustrate the usage of the graphical parameter arguments of function plot.survCS, plots shown
in the first row in Figure 1 were obtained using arguments col, confcol, xlab, ylab and ylim. Plots
shown on the second row were obtained using the default values. For more details about the graphical
parameter arguments, see the corresponding help file.

> colon.ldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM")
> plot(colon.ldm.1, col = 1, confcol = 2, xlab = "Time (days)", ylab = "S(y|365)",
+ ylim = c(0.3, 1))
> colon.pldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> plot(colon.ldm.1, col = 1, confcol = 2, xlab = "Time (days)", ylab = "S(y|365)",
+ ylim = c(0.3, 1))
> colon.ldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 1095,
+ data = colonCS, method = "LDM")
> plot(colon.ldm.1)
> colon.pldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 1095,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> plot(colon.ldm.1)

When comparing the results obtained through the two methods (LDM and PLDM), it is seen that the
semiparametric estimator PLDM has less variability with more jump points, specially at the right tail. It
can also be seen that the semiparametric estimator takes higher values at the right tail.

One important goal is to obtain estimates for the above estimated quantities (conditional survival
probabilities) conditionally on current or past covariate measures. The current version of the package
allows the inclusion of a single covariate. Below we illustrate its usage using two qualitative covariates
rx (treatment: Obs(ervation), Lev(amisole), Lev(amisole)+5FU), sex (1 – male) and a continuous
covariate age (in years). The following input commands provide the estimates of the conditional
survival S(y | x) = P(T > y|T1 > x) for the three treatment groups by including the covariate (rx) in
the right hand side of the formula argument.

> colon.rx.ldm <- survCOND(survCS(time1, event1, Stime, event) ~ rx, x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.rx.ldm, times = 365 * 1:6)

rx = Obs
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9469212 0.9095018 0.9780613

1095 0.8672736 0.8247419 0.9131253
1460 0.7655017 0.7187629 0.8095914
1825 0.7123480 0.6608400 0.7638970
2190 0.6562687 0.6038035 0.7170123

rx = Lev
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
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Figure 1: Estimation of the conditional survival function given that the subject is alive and disease-free
at x = 365 (top) and x = 1095 (bottom row) days. Landmark estimators at the left and presmoothed
landmark estimator on the right hand side. Colon cancer data.

730 0.9411765 0.9070484 0.9695116
1095 0.8280543 0.7757624 0.8773140
1460 0.7375566 0.6787002 0.7929553
1825 0.7102667 0.6541314 0.7709486
2190 0.6704293 0.6101410 0.7309958

rx = Lev+5FU
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9442231 0.9142632 0.9716684

1095 0.8884462 0.8431373 0.9243251
1460 0.8165244 0.7672650 0.8666731
1825 0.7639544 0.7092081 0.8144077
2190 0.7314409 0.6709950 0.7813303

Results obtained for the three treatment groups reveal that the combined treatment of levamisole plus
fluorouracil have a benefit on overall survival. This is confirmed by the plot shown in Figure 2 which
can be obtained using the following input command:

> plot(colon.rx.ldm, xlab = "Time (days)", ylab = "S(y|365)", conf = FALSE)

Similarly, one can obtain the corresponding survival probabilities S(y | x) = P(T > y|T1 ≤ x) for
both genders (1 – male). Since this variable in the data.frame colonCS is of class "integer" it must be
included in the formula using function factor.

> colon.sex.ldm <- survCOND(survCS(time1, event1, Stime, event) ~ factor(sex), x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.sex.ldm, times = 365 * 1:6)
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Figure 2: Estimates of the conditional survival function for the three treatment groups. Colon cancer
data.

factor(sex) = 0
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9569231 0.9370979 0.9792300

1095 0.8769231 0.8417722 0.9172158
1460 0.7876565 0.7424245 0.8314511
1825 0.7475015 0.7084168 0.7982421
2190 0.6940773 0.6518322 0.7563382

factor(sex) = 1
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9329893 0.9037317 0.9615385

1095 0.8498782 0.8109783 0.8846094
1460 0.7639861 0.7247797 0.8053898
1825 0.7152471 0.6742324 0.7612994
2190 0.6822945 0.6336874 0.7277440

The condSURV package also allows the user to estimate the conditional survival given a continuous
covariate (i.e., objects of class "integer" or "numeric"). For example, estimates and plots for the
conditional survival for individuals aged 48 years, S(y|x, Z = z) = P(T > y|T1 > x, age = 48). This
can be obtained using the following input commands:

> colon.ipcw.age <- survCOND(survCS(time1, event1, Stime, event) ~ age, x = 365,
+ z.value = 48, data = colonCS, lower.tail = FALSE)
> summary(colon.ipcw.age, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9582900 0.8993620 0.9960546

1095 0.8994077 0.8354449 0.9570992
1460 0.8069071 0.7154049 0.8968507
1825 0.7490154 0.6531423 0.8387582
2190 0.7211058 0.6265042 0.8126480
2555 0.6860070 0.5588995 0.8012140

> plot(colon.ipcw.age, col = 1, confcol = 2, xlab = "Time (days)",
+ ylab = "P(T>y|T1>365,age=48)", ylim = c(0.5, 1))

The plot shown in Figure 3 depicts the conditional survival estimates taking into account the influ-
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Figure 3: Estimates of the conditional survival function given that the subject is alive and disease-free
at x = 365 days given the continuous covariate age is equal to 48 years old. 95% pointwise confidence
bands based on the percentile bootstrap. Colon cancer data.

ence of the covariate age together with the 95% pointwise confidence bands based on the percentile
bootstrap which resamples each datum with probability 1/n. The methods for implementing the
conditional survival function conditionally on current or past covariate measures can be computa-
tionally demanding. In particular, the use of bootstrap resampling techniques are time-consuming
processes because it is necessary to estimate the model a great number of times. The CPU time needed
for running the input command required to obtain the plot shown in Figure 3 can take a few minutes.
In such cases we recommend the use of parallelization (cluster = TRUE). This allows to run those
repeated operations (for example, the estimation of the conditional probability in each of the bootstrap
replicates) on multiple processors/cores on your computer, or on multiple nodes of a cluster. Thus,
we can reduce the execution time in the construction of the bootstrap-based confidence interval.

The use of the condSURV package to more than two consecutive events is illustrated in the Ap-
pendix.

Conclusions

This paper discusses the implementation in R of some newly developed methods for the estimation
of the conditional survival function. The condSURV package implements nonparametric and semi-
parametric estimators for these quantities. The package also introduces and implements feasible
estimation methods for these quantities conditionally on current or past covariate measures. Other
related estimators are also implemented in the package. One of these estimators is the Kaplan-Meier
estimator typically assumed to estimate the survival function. A modification of the Kaplan-Meier
estimator based on a preliminary estimation (presmoothing) of the censoring probability for the
survival time, given the available information is also implemented.

Software for multi-state survival analysis has been developed recently. These models deal with
problems that are similar to those implemented in package condSURV. Among other quantities these
packages deal with the estimation of the transition probabilities. It can be shown that in the progressive
model with three states the conditional survival function P(T2 > y | T1 > x) can be expressed as
the sum of two transition probabilities, p11(x, y) + p12(x, y). However, for more than three states no
formal relation can be established between the two quantities. To the best of our knowledge none of
the available software packages can be used to estimate conditional survival probabilities such as:
P(T2 > y | T1 > x), P(T3 > y|T1 < x1, T2 > x2) or P(T3 > y|T1 > x1, T2 > x2) where T1, T2 and T3
are ordered event times of successive events.

We mention some important topics that we shall consider in future versions of the package. One
important issue is about the extension of the proposed methods for interval censoring. Another topic
of much practical interest is to establish a more formal relation between our software and the survival
package.
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The results in this paper were obtained using R 3.2.5. The condSURV package is available from
the Comprehensive R Archive Network at https://CRAN.R-project.org/package=condSURV/.

Acknowledgments

This research was financed by Portuguese Funds through FCT - “Fundação para a Ciência e a Tecnolo-
gia”, within Project UID/MAT/00013/2013 and by research grant SFRH/BPD/93928/2013. We thank
the reviewers for their constructive comments.

Bibliography

M. G. Akritas. Nearest neighbor estimation of a bivariate distribution under random censoring. The
Annals of Statistics, 22:1299–1327, 1994. doi: 10.1214/aos/1176325630. [p460, 463]

A. Allignol and A. Latouche. Cran task view: Survival analysis, 2016. URL https://CRAN.R-project.
org/view=Survival. Version 2016-01-27. [p460]

R. Beran. Nonparametric regression with randomly censored survival data. Technical report, Univer-
sity of California, Berkeley, 1981. [p460, 463]

D. P. Byar. Veterans administration study of chemoprophylaxis for recurrent stage i bladder tumors:
Comparisons of placebo, pyridoxine and topical thiotepa. Bladder Tumors and Other Topics in
Urological Oncology, 18:363–370, 1980. doi: 10.1007/978-1-4613-3030-1_74. [p472]

R. J. Cook and J. F. Lawless. The Analysis of Recurrent Event Data. Springer-Verlag, New York, 2007.
[p460]

D. Dabrowska. Non-parametric regression with censored survival data. Scandinavian Journal of
Statistics, 14:181–197, 1987. doi: 10.1002/9781118558072.ch5. [p460, 463]

A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Application. Cambridge University Press,
New York, 1997. [p465]

G. Dikta. On semiparametric random censorship models. Journal of Statistical Planning and Inference,
66:253–279, 1998. doi: 10.1016/s0378-3758(97)00091-8. [p462]

T. A. Gerds. prodlim: Product-Limit Estimation for Censored Event History Analysis, 2015. URL https:
//CRAN.R-project.org/package=prodlim. R package version 1.5.7. [p460]

W. Gonzalez-Manteiga and C. Cadarso-Suárez. Asymptotic properties of a generalized Kaplan-Meier
estimator with some applications. Communications in Statistics – Theory and Methods, 4(1):65–78, 1994.
doi: 10.1080/10485259408832601. [p460, 463]

E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association, 53:457–481, 1958. doi: 10.2307/2281868. [p460]

L. Meira-Machado, J. de Uña-Álvarez, C. Cadarso-Suárez, and P. K. Andersen. Multi-state models
for the analysis of time to event data. Statistical Methods in Medical Research, 18:195–222, 2009. doi:
10.1177/0962280208092301. [p460]

L. Meira-Machado, M. Sestelo, and A. Goncalves. Nonparametric estimation of the survival function
for ordered multivariate failure time data: A comparative study. Biometrical Journal, 58(3):623–634,
2016. doi: 10.1002/bimj.201500038. [p460, 462]

C. G. Moertel, T. R. Fleming, J. S. McDonald, et al. Levamisole and fluorouracil for adjuvant therapy of
resected colon carcinoma. New England Journal of Medicine, 322:352–358, 1990. doi: 10.1007/s11725-
008-0076-x. [p464]

E. A. Nadaraya. On nonparametric estimates of density functions and regression curves. Theory of
Applied Probability, 10:186–190, 1965. doi: 10.1137/1110024. [p463]

G. A. Satten and S. Datta. The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted
average. The American Statistician, 55(3):207–210, 2001. doi: 10.1198/000313001317098185. [p463]

T. M. Therneau. survival: A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.
org/package=survival. version 2.38. [p460]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=condSURV/
https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/package=prodlim
https://CRAN.R-project.org/package=prodlim
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival


CONTRIBUTED RESEARCH ARTICLES 472

H. C. Van Houwelingen. Dynamic prediction by landmarking in event history analysis. Scandinavian
Journal of Statistics, 34:70–85, 2007. doi: 10.1111/j.1467-9469.2006.00529.x. [p462]

I. Van Keilegom, M. Akritas, and N. Veraverbeke. Estimation of the conditional distribution in
regression with censored data: A comparative study. Computational Statistics & Data Analysis, 35:
487–500, 2001. doi: 10.1016/s0167-9473(00)00025-6. [p460, 463]

G. S. Watson. Smooth regression analysis. Sankhya, 26(15):175–184, 1964. doi: 10.1093/biomet/51.1-
2.175. [p463]

Appendix

To illustrate the use of the condSURV package to more than two event times we use data from a bladder
cancer study (Byar, 1980) conducted by the Veterans Administration Cooperative Urological Research
Group. In this study, patients had superficial bladder tumors that were removed by transurethral
resection. Many patients had multiple recurrences of tumors during the study, and new tumors were
removed at each visit. For illustration purposes we use data from 85 individuals in the placebo and
thiotepa treatment groups.

Here, only the first three recurrence times (in months) and the corresponding event times, T1, T2
and T3, are considered. From the total of 85 patients, 47 relapsed at least once and, among these, 29
experienced a new recurrence and 22 individuals had a third recurrence.

Below we illustrate how to obtain estimates for the conditional survival function P(T3 > y|T1 ≤
x1, T2 > x2). First we need to built a formula object using the survCS function as the response. The
three event times and their corresponding indicator statuses have to be specified in this function.
Then, the conditional survival function can be estimated using function survCOND by considering the
argument lower.tail = c(TRUE,FALSE). Below we show the corresponding input commands for the
landmark method (LDM) and for its presmoothed version.

> bladder.ldm <- survCOND(survCS(t1, e1, t2, e2, t3, e3) ~ 1, x = c(8, 12),
+ lower.tail = c(TRUE, FALSE), data = bladderCS, method = "LDM")
> summary(bladder.ldm)

P(T>y|T1<=8,T2>12)

y estimate lower 95% CI upper 95% CI
12 1.0000000 1.0000000 1.0000000
19 0.9444444 0.8174641 1.0000000
22 0.8854167 0.7141053 1.0000000
23 0.7083333 0.4991667 0.9230769
24 0.6493056 0.4117563 0.8461538
25 0.5902778 0.3656623 0.8000893
46 0.3935185 0.0000000 0.7692308
47 0.0000000 0.0000000 0.6675000

> bladder.pldm <- survCOND(survCS(t1, e1, t2, e2, t3, e3) ~ 1, x = c(8, 12),
+ lower.tail = c(TRUE, FALSE), data = bladderCS, method = "LDM", presmooth = TRUE)
> summary(bladder.pldm)

P(T>y|T1<=8,T2>12)

y estimate lower 95% CI upper 95% CI
12 1.0000000 1.00000000 1.0000000
14 0.9734802 0.92306857 1.0000000
18 0.9473931 0.89833894 1.0000000
19 0.8935818 0.80656969 0.9932548
22 0.8663338 0.74760747 0.9691555
23 0.7795092 0.57123322 0.9414341
24 0.7485065 0.49188561 0.9316808
25 0.7163915 0.43525931 0.9189147
26 0.6475479 0.32652371 0.8674366
27 0.6102029 0.32640074 0.8358788
29 0.5709044 0.32624995 0.8159263
43 0.4475656 0.23840137 0.6916276
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46 0.3217597 0.12021360 0.6010603
47 0.2062917 0.03004109 0.6010603

When comparing the unsmoothed estimator with the semiparametric presmoothed estimator it can be
seen that the later has less variability with more jump points, specially at the right tail. Differences
obtained for the estimates using the two methods are explained by the small sample size and the high
censoring percentage. For such cases we recommend the use of the presmoothed estimator.

It is worth mentioning that the condSURV package can be used to estimate other quantities
involving all possible combinations in the argument lower.tail. For example: P(T > y|T1 > 6, T2 ≤
32) or P(T > y|T1 ≤ 12, T2 ≤ 32).
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