
CONTRIBUTED RESEARCH ARTICLES 307

Subgroup Discovery with Evolutionary
Fuzzy Systems in R: The SDEFSR
Package
by Ángel M. García, Francisco Charte, Pedro González, Cristóbal J. Carmona and María J. del Jesus

Abstract Subgroup discovery is a data mining task halfway between descriptive and predictive data
mining. Nowadays it is very relevant for researchers due to the fact that the knowledge extracted
is simple and interesting. For this task, evolutionary fuzzy systems are well suited algorithms
because they can find a good trade-off between multiple objectives in large search spaces. In fact, this
paper presents the SDEFSR package, which contains all the evolutionary fuzzy systems for subgroup
discovery presented throughout the literature. It is a package without dependencies on other software,
providing functions with recommended default parameters. In addition, it brings a graphical user
interface to avoid the user having to know all the parameters of the algorithms.

Introduction

Subgroup discovery (SD) is a data mining field that aims to describe data using supervised learning
techniques. The goal is to find simple, general and interesting patterns with respect to a given variable
of interest. Throughout the literature, SD has been applied with success to different real-world
problems in areas such as marketing (del Jesus et al., 2007; Berlanga et al., 2006), medicine (Carmona
et al., 2015, 2013a; Stiglic and Kokol, 2012; Carmona et al., 2011; Gamberger et al., 2003) and e-learning
(Poitras et al., 2016; Lemmerich et al., 2011; Carmona et al., 2010b), amongst others (Atzmueller et al.,
2016; Jin et al., 2014; Carmona et al., 2013b; Rodriguez et al., 2013; Carmona et al., 2012).

SD is an useful rule learning process for complex search spaces. Therefore, the search strategy used
becomes a key factor in the efficiency of the method. Different strategies can be found in the literature
such as beam search in the algorithm CN2-SD (Lavrač et al., 2004b) and Apriori-SD (Kavšek and
Lavrač, 2006), exhaustive algorithms such as SDMap (Atzmueller and Puppe, 2006) or Evolutionary
Algorithms (EAs), for example.

EAs are stochastic algorithms for optimising and searching tasks, based on the natural evolution
process (John, 1992). There are different paradigms within EAs: genetic algorithms (John, 1992;
Goldberg, 1989), evolution strategies (Schwefel, 1995), evolutionary programming (Fogel, 2006) and
genetic programming (Koza, 1992). With these methods the use of rules to represent the knowledge
is known as evolutionary rule-based systems (Freitas, 2003) and has the advantage of allowing the
inclusion of domain knowledge, also returning better rules. The use of EAs is very well suited for SD
because these algorithms perform a global search in the space in a convenient way, stimulating the
obtaining of simple, interesting and precise subgroups.

Fuzzy logic is an extension of traditional set theory whose main aim is to model imprecise
knowledge (Zadeh, 1975). The main element is the fuzzy set, which allows belonging degrees in the
range [0,1] where zero means not belonging at all and one means absolute belonging. A ling??istic
variable is a set of overlapped fuzzy sets which define ling??istic labels that cover all the range
of a numeric variable. The main advantage of using fuzzy logic on SD is obtaining a knowledge
representation for numeric variables more understandable for experts. It improves the interpretability
of rules and the knowledge representation is very close to human reasoning (Hüllermeier, 2011). In
addition, it avoids the possible loss of information in variables with continuous domains due to a
previous discretisation stage.

Nowadays, there are several frameworks that allow one to perform data mining tasks, but only a
few of them have implementations of SD algorithms. The best known frameworks with SD algorithms
are KEEL (Alcalá-Fdez et al., 2011) and VIKAMINE (Atzmueller and Lemmerich, 2012), but ORANGE
(Demšar et al., 2013), and CORTANA (Meeng and Knobbe, 2011) also provide some implementations.
In fact, VIKAMINE also provides an R package called rsubgroup (Atzmueller, 2014) which is an
interface for R to VIKAMINE Java algorithms.

In this contribution the SDEFSR package is introduced. It provides the user with the most
important evolutionary fuzzy rule-based methods for SD documented in the literature, being a major
contribution to the R community. In addition, it also brings the capability of reading datasets in the
KEEL data format (Alcalá-Fdez et al., 2011). This file format is not natively supported by R. Similarly,
this package provides a Graphical User Interface (GUI) to make this task easier for the user, especially
the unexperienced one.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=rsubgroup
https://CRAN.R-project.org/package=SDEFSR

CONTRIBUTED RESEARCH ARTICLES 308

This contribution is organized according to the following structure: The first section presents SD
concepts, main properties and features. In the second section, the structure of the SDEFSR package
and its operations are described. In the third section, a complete example of use of the package is
presented. Finally, the GUI of SDEFSR is shown in the last section.

Subgroup discovery

SD was defined by (Wrobel, 2001) as:

“In subgroup discovery, we assume we are given a so-called population of individuals (objects,
customers, . . .) and a property of those individuals we are interested in. The task of subgroup dis-
covery is then to discover the subgroups of the population that are statistically “most interesting”,
i.e. are as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest.”

SD tries to find relationships between different properties of a set with respect to one interesting or
target variable. Such relations must be statistically interesting, so it is not necessary to find complete
relations, partial relations could be interesting too.

Usually these relations are represented by means of rules, one per relation. A rule is defined as
(Lavrač et al., 2004a; Gamberger and Lavrac, 2002):

R : Cond→ Targetvalue (1)

where Targetvalue is the value for the variable of interest (target variable) for the SD task and Cond
is normally a conjunction of attribute-value pairs which describe the characteristics of the induced
subgroup.
SD is a data mining task halfway between description and classification, because it has a target variable
but its objective is not to predict but rather to describe. The use of a target variable is not possible in
description, because description simply finds relationships between unlabeled objects.
A key point to fully understanding the goal of SD is how it differentiates from the classification
objective. Classification is a predictive task that tries to split the entire search space, usually in a
complex way, aiming to find the correct value for the variable in new incoming instances. On the
other hand, SD aims to find interesting relationships among these instances regarding the variable of
interest.
For instance, assuming there is a group of patients, the variable of interest is whether they have heart
disease or not. The predictive data mining objective is to predict if new patients will have heart disease.
However, SD tries to find which subgroup of patients are more likely to have heart disease according
to certain characteristics. This could be relevant to develop a treatment against this disease.

Main elements of subgroup discovery algorithms

Below, the most relevant aspects of SD algorithms are presented (Atzmueller et al., 2004):

• Type of the target variable: This is the kind of information the interest variable can hold. The target
variable could be binary (two possible values), categorical (n posible values) or numerical (a real
value within a range). Nevertheless, the majority of SD algorithms can only deal with binary or
categorical target variables.

• Description language: Knowledge representation is a key factor in SD due to its descriptive nature.
In this way, rules must be as simple as possible. Rules are usually represented by conjunctions
of attribute-value pairs or in disjunctive normal form. Fuzzy logic could also be included in the
rules in order to improve the interpretability of the knowledge (Zadeh, 1975; Hüllermeier, 2005).

• Quality measures: This is the most important aspect in the design of SD algorithms. The quality
measures must guide the learning process and must show the quality of the extracted knowledge.
They are briefly described below.

• Search strategy: The search space grows exponentially with the number of variables.The use of a
search strategy able to find a good solution, or the optimal one, by searching efficiently through
the whole search space is very important.

Quality measures for subgroup discovery

A quality measure tries to measure the interestingness of a given rule or subgroup, but there is not
a formal definition of what interestingness is. However, the interestingness could be defined as a

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 309

concept that emphasises conciseness, coverage, reliability, peculiarity, diversity, novelty, surprisingness,
utility, and actionability (Geng and Hamilton, 2006). For SD, the most used criteria to measure the
interestingness of a rule are conciseness, generality or coverage, reliability, and novelty (Carmona
et al., 2014).

Quality measures that accomplish this criteria available in the SDEFSR package are:

• Measures for conciseness (or complexity). It measures the complexity of the induced rules.
Rules with a few number of attribute-value pairs are easy to remember and add to the expert’s
knowledge. The quality measures associated to this criterion are:

– Nr: The number of rules generated. A rule set with a large number of rules is much more
difficult to remember than other that has less rules. Additionally, the lower the number of
rules, the easier for the expert to filter those rules that are interesting.

– Nv: The number of variables of the rules generated. Rules with less variables are easier
to understand and to remember; also they tend to be more general. Thus, rules with low
number of variables are interesting.

• Measures for generality (or coverage). It measures the capacity of a rule to match with a great
number of examples in the dataset. Also, the capacity to generalise the rule to other instances
that are not in the training dataset is greater. The quality measures associated to this criterion
are:

– Support: It measures the frequency of correctly classified examples covered by the rule:

Sup (R) =
n (Cond ∧ Targetvalue)

ns
(2)

where n (Cond ∧ Targetvalue) means the number of examples that satisfy the antecedent
and consequent part of the rule and ns is the number of examples in the dataset.

– Coverage: It measures the percentage of examples covered by the rule related to the total
number of examples:

Cov (R) =
n (Cond)

ns
(3)

where n (Cond) means the number of examples that satisfy the antecedent part of the rule.

• Measures for reliability. A rule is reliable when the relation described in the rule occurs in a
high percentage of cases where the rule can be applied. The quality measures associated to this
criterion are:

– Confidence: It measure the percentage of examples correctly covered of the total of covered
examples:

Con f (R) =
n (Cond ∧ Targetvalue)

n (Cond)
(4)

• Measures for novelty. A rule is novel if the knowledge obtained from this one is unknown by
the user or it is unable to infer such knowledge from other rules. For this kind of criterion, the
quality measures availables in the package are:

– Significance: It reflects the novelty in the distribution of the examples covered by the rule
regarding the whole dataset:

Sign (R) = 2 ·
nc

∑
k=1

n
(
Cond ∧ Targetvaluek

)
· log

(
n
(
Cond ∧ Targetvaluek

)
n (Cond ∧ Targetvalue) · p (Cond)

)
(5)

where p (Cond) = n(Cond)
ns

, nc is the number of possible values of the target variable and
Targetvaluek

is the k-th value of the target variable.

• Hybrid measures. These measures try to maximise more than one criterion with a single
expression that finds a good trade-off between the criteria used. The hybrid quality measures
implemented are:

– Unusualness: It is defined as the weigthed relative accuracy of a rule and tries to maximise
generality and realiability:

WRAcc (R) =
n (Cond)

ns

(
n (Cond ∧ Targetvalue)

n (Cond)
− n (Targetvalue)

ns

)
(6)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 310

– True Positive Rate (TPR) or Sensitivity: It measures the proportion of covered examples that
has been correctly classified.

TPR (R) =
n (Cond ∧ Targetvalue)

n (Targetvalue)
(7)

– False Positive Rate (FPR): It measures the proportion of examples that are covered that do
not belong to the target variable.

FPR (R) =
n
(
Cond ∧ Targetvalue

)
n
(
Targetvalue

) (8)

where Targetvalue means the negation of Targetvalue, i.e., the examples that not belong to
the target class.

A more complete classification and definition of quality measures for SD is available in (Herrera
et al., 2011) and (Atzmueller, 2015).

Evolutionary fuzzy systems

Evolutionary fuzzy systems (EFSs) are the union of two powerful tools for aproximate reasoning: EAs
and fuzzy logic.

In one side, EAs (Eiben and Smith, 2003) are stochastic algorithms based on the natural evolution
to solve complex optimisation problems. They are based on a population of representations of possible
solutions, called chromosomes. A basic EA scheme is:

1. Generate the initial population

2. Evaluate the chromosomes of the population. This is the most important and expensive part
of the EA. In the algorithms of this package, quality measures described above are used as
evaluation function.

3. Select the chromosomes which the genetic operators will be applied.

4. Apply the genetic operators. The most used are:

• Crossover operator. Which takes two chromosomes and generates two descendants as a
combination of the elements of the parents.

• Mutation operator. Which takes a chromosome and changes randomly a gene (a value of
the possible solution).

5. Replace the population with the new generated chromomes.

6. Go to step 2 until a stopping criterion is reached. Normally this criterion is a number of
evaluations or generations.

These algorithms perform efficiently a global stochastic search through a huge search space.
However, it is possible that these algorithms can not find an optimal solution (a global optimum), but
a good one (a local optimum) that can solve the problem too. They are well suited for SD because
the problem of finding subgroups can be formulated from the optimisation point of view as coding
rules as a parameter structure that optimise some measures. Additionally, different kinds of rules
exist in SD (with inequality, with intervals, fuzzy rules...). This can change dramatically the size of the
search space and EAs can adapt these structures easily without performance degradation. Likewise,
the selection of the genetic operators can make EAs great candidates to introduce expert knowledge in
the search process (Carmona et al., 2014).

On the other side, fuzzy logic (Zadeh, 1975) is an extension of the traditional set theory. Its main
objective is to model and deal with imprecise knowledge. The main difference with traditional set
theory is that belonging degree is not zero or one, but a real value in [0,1]. This possibility allow one to
define fuzzy limits and the chance of overlapping between fuzzy sets.

A fuzzy variable is a set of linguistic labels, e.g. low, medium and high, which are defined by
overlapped fuzzy sets (Hüllermeier, 2011). This information is closer to human reasoning and it is
possible to calculate with precission the value of each belonging degree. This expressivity allows one
to obtain simpler rules because continuous variables are more understandable for humans. A rule can
be represented by means of a set of fuzzy variables. To determine if the rule covers an example it is
neccesary to calculate the belonging degree of each variable in the rule with respect to the example. If
all the variables have a belonging degree grater than zero, the example is covered.

EFSs are the union of both techniques, and work three ways(Herrera, 2008):

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 311

• EAs that evolve the fuzzy rules (changing the number of variables and their values) and use
fuzzy set definitions defined by the user. This way of work is used by all the algorithms
implemented in the SDEFSR package.

• EAs that evolve the fuzzy sets, changing the number of fuzzy sets for each variable, its shapes,
etc.

• EAs that evolve both rules and fuzzy sets.

The SDEFSR package

SDEFSR is a package entirely written on R from scratch. To the best of our knowledge, this package
includes all the EFSs for SD presented throughout the literature. In addition, SDEFSR has the capacity
to read data in different standard and well-known formats such as ARFF (Weka), KEEL, CSV and
data.frame objects. Similarly, all functions included in the SDEFSR package have default parameters
with values recommended by the authors. This allows the algorithms to be executed in an easy way
without the necessity of knowing the parameters for final users.

Algorithms included in the package

SDEFSR implements the following SD algorithms (Ventura and Luna, 2016):

• SDIGA (del Jesus et al., 2007). This is a mono-objective EA (Back et al., 1997) based on an
Iterative Rule Learning (IRL) approach in which only the best rule is extracted from an execution
of the EA. This EA is executed iteratively until a stopping criterion is reached.

• MESDIF (Berlanga et al., 2006). A multi-objective EA (Deb, 2001) based on the SPEA2 (Zitzler
et al., 2002) algorithm. It returns the best n rules (where n is an user parameter) in the pareto
front.

• NMEEF-SD (Carmona et al., 2010a). Another multi-objective EA, based on the NSGA-II (Deb
et al., 2000) algorithm which returns rules in the pareto front with a confidence greater than
a given threshold. It has a reinitialisation operator to promote diversity and maximise the
covering of all examples for target variable.

• FuGePSD (Carmona et al., 2015). An algorithm that uses genetic programming in which a
competitive-cooperative scheme is implemented in order to obtain the best global rules. The
key operation of this algorithm is the Token Competition (Leung et al., 1992), which promotes
the extraction of precise, general and also diverse rules from the evolutionary process.

All these methods share the following characteristics:

• They use fuzzy logic to improve the interpretability of results, making them robust when
working with noisy data (Luengo et al., (In Press) and also allowing one to include expert
knowledge on the evolutionary learning process.

• Rules can be represented by a conjunction of attribute-value pairs (canonical form) or in disjunc-
tive normal form (DNF). In (Carmona et al., 2009) there is an analysis justifying not using the
DNF rule representation on some SD algorithms.

• It is possible to specify the quality measures used to guide the evolutionary process.

• All of the algorithms can deal with categorical (or multi-class) target variables.

Package architecture, extensibility, limitations and comparison with similar packages

The main advantage of the SDEFSR package is that it provides all EFSs for SD that exist in the
literature. These algorithms are not included in R at the moment. Therefore, this package provides to
the R community a brand new possibility for data mining and data analysis.

The base of the package is defined by two S3 classes. These classes are:

• "SDEFSR_Dataset". This object defines a dataset and contains information about it. Such
information are stored in the following fields:

– relation. Defines the name of the relation that this dataset belongs to, e.g. "german
credit".

– attributeNames. Stores the names of the attributes.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 312

– attributeTypes. A character that defines the data type of the attribute, i.e. ’r’ for real
values, ’e’ for integers and ’c’ for categoricals variables.

– min. A vector with the minimum value for numerical variables, for categorical variables,
this value is zero.

– max. A vector with the maximum value for numerical variables or the number of different
categorical values that has a categorical variable.

– nVars. The number of variables in the dataset (excluding the target class).

– data. A list that contains each example of the dataset. The categorical variables in data
are codified. This means that a categorical value is represented as a value in [0, max −1]
that represents the position of the value. For example, in the german-credit dataset, the
variable ForeignWorker has two values: "A201" and "A202", these values are represented
in the data field of a "SDEFSR_Dataset" class as 0 or 1, respectively.

– class_names. A vector with the categorical values of the target class. By default, the target
variable is the last one. If it is not categorical, the method that reads the dataset fails. The
user can select other target class when executing the algorithms.

– examplesPerClass. A list with the number of examples belonging to each class.

– lostData. A logical that indicates the presence of lost data.

– covered. A logical vector with length the number of examples that indicates which
examples are covered by the generated rules. This value by default is NA, but it is used in
some algorithms like SDIGA.

– fuzzySets. A list that indicates the fuzzy sets definitions for each variable. This value is
NA by default.

– crispSets. A list that indicates the crisp sets obtained from the fuzzy sets. As this value is
infered from fuzzySets, this is NA by default.

– sets. A vector that defines the number of fuzzy sets that each variable has or the number
of categorical values.

– categoricalValues. A list that contains a vector of names of each categorical variable or
NA if the variable is numerical.

– Ns. The number of examples in the dataset.

This class also exports the well-known S3 methods print() and summary() that show the
data structure without codification and a summary with basic information about the dataset
respectively.

• "SDEFSR_Rules". This class is a list that contains the rules generated by an algorithm. To know
the number of rules generated, it is possible to use length(SDEFSR_RulesObject). Each rule has
the following fields:

– rule. The string that represents the rule description.

– qualityMeasures. A list that contains the quality measures of the rule. Such measures are
the same as described in the quality measures section.

This object must be returned for all the SD algorithms of this package, and it is neccesary to
make an analysis of the generated rules. This object is necessary for the exported functions
plotRules() that plots an FPR vs TPR graph that allows the visualisation of rules, and the
well-known method sort() that return other "SDEFSR_Rules" object with the rules sorted by a
given quality measure in descendant order. Likewise, this object overloads the subset operator
('[') to allow filtering operations easily.

Additionally, the package has a general function that reads datasets in ARFF, KEEL or CSV
format called read.dataset() and SDEFSR_DatasetFromDataFrame() to transform a data.frame into
a "SDEFSR_Dataset". In summary, exported functions and S3 objects are presented in Table 1.

A potential future extension of the package will be the inclusion of the confusion matrix for each
rule. With this matrix it would be possible to infer the rest of the quality measures. Also, additional
quality measures could be easily added. Statistical validation of the results are now implemented in
package rsubgroup, which is already available on CRAN. Therefore, SDEFSR delegates this task to
that package.

The rsubgroup package contains SD algorithms that can complement the algorithms available
in the SDEFSR package. rsubgroup includes more established algorithms for SD like beam search
(Lowerre, 1976) or SD-Map (Atzmueller and Puppe, 2006). This opens a wide range of SD algorithms
that a user can execute in R. Nevertheless, both packages have great differences when calling SD

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 313

S3 Objects and methods SD Algorithms Other methods

"SDEFSR_Dataset" SDIGA() read.dataset()
print.SDEFSR_Dataset() MESDIF() SDEFSR_DatasetFromDataFrame()
summary.SDEFSR_Dataset() NMEEF_SD() plotRules()
"SDEFSR_Rules" FUGEPSD()
"[.SDEFSR_Rules"
"sort.SDEFSR_Rules()"

Table 1: Methods and rules exported by the SDEFSR package.

methods and the results. This means that a future package, which joins both into one standard
framework would be interesting.

Below, the neccesary methodology to perform the inclusion of new algorithms in the SDEFSR
package is shown:

1. The SD algorithm must use an "SDEFSR_Dataset" object as input and return an "SDEFSR_Rules"
object with the results. Optionally, these results can be displayed on the console in a human-
readable way.

2. The method can be executed with a parameter that contains the path of a parameter file. This
file must contain the same parameters as the algorithm. This means that the algorithm must be
executed either by a parameter file or by writting all neccesary parameters.

3. The majority of the parameters must have default values to ease the use of the algorithm.

4. The SD algorithm must not depend on other packages that are not in the "base" set of packages.

5. The source code of the algorithm must be added in a separate file with the name of such method.

As many others packages in R, this package does not have any automated test that control the
quality of the code or results obtained. Instead, as the algorithms implemented exists in other platforms
(KEEL), we check the quality of the methods comparing the results with the original implementation
against a significant number of datasets with a 5-fold cross validation schema. This test showed that
the results of the methods in SDEFSR are very close or equal to the results obtained from the reference
implementations. Developers who want to add a new method to the package, must demonstrate the
validity of the results obtained.

An example of use

This section describes an example of use of the package, covering the installation and loading of the
package to the execution of a SD algorithm and the analysis of the rules generated.

Installing and loading the SDEFSR package

The SDEFSR package is now available at CRAN, so it can be installed like any other package by
simply typing:

> install.packages("SDEFSR")

The development version is available on GitHub at https://github.com/SIMIDAT/SDEFSR. To
install and use the development version you need to install the devtools (Wickham and Chang, 2015)
package and then use the command:

> devtools::install_github("SIMIDAT/SDEFSR")

The package can be loaded using either the library() or require() functions. Once the pack-
age has been loaded, there are six sample datasets stored as "SDEFSR_Dataset" objects available:
‘carTra’, ‘carTst’, ‘germanTra’, ‘germanTst’, ‘habermanTra’ and ‘habermanTst’ that correspond to the
‘car’, ‘german’ and ‘haberman’ (Alcalá-Fdez et al., 2011) training and test datasets respectively. These
are contained in the ‘carTra.rda’, ‘carTst.rda’, ‘germanTra.rda’, ‘germanTst.rda’, ‘habermanTra.rda’ and
‘habermanTst.rda’ files respectively, which are lazily loaded with the package. Also, rules gener-
ated by the SDIGA algorithm with default parameters over the ‘haberman’ dataset are loaded as
‘habermanRules’ as a "SDEFSR_Rules" object. These rules are stored in the ‘habermanRules.rda’ file.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://github.com/SIMIDAT/SDEFSR
https://CRAN.R-project.org/package=devtools

CONTRIBUTED RESEARCH ARTICLES 314

Loading a dataset

In order to use SD algorithms available in the SDEFSR package, a "SDEFSR_Dataset" object is nec-
essary. This object can be generated using the read.dataset() function. This function reads ".dat"
files with the KEEL data mining tool format, ARFF files (".arff") from WEKA or even CSV files (".csv").
The source code for reading ARFF files has been taken from the mldr package(Charte and Charte,
2015). Assuming the files ‘iris.dat’, ‘iris.arff’ and ‘iris.csv’ corresponding to the classical iris dataset in
KEEL, ARFF and CSV formats respectively in the working directory, the loading of these files will be
as follows:

> irisFromKEEL <- read.dataset("iris.dat")
> irisFromARFF <- read.dataset("iris.arff")
> irisFromCSV <- read.dataset("iris.csv")

Note that the function detects the type of data by the extension. To read csv files, the function has
optional parameters that defines the separator used between fields, the decimal separator, the quote
indicator and the NA identifier as parameters. By default, these options and values are sep = ",",quote
= ""̈,dec = "." and na.strings = "?" respectively. It is important to remark that sparse ARFF data
is not supported.

If the dataset is not available in these formats, it is possible to obtain a "SDEFSR_Dataset" object
from a data.frame. This data.frame could be loaded by read.table() or similar functions. Eventually,
the resulting data.frame has to be given to the SDEFSR_DatasetFromDataFrame() function. As we can
see, this function allows the creation of datasets on the fly, as in this example:

> df <- data.frame(matrix(data = runif(1000), ncol = 10))
#Add class attribute (It must be the last attribute and it must be categorical)
> df[,11] <- c("Class 0", "Class 1", "Class 2", "Class 3")
> SDEFSR_DatasetObject <- SDEFSR_DatasetFromDataFrame(df, relation = "random")

This will assign to SDEFSR_DatasetObject a new dataset created randomly with 100 examples and
11 attributes. Note that the target variable must be categorical, because the SD algorithms can only
deal with categorical target variables.

The SDEFSR_DatasetFromDataFrame() function has three additional parameters: names, types, and
classNames. These allow the manual assignment of attribute names, their types, and a vector with
values of target variable, respectively. Leaving the default values (NA), the function automatically
retrieves these values through the information found on the dataset. However, if the information in
the dataset is not accurate, it could cause unexpected results for the SD algorithms.

Obtaining information from a loaded dataset

Once the dataset is loaded, it is possible to view a simple summary of its content by using the usual
summary() function:

> summary(irisFromKEEL)
Summary of the SDEFSR_Dataset object: 'irisFromKEEL'

- relation: iris
- nVars: 4
- Ns: 150
- attributeNames: SepalLength, SepalWidth, PetalLength, PetalWidth, Class
- class_names: Iris-setosa, Iris-versicolor, Iris-virginica
- examplesPerClass: 50, 50, 50

Any of these values can be obtained individually using the ‘$’ operator on the "SDEFSR_Dataset"
object:

> irisFromKEEL$nVars
[1] 4
> irisFromKEEL$attributeNames
[1] "SepalLength" "SepalWidth" "PetalLength" "PetalWidth" "Class"

Also, it is possible to print the dataset as a data.frame with the print() function.

Executing subgroup discovery algorithms

It is possible to execute a SD algorithm in two ways: through a parameter file, specifying as argument
the path to such file, or by entering all the parameter names and values at the command line. You can

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=mldr

CONTRIBUTED RESEARCH ARTICLES 315

find the structure of the parameter file, among other useful information, on the help pages of each
function.

Assuming the "SDEFSR_Dataset" object ‘irisFromKEEL’ that has been loaded, and that the ‘params.txt’
parameter file is stored in the working directory, the easiest way to run the MESDIF() algorithm, for
example, will be:

> ruleSet <- MESDIF(paramFile = "param.txt")
#or
> ruleSet <- MESDIF(training = irisFromKEEL)

The first way will execute the algorithm with the parameters and datasets defined in the parameter
file. The second one will execute the algorithm with the specified "SDEFSR_Dataset" object, and
default values for remainder parameters. By default, the target variable used is the last defined in the
dataset and the algorithm searches rules for all the values of the target variable.

An example of an execution with all parameters and the result obtained could be:

> ruleSet <- MESDIF(paramFile = NULL, training = irisFromKEEL, test = NULL,
+ output = c("optionsFile.txt", "rulesFile.txt", "testQM.txt"),
+ seed = 0, nLabels = 3, nEval = 300, popLength = 100,
+ eliteLength = 2, crossProb = 0.6, mutProb = 0.01,
+ RulesRep = "can", Obj1 = "CSUP", Obj2 = "CCNF", Obj3 = "null",
+ Obj4 = "null", targetVariable = "Class",
+ targetClass = "Iris-virginica")

Algorithm: MESDIF
Relation: iris
Training dataset: training
Test dataset: test
Rules Representation: CAN
Number of evaluations: 300
Number of fuzzy partitions: 3
Population Length: 100
Elite Population Length: 2
Crossover Probability: 0.6
Mutation Probability: 0.01
Obj1: CSUP (Weigth:)
Obj2: CCNF (Weigth:)
Obj3: null (Weigth:)
Obj4: null
Number of examples in training: 150
Number of examples in test: 150
Target Variable: Class
Target Class: Iris-virginica

Searching rules for only one value of the target class...

GENERATED RULE 1
Variable SepalWidth = Label 1 (2 , 3.2 , 4.4)
THEN Iris-virginica

GENERATED RULE 2
Variable PetalWidth = Label 2 (1.3 , 2.5 , 3.7)
THEN Iris-virginica

Testing rules...

Rule 1 :
- N_vars: 2
- Coverage: 0.8
- Significance: 0.602743
- Unusualness: 0.02
- Accuracy: 0.357724
- CSupport: 0.286667
- FSupport: 0.245

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 316

- CConfidence: 0.358333
- FConfidence: 0.351955
- True Positive Rate: 0.86
- False Positive Rate: 0.77

Rule 2 :
- N_vars: 2
- Coverage: 0.193333
- Significance: 27.673033
- Unusualness: 0.128889
- Accuracy: 0.9375
- CSupport: 0.193333
- FSupport: 0.201667
- CConfidence: 1
- FConfidence: 0.889706
- True Positive Rate: 0.58
- False Positive Rate: 0

Global:
- N_rules: 2
- N_vars: 2
- Coverage: 0.496666
- Significance: 14.137888
- Unusualness: 0.074444
- Accuracy: 0.647612
- CSupport: 0.3
- FSupport: 0.223334
- FConfidence: 0.620831
- CConfidence: 0.679166
- True Positive Rate: 0.72
- False Positive Rate: 0.385

The output has three defined sections:

• The first one provides to the user information about the current execution, i.e., the values given
to the parameters.

• After that, the rules obtained are shown one by one. These rules are numbered, starting at 1.

• Finally, the quality measures applied over the test (or training if test = NULL) dataset for each
rule are shown. At the end of results, the "Global" section shows the average results for the
quality measures analysed,

As this output could be extremely large, the function also saves it to three files, one for each of the
above sections. The name of these files by default are ‘optionsFile.txt’, ‘rulesFile.txt’ and ‘testQM.txt’ and
being saved into the working directory, overwriting existing files. The format of these files is identical
to the output generated by the algorithm, but divided into the sections described above.

The output parameter must be included if the authors desire the modification of the names of
paths in the stored files. It accepts a vector with the names or paths to be used instead of the default
ones. Additionally to this output, the function returns the "SDEFSR_Rules" object which contains the
rules generated and the quality measures associated to each rule.

Analysing the rules obtained

After the execution of a SD algorithm, it returns a "SDEFSR_Rules" object that contains the rules
obtained. Following the example, with the ruleSet object obtained we can plot a TPR vs FPR plot to
view the reliability and generality of the rule (Kralj et al., 2005). Reliable rules have low values of FPR
and high TPR values, and too general variables have high values for both TPR and FPR. To plot the
rules, we can use the function plotRules(). (This function depends on the package ggplot2. If this is
not installed, the user will be queried to install it.) The resulting plot is shown in Figure 1.

Additionally, we can directly order the rule set by a quality measure with the sort() function
which returns another "SDEFSR_Rules" object with the rules sorted. By default, the ordering is done
by confidence.

rulesOrderedBySignificance <- sort(x = ruleSet, decreasing = TRUE, by = "Significance")

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 317

Rule 1

Rule 2

1 0.5 0 0.5 1
value

R
ul

e

qualityMeasure

FPR

TPR

Figure 1: Plot generated after executing plotRules() on the "SDEFSR_Rules" object obtained in
the example.

Filtering rules by number of attribute-value pairs or keeping those rules with a quality measure
greater than a given threshold are interesting functionalities to extract only high-quality rules. Such
filtering operations are quite simple to apply in SDEFSR. Using the subset operator ('[]') and
introducing the filtering conditions will generate a new "SDEFSR_Rules" object with the result:

Apply filter by unusualness:

> filteredRules <- ruleSet[Unusualness > 0.05]

We check only if the number of rules decrease. In this case, this value must be 1.

> length(filteredRules)
[1] 1

Also, you can make the filter as complex as you can Filter by Unusualness, TPr and number of
variables:

> filteredRules <- ruleSet[Unusualness > 0.05 & TPr > 0.9 & nVars == 3]

In this case, there are not rules that match the conditions. Therefore, the number of rules must be 0.

> length(filteredRules)
[1] 0

The user interface

The SDEFSR package provides the user with a GUI to ease the use of SD algorithms. It also allows
basic exploratory analisys of the data to be performed. This GUI is accessible by calling the function:

> SDEFSR_GUI()

The GUI was generated using the shiny package, therefore this function depends on this package.
It depends on package ggplot2 too. If shiny or ggplot2 are not installed in the system, the user is
given the option to install them.

> SDEFSR_GUI()
Package 'shiny' is not installed and must be installed to run this GUI.
Do you want to install it? (Y/n): Y

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 318

...

Once the package has been installed, the GUI is launched. In Figure 2 the initial state of the GUI is
shown. It is structured into two areas. On the left the user can select the training and test files to be
used, the target variable, and the value to be used by the SD algorithm as target variable. Finally,
the group of radio buttons allows the user to change between different graphics to perform a basic
exploratory analysis. On the right there is a tab panel where tabs are organised by the logical process
of execution and visualisation of results of a SD algorithm.

Figure 2: Initial screen of the SDEFSR user interface.

At this moment, the user only can perform the loading of datasets as a training or test file. The
in Figure 2 within the red box intitiate the reading of files with the the same file formats as the
read.dataset() function. Once a dataset has been loaded, an initial plot appears. This will be a pie
chart if the last variable is categorical or a histogram otherwise. Figure 3 shows an example of such a
graph. This graph could show information about all the variables in the dataset. For example, the pie
chart shows the value and the number of examples that belongs to this value. To the right of this plot,
a table provides some information about the distribution of the data samples. This becomes interesting
with numerical variables where basic statistical information is displayed. To change the variable being
visualised, use the "Select the target variable" dropdown menu.

The ‘Keep this data’ button brings an interesting function. This button allows to filter examples
whose values contain unselected values from the ‘Select attributes’ field for categorical variables
or values from numerical variables that are not within the range specified on the ‘Show range’ slider.

Figure 3: Screenshot of the GUI once a dataset has been loaded.

Another functionality is the ‘Variable vs Variable’ dataset visualisation. As shown in Figure 4 ,
it is possible to select two variables of the dataset and visualise their behaviour with respect to the

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 319

target class. In this case, the target class is the last variable of the dataset. The plot shown depends
on the types of variables choosen. If both are numerical, a scatter plot like in Figure 4 is shown and
if both are categorical, a bar plot is shown. A numerical variable versus a categorical variable is an
undefined functionality, thus, no plot is shown.

Figure 4: Screenshot of the ‘Variable vs Variable’ functionality.

On the "Algorithm Selection" tab, the user can choose a SD algorithm to execute, and easily modify
all the available parameters.

After the execution of a SD algorithm the "Rules Generated" tab is automatically selected as shown
in Figure 5. Here the user can see the rules over a DataTable. The most important function is the
"Search" field where the user can find rules with a specific variable. For example, with the results
obtained executing MESDIF with the ‘banana’ (Alcalá-Fdez et al., 2011) dataset, which is an artificial
dataset whose classes form a banana shape, and leaving the default parameters of the GUI. Typing
"At1" on the search box filter rules with the variable At1 on the antecedent. Similarly, typing "THEN
1.0" filter rules with the value 1.0 on the consequent.

Figure 5: Screen of the "Rules Generated" tab with generated rules.

Tab "Test Quality Measures" shows another DataTable with the quality measures for each rule.
The filter options are similar to the DataTable of "Rules Generated". As shown in Figure 6, the button
‘Show/Hide Graph’ shows a FPR vs TPR plot of the generated rules, similar to the plotRules() function.

Finally, "Execution Info" shows information about the current execution, i.e., the parameters used
in this execution. This information is like the execution information of a console execution (See Sec.
40.4.4).

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 320

Figure 6: Screen of the "Quality Measures" tab with the FPR vs TPR graph displayed.

Summary

In this paper the SDEFSR package has been introduced. This package implements all the EFS-based
algorithms for SD that exist in the specialised literature. The package can use datasets in ARFF, ".dat"
of KEEL and CSV formats or a data.frame object. The main contribution of this package is the ease of
use of the algorithms by means of functions with recommended parameters by default and different
ways of execution, saving the user from the need to know the names of all the parameters of each
algorithm. Also, a GUI is presented in order to make this task even easier.
The development of the package will continue in the future, including more functionality to work
with datasets in more different formats, adding new SD algorithms, improving the performance of
existing ones, and also bringing all this functionality to the GUI, which will be extended with more
advanced tools for exploratory analysis.

Acknowledgments

This paper has been partially supported by the project TIN2015-68854-R (FEDER Founds) of the
Spanish Ministry of Economy and Competitiveness.

The code of this package, available at https://github.com/SIMIDAT/SDEFSR is MIT-licensed.

Bibliography

J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera. Keel data-
mining software tool: Data set repository, integration of algorithms and experimental analysis
framework. Journal of Multiple-Valued Logic and Soft Computing, 2-3(17):255–287, 2011. [p307, 313,
319]

M. Atzmueller. rsubgroup: Subgroup Discovery and Analytics, 2014. URL http://CRAN.R-project.org/
package=rsubgroup. R package version 0.6. [p307]

M. Atzmueller. Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 5(1):35–49, 2015. [p310]

M. Atzmueller and F. Lemmerich. Vikamine–open-source subgroup discovery, pattern mining, and
analytics. In Machine Learning and Knowledge Discovery in Databases, pages 842–845. Springer, 2012.
[p307]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://github.com/SIMIDAT/SDEFSR
http://CRAN.R-project.org/package=rsubgroup
http://CRAN.R-project.org/package=rsubgroup

CONTRIBUTED RESEARCH ARTICLES 321

M. Atzmueller and F. Puppe. Sd-map–a fast algorithm for exhaustive subgroup discovery. In European
Conference on Principles of Data Mining and Knowledge Discovery, pages 6–17. Springer, 2006. [p307,
312]

M. Atzmueller, F. Puppe, and H.-P. Buscher. Towards knowledge-intensive subgroup discovery. In
Proceedings of the Lernen - Wissensentdeckung - Adaptivit??t - Fachgruppe Maschinelles Lernen, pages
111–117, 2004. [p308]

M. Atzmueller, S. Doerfel, and F. Mitzlaff. Description-oriented community detection using exhaustive
subgroup discovery. Information Sciences, 329:965–984, 2016. [p307]

T. Back, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation. IOP Publishing Ltd.,
1997. [p311]

F. Berlanga, M. J. Del Jesus, P. González, F. Herrera, and M. Mesonero. Multiobjective evolutionary
induction of subgroup discovery fuzzy rules: a case study in marketing. Advances in Data Mining.
Applications in Medicine, Web Mining, Marketing, Image and Signal Mining, pages 337–349, 2006. [p307,
311]

C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. An analysis of evolutionary algorithms
with different types of fuzzy rules in subgroup discovery. In Fuzzy Systems, 2009. FUZZ-IEEE 2009.
IEEE International Conference on, pages 1706–1711. IEEE, 2009. [p311]

C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. Nmeef-sd: non-dominated multiobjective
evolutionary algorithm for extracting fuzzy rules in subgroup discovery. IEEE Transactions on Fuzzy
Systems, 18(5):958–970, 2010a. [p311]

C. J. Carmona, P. González, M. J. del Jesus, C. Romero, and S. Ventura. Evolutionary algorithms for
subgroup discovery applied to e-learning data. In Proceedings of Education Engineering Conference
(EDUCON), pages 983–990. IEEE, 2010b. [p307]

C. J. Carmona, P. González, M. Del Jesus, M. Navío-Acosta, and L. Jiménez-Trevino. Evolutionary
fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Computing,
15(12):2435–2448, 2011. [p307]

C. J. Carmona, S. Ramirez-Gallego, F. Torres, E. Bernal, M. J. del Jesus, and S. Garcia. Web usage mining
to improve the design of an e-commerce website: Orolivesur.com. Expert Systems with Applications,
pages 11243–11249, 2012. [p307]

C. J. Carmona, C. Chrysostomou, H. Seker, and M. J. del Jesus. Fuzzy rules for describing subgroups
from influenza a virus using a multi-objective evolutionary algorithm. Applied Soft Computing, 13(8):
3439–3448, 2013a. [p307]

C. J. Carmona, P. González, B. García-Domingo, M. Del Jesus, and J. Aguilera. Mefes: an evolutionary
proposal for the detection of exceptions in subgroup discovery. an application to concentrating
photovoltaic technology. Knowledge-Based Systems, 54:73–85, 2013b. [p307]

C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. Overview on evolutionary subgroup dis-
covery: analysis of the suitability and potential of the search performed by evolutionary algorithms.
WIREs Data Mining and Knowledge Discovery, 4(2):87–103, 2014. [p309, 310]

C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, and D. Elizondo.
A fuzzy genetic programming-based algorithm for subgroup discovery and the application to one
problem of pathogenesis of acute sore throat conditions in humans. Information Sciences, 298:180–197,
2015. [p307, 311]

F. Charte and D. Charte. Working with multilabel datasets in R: The mldr package. The R Journal, 7
(2):149–162, dec 2015. URL http://journal.r-project.org/archive/2015-2/charte-charte.pdf.
[p314]

K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons, 2001.
[p311]

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: Nsga-ii. Lecture notes in computer science, 1917:849–858, 2000. [p311]

M. J. del Jesus, P. González, F. Herrera, and M. Mesonero. Evolutionary fuzzy rule induction process
for subgroup discovery: a case study in marketing. IEEE Transactions on Fuzzy Systems, 15(4):578–592,
2007. [p307, 311]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://journal.r-project.org/archive/2015-2/charte-charte.pdf

CONTRIBUTED RESEARCH ARTICLES 322

J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak,
A. Starič, et al. Orange: data mining toolbox in python. The Journal of Machine Learning Research, 14
(1):2349–2353, 2013. [p307]

A. Eiben and J. Smith. Introduction to evolutionary algorithms, 2003. [p310]

D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence, volume 1. John
Wiley & Sons, 2006. [p307]

A. A. Freitas. A survey of evolutionary algorithms for data mining and knowledge discovery. In
Advances in evolutionary computing, pages 819–845. Springer, 2003. [p307]

D. Gamberger and N. Lavrac. Expert-guided subgroup discovery: Methodology and application.
Journal of Artificial Intelligence Research, pages 501–527, 2002. [p308]

D. Gamberger, N. Lavra??, and G. Krsta??i?? Active subgroup mining: A case study in coronary heart
disease risk group detection. Artificial Intelligence in Medicine, 28(1):27–57, 2003. [p307]

L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Computing
Surveys (CSUR), 38(3):9, 2006. [p309]

D. Goldberg. Genetic algorithm in search, optimization and machine learing. MA: Addison-Wesley
Longman Publishing Co., Inc, 1989. [p307]

F. Herrera. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evolutionary
Intelligence, 1(1):27–46, 2008. [p310]

F. Herrera, C. J. Carmona, P. González, and M. J. del Jesus. An overview on subgroup discovery:
foundations and applications. Knowledge and information systems, 29(3):495–525, 2011. [p310]

E. Hüllermeier. Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy sets
and Systems, 156(3):387–406, 2005. [p308]

E. Hüllermeier. Fuzzy sets in machine learning and data mining. Applied Soft Computing, 11(2):
1493–1505, 2011. [p307, 310]

N. Jin, P. Flach, T. Wilcox, R. Sellman, J. Thumim, and A. Knobbe. Subgroup discovery in smart
electricity meter data. IEEE Transactions on Industrial Informatics, 10(2):1327–1336, 2014. [p307]

H. John. Adaptation in natural and artificial systems, 1992. [p307]

B. Kavšek and N. Lavrač. Apriori-sd: Adapting association rule learning to subgroup discovery.
Applied Artificial Intelligence, 20(7):543–583, 2006. [p307]

J. R. Koza. Genetic programming: on the programming of computers by means of natural selection, volume 1.
MIT press, 1992. [p307]

P. Kralj, N. Lavrac, and B. Zupan. Subgroup visualization. In 8th International Multiconference Informa-
tion Society (IS-05), pages 228–231, 2005. [p316]

N. Lavrač, B. Cestnik, D. Gamberger, and P. Flach. Decision support through subgroup discovery:
three case studies and the lessons learned. Machine Learning, 57(1-2):115–143, 2004a. [p308]

N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with cn2-sd. The Journal of
Machine Learning Research, 5:153–188, 2004b. [p307]

F. Lemmerich, M. Ifland, and F. Puppe. Identifying and presenting influence factors on student
drop-outs by subgroup discovery. In LWA 2011 - Technical Report of the Symposium "Lernen, Wissen,
Adaptivitat - Learning, Knowledge, and Adaptivity 2011" of the GI Special Interest Groups KDML, IR and
WM, pages 129–132, 2011. [p307]

K. S. Leung, Y. Leung, L. So, and K. F. Yam. Rule learning in expert systems using genetic algorithm:
1, concepts. In Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks
(IIZUKA???92), volume 1, pages 201–204, 1992. [p311]

B. T. Lowerre. The Harpy speech recognition system. PhD thesis, Carnegie-Mellon Univ., Pittsburgh, PA.,
1976. [p312]

J. Luengo, A. Garc??a-Vico, M. D. P??rez-Godoy, and C. Carmona. The influence of noise on the
evolutionary fuzzy systems for subgroup discovery. Soft Computing, pages 1–25, (In Press). [p311]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 323

M. Meeng and A. Knobbe. Flexible enrichment with cortana–software demo. In Proceedings of BeneLearn,
pages 117–119, 2011. [p307]

E. Poitras, S. Lajoie, T. Doleck, and A. Jarrell. Subgroup discovery with user interaction data: An
empirically guided approach to improving intelligent tutoring systems. Educational Technology and
Society, 19(2):204–214, 2016. [p307]

D. Rodriguez, R. Ruiz, J. C. Riquelme, and R. Harrison. A study of subgroup discovery approaches for
defect prediction. Information and Software Technology, 55(10):1810 – 1822, 2013. [p307]

H.-P. Schwefel. Sixth-generation computer technology series, 1995. [p307]

G. Stiglic and P. Kokol. Discovering subgroups using descriptive models of adverse outcomes in
medical care. Methods of Information in Medicine, 51(4):348–352, 2012. [p307]

S. Ventura and J. M. Luna. Pattern mining with evolutionary algorithms, 2016. [p311]

H. Wickham and W. Chang. devtools: Tools to Make Developing R Packages Easier, 2015. URL http:
//CRAN.R-project.org/package=devtools. R package version 1.8.0. [p313]

S. Wrobel. Inductive logic programming for knowledge discovery in databases. In Relational data
mining, pages 74–101. Springer, 2001. [p308]

L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning???i.
Information sciences, 8(3):199–249, 1975. [p307, 308, 310]

E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength pareto evolutionary algo-
rithm for multiobjective optimization. In International Congress on Evolutionary Methods for Design
Optimization and Control with Applications to Industrial Problems, pages 95–100, 2002. [p311]

Ángel M. García
Department of Computer Science. University of Jaén
Jaén
Spain
agvico@ujaen.es

Francisco Charte
Department of Computer Science and Artificial Intelligence. University of Granada
Granada
Spain
fcharte@ugr.es

Pedro González
Department of Computer Science. University of Jaén
Jaén
Spain
pglez@ujaen.es

Cristóbal J. Carmona
Department of Civil Engineering, Languages and Systems Area, University of Burgos.
Burgos
Spain
cjcarmona@ubu.es

María J. del Jesus
Department of Computer Science. University of Jaén
Jaén
Spain
mjjesus@ujaen.es

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=devtools
mailto:agvico@ujaen.es
mailto:fcharte@ugr.es
mailto:pglez@ujaen.es
mailto:cjcarmona@ubu.es
mailto:mjjesus@ujaen.es

