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An Introduction to Principal Surrogate
Evaluation with the pseval Package
by Michael C. Sachs and Erin E. Gabriel

Abstract We describe a new package called pseval that implements the core methods for the evaluation
of principal surrogates in a single clinical trial. It provides a flexible interface for defining models for
the risk given treatment and the surrogate, the models for integration over the missing counterfactual
surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score
can be used for estimation, and the bootstrap for inference. A variety of post-estimation methods are
provided, including print, summary, plot, and testing. We summarize the main statistical methods
that are implemented in the package and illustrate its use from the perspective of a novice R user.

Introduction

A valid principal surrogate endpoint, also called a specific nonmechanistic correlate of protection
(Plotkin and Gilbert, 2012), can be used as a target for treatment improvement in early phase trials
and, in the specific setting of evaluation, for predicting individual treatment effects post-licensure. A
surrogate is considered to be valid if it provides reliable predictions of treatment effects on the clinical
endpoint of interest. Frangakis and Rubin (2002) introduced the concept of principal stratification
and the definition of a principal surrogate (PS). Informally, a post-treatment intermediate response
variable is a principal surrogate if causal effects of the treatment on the clinical outcome only exist
when causal effects of the treatment on the intermediate variable exist. The criteria for a PS have been
modified and extended in more recent works, with most current literature focusing on wide effect
modification as the primary criterion of interest.

The goal of PS evaluation is estimation and testing of how treatment efficacy on the clinical outcome
of interest varies over subgroups defined by possible treatment and surrogate combinations of interest;
this is an effect modification objective. The combinations of interest are called the principal strata
and they include a set of unobservable counterfactual responses: responses that would have occurred
under a set of conditions counter to the observed conditions. To finesse this problem of unobservable
responses, a variety of clever trial designs and estimation approaches have been proposed. Several of
these have been implemented in the pseval package (Sachs and Gabriel, 2016).

Methods

Notation

Let Zi be the treatment indicator for subject i, where 0 indicates the control or standard treatment,
and 1 indicates the experimental treatment. We currently only allow for two levels of treatment
and assume that the treatment assignments are randomized. Let Si be the observed value of the
intermediate response for subject i. Since Si can be affected by treatment, there are two naturally
occurring counterfactual values of Si: Si(1) under treatment, and Si(0) under control. Let sz be the
realization of the random variable S(z), for z ∈ {0, 1}. The outcome of interest is denoted Yi. We
consider the counterfactual values of Yi(0) and Yi(1). We allow for continous, binary, count, and
time-to-event outcomes, thus Yi may be a vector containing a time variable and an event/censoring
indicator, i.e. Yi = (Ti, ∆i) where ∆i = 1 if Ti is an event time, and ∆i = 0 if Ti is a censoring time.
In event driven settings, Si(z) is only defined if the event, Yi(z), does not occur before the potential
surrogate Si(z) is measured at a fixed time τ after entry into the study. The data analyses only include
participants who have not experienced the event outcome by time τ.

Estimands

Criteria for S to be a good surrogate are based on risk estimands that condition on the potential
intermediate responses. The risk is defined as a mapping g of the cumulative distribution function of
Y(z) conditional on the intermediate responses. The joint risk estimands conditions on the candidate
surrogate under both level of treatment, (S(1), S(0)).

risk1(s1, s0) = g {Fs1 [Y(1)|S(0) = s0, S(1) = s1]} ,

risk0(s1, s0) = g {Fs1 [Y(0)|S(0) = s0, S(1) = s1]} .
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For instance, for a binary outcome, the risk function may simply be the probability riskz(s1, s0) =
P(Y(z) = 1|S(0) = s0, S(1) = s1), or for a time-to-event outcome the risk function may be the
cumulative distribution function riskz(s1, s0) = P(Y(z) ≤ t|S(0) = s0, S(1) = s1).

Currently we focus only on marginal risk estimands which condition only on S(1), the intermediate
response or biomarker under active treatment:

risk1(s1) = g {Fs1 [Y(1)|S(1) = s1]} ,

risk0(s1) = g {Fs1 [Y(0)|S(1) = s1]} .

Neither of the joint risk estimands are indentifiable in a standard randomized trial, as either S(0)
or S(1) or both will be missing for each subject. In the special case where S(0) is constant, such as the
immune response to HIV antigens or Hep B in the placebo arm of a vaccine trial, the joint and marginal
risk estimands are equivalent. This special case is referred to as case constant biomarker (CB) in much
of the literature (Gilbert and Hudgens, 2008); i.e., Si(0) = c for subjects i. This may occur outside the
vaccine setting when one considers the AUC of a treament drug as a surrogate; those recieving placebo
will have no drug and therefore all placebo AUC will be 0 or undefined. Under assumptions given
below, and in the case CB setting, the marginal risk estimand is indentifiable in the treatment arm; it is
not indentifiable in the control arm without further assumptions or trial agumentation (Wolfson and
Gilbert, 2010).

There are specific trial augmentations that allow for the measurement or imputation of the missing
counterfactual Ss, in the control and treament arms. As well, Under one of these augmentations case
CB can sometimes be induced by considering a function of the a candidate surrogate for evaluation.
Greater detail on this point given below.

Specification of the distributions of Y(z)|S(1) determines the likelihood, we will denote this
as f (y|β, s1, z). If S(1) were fully observed, simple maximum likelihood estimation could be used.
The key challenge in estimating these risk estimands is solving the problem of conditioning on
counterfactual values that are not observable for at least a subset of subjects in a randomized trial. This
involves integrating out missing values based on some model, and under some set of assumptions
and/or trial augmentations.

Prinicipal surrogate criteria

Frangakis and Rubin (2002) gave a single criterion for a biomarker S to be a PS: causal effects of the
treatment on the clinical outcome only exist when causal effects of the treatment on the intermediate
variable exist. In general this can only be evaluated using the joint risk estimands, which consider
not only the counterfactual values of the biomarker under treatment, but also under control S(0).
However, in the special case where all S(0) values are constant, say at level C, such as an immune
response to HIV in a HIV negative population pre-vaccination this criteria, often referred to as average
causal necessity (ACN), can by written in terms of the marginal risk estimands as:

risk1(C) = risk0(C).

More recently, other works Gilbert and Hudgens (2008), Wolfson and Gilbert (2010), Huang and
Gilbert (2011), Huang et al. (2013), Gabriel and Gilbert (2014), and Gabriel and Follmann (2016) have
suggested that this criterion is both too restrictive and in some cases can be vacuously true. Instead
most current works suggest that the wide effect modification (WEM) criterion is of primary importance,
ACN being of secondary importance. WEM is given formally in terms of the risk estimands and a
known contrast function h satisfying h(x, y) = 0 if and only if x = y by:

|h(risk1(s1), risk0(s1))− h(risk1(s1
∗), risk0(s1

∗))| > δ,

for at least some s1 6= s∗1 and δ > 0, with the larger the δ the better the surrogate. Examples of contrast
functions are the treatment efficacy, h(x, y) = 1− x/y, and the risk difference h(x, y) = x − y. To
evaluate WEM and ACN we need to identify the risk estimands, which condition on data that is
missing for at least half of the subjects in a standard randomized trial.

Augmentation and assumptions

We first make three standard assumptions used in much of the literature for absorbing events outcomes:

• Stable Unit Treatment Value Assumption (SUTVA): Observations on the independent units in
the trial should be unaffected by the treatment assignment of other units.
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• Ignorable Treatment Assignment: The observed treatment assignment does not change the
counterfactual clinical outcome.

• Equal individual risk up to the time of candidate surrogate measurement τ.

In time-to-event settings one more assumption is needed:

• Non-informative censoring.

It should be noted that the equal individual risk assumption requires that time-to-event analysis start
at time τ, rather than at randomization.

Wolfson and Gilbert (2010) outlines how these assumptions are needed for identification of the
risk estimands. Now to deal with the missing S(1) values among those with Z = 0, we next focus
on three trial augmentations: Baseline immunogenicity predictor (BIP), closeout placebo vaccination
(CPV), a concept that was extend to the setting of general treatment trials under the name of closeout
control treatment (CCT) in Gabriel and Follmann (2016), and baseline surrogate measurement (BSM).
For further details on these augmentations, we refer you to Follmann (2006), Gilbert and Hudgens
(2008), Gabriel and Gilbert (2014), and for further augmenations not yet implemented to Gabriel and
Follmann (2016).

BIP

Briefly, a BIP W is any baseline measurement or set of measurements that is highly correlated with S.
It is particularly useful if W is unlikely to be associated with the clinical outcome after conditioning on
S, i.e. Y ⊥W|S(1); some of the methods leverage this assumption. The BIP W is used to integrate out
the missing S(1) among those with Z = 0 based on a model for S(1)|W that is estimated among those
with Z = 1. We describe how this model is used in the next section.

The assumptions needed for a BIP to be useful depend on the risk model used. If the BIP is
included in the risk model, only the assumption of no interaction with treatment and the candidate
surrogate are needed. However, if the BIP is not included in the risk model, the assumption that that
clinical outcome is independent of the BIP given the candidate surrogate is needed. Although not a
requirement for identification of the risk estimands, it has been found in most simulations studies that
a correlation between the BIP and S(1) of greater than 0.7 is needed for unbiased estimation in finite
samples.

CPV or CCT

Under a CPV or CCT augmented design, control recipients that do not have events, or all willing
control subjects for a non-event driven clinical outcome, are given the experimental treatment at
the end of the follow-up period. Then, their intermediate response is measured at some time after
that treatment. This measurement is then used as a direct imputation for the missing S(1). The
CPV augmentation was developed in the setting of vaccine trials, where the surrogate is an immune
response and the outcome is infection. One set of conservative assumptions to use CPV as a direct
imputation for S(1) in a vaccine trial are given in Wolfson and Gilbert (2010) are:

• Individual time constancy of the true intermediate response under active treatment, S(1) =
SCPV almost surely, for placebo recipients that are crossed over at the end of the trial, where
SCPV is the measurement of the candidate surrogate after crossover treatment of the placebo
subjects.

• No events (infections) during the close-out period.

In the general treatment trial setting, the CCT augmentation can be used under the same Individual
time constancy assumption, and the assumption that drop-out or unwillingness to receive close-out
treatment is completely at random.

BSM

Gabriel and Gilbert (2014) suggested the baseline augmentation BSM, which is a pre-treatment
measurement of the candidate PS, denoted SB. The BSM may be a good predictor of S(1) without
any further assumptions. It can be used in the same way as a BIP. Alternatively you can transform
S(1)− SB and use this as the candidate surrogate, further increasing the association with the BSM/BIP.
Under the BSM assumption outlined in Gabriel and Gilbert (2014);

• Time constancy of the true intermediate response under control,
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then S(0) = SBSM almost surely. You do not need this assumption to use a BSM, but if it holds then it
induces the CB case, thus the joint and marginal risk estimands are equivalent.

Risk estimation

Estimated maximum likelihood

Let f (y|β, s1, z) denote the density of Y|S(1), Z with parameters β. Further let Ri denote the indicator
for missingness in Si(1). We proceed to estimate β by maximizing

n

∏
i=1
{ f (Yi|β, Si(1), Zi)}R

i

{∫
f (Yi|β, s, Zi) dF̂S(1)|W(s|Wi)

}1−Ri

with respect to β.

This procedure is called estimated maximum likelihood (EML) and was developed in Pepe and
Fleming (1991). The key idea is that we are averaging the likelihood contributions for subjects missing
S(1) with respect to the estimated distribution of S(1)|W, denoted by F̂S(1)|W(s|Wi). The model for
this distribution is referred to as the integration model. Recall that a BIP W that is strongly associated
with S(1) is needed for adequate performance.

Closed-form inference is not available for EML estimates, thus we recommend use of the bootstrap
for estimation of standard errors. It was suggested as an approach to principal surrogate evaluation
by Gilbert and Hudgens (2008) and Huang and Gilbert (2011).

Pseudoscore

Huang et al. (2013) suggest a different estimation procedure that does have a closed form variance
estimator. Instead of numerically optimizing the estimated likelihood, the pseudoscore approach
iteratively finds the solution to weighted versions of the score equations. Pseudoscore estimates were
also suggested in Wolfson (2009) and implemented for several special cases in Huang et al. (2013).
We have implemented here only one of the special cases: categorical BIP and binary Y (S may be
continuous or categorical). In addition to having closed form variance estimators, it has been argued
that the pseudo-score estimators are more efficient than the EML estimators. The closed form variance
estimates are not yet implemented.

Package features

Typically, users would have to code up the likelihood, integration model, and perform the optimization
themselves. This is beyond the reach of many researchers who desire to use these methods. The goal
of pseval is to correctly implement these methods with a flexible and user-friendly interface, enabling
researchers to implement and interpret a wide variety of models.

The pseval package allows users to specify the type of augmented design that is used in their
study, specify the form of the risk model along with the distribution of Y|S(1), and specify different
integration models to estimate the distribution of S(1)|W. Then the likelihood can be maximized and
bootstraps run. Post-estimation summaries are available to display and analyze the treatment efficacy
as a function of S(1). All of this is implemented with a flexible and familiar interface.

Package information

Usage

Here we will walk through some basic analyses from the point of view of a new R user. Along the
way we will highlight the main features of pseval. We support binary, continuous, count, and time-to-
event outcomes, thus we will also need to load the survival package (Therneau, 2015; Therneau and
Grambsch, 2000).

Example dataset

First let’s create an example dataset. The pseval package provides the function generate_example_data
which takes a single argument: the sample size.
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set.seed(1492)
fakedata <- generate_example_data(n = 800)
head(fakedata)

## Z BIP CPV BSM S.obs time.obs
## 1 0 0.3353179 1.4851399 0.45961614 0.35268095 0.3301972
## 2 0 1.4536863 2.6379400 1.39591042 1.46688905 0.1195136
## 3 0 -0.7243934 NA -0.62723499 -0.73190763 0.2631222
## 4 0 -0.1183592 0.9421504 0.07738308 -0.01833409 0.1373458
## 5 0 -0.2352566 NA -0.14971448 -0.18470242 0.8543703
## 6 0 -0.7782851 0.1159434 -0.65721609 -0.66313714 0.2200481
## event.obs Y.obs S.obs.cat BIP.cat
## 1 0 0 (-0.198,0.503] (0.0574,0.766]
## 2 1 0 (1.36, Inf] (0.766, Inf]
## 3 1 1 (-Inf,-0.198] (-Inf,-0.678]
## 4 1 0 (-0.198,0.503] (-0.678,0.0574]
## 5 1 1 (-0.198,0.503] (-0.678,0.0574]
## 6 1 0 (-Inf,-0.198] (-Inf,-0.678]

The example data includes both a time-to-event outcome, a binary outcome, a surrogate, a BIP,
CPV, and BSM, and a categorical version of the surrogate. The true model for the time is exponential,
with parameters (intercept) = -1, S(1) = 0.0, Z = 0.0, S(1):Z = -0.75. The true model for binary is logistic,
with the same parameter values.

In the above table S.obs.cat and BIP.cat are formed as S.obs.cat <- factor(S.obs,levels=c(-Inf,
quantile(c(S.0, S.1), c(.25, .5, .75), na.rm = TRUE), Inf)) and similarly for BIP.cat. Alter-
natively a user could input arbitrary numeric values to represent different discrete subgroups (e.g., 0s
and 1s to denote 2 subgroups).

The "psdesign" object

We begin by creating a "psdesign" object with the synonymous function. This is the object that
combines the raw dataset with information about the study design and the structure of the data.
Subsequent analysis will operate on this psdesign object. It is designed to be analogous to the
svydesign function in the survey package (Lumley, 2014, 2004). The first argument is the data frame
where the data are stored. All subsequent arguments describe the mappings from the variable names
in the data frame to important variables in the PS analysis, using the same notation as above. Other
covariates or variables can be mapped to arbitrary variable names using the same syntax. An optional
weights argument describes the sampling weights, if present. Our first analysis will use the binary
version of the outcome, with continuous S.1 and the BIP labeled BIP. The object has a print method,
so we can inspect the result.

binary.ps <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## None present, see ?add_integration for information on integration models.
##
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## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

The printout displays a brief description of the data, including the empirical treatment efficacy
estimate, the variables used in the analysis and their corresponding variables in the original dataset.
Finally the printout invites the user to see the help page for add_integration, in order to add an
integration model to the psdesign object, the next step in the analysis.

Missing values in the S variable are allowed. Note that any cases where S(1) is missing will be
integrated over in the likelihood or score equations. Thus any cases that experienced an event prior
to the time τ when the surrogate was measured should be excluded from the dataset. The equal
individual risk assumption allows us to make causal inferences even after excluding such cases.

psdesign easily accommodates case-control or case-cohort sampling. In this case, the surrogate
S is only measured on a subset of the data, inducing missingness in S by design. Let’s modify the
fake dataset to see how it works. We’re going to sample all of the cases, and 20% of the controls for
measurement of S.

fakedata.cc <- fakedata
missdex <- sample((1:nrow(fakedata.cc))[fakedata.cc$Y.obs == 0],

size = floor(sum(fakedata.cc$Y.obs == 0) * .8))
fakedata.cc[missdex, ]$S.obs <- NA
fakedata.cc$weights <- ifelse(fakedata.cc$Y.obs == 1, 1, .2)

Now we can create the "psdesign" object, using the entire dataset (including those missing S.obs)
and passing the weights to the weights field.

binary.cc <- psdesign(data = fakedata.cc, Z = Z, Y = Y.obs, S = S.obs,
BIP = BIP, weights = weights)

The other augmentation types can be defined by mapping variables to the names BIP, CPV, and/or
BSM. The augmentations are handled as described in the previous section: CPV is used as a direct
imputation for S(1), and BSM is used as a direct imputation for S(0). BIPs and BSMs are made
available in the augmented dataset for use in the integration models which we describe in the next
subsection.

For survival outcomes, a key assumption is that the potential surrogate is measured at a fixed time
τ after entry into the study. Any subjects who have a clinical outcome prior to τ will be removed from
the analysis, with a warning. If tau is not specified in the psdesign object, then it is assumed to be 0.
Survival outcomes are specified by mapping Y to a Surv object, which requires the survival package:

surv.ps <- psdesign(data = fakedata, Z = Z, Y = Surv(time.obs, event.obs), S = S.obs,
BIP = BIP, CPV = CPV, BSM = BSM)

## Warning in psdesign(data = fakedata, Z = Z, Y = Surv(time.obs,
## event.obs), : tau missing in psdesign: assuming that the
## surrogate S was measured at time 0.

Integration models

The EML procedure requires an estimate of FS(1)|W , and we refer to this as the integration model.
Details are available in the help page for add_integration. Several integration models are imple-
mented, including a parametric model that uses a formula interface to define a regression model, a
semiparametric model that specifies a location and a scale model is robust to the specification of the
distribution, and a non-parametric model that uses empirical conditional probability estimates for
discrete W and S(1).

For this first example, let’s use the parametric integration model. We specify the mean model for
S(1)|W as a formula. The predictor is generally a function of the BIP and the BSM, if available. We
can add the integration model directly to the psdesign object and inspect the results. Note that in the
formula, we refer to the variable names in the augmented dataset.

binary.ps <- binary.ps + integrate_parametric(S.1 ~ BIP)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
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## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

We can add multiple integration models to a psdesign object, say we want a model for S(0)|W:

binary.ps + integrate_parametric(S.0 ~ BIP)

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
## integration model for S.0 :
## integrate_parametric(formula = S.0 ~ BIP )
##
## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

In a future version of the package, we will allow for estimation of the joint risk estimands that
depend on both S(0) and S(1). We can also use splines, other transformations, and other variables in
the formula:

library(splines)
binary.ps + integrate_parametric(S.1 ~ BIP^2)
binary.ps + integrate_parametric(S.1 ~ bs(BIP, df = 3))
binary.ps + integrate_parametric(S.1 ~ BIP + BSM + BSM^2)
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To include additional baseline covariates in the model for S(1), such as age or gender, these
variables that are present in the data frame must be mapped in the psdesign function call so that they
are visible in the subsequent functions:

binary.ps <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP,
BSM = BSM, age = age)

binary.ps + integrate_parametric(S.1 ~ BIP + age)

These are shown as examples, we will proceed with the simple linear model for integration. The
other integration models are called integrate_bivnorm, integrate_nonparametric, and
integrate_semiparametric. See their help files for details on the models and their specification.

The next step is to define the risk model.

Risk models and likelihoods

The risk model is the specification of the distribution for the outcome Y given S(1) and Z. We
accommodate a variety of flexible specifications for this model, for continous, binary, time-to-event,
and count outcomes. We have implemented exponential and weibull survival models, and a flexible
specification for binary models, allowing for standard or custom link functions. See the help file for
add_riskmodel for more details.

Let’s add a simple binary risk model using the logit link. The argument D specifies the number of
samples to use for the simulated annealing, also known as empirical integration, in the EML procedure.
In general, D should be set to something reasonably large, like 2 or 3 times the sample size.

binary.ps <- binary.ps + risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

Estimation and bootstrap

We estimate the parameters and bootstrap using the same type of syntax. We can add a "ps_estimate"
object, which takes optional arguments start for starting values, and other arguments that are passed
to the optim function in base R. The method argument determines the optimization method, we have
found that “BFGS” works well in these types of problems and it is the default. Use "pseudo-score" as
the method argument for pseudo-score estimation for binary risk models with categorical BIPs.

The ps_bootstrap function takes the additional arguments n.boots for the number of bootstrap
replicates, and progress.bar which is a logical that displays a progress bar in the R console if true.
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It is helpful to pass the estimates as starting values in the bootstrap resampling. With estimates and
bootstrap replicates present, printing the psdesign object displays additional information.

binary.est <- binary.ps + ps_estimate(method = "BFGS")
binary.boot <- binary.est + ps_bootstrap(n.boots = 500, progress.bar = FALSE,

start = binary.est$estimates$par, method = "BFGS")
binary.boot

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## Estimated parameters:
## (Intercept) S.1 Z S.1:Z
## -0.920 -0.028 -0.220 -1.133
## Convergence: TRUE
##
## Bootstrap replicates:
## Estimate boot.se lower.CL.2.5. upper.CL.97.5.
## (Intercept) -0.920 0.182 -1.286 -0.580
## S.1 -0.028 0.128 -0.276 0.220
## Z -0.220 0.250 -0.697 0.277
## S.1:Z -1.133 0.214 -1.581 -0.780
## p.value
## (Intercept) 4.02e-07
## S.1 8.27e-01
## Z 3.80e-01
## S.1:Z 1.29e-07
##
## Out of 500 bootstraps, 500 converged ( 100 %)
##
## Test for wide effect modification on 1 degree of freedom. 2-sided p value < .0001

Do it all at once

The next code chunk shows how the model can be defined and estimated all at once.

binary.est <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP) +
integrate_parametric(S.1 ~ BIP) +
risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit) +
ps_estimate(method = "BFGS")
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Plots and summaries

We provide summary and plotting methods for the psdesign object. If bootstrap replicates are present,
the summary method does a test for wide effect modification. Under the parametric risk models
implemented in this package, the test for wide effect modification is equivalent to a test of the null
hypothesis that the S(1) : Z coefficient is equal to 0. This is implemented using a Wald test using the
bootstrap estimate of the variance.

Another way to assess wide effect modification is to compute the standardized total gain (STG)
(Huang and Gilbert, 2011) and (Gabriel et al., 2015). This is implemented in the calc_STG function.
The standardized total gain can be interpreted as the area sandwiched between the risk difference
curve and the horizontal line at the marginal risk difference. It is a measure of the spread of the
distribution of the risk difference, and is a less parametric way to test for wide effect modification.
The calc_STG function computes the STG at the estimated parameters and at the bootstrap samples, if
present. The function prints the results and invisibly returns a list containing the observed STG, and
the bootstrapped STGS.

calc_STG(binary.boot, progress.bar = FALSE)

## $obsSTG
## [1] 0.3397774
##
## $bootstraps
## STG.boot.se STG.lower.CL.2.5 STG.upper.CL.97.5
## V1 0.1243311 0.1573031 0.6382418

The summary method also computes the marginal treatment efficacy marginalized over S(1) and
compares it to the average treatment efficacy conditional on S(1). This is an assessment of model fit. A
warning will be given if the two estimates are dramatically different. These estimates are presented in
the summary along with the empirical TE and the model-based marginal treatment efficacy that does
not condition on S(1).

smary <- summary(binary.boot)

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## Estimated parameters:
## (Intercept) S.1 Z S.1:Z
## -0.920 -0.028 -0.220 -1.133
## Convergence: TRUE
##
## Bootstrap replicates:
## Estimate boot.se lower.CL.2.5. upper.CL.97.5.
## (Intercept) -0.920 0.182 -1.286 -0.580

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 287

## S.1 -0.028 0.128 -0.276 0.220
## Z -0.220 0.250 -0.697 0.277
## S.1:Z -1.133 0.214 -1.581 -0.780
## p.value
## (Intercept) 4.02e-07
## S.1 8.27e-01
## Z 3.80e-01
## S.1:Z 1.29e-07
##
## Out of 500 bootstraps, 500 converged ( 100 %)
##
## Test for wide effect modification on 1 degree of freedom. 2-sided p value < .0001
##
## Treatment Efficacy:
## empirical marginal model
## 0.526 0.526 0.539
## Model-based average TE is 2.3 % different from the empirical and 2.3 % different
## from the marginal.

The calc_risk function computes the risk in each treatment arm, and contrasts of the risks. By
default it computes the treatment efficacy, but there are other contrast functions available. The contrast
function is a function that takes 2 inputs, the risk0 and risk1, and returns some one dimensional
function of those two inputs. It must be vectorized. Some built-in functions are “TE” for treatment
efficacy = 1− risk1(s)/risk0(s), “RR” for relative risk = risk1(s)/risk0(s), “logRR” for log of the
relative risk, and “RD” for the risk difference = risk1(s)− risk0(s). You can pass the name of the
function, or the function itself to calc_risk. See ?calc_risk for more information about contrast
functions.

Other arguments of the calc_risk function include t, the time at which to calculate the risk for
time-to-event outcomes, n.samps which is the number of samples over the range of S.1 at which
the risk will be calculated, and CI.type, which can be set to "pointwise" for pointwise confidence
intervals or "band" for a simultaneous confidence band. sig.level is the significance level for the
bootstrap confidence intervals. If the outcome is time-to-event and t is not present, then it will use the
restricted mean survival time.

head(calc_risk(binary.boot, contrast = "TE", n.samps = 20), 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -2.2756987 -1.7437221 0.2980453 0.8177536 1.1622104
## V2 -1.4262708 -1.1360482 0.2930970 0.6260692 0.6957994
## V3 -0.5973759 -0.3532827 0.2883149 0.3901715 0.3328793
## Y.upper.CL.0.95 Y.lower.CL.0.95 R0.boot.se R0.upper.CL.0.95
## V1 -0.30455106 -3.780389 0.08994238 0.4766278
## V2 -0.05541741 -2.556452 0.06901664 0.4331237
## V3 0.29675970 -1.275280 0.04941685 0.4007098
## R0.lower.CL.0.95 R1.boot.se R1.upper.CL.0.95 R1.lower.CL.0.95
## V1 0.1188411 0.06911306 0.9368827 0.6720409
## V2 0.1468385 0.07592515 0.7762517 0.4768403
## V3 0.1734875 0.05079824 0.5248493 0.2834909

head(calc_risk(binary.boot, contrast = function(R0, R1) 1 - R1/R0, n.samps = 20), 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -0.97417991 -0.71327775 0.2904830 0.4976780 0.4840781
## V2 -0.11875337 0.05966359 0.2855748 0.2685364 0.1882398
## V3 -0.09236484 0.08009338 0.2854242 0.2625636 0.1820450
## Y.upper.CL.0.95 Y.lower.CL.0.95 R0.boot.se R0.upper.CL.0.95
## V1 0.1395560 -1.6775172 0.05815888 0.4084405
## V2 0.4746753 -0.4357974 0.03903555 0.3909614
## V3 0.4835707 -0.4036444 0.03849822 0.3904263
## R0.lower.CL.0.95 R1.boot.se R1.upper.CL.0.95 R1.lower.CL.0.95
## V1 0.1763127 0.06531273 0.6258814 0.3695242
## V2 0.2043944 0.03260224 0.3454742 0.1923057
## V3 0.2053113 0.03176977 0.3379838 0.1879937

It is easy to plot the risk estimates. By default, the plot method displays the TE contrast, but this
can be changed using the same syntax as in calc_risk.
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plot(binary.boot, contrast = "TE", lwd = 2)
abline(h = smary$TE.estimates[2], lty = 3)

expit <- function(x) exp(x)/(1 + exp(x))
trueTE <- function(s){

r0 <- expit(-1 - 0 * s)
r1 <- expit(-1 - 1.25 * s)
1 - r1/r0

}

rug(binary.boot$augdata$S.1)
curve(trueTE(x), add = TRUE, col = "red")
legend("bottomright", legend = c("estimated TE", "95\\% CB",

"marginal TE", "true TE"),
col = c("black", "black", "black", "red"),
lty = c(1, 2, 3, 1), lwd = c(2, 2, 1, 1))
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Figure 1: Plot showing the estimates using the example data, along with confidence bands (CB), and
the true treatment efficacy (TE) curve.

By default, plots of psdesign objects with bootstrap samples will display simultaneous confidence
bands for the curve. These bands Lα satisfy

P

{
sup
s∈B
|T̂E(s)− TE(s)| ≤ Lα

}
≤ 1− α,

for confidence level α. The alternative is to use pointwise confidence intervals, with the option
CI.type = "pointwise". These intervals satisfy

P
{

L̂α ≤ TE(s) ≤ Ûα
}
≤ 1− α, for all s.
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Different summary measures are available for plotting. The options are “TE” for treatment efficacy
= 1− risk1(s)/risk0(s), “RR” for relative risk = risk1(s)/risk0(s), “logRR” for log of the relative risk,
“risk” for the risk in each treatment arm, and “RD” for the risk difference = risk1(s)− risk0(s). We can
also transform using the log option of plot.

plot(binary.boot, contrast = "logRR", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "RR", log = "y", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "RD", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "risk", lwd = 2, lty = c(1, 0, 0, 2, 0, 0))
legend("topright", legend = c("R0", "R1"), lty = c(1, 2), lwd = 2)
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Figure 2: Plot illustrating ways that different risk contrast functions can be plotted.

The calc_risk function is the workhorse that creates the plots. You can call this function directly
to obtain estimates, standard errors, and confidence intervals for the estimated risk in each treatment
arm and transformations of the risk like TE. The parameter n.samps determines the number of points
at which to calculate the risk. The points are evenly spaced over the range of S.1. Use this function to
compute other summaries, make plots using ggplot2 (Wickham, 2009) or lattice (Sarkar, 2008) and
more.

te.est <- calc_risk(binary.boot, CI.type = "pointwise", n.samps = 200)
head(te.est, 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -2.328509 -1.770899 0.2983546 0.8267105 1.1943792
## V2 -2.275699 -1.743722 0.2980453 0.8177536 1.1622104
## V3 -1.694556 -1.360959 0.2946547 0.6956675 0.8334835
## Y.lower.CL.2.5 Y.upper.CL.97.5 R0.boot.se R0.lower.CL.2.5
## V1 -4.768551 -0.6276106 0.09125321 0.1460172
## V2 -4.671015 -0.6184582 0.08994238 0.1475266
## V3 -3.456249 -0.4524787 0.07557692 0.1648504
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## R0.upper.CL.97.5 R1.boot.se R1.lower.CL.2.5 R1.upper.CL.97.5
## V1 0.4890998 0.06786962 0.6663453 0.9237321
## V2 0.4856823 0.06911306 0.6556765 0.9183559
## V3 0.4513863 0.07721039 0.5287710 0.8307616

Summary and conclusion

We have implemented the core methods for principal surrogate evaluation in our pseval package. Our
aim was to create a flexible and consistent user interface that allows for the estimation of a wide variety
of statistical models in this framework. There has been some other work in this area. The Surrogate
package implements the core methods for the evaluation of trial-level surrogates using a meta-analytic
framework. It also has a wide variety of models, each implemented in a different function each with a
long list of parameters (der Elst et al., 2016).

Our package uses the + sign to combine function calls into a single object. This is called “over-
loading the + operator” and is most famously known from the ggplot2 package. Conceptually, this
was appealing to us because it allows users to build up analysis objects starting from the design, and
ending with the estimation. The distinct analysis concepts of the design, risk model specification,
integration model, and estimation/bootstrap approaches are separated into distinct function calls,
each with a limited number of parameters. This makes it easier for users to keep track of their models,
makes it easier to understand the methods involved, and allows for the specification of a wide variety
of models by mixing and matching the function calls. This framework will also make it easier to
maintain the codebase, and to extend it in the future as the methods evolve. Our package is useful for
novice and expert R users alike, and implements an important set of statistical methods for the first
time.

Appendix

Additional examples

Plot both types of CI

plot(binary.boot, contrast = "TE", lwd = 2, CI.type = "band")
sbs <- calc_risk(binary.boot, CI.type = "pointwise", n.samps = 200)
lines(Y.lower.CL.2.5 ~ S.1, data = sbs, lty = 3, lwd = 2)
lines(Y.upper.CL.97.5 ~ S.1, data = sbs, lty = 3, lwd = 2)
legend("bottomright", lwd = 2, lty = 1:3,

legend = c("estimate", "simultaneous CI", "pointwise CI"))

Plot with ggplot2

library(ggplot2)
TE.est <- calc_risk(binary.boot, n.samps = 200)
ggplot(TE.est,

aes(x = S.1, y = Y, ymin = Y.lower.CL.0.95, ymax = Y.upper.CL.0.95)) +
geom_line() + geom_ribbon(alpha = .2) + ylab(attr(TE.est, "Y.function"))

Case-control design

cc.fit <- binary.cc + integrate_parametric(S.1 ~ BIP) +
risk_binary(D = 10) + ps_estimate()

cc.fit

Survival outcome

surv.fit <- psdesign(fakedata, Z = Z, Y = Surv(time.obs, event.obs),
S = S.obs, BIP = BIP, CPV = CPV) +

integrate_semiparametric(formula.location = S.1 ~ BIP, formula.scale = S.1 ~ 1) +
risk_exponential(D = 10) + ps_estimate(method = "BFGS") + ps_bootstrap(n.boots = 20)

surv.fit
plot(surv.fit)
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Continuous outcome

fakedata$Y.cont <- log(fakedata$time.obs + 0.01)
cont.fit <- psdesign(fakedata, Z = Z, Y = Y.cont,

S = S.obs, BIP = BIP, CPV = CPV) +
integrate_semiparametric(formula.location = S.1 ~ BIP, formula.scale = S.1 ~ 1) +
risk_continuous(D = 10) + ps_estimate(method = "BFGS") + ps_bootstrap(n.boots = 20)

cont.fit
plot(cont.fit, contrast = "risk")

Categorical S

S.obs.cat and BIP.cat are factors:

with(fakedata, table(S.obs.cat, BIP.cat))

cat.fit <- psdesign(fakedata, Z = Z, Y = Y.obs,
S = S.obs.cat, BIP = BIP.cat) +

integrate_nonparametric(formula = S.1 ~ BIP) +
risk_binary(Y ~ S.1 * Z, D = 10, risk = risk.probit) + ps_estimate(method = "BFGS")

cat.fit
plot(cat.fit)

Pseudo-score

Categorical W allows for estimation of the model using the pseudo-score method for binary outcomes.
S may be continuous or categorical:

cat.fit.ps <- psdesign(fakedata, Z = Z, Y = Y.obs,
S = S.obs, BIP = BIP.cat) +

integrate_nonparametric(formula = S.1 ~ BIP) +
risk_binary(Y ~ S.1 * Z, D = 10, risk = risk.logit) +
ps_estimate(method = "pseudo-score") +
ps_bootstrap(n.boots = 20, method = "pseudo-score")

summary(cat.fit.ps)
plot(cat.fit.ps)

Bug reports

• Please file bugs and suggestions here as a github issue: https://github.com/sachsmc/pseval/
issues.
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