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dCovTS: Distance Covariance/Correlation
for Time Series
by Maria Pitsillou and Konstantinos Fokianos

Abstract The distance covariance function is a new measure of dependence between random vectors.
We drop the assumption of iid data to introduce distance covariance for time series. The R package
dCovTS provides functions that compute and plot distance covariance and correlation functions
for both univariate and multivariate time series. Additionally it includes functions for testing serial
independence based on distance covariance. This paper describes the theoretical background of
distance covariance methodology in time series and discusses in detail the implementation of these
methods with the R package dCovTS.

Introduction

There has been a considerable recent interest in measuring dependence by employing the concept of
the distance covariance function . Székely et al. (2007) initially introduced the distance covariance as a
new measure of dependence defined as the weighted L2-norm between the joint characteristic function
of two random vectors of arbitrary, but not necessarily of equal dimensions, and their marginal
characteristic functions. However, the idea of using distance covariance for detecting independence
can be also found in some early work by Feuerverger (1993). He considered measures of this form,
with the main differences being the restriction to the univariate case and the choice of the weight
function. Since Székely et al.’s (2007) work, there has been a wide range of studies extending the
distance covariance definition and methodology in various topics; see Gretton et al. (2009) and Josse
and Holmes (2014) and the references therein for a nice review.

Székely et al.’s (2007) distance covariance methodology is based on the assumption that the
underlying data are iid. However, this assumption is often violated in many practical problems.
Remillard (2009) proposed to extend the distance covariance methodology to a time series context
in order to measure serial dependence. There have been few works on how to develop a distance
covariance methodology in the context of time series (Zhou, 2012; Dueck et al., 2014; Davis et al.,
2016). Motivated by the work of Székely et al. (2007), Zhou (2012) recently defined the so-called auto-
distance covariance function (ADCV) - and its rescaled version, the so-called auto-distance correlation
function (ADCF), for a strictly stationary multivariate time series. Compared to the classical Pearson
autocorrelation function (ACF) which measures the strength of linear dependencies and can be equal
to zero even when the variables are related, ADCF vanishes only in the case where the observations
are independent. However, Zhou (2012) studied the asymptotic behavior of ADCV at a fixed lag
order. Fokianos and Pitsillou (2016a) relaxed this assumption and constructed a univariate test of
independence by considering an increasing number of lags following Hong’s (1999) generalized
spectral domain methodology. Although the proposed methodology is for univariate processes, it can
be extended for multivariate processes.

Zhou (2012) developed a distance covariance methodology for multivariate time series, but he did
not explore the interrelationships between the various time series components. Fokianos and Pitsillou
(2016b) made this possible by defining the matrix version of pairwise auto-distance covariance and
correlation functions. In particular, they construct multivariate tests of independence based on these
new measures in order to identify whether there is some inherent nonlinear interdependence between
the component series.

The energy (Rizzo and Szekely, 2014) package for R is a package that involves a wide range of
functions for the existing distance covariance methodology. However, there is no package for the
aforementioned distance covariance methodology in time series. Thus, we aim at filling this gap by
publishing an R-package named dCovTS. In this first version of the package, we provide functions
that compute and plot ADCV and ADCF using the functions dcov() and dcor() respectively from
energy package. The new testing methodology proposed by Fokianos and Pitsillou (2016a,b) is also
included in the package.

The structure of the paper is as follows. In the first two sections we introduce the theoretical back-
ground of distance covariance function for both univariate and multivariate time series respectively.
In the next section, we briefly state the main results about the asymptotic properties of distance covari-
ance function. The proposed testing methodology for both univariate and multivariate time series are
also described. Empirical p-values of the tests and empirical critical values for the distance correlation
plots are computed via the wild bootstrap methodology (Dehling and Mikosch, 1994; Shao, 2010;
Leucht and Neumann, 2013b) which is explained in the corresponding section. The implementation
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section demonstrates the usage of the package with two real data examples. Lastly, we give some
concluding remarks and some further points for future extensions of the dCovTS package.

Distance covariance function

Denote a univariate strictly stationary time series by {Xt, t ∈ Z}. Motivated by Székely et al. (2007)
and Zhou (2012), we define the distance covariance function as a function of the joint and marginal
characteristic functions of the pair (Xt, Xt+j). Denote by φj(u, v) the joint characteristic function of Xt
and Xt+j; that is

φj(u, v) = E
[
exp

(
i
(

uXt + vXt+j

))]
, j = 0,±1,±2, . . . ,

and the marginal characteristic functions of Xt and Xt+j as φ(u) := φj(u, 0) and φ(v) := φj(0, v)
respectively, where (u, v) ∈ R2, and i2 = −1. For a strictly stationary α-mixing univariate time series,
Hong (1999) defined a new measure of dependence between the joint characteristic function of Xt and
its lagged observation Xt+j and the product of their marginals, namely

σj(u, v) = φj(u, v)− φ(u)φ(v), j = 0,±1,±2, . . . , (1)

where (u, v) ∈ R2. Considering the property that the joint characteristic function factorizes under
independence of Xt and Xt+j, σj(u, v) equals 0 if and only if Xt and Xt+j are independent. Thus,
compared to the classical autocorrelation function (ACF), σj(·, ·) can capture all pairwise dependencies
including those with zero autocorrelation. The auto-distance covariance function (ADCV), VX(j),
between Xt and Xt+j is then defined as the square root of

V2
X(j) =

∫
R2

∣∣∣σj(u, v)
∣∣∣2 dW(u, v), j = 0,±1,±2, . . . (2)

whereW(·, ·) is a positive weight function for which the above integral exists.

Although Hong (1999) suggests the use of an arbitrary integrable weight function, W(·, ·), we
propose the use of a non-integrable weight function, i.e.

W(u, v) =W0(u)W0(v) =
1

π |u|2
1

π |v|2
, (u, v) ∈ R2 (3)

which avoids missing any potential dependence among observations (Székely et al., 2007, p. 2771).
Rescaling (2), one can define the auto-distance correlation function (ADCF) as the positive square root
of

R2
X(j) =

V2
X(j)

V2
X(0)

, j = 0,±1,±2, . . . (4)

for V2
X(0) 6= 0 and zero otherwise. Székely et al. (2007) showed that by applying a non-integrable

weight function, like (3), ADCF is scale invariant and is not zero under dependence.

The empirical ADCV, V̂X(·), is the non-negative square root of

V̂2
X(j) =

1
(n− j)2

n

∑
r,l=1+j

Arl Brl , 0 ≤ j ≤ (n− 1) (5)

and V̂2
X(−j) = V̂2

X(j), for −(n − 1) ≤ j < 0, where A = Arl and B = Brl are Euclidean distance
matrices given by

Arl = arl − ār. − ā.l + ā..,

with arl = |Xr − Xl |, ār. =
(

∑n
l=1+j arl

)
/(n− j), ā.l =

(
∑n

r=1+j arl

)
/(n− j), ā.. =

(
∑n

r,l=1+j arl

)
/(n−

j)2. Brl is defined analogously in terms of brl = |Yr −Yl |, where Yt ≡ Xt+j. Székely and Rizzo (2014)
proposed an unbiased version of the sample distance covariance. In the context of time series data this
is given by

Ṽ2
X(j) =

1
(n− j)(n− j− 3) ∑

r 6=l
Ãrl B̃rl , (6)

for n > 3, where Ãrl is the (r, l) element of the so-called U -centered matrix Ã, defined by
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Ãrl =

 arl −
1

n− j− 2

n

∑
t=1+j

art −
1

n− j− 2

n

∑
s=1+j

asl +
1

(n− j− 1)(n− j− 2)

n

∑
t,s=1+j

ats, r 6= l;

0, r = l.

The empirical ADCF, R̂X(j) (or its unbiased version, R̃X(j)), can be obtained by replacing (5) (or
(6)) into (4). The functions ADCV() and ADCF() in dCovTS return the empirical quantities V̂X(·) and
R̂X(·) respectively. Using the same functions with argument unbiased=TRUE, the results correspond
to the unbiased sqaured quantities Ṽ2

X(·) and R̃2
X(·). Note that the default option has been set to

unbiased=FALSE (corresponding to (5)).

Distance covariance matrix

We denote by {Xt : t = 0,±1,±2, . . . } a d-dimensional time series process, with components {Xt;i}d
i=1.

The characteristic functions can be defined in analogous way as in the univariate case. In particular,
the joint characteristic function of Xt;r and Xt+j;m is given by

φ
(r,m)
j (u, v) = E

[
exp

(
i
(

uXt;r + vXt+j;m

))]
, j = 0,±1,±2, . . .

and the marginal characteristic functions of Xt;r and Xt+j;m by φ(r)(u) := φ
(r,m)
j (u, 0) and φ(m)(v) :=

φ
(r,m)
j (0, v) respectively, with (u, v) ∈ R2, r, m = 1, . . . d and i2 = −1. The pairwise ADCV between

Xt;r and Xt+j;m is denoted by Vrm(j) and it is defined as the non-negative square root of

V2
rm(j) =

∫
R2

∣∣∣σ(r,m)
j (u, v)

∣∣∣2W(u, v)dudv, j = 0,±1,±2, . . .

whereW(·, ·) is given by (3) and σ
(r,m)
j (u, v) is similarly defined as in the univariate case, namely

σ
(r,m)
j (u, v) = φ

(r,m)
j (u, v)− φ(r)(u)φ(m)(v).

Clearly, V2
rm(j) ≥ 0, ∀ j and Xt;r and Xt+j;m are independent if and only if V2

rm(j) = 0. The ADCV
matrix, V(j), is then defined by

V(j) =
[
Vrm(j)

]d

r,m=1
, j = 0,±1,±2, . . . (7)

The pairwise ADCF between Xt;r and Xt+j;m, Rrm(j), is a coefficient that lies in the interval [0, 1]
and also measures dependence and is defined as the positive square root of

R2
rm(j) =

V2
rm(j)√

V2
rr(0)

√
V2

mm(0)
, (8)

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The ADCF matrix of Xt, is then defined as

R(j) =
[

Rrm(j)
]d

r,m=1
, j = 0,±1,±2, . . .

Vrm(j) measures the dependence of Xt;r on Xt+j;m. In general, Vrm(j) 6= Vmr(j) for r 6= m, since they
measure different dependence structure between the series {Xt;r} and {Xt;m} for all r, m = 1, 2, . . . , d.
Thus, V(j) and R(j) are non-symmetric matrices. Moreover, because of the assumed stationarity and
relation Cov(x, y) = Cov(y, x), V(j) = V′(−j) and consequently R(j) = R′(−j). More properties of
these new defined functions can be found in Fokianos and Pitsillou (2016b).

Estimation of V2
rm(·) can be dealt in a similar way as in the univariate case. In particular, let first

Yt;m ≡ Xt+j;m. Based on the sample {(Xt;r, Yt;m) : t = 1 + j, . . . , n}, we define the Euclidean distance
matrices by (ar

ts) = |Xt;r − Xs;r| and (bm
ts) = |Yt;m −Ys;m| and the centered distance matrices by

Ar
ts = ar

ts − ār
t. − ār

.s + ār
..,

Bm
ts = bm

ts − b̄m
t. − b̄m

.s + b̄m
.. ,

where the quantities in the right hand side are defined analogously as those defined in the univariate
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case. The biased estimator of V2
rm(·) is then given by

V̂2
rm(j) =


1

(n− j)2

n

∑
t,s=1+j

Ar
tsBm

ts , 0 ≤ j ≤ (n− 1);

1
(n + j)2

n+j

∑
t,s=1

Ar
tsBm

ts , −(n− 1) ≤ j < 0.
(9)

Analogously to (6), an unbiased estimator of V̂2
rm(·) is given by

Ṽ2
rm(j) =


1

(n− j)(n− j− 3)

n

∑
t,s=1+j

Ãr
ts B̃m

ts , 0 ≤ j ≤ (n− 1);

1
(n + j)(n + j− 3)

n+j

∑
t,s=1

Ãr
ts B̃m

ts , −(n− 1) ≤ j < 0,
(10)

where Ãr
ts are computed appropriately.

The sample ADCV matrix, V̂(·), is then obtained by replacing its elements by the positive square
root of (9) and can be calculated from dCovTS using the mADCV() function. The estimator based on
(10), Ṽ(·), is obtained from dCovTS using the argument unbiased = TRUE. The package also gives the
sample ADCF matrix R̂(·) (function mADCF()) which is obtained after replacing (9) (or R̃X(j) which is
based on (6)) into (8). The distance correlation plots for both univariate and multivariate time series
are obtained by the ADCFplot() and mADCFplot() functions respectively, where the shown critical
values (blue dotted horizontal line) are computed by employing bootstrap methodology described
in the appropriate section. Recall that these are computed by using the biased definition of distance
covariance and correlation.

Consistency and asymptotic distribution of distance covariance

Consider first the univariate case. For a strictly stationary and α-mixing process Xt, with E |Xt| < ∞,
then for all j = 0,±1,±2, . . .

V̂2
X(j)→ V2

X(j)

almost surely, as n→ ∞. A detailed proof of this result can be found in Fokianos and Pitsillou (2016a).
Under mild conditions, Zhou (2012) obtained the weak consistency of V̂2

X(·) and its asymptotic
distribution at a fixed lag, but under alternative mixing conditions.

In addition, Fokianos and Pitsillou (2016b) showed that for a d-dimensional strictly stationary and
ergodic time series process {Xt} with E |Xt;r| < ∞ for r = 1, . . . , d, then for all j = 0,±1,±2, . . .

V̂(j)→ V(j)

almost surely as n→ ∞. Under pairwise independence, the empirical pairwise ADCV is a degenerate
V-statistic of order two with a measurable kernel function that is symmetric, continuous and positive
semidefinite Then

(n− j)V̂2
X(j)→ Z := ∑

k
λkZ2

k (11)

in distribution, as n → ∞, where {Zk} is an iid sequence of N(0, 1) random variables, and (λk) is a
sequence of nonzero eigenvalues. A similar result showing the limiting distribution of V̂rm(·) can be
obtained by replacing V̂X(·) by V̂rm(·) in (11).

Testing for pairwise dependence in univariate time series

As shown in the previous section, the asymptotic distribution of distance covariance is derived
at a fixed lag, for both univariate and multivariate time series. Fokianos and Pitsillou (2016a,b)
constructed the asymptotic behavior of distance covariance considering an increasing number of lags
by employing Hong’s (1999) generalized spectral domain methodology. Hong (1999) highlighted that
standard spectral density approaches become inappropriate for non-Gaussian and nonlinear processes
with zero autocorrelation. Considering a univariate strictly stationary α-mixing process, he proposed
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the generalized spectral density, which is the Fourier transform of σj(u, v) defined in (1), given by

f (ω, u, v) =
1

2π

∞

∑
j=−∞

σj(u, v)e−ijω .

Under the null hypothesis of independence, the corresponding null density is given by

f0(ω, u, v) =
1

2π
σ0(u, v), ω ∈ [−π, π].

Any deviation of f from f0 is a strong evidence of pairwise dependence. Thus, Hong (1999) compares
the Parzen’s (1957) kernel-type estimators f̂ (ω, u, v) and f̂0(ω, u, v) via an L2-norm resulting in a test
statistic of the form

T(2)
n =

∫
R2

n−1

∑
j=1

(n− j)k2(j/p)
∣∣∣σ̂j(u, v)

∣∣∣dW(u, v), (12)

whereW(·, ·) : R2 → R is an arbitrary nondecreasing function with bounded total variation, p is a
bandwidth of the form p = cnλ for c > 0 λ ∈ (0, 1) and k(·) is a Lipschitz-continuous kernel function
satisfying the following assumption:

Assumption 1. k : R→ [−1, 1] is symmetric and is continuous at 0 and at all but a finite number of
points, with k(0) = 1,

∫ ∞
−∞ k2(z)dz < ∞ and |k(z)| ≤ C |z|−b for large z and b > 1/2.

The function kernelFun() in dCovTS computes a number of such kernel functions including the
truncated (default option), Bartlett, Daniell, QS and Parzen kernels.

Fokianos and Pitsillou (2016a) proposed a portmanteau type statistic based on ADCV

Tn =
n−1

∑
j=1

(n− j)k2(j/p)V̂2
X(j). (13)

Under the null hypothesis that the data are iid and some further assumptions about the kernel function
k(·), the standardized version of Tn follows a N(0, 1) asymptotically, and it is consistent. The authors
also considered a similar test statistic based on ADCF

n−1

∑
j=1

(n− j)k2(j/p)R̂2
X(j). (14)

The function UnivTest from dCovTS package performs univariate tests of independence based on
(13) and its rescaled version (14), using the arguments testType = "covariance" and testType =
"correlation" respectively.

Testing for pairwise dependence in multivariate time series

Following a similar methodology described in the previous section, Fokianos and Pitsillou (2016b)
suggested a test statistic suitable for testing pairwise independence in a multivariate time series
framework. The proposed test statistic is based on the ADCV matrix (7), and it is given by

T̃n =
n−1

∑
j=1

(n− j)k2(j/p)trV̂∗(j)V̂(j). (15)

where k(·) is a univariate kernel function satisfying Assumption 1, p is a bandwidth as described
before. Moreover, V̂∗(·) denotes the complex conjugate matrix of V̂(·) and tr(A) denotes the trace of
the matrix A. The authors formed the statistic (15) in terms of the ADCF matrix as follows

Tn =
n−1

∑
j=1

(n− j)k2(j/p)trV̂∗(j)D̂−1V̂(j)D̂−1, (16)

where D = diag{Vrr(0), r = 1, 2, . . . , d}. Under the null hypothesis of independence and some
further assumptions about the kernel function k(·), the standardized version of the test statistics T̃n
and Tn given in (15) and (16) were proved to follow N(0, 1) asymptotically and they are consistent.
The multivariate tests of independence based on T̃n and Tn are performed via mADCVtest() and
mADCFtest() respectively in dCovTS package.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 329

Table 1: Functions in dCovTS

Function Description
ADCF, mADCF Estimates distance correlation for a univariate and multivariate

time series respectively
ADCV, mADCV Estimates distance covariance for a univariate and multivariate

time series respectively
ADCFplot, mADCFplot Plots sample distance correlation in a univariate and multivariate

time series framework respectively
kernelFun Gives a range of univariate kernel function, k(·), that satisfy As-

sumption 1
UnivTest Performs a univariate test of independence based on Tn
mADCFtest, mADCVtest Perform multivariate tests of independence based on Tn and T̃n

respectively

Bootstrap methodology

To examine the asymptotic behavior of the proposed test statistics, a resampling method is proposed.
First, recall that all test statistics Tn, T̃n and Tn of equations (13), (15) and (16) respectively, are
functions of degenerate V- statistics of order two. Dehling and Mikosch (1994) proposed wild bootstrap
techniques to approximate the distribution of degenerate U-statistics for the case of iid data. Recently,
Leucht and Neumann (2013a,b) suggested the use of a new variant of dependent wild bootstrap (Shao,
2010) to approximate the limit distribution of degenerate U- and V-statistics for dependent data. The
method relies on generating auxiliary random variables (W∗tn)

n−j
t=1 . Shao (2010) highlighted that the

methodology of wild bootstrap for time series extends that of Wu (1986) by allowing the auxiliary
random variables W∗tn to be dependent. In particular, Leucht and Neumann (2013b) proposed to
generate the sequence W∗tn by a first order autoregressive model. In the case of independent data,
Dehling and Mikosch (1994) studied the wild bootstrap methodology by employing independent
auxiliary variables W∗tn. Because our focus is on testing independence we implement the calculation of
the test statistics by using W∗tn iid standard normal random variables. Thus, the empirical p-values of
the tests are derived based on this methodology.

We also suggest the use of independent wild bootstrap for obtaining simultaneous 95% empirical
critical values for the distance correlation plots. In the case of a univariate time series, we additionally
propose the subsampling approach suggested by Zhou (2012, Section 5.1) for computing the pairwise
95% critical values (argument method = "Subsampling"). The choice of the subsampling block size is
based on the minimum volatility method proposed by Politis et al. (1999, Section 9.4.2). In addition,
the package provides the ordinary independent bootstrap methodology to derive empirical p-values of
the tests and simultaneous 95% critical values for the ADCF plots (argument method = "Independent
Bootstrap"). The default bootstrap method provided to the user is the independent wild bootstrap
technique.

The computation of the bootstrap replications, and thus the empirical p-values and the critical
values, can be distributed to multiple cores simultaneously (argument parallel = TRUE). To do this,
the doParallel (Analytics and Weston, 2015) package needs to be installed first, in order to register a
computing cluster.

Implementation of dCovTS package

The current version of dCovTS package (version number 1.1) is available from CRAN and can
be downloaded via https://cran.r-project.org/web/packages/dCovTS/. The aim of the dCovTS
package is to provide a set of functions that compute and plot distance covariance and correlation
functions in both univariate and multivariate time series. As we mentioned, the package supports
both versions of biased and unbiased estimators of distance covariance and correlation functions.
Moreover, it offers functions that perform univariate and multivariate tests of independence based
on distance covariance function using the biased estimator (corresponding to (5) and (9)). All these
functions are provided in Table 1. Apart from these functions, the package also provides two real
datasets listed in Table 2. A more detailed description of the functions and datasets can be found in
the help files. We apply dCovTS to two real data examples.
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Table 2: Datasets in dCovTS

Data Description
ibmSp500 Monthly returns of IBM and S&P 500 composite index from Jan-

uary 1926 to December 2011
MortTempPart Mortality, temperature and pollution data measured daily in Los

Angeles County over the period 1970-1979

Regression with autocorrelated errors

We first consider the pollution, temperature and mortality data measured daily in Los Angeles County
over the 10 year period 1970-1979 (Shumway et al., 1988). The data are available in our package by
the argument MortTempPart and contain 508 observations and 3 variables representing the mortality
("cmort"), temperature ("tempr") and pollutant particulates ("part") data.

library(dCovTS)
data(MortTempPart)
MortTempPart[1:10,] # the first ten observations
## cmort tempr part
## 1 97.85 72.38 72.72
## 2 104.64 67.19 49.60
## 3 94.36 62.94 55.68
## 4 98.05 72.49 55.16
## 5 95.85 74.25 66.02
## 6 95.98 67.88 44.01
## 7 88.63 74.20 47.83
## 8 90.85 74.88 43.60
## 9 92.06 64.17 24.99
## 10 88.75 67.09 40.41
attach(MortTempPart)

Following the analysis of Shumway and Stoffer (2011), the possible effects of temperature (Tt) and
pollutant particulates (Pt) on daily cardiovascular mortality (Mt) are examined via regression. In
particular, once the temperature is adjusted for its mean (T. = 74.3), we fit the following regression
model using the function lm()

M̂t = 2831.49− 1.396(0.101)t− 0.472(0.032) (Tt − T.)

+ 0.023(0.003) (Tt − T.)2 + 0.255(0.019)Pt, (17)

where the standard errors of the estimators are given in parentheses. Figure 1 provides the sample
autocorrelation (ACF), partial correlation (PACF) and ADCF plots of the residuals of model (17). The
plots shown in Figure 1 suggest an AR(2) process for the residuals. The new fit is

M̂t = 3075.15− 1.517(0.423)t− 0.019(0.050)(Tt − T.)

+ 0.015(0.002)(Tt − T.)2 + 0.155(0.027)Pt, (18)

where the standard errors of the estimators are given in parentheses. The above model fit was derived
by using the arima() function of R. The correlation plots for the residuals from the new model (18)
are shown in Figure 2 indicating that there is no serial dependence. The calls for both model fits and
their diagnostic plots are given below. ADCF plots (lower plots of Figures 1 and 2) are constructed
using both resampling schemes explained in the previous section: independent wild bootstrap (with
b = 499 replications) and subsampling.

temp <- tempr - mean(tempr) # center temperature
temp2 <- temp^2
trend <- time(cmort)
fit <- lm(cmort ~ trend + temp + temp2 + part, na.action = NULL)
Residuals <- as.numeric(resid(fit))
##Correlation plots
acf(Residuals, lag.max = 18,main = "")
pacf(Residuals, lag.max = 18,main = "")
ADCFplot(Residuals, MaxLag = 18, main = "Wild Bootstrap", method = "Wild")
ADCFplot(Residuals, MaxLag = 18, main = "Subsampling", method = "Subsampling")
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Figure 1: Sample ACF, PACF and ADCF plots of the mortality residuals of model (17).

fit2 <- arima(cmort, order =c(2, 0, 0), xreg = cbind(trend, temp, temp2, part))
Residuals2 <- as.numeric(residuals(fit2))
##Correlation plots
acf(Residuals2, lag.max = 18, main = "")
pacf(Residuals2, lag.max = 18, main = "")
ADCFplot(Residuals2, MaxLag = 18, main = "Wild Bootstrap", method = "Wild")
ADCFplot(Residuals2, MaxLag = 18, main = "Subsampling", method = "Subsampling")

To formally confirm the absence of any serial dependence among the new residuals of model (18), as
shown in Figure 2, we perform univariate tests of independence based on the test statistic Tn given
in (13). We use the UnivTest() function from our package with argument testType = "covariance"

(default option). In order to examine the effect of using different bandwidths, we choose p =
[
3nλ

]
for λ = 0.1, 0.2 and 0.3, that is p = 6, 11, and 20, and we apply Bartlett kernel. The resulting p-values
are 0.118, 0.170 and 0.208 respectively suggesting acceptance of independence. We calculated p-values
for b = 499 independent wild bootstrap replications. The bootstrap procedure can be computed on
multiple cores simultaneously by using the argument parallel = TRUE (they take about 10, 14 and 23
seconds respectively on a standard laptop with Intel Core i5 system and CPU 2.30 GHz):

UnivTest(Residuals2, type = "bartlett", p = 6, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=6, boot replicates 499
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Figure 2: Sample ACF, PACF and ADCF plots of the mortality residuals of model (18) indicating that
the new residuals can be taken as white noise.

## Tn = 67.7344, p-value = 0.118

UnivTest(Residuals2, type = "bartlett", p = 11, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=11, boot replicates 499
## Tn = 125.6674, p-value = 0.170

UnivTest(Residuals2, type = "bartlett", p = 20, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=20, boot replicates 499
## Tn = 225.9266, p-value = 0.208

We compare the proposed test statistic with other test statistics to check its performance. In particular,
we consider the Box-Pierce (Box and Pierce, 1970) test statistic

BP = n
p

∑
j=1

ρ̂2(j),
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the Ljung-Box (Ljung and Box, 1978) test statistic

LB = n(n + 2)
p

∑
j=1

(n− j)−1ρ̂2(j),

the test statistic proposed by Hong (1996)

T(1)
n = n

n−1

∑
j=1

k2(j/p)ρ̂2(j)

and the test statistic T(2)
n proposed by Hong (1999) defined in (12) withW(u, v) = Φ(u)Φ(v), and Φ(·)

being the cumulative distribution function of standard normal. For the aforestated bandwidth values,
all these alternative test statistic give large p-values indicating the absence of any serial dependence
among the new residuals. More precisely, BP and LB give 0.848, 0.906, 0.170 and 0.844, 0.901, 0.142
respectively. BP and LB based tests are performed in R by the function Box.test() as follows:

box1 <- Box.test(Residuals2, lag = 6)
box2 <- Box.test(Residuals2, lag = 11)
box3 <- Box.test(Residuals2, lag = 20)
ljung1 <- Box.test(Residuals2, lag = 6, type = "Ljung")
ljung2 <- Box.test(Residuals2, lag = 11, type = "Ljung")
ljung3 <- Box.test(Residuals2, lag = 20, type = "Ljung")

The p-values obtained by T(1)
n are 0.896, 0.930 and 0.870 respectively. T(2)

n gives the following p-values:

0.854, 0.752 and 0.504 respectively. T(1)
n and T(2)

n are calculated by employing the Bartlett kernel. These
p-values are calculated for b = 499 ordinary bootstrap replications. The R functions for constructing
these test statistics are beyond the scope of this paper and are available from the authors upon request.

Bivariate financial time series

We now analyze the monthly log returns of the stocks of International Business Machines (IBM) and the
S&P 500 composite index starting from 30 September 1953 to 30 December 2011 for 700 observations.
A larger dataset is available in our package by the object ibmSp500 starting from January 1926 for 1032
observations. It is actually a combination of two smaller datasets: the first one was first reported by
Tsay (2010) and the second one was first reported by Tsay (2014). ACF and ADCF plots of the original
series are provided in Figure 3, whereas Figure 4 shows the ACF and ADCF plots of the squared series.

The R commands for constructing these plots are as follows:

data(ibmSp500)
new_data <- tail(ibmSp500[,2:3], 700)
series <- log(new_data + 1)
t=scale(lseries, center = TRUE, scale = FALSE)
t2 <- at^2
olnames(at) <- c("IBM", "SP")
olnames(at2) <- c("IBM_sq", "SP_sq")
cf(at, lag.max = 18)
cf(at2, lag.max = 18)
ADCFplot(at, MaxLag = 18, ylim = c(0, 0.2))
ADCFplot(at2, MaxLag = 18, ylim = c(0, 0.2))

The ACF plots of the original series (upper panel of Figure 3) suggest no serial correlation among
observations, while the ACF plots of the squared series (upper panel of Figure 4) imply strong
dependence. This confirms the conditional heteroscedasticity in the monthly log returns. However, the
ADCF plots for both original and squared series (lower panels of Figures 3 and 4) suggest dependence.

Indeed, choosing p =
[
3nλ

]
for λ = 0.1, 0.2 and 0.3, that is p = 6, 12 and 22, and employing Bartlett

kernel, Tn gives low p-values (0.022, 0.014 and 0.020 respectively). The calls for these three multivariate
tests of independence can be found below (they take about 2, 3 and 6 minutes respectively for b = 499
bootstrap replications on a standard laptop with Intel Core i5 system and CPU 2.30 GHz):

mADCFtest(at, "bartlett", p = 6, b = 499, parallel = TRUE)
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Figure 3: (a) The sample ACF of the original series. (b) The sample ADCF of the original series.
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Figure 4: (a) The sample ACF of the squared series. (b) The sample ADCF of the squared series.
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## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=6, boot replicates 499
## Tnbar = 34.1743, p-value = 0.022

mADCFtest(at, "bartlett", p = 12, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=12, boot replicates 499
## Tnbar = 71.1713, p-value = 0.014

mADCFtest(at, "bartlett", p = 22, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=22, boot replicates 499
## Tnbar = 122.9424, p-value = 0.02

To compare the performance of the proposed test statistic Tn, we consider the multivariate Ljung-Box
statistic (Hosking, 1980) defined by:

mLB = n2
p

∑
j=1

(n− j)−1tr{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)}

where Γ̂(·) is the ordinary covariance matrix. In contrast to the Mn’s results, mLB gives large p-values
(0.218, 0.731 and 0.525) respectively. The portes (Mahdi and McLeod, 2012) package needs to be
installed in order to perform tests of independence based on mLB statistic:

> library(portes)
> LjungBox(at, c(6, 12, 22))

Assuming that the bivariate log returns follows a VAR model and employing the AIC to choose its
best order, we obtain that a VAR(2) model fits the data well. Figure 5 shows the ACF plots (upper
panel) and ADCF plots (lower panel) of the residuals after fitting a VAR(2) model to the original
bivariate log return series using the function VAR() from the MTS (Tsay, 2015) package. In contrast
to the ACF plot, the ADCF plot still indicates some dependence among the residuals. Constructing
tests of independence based on Tn and mLB for the same choices of bandwidth, p = 6, 12, 22, we
confirm this visual result. In particular, employing a Bartlett kernel, Tn statistic gives low p-values
(0.036, 0.018 and 0.034 respectively) whereas the mLB statistic yields large p-values (0.669, 0.958 and
0.806 respectively). The calls for the plots of Figure 5 and the corresponding tests of independence are
as follows:

library(MTS)
model <- VAR(at, 2)
resids <- residuals(model)
colnames(resids) <- c("IBM_res", "SP_res")
windows(9, 6)
acf(resids, lag.max = 18)
mADCFplot(resids, MaxLag = 18, ylim = c(0, 0.13))

## Tests of independence based on \overline{T}_n
mADCFtest(resids, "bartlett", p = 6, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=6, boot replicates 499
## Tnbar = 29.9114, p-value = 0.036

mADCFtest(resids, "bartlett", p = 12, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=12, boot replicates 499
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Figure 5: (a) The sample ACF and (b) sample ADCF of the residuals after fitting VAR(2) model to the
original series.
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## Tnbar = 64.7754, p-value = 0.018

mADCFtest(resids, "bartlett", p = 22, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=22, boot replicates 499
## Tnbar = 115.3462, p-value = 0.034

## Tests of independence based on mLB
LjungBox(resids, c(6, 12, 22))

Summary and further research

There have been many works in the literature based on Székely et al.’s (2007) distance covariance
methodology. The R package energy (Rizzo and Szekely, 2014), provides functions that cover this
methodology. However, there is no published package that includes functions about distance covari-
ance for time series data. dCovTS contributes to filling this gap by providing functions that compute
distance covariance and correlation functions for both univariate and multivariate time series. We
also include functions that develop univariate and multivariate tests of serial dependence based on
distance covariance and correlation functions.

There is a number of possible extensions of this package, and some of them are not covered by
existing theory and can be seen as further research. One possible direction is to develop a theory based
on partial ADCV or conditional ADCV and a related testing methodology to identify possible depen-
dencies among time series (see Székely and Rizzo (2014) for partial distance covariance methodology
and Poczos and Schneider (2012), Wang et al. (2015) for conditional distance covariance methodology;
all three works deal with independent random variables). Among the many applications of partial
correlation are graphical models. Thus, a graphical modeling theory based on partial ADCV could be
carried out and this methodology can be included for a future version of this package.
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