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Ake: An R Package for Discrete and
Continuous Associated Kernel
Estimations
by Wanbitching E. Wansouwé, Sobom M. Somé and Célestin C. Kokonendji

Abstract Kernel estimation is an important technique in exploratory data analysis. Its utility relies
on its ease of interpretation, especially based on graphical means. The Ake package is introduced
for univariate density or probability mass function estimation and also for continuous and discrete
regression functions using associated kernel estimators. These associated kernels have been proposed
due to their specific features of variables of interest. The package focuses on associated kernel methods
appropriate for continuous (bounded, positive) or discrete (count, categorical) data often found in
applied settings. Furthermore, optimal bandwidths are selected by cross-validation for any associated
kernel and by Bayesian methods for the binomial kernel. Other Bayesian methods for selecting
bandwidths with other associated kernels will complete this package in its future versions; particularly,
a Bayesian adaptive method for gamma kernel estimation of density functions is developed. Some
practical and theoretical aspects of the normalizing constant in both density and probability mass
functions estimations are given.

Introduction

Kernel smoothing methods are popular tools for revealing the structure of data that could be missed
by parametric methods. For real datasets, we often encounter continuous (bounded, positive) or
discrete (count, categorical) data types. The classical kernels methods assume that the underlying
distribution is unbounded continuous, which is frequently not the case; see, for example, Duong
(2007) for multivariate kernel density estimation and discriminant analysis. A solution is provided
for categorical data sets by Hayfield and Racine (2008). In fact, they used kernels well adapted for
these categorical sets (Aitchison and Aitken, 1976). Throughout the present paper, the unidimensional
support T of the variable of interest can be {0, 1, . . . , N}, [a, b] or [0, ∞) for a given integer N and reals
a < b.

The recently developed Ake package, implements associated kernels that seamlessly deal with
continuous (bounded, positive) and discrete (categorical, count) data types often found in applied
settings; see, for example, Libengué (2013) and Kokonendji and Senga Kiessé (2011). These associated
kernels are used to smooth probability density functions (p.d.f.), probability mass functions (p.m.f.) or
regression functions. The coming versions of this package will contain, among others, p.d.f. estimation
of heavy tailed data (e.g., Ziane et al., 2015) and the estimation of other functionals. The bandwidth
selection remains crucial in associated kernel estimations of p.d.f., p.m.f. or regression functions. Some
methods have been investigated for selecting bandwidth parameters but the commonly used is the
least squared cross-validation. A Bayesian approach has been also recently introduced by Zougab et al.
(2012) in the case of a binomial kernel. This method can be extended to various associated kernels with
other functionals. Despite the great number of packages implemented for nonparametric estimation in
continuous cases with unbounded kernels, to the best of our knowledge, the R packages to estimate
p.m.f. with categorical or count variables, p.d.f. with bounded or positive datasets, and regression
functions have been far less investigated.

The rest of the paper is organized as follows. In Section Non-classical associated kernels, we briefly
describe the definition of associated kernels and then illustrate examples in both continuous and
discrete cases which are discussed. Then, the associated kernel estimator for p.d.f. or p.m.f. is presented
and illustrated with some R codes in Section Density or probability mass function estimations. In
particular, three bandwidth selection methods are available: cross-validation for any (continuous
or discrete) associated kernel, the Bayesian local method for the binomial kernel and also a new
theoretical Bayesian adaptive method for the gamma kernel. Also, some practical and theoretical
aspects of the normalizing constant in both p.d.f. and p.m.f. estimations are given. Section Bandwidth
selection for kernel regression involving associated kernels investigates the case of regression functions
with two bandwidth selection techniques: cross-validation and also the Bayesian global method for
the binomial kernel. Section Summary and final remarks concludes.
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Non-classical associated kernels

Recall that the support T of the p.m.f., p.d.f. or regression function, to be estimated, is any set
{0, 1, . . . , N}, [a, b] or [0, ∞) for a given integer N and reals a < b. The associated kernel in both
continuous and discrete cases is defined as follows.

Definition 34.2.1. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let T (⊆ R) be the support of the
p.m.f., p.d.f. or regression function, to be estimated, x ∈ T a target and h a bandwidth. A parametrized
p.m.f. (respectively p.d.f.) Kx,h(·) of support Sx,h (⊆ R) is called “associated kernel” if the following conditions
are satisfied:

x ∈ Sx,h, (1)

E
(
Zx,h

)
= x + a(x, h), (2)

V
(
Zx,h

)
= b(x, h), (3)

where Zx,h denotes the random variable with p.m.f. (respectively p.d.f.) Kx,h and both a(x, h) and b(x, h) tend
to 0 as h goes to 0.

Remark 34.2.2. This definition has the following interesting interpretations:

(i) The function Kx,h(·) is not necessary symmetric and is intrinsically linked to x and h.

(ii) The support Sx,h is not necessary symmetric around x; it can depend or not on x and h.

(iii) The condition (1) can be viewed as ∪x∈TSx,h ⊇ T and it implies that the associated kernel takes into
account the support T of the density f , to be estimated.

(iv) If ∪x∈TSx,h does not contain T then this is the well-known problem of boundary bias.

(v) Both conditions (2) and (3) indicate that the associated kernel is more and more concentrated around x as
h goes to 0. This highlights the peculiarity of the associated kernel which can change its shape according
to the target position.

In order to construct an associated kernel Kx,h(·) from a parametric (discrete or continuous)
probability distribution Kθ , θ ∈ Θ ⊂ Rd on the support Sθ such that Sθ ∩T 6= ∅, we need to establish
a correspondence between (x, h) ∈ T× (0, ∞) and θ ∈ Θ; see Kokonendji and Senga Kiessé (2011).
In what follows, we will call K ≡ Kθ the type of kernel to make a difference from the classical notion
of a continuous symmetric (e.g., Gaussian) kernel. In this context, the choice of the associated kernel
becomes important as well as that of the bandwidth. Moreover, we distinguish the associated kernels
said sometimes of “second order” of those said of “first order” which verify the two first conditions (1)
and (2). The rest of this section is devoted to discuss examples of associated kernels in both discrete
and continuous cases.

Discrete associated kernels

Among the discrete associated kernels found in literature, we here use the best in sense of Defini-
tion 34.2.1. Negative binomial and Poisson kernels are respectively overdispersed (i.e., V(Zx,h) >
E(Zx,h)) and equisdispersed (i.e., V(Zx,h) = E(Zx,h)) and thus are not recommended; see Koko-
nendji and Senga Kiessé (2011) for further details. The first associated kernel listed below, namely the
binomial kernel, is the best of the first order or standard kernels which satisfies

lim
h→0

V(Zx,h) ∈ V(0), (4)

where V(0) is a neighborhood of 0 which does not depend on x. The two other discrete associated
kernels satisfy all conditions of Definition 34.2.1.

• The binomial (bino) kernel is defined on the support Sx = {0, 1, . . . , x + 1} with x ∈ T := N =
{0, 1, . . .} and then h ∈ (0, 1]:

Bx,h(u) =
(x + 1)!

u!(x + 1− u)!

(
x + h
x + 1

)u ( 1− h
x + 1

)x+1−u
1Sx (u),

where 1A denotes the indicator function of any given event A. Note that Bx,h is the p.m.f. of the
binomial distribution B(x + 1; (x + h)/(x + 1)) with its number of trials x + 1 and its success
probability in each trial (x + h)/(x + 1). It is appropriate for count data with small or moderate
sample sizes and, also, it satisfies (4) rather than (3); see Kokonendji and Senga Kiessé (2011)
and also Zougab et al. (2012) for a bandwidth selection by Bayesian method.
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• The following class of symmetric discrete triangular kernels has been proposed in Kokonendji
et al. (2007). The support T of the p.m.f. f to be estimated, can be unbounded (e.g., N, Z) or
finite (e.g., {0, 1, . . . , N}). Then, suppose that h is a given bandwidth parameter and a is an
arbitrary and fixed integer. For fixed arm a ∈N, the discrete triangular (DTra) kernel is defined
on Sx,a = {x, x± 1, . . . , x± a} with x ∈ T = N:

DTx,h;a(u) =
(a + 1)h − |u− x|h

P(a, h)
1Sx,a (u),

where P(a, h) = (2a + 1)(a + 1)− 2 ∑a
k=0 kh is the normalizing constant. It is symmetric around

the target x, satisfying Definition 34.2.1 and suitable for count variables; see Kokonendji and
Zocchi (2010) for an asymmetric version. Note that h→ 0 gives the Dirac kernel.

• A discrete kernel estimator for categorical data has been introduced in Aitchison and Aitken
(1976). Its asymmetric discrete associated kernel version that we here label DiracDU (DirDU) as
“Dirac Discrete Uniform” has been deduced in Kokonendji and Senga Kiessé (2011) as follows.
For fixed c ∈ {2, 3, . . .} the number of categories, we define Sc = {0, 1, . . . , c− 1} and

DUx,h;c(u) = (1− h)1{x}(u) +
h

c− 1
1Sc\{x}(u),

where h ∈ (0, 1] and x ∈ T = Sc. In addition, the target x can be considered as the reference
point of f to be estimated; and, the smoothing parameter h is such that 1− h is the success
probability of the reference point. This DiracDU kernel is symmetric around the target, satisfying
Definition 34.2.1 and appropriated for categorical set T. See, e.g., Racine and Li (2004) for some
uses. Note that h = 0 provides the Dirac kernel.

Continuous associated kernels

One can find several continuous associated kernels in literature among the Birnbaum-Saunders of
Jin and Kawczak (2003). Here, we present seven associated kernels well adapted for the estimations
of density or regression functions on any compact or nonnegative support of datasets. All these
associated kernels satisfy Definition 34.2.1.

• The extended beta (BE) kernel is defined on Sx,h,a,b = [a, b] = T with a < b < ∞, x ∈ T and
h > 0 such that

BEx,h,a,b(u) =
(u− a)(x−a)/{(b−a)h}(b− u)(b−x)/{(b−a)h}

(b− a)1+h−1 B (1 + (x− a)/(b− a)h, 1 + (b− x)/(b− a)h)
1Sx,h,a,b (u),

where B(r, s) =
∫ 1

0 tr−1(1− t)s−1dt is the usual beta function with r > 0, s > 0; see Libengué
(2013). For a = 0 and b = 1, it corresponds to the beta kernel (Chen, 1999) which is the p.d.f. of
the beta distribution with shape parameters 1 + x/h and (1− x)/h. The extended beta kernel is
appropriate for any compact support of observations.

• The gamma (GA) kernel is given on Sx,h = [0, ∞) = T with x ∈ T and h > 0:

GAx,h(u) =
ux/h

Γ (1 + x/h) h1+x/h exp
(
−u

h

)
1[0,∞)(u),

where Γ(v) =
∫ ∞

0 sv−1 exp(−s)ds is the classical gamma function with v > 0; see Chen (2000). It
is the p.d.f. of the gamma distribution GA(1 + x/h, h) with scale parameter 1 + x/h and shape
parameter h. It is suitable for the non-negative real set T = [0, ∞).

• The lognormal (LN) kernel is defined on Sx,h = [0, ∞) = T with x ∈ T and h > 0 such that

LNx,h(u) =
1

uh
√

2π
exp

{
−1

2

(
1
h

log(
u
x
)− h

)2
}
1Sx,h (u);

see Libengué (2013) and also Igarashi and Kakizawa (2015). It is the p.d.f. of the classical
lognormal distribution with mean log(x) + h2 and standard deviation h.

• The reciprocal inverse Gaussian (RIG) kernel is given on Sx,h = (0, ∞) = T with x ∈ T and
h > 0:

RIGx,h(u) =
1√

2πhu
exp

{
− (x2 + xh)1/2

2h

(
u

(x2 + xh)1/2 − 2 +
(x2 + xh)1/2

u

)}
1Sx,h (u);
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(a) (b)

Figure 1: Shapes of univariate (discrete and continuous) associated kernels: (a) DiracDU, discrete
triangular a = 3 and binomial with same target x = 3 and bandwidth h = 0.13; (b) lognormal, inverse
Gaussian, gamma, reciprocal inverse Gaussian, inverse gamma and Gaussian with same target x = 1.3
and h = 0.2.

see Scaillet (2004), Libengué (2013) and also Igarashi and Kakizawa (2015). It is the p.d.f. of
the classical reciprocal inverse Gaussian distribution with mean 1/

√
x2 + xh and standard

deviation 1/h.

Remark 34.2.3. The three continuous associated kernels inverse gamma, inverse Gaussian and Gaussian are
not adapted for density estimation on supports [0, ∞) and thus are not included in the Ake package; see Part (b)
of Figure 1.

Indeed:

• The inverse gamma (IGA) kernel, defined on Sx,h = (0, ∞) = T with x ∈ (0, 1/h) and h > 0
such that

IGAx,h(u) =
h1−1/(xh)

Γ (−1 + 1/(xh))
u−1/(xh) exp

(
− 1

hu

)
1(0,∞)(u)

(Libengué, 2013), is graphically the worst since it does not well concentrate on the target x. Note
that it is the p.d.f. of the inverse gamma distribution with scale parameter −1 + 1/(xh) and
scale parameter 1/h.

• Also, the inverse Gaussian (IG) kernel, defined on Sx,h = (0, ∞) = T with x ∈ (0, 1/3h) and
h > 0 by

IGx,h(u) =
1√

2πhu
exp

{
− (1− 3xh)1/2

2h

(
u

(1− 3xh)1/2 − 2 +
(1− 3xh)1/2

u

)}
1Sx,h (u)

(Scaillet, 2004; Libengué, 2013), has the same graphical properties as the inverse gamma. Note
that it is the p.d.f. of the inverse Gaussian distribution IG(1 + x/h, h) with scale parameter
x/(1− 3xh)1/2 and shape parameter 1/h.

• Fromthe well known Gaussian kernel KG(u) = (h
√

2π)−1 exp(u2)1R(u), we define its associ-
ated version (Gaussian) on Sx,h = R with x ∈ T := R and h > 0:

KG
x,h(u) =

1
h
√

2π
exp

{
1
2

(
u− x

h

)2
}
1R(u).

It has the same shape at any target and thus is well adapted for continuous variables with
unbounded supports but not for [0, ∞) or compact set of R; see also Epanechnikov (1969) for
another example of a continuous symmetric kernel.

Figure 1 shows some forms of the above-mentioned univariate associated kernels. The plots
highlight the importance given to the target point and around it in discrete (a) and continuous (b)
cases. Furthermore, for a fixed bandwidth h, the Gaussian keeps its same shape along the support;
however, they change according to the target for the other non-classical associated kernels. This
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Arguments Description

x The target.
t The single or the grid value where the function is computed.
h The bandwidth or smoothing parameter.
ker The associated kernel.
a0,a1 The left and right bounds of the support for the extended beta kernel.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Result Description

Returns a single value of the associated kernel function.

Table 1: Summary of arguments and results of kern.fun.

explains the inappropriateness of the Gaussian kernel for density or regression estimation in any
bounded interval and of the DiracDU kernel for count regression estimation; see Part (b) of Figure 1.
From Part (v) of Remark 34.2.2, the inverse gamma and inverse Gaussian are the worst since they
do not well concentrate on the target x; see Remark 34.2.3. These previous associated kernels can be
applied to various functionals.

We have implemented in R the method kern.fun for both discrete and continuous associated
kernels. Seven possibilities are allowed for the kernel function. We enumerate the arguments and
results of the default kern.fun.default function in Table 1. The kern.fun is used as follows for the
binomial kernel:

R> x <- 5
R> h <- 0.1
R> y <- 0:10
R> k_b <- kern.fun(x, y, h, "discrete", "bino")

Density or probability mass function estimations

The p.d.f. or p.m.f. estimation is an usual application of the associated kernels. Let X1, . . . , Xn be
independent and identically distributed (i.i.d.) random variables with an unknown p.d.f. (respectively
p.m.f.) f on T. An associated kernel estimator f̂n of f is simply:

f̂n(x) =
1
n

n

∑
i=1

Kx,h(Xi), x ∈ T. (5)

Here, we point out some pointwise properties of the estimator (5) in both discrete and continuous
cases.

Proposition 34.3.1. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let X1, X2, . . . , Xn be an n random
sample i.i.d. from the unknown p.m.f. (respectively p.d.f.) f on T. Let f̂n = f̂n,h,K be an estimator (5) of f with
an associated kernel. Then, for all x ∈ T and h > 0, we have

E{ f̂ (x)} = E{ f (Zx,h)},

where Zx,h is the random variable associated to the p.m.f. (respectively p.d.f.) Kx,h on Sx,h. Furthermore, for a
p.m.f. (respectively p.d.f.), we have respectively f̂n(x) ∈ [0, 1] (respectively f̂n(x) > 0) for all x ∈ T and∫

x∈T
f̂n(x)ν(dx) = Cn, (6)

where Cn = C(n; h, K) is a positive and finite constant if
∫

T
Kx,h(t)ν(dx) < ∞ for all t ∈ T, and ν is a count

or Lebesgue measure on T.

It is easy to see that Cn = 1 for the estimators (5) with DiracDU kernel or any classical (symmetric)
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associated kernel. Indeed, for the DiracDU kernel estimation we have

c−1

∑
x=0

f̂n(x) =
c−1

∑
x=0

{
(1− h)1{x}(X1) +

h
c− 1

1Sc\{x}(X1)

}
= (1− h) +

h
c− 1

(c− 1)

= 1.

In general we have Cn 6= 1 for other discrete and also continuous associated kernels, but it is always
close to 1. In practice, we compute Cn depending on observations before normalizing f̂n to be a
p.m.f. or a p.d.f. The following code helps to compute the normalizing constant, e.g., for gamma kernel
estimation:

R> data("faithful", package = "datasets")
R> x <- faithful$waiting
R> f <- dke.fun(x, ker = "GA", 0.1)
R> f$C_n

[1] 0.9888231

Without loss of generality, we study x 7→ f̂n(x) up to a normalizing constant which is used at the end
of the density estimation process. Notice that that non-classical associated kernel estimators f̂n are
improper density estimates or as kind of “balloon estimators”; see Sain (2002). There are two ways to
normalize these estimators (5). The first method is the global normalization using Cn of (6):

f̃n(x) =
f̂n(x)∫ sup(T)

in f (T)
f̂n(x)ν(dx)

, x ∈ T. (7)

Another alternative is to use an adaptive normalization of (5) according to each target x:

˜̃fn(x) =
1
n

n

∑
i=1

Kx,h(Xi)∫ sup(T)

in f (T)
Kx,h(Xi)ν(dx)

, x ∈ T,

but this approach, with similar results than (7), is not used here. The representations are done with the
global normalization (7). In the package, we also compute the normalizing constant (6) for any data
set.

In discrete cases, the integrated squared error (ISE) defined by

ISE0 = ∑
x∈N

{ f̃n(x)− f0(x)}2,

is the criteria used to measure numerically the discrete smoothness of f̃n from (7) with the empirical or
naive p.m.f. f0 such that ∑x∈N f0(x) = 1; see, e.g., Kokonendji and Senga Kiessé (2011). Concerning
the continuous variables, the histogram gives a graphical measure of comparison with f̃n; see, for
example, Figure 2.

Some theoretical aspects of the normalizing constant

In this section, we present some theoretical aspects of the normalizing constant Cn of (6) and two
examples in the continuous and discrete cases. We first recall the following result on pointwise
properties of the estimator (5).

Lemma 34.3.2. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let x ∈ T be a target and h ≡ hn a
bandwidth. Assuming f is in the class C 2(T) in the continuous case, then

Bias
{

f̂n(x)
}
= A(x, h) f ′(x) +

1
2

{
A2(x, h) + B(x, h)

}
f ′′(x) + o(h2). (8)

Similar expressions (8) hold in the discrete case, except that f ′ and f ′′ are finite differences of the first and second
order respectively.

Furthermore, for the continuous case, if f is bounded on T then there exists r2 = r2
(
Kx,h

)
> 0 the largest
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real number such that
∥∥Kx,h

∥∥2
2 :=

∫
Sx,h

K2
x,h(u)du ≤ c2(x)h−r2 , 0 ≤ c2(x) ≤ ∞ and

V
{

f̂n(x)
}
=

1
n

f (x)
∥∥Kx,h

∥∥2
2 + o

(
1

nhr2

)
. (9)

For discrete situations, the result (9) becomes

V
{

f̂n(x)
}
=

1
n

f (x)[{P(Zx,h = x)}2 − f (x)],

where Zx,h denotes the discrete random variable with p.m.f. Kx,h.

It is noticeable that the bias (8) is bigger than the one with symmetric kernels and thus can be
reduced; see, e.g., Zhang (2010), Zhang and Karunamuni (2010) and Libengué (2013).

Proposition 34.3.3. Following notations in Lemma 34.3.2, the mean and variance of Cn of (6) are respectively:

E (Cn) ' 1 +
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx), (10)

V (Cn) '


1
n

∫ sup(T)

in f (T)

(
f (x)

∥∥Kx,h
∥∥2

2

)
dx if T is continuous,

1
n ∑

x∈T

(
f (x)[{P(Zx,h = x)}2 − f (x)]

)
if T is discrete,

(11)

where in f (T) and sup(T) are respectively the infimum and supremum of T, the measure ν is Lesbesgue or
count on the support T, and where “'” stands for approximation.

Proof. From Lemma 34.3.2 and the Fubini theorem, we successively show (10) as follows:

E (Cn) = E

(∫ sup(T)

in f (T)
f̂n(x)ν(dx)

)
=
∫ sup(T)

in f (T)
E
(

f̂n(x)
)

ν(dx)

=
∫ sup(T)

in f (T)

(
Bias

{
f̂n(x)

}
+ f (x)

)
ν(dx)

'
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x) + f (x)

}
ν(dx)

'
∫ sup(T)

in f (T)
f (x)ν(dx) +

∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx)

' 1 +
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx).

The variance (11) is trivial from Lemma 34.3.2. �

Example 1. Let f be an exponential density with parameter γ > 0. Thus, one has:

f (x) = γ exp(−γx),

f ′(x) = −γ2 exp(−γx),

f ′′(x) = γ3 exp(−γx).

Consider the lognormal kernel with A(x, h) = x(exp(3h2/2)− 1), B(x, h) = x2 exp(3h2)(exp(h2)− 1)
and

∥∥LNx,h
∥∥2

2 = 1/(2πhx1/2); see Libengué (2013). Then, using the Taylor formula around h, the
expressions of E (Cn) and V (Cn) are:

E (Cn) ' 1 +

[(
−1 + exp

3h2

2

)
+

1
2

{(
−1 + exp

3h2

2

)2

+ exp 3h2
(
−1 + exp h2

)}]
' 1− h2

2

and V (Cn) ' γ(2nh
√

π)−1 ∫ ∞
0 z−1 exp(−z)dz with

∫ ∞
0 z−1 exp(−z)dz ≈ 16.2340 by computation

with R. Thus, the quantity Cn cannot be equal to 1.

Example 2. Let f be a Poisson p.m.f. with parameter λ and thus f (x) = λx exp(−λ)/x!. The finite
differences f (k)(x) of order k ∈ {1, 2, . . .} at x ∈N are given by the recursive relation:

f (k)(x) = { f (k−1)(x)}(1) with f (1)(x) =
{
{ f (x + 1)− f (x− 1)} /2, if x ∈N \ {0} ,
f (1)− f (0), if x = 0,
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and

f (2)(x) =

 {
f (x + 2)− 2 f (x) + f (x− 2)} /4, if x ∈N \ {0, 1} ,
{ f (3)− 3 f (1) + f (0)} /4, if x = 1,
{ f (2)− 2 f (1) + f (0)} /2, if x = 0.

Considering the binomial kernel with A(x, h) = x + h, B(x, h) = (x + h)(1 − h)/(x + 1), we
successively obtain

E (Cn) ' 1 +
h
4

(
f (3) + 3 f (2)− 3 f (1)− 2 f (0)

+
∞

∑
x=2

2 { f (x + 1)− f (x− 1)}+ (x + 3){ f (x + 2)− 2 f (x) + f (x− 2)}
x + 1

)

+

(
3 f (3) + 8 f (2)− 17 f (1) + 3 f (0)

2

+
∞

∑
x=2

x { f (x + 1)− f (x− 1)}
2

+
(x3 + x2 + 1){ f (x + 2)− 2 f (x) + f (x− 2)}

x + 1

)

' 1 +
h exp(−λ)

4

[
λ3

3!
+ 3

λ2

2!
− 3λ− 2

+
∞

∑
x=2

{
2λx+1

(x + 1)!
− 2λx−1

(x− 1)!
+

x + 3
x + 1

(
λx+2

(x + 2)!
− 2

λx

x!
+

λx−2

(x− 2)!

)}]

+

[
λ3

4
+ 2λ2 − 17λ

2
+ 3

+
∞

∑
x=2

{
x
2

(
λx+1

(x + 1)!
− λx−1

(x− 1)!

)
+

x3 + x2 + 1
x + 1

(
λx+2

(x + 2)!
− 2

λx

x!
+

λx−2

(x− 2)!

)}]

and

V (Cn) '
exp(−λ)

n ∑
x∈T

(
λx

x!

[{
(1 + h)

(
x + h
x + 1

)x}2

− λx exp(−λ)

x!

])
.

Bandwidth selection

Now, we consider the bandwidth selection problems which are generally crucial in nonparametric
estimation. Several methods already existing for continuous kernels can be adapted to the discrete
case as the classical least-squares cross-validation method; see, for example, Bowman (1984), Marron
(1987) and references therein. Here, we simply propose three procedures for the bandwidth selection:
cross-validation, Bayesian local for binomial and adaptive for the gamma kernel. Also, a review of
bayesian bandwidth selection methods is presented. Each time, the smoothing parameter selection is
done with the non-normalized version f̂n of the estimator (5) before the global normalization f̃n of (7).

Cross-validation for any associated kernel

For a given associated kernel Kx,h with x ∈ T and h > 0, the optimal bandwidth hcv of h is obtained
by cross-validation as hcv = arg min

h>0
CV(h) with

CV(h) =
∫

x∈T

{
f̂n(x)

}2
ν(dx)− 2

n

n

∑
i=1

f̂n,−i(Xi),

where f̂n,−i(Xi) = (n− 1)−1 ∑
j 6=i

KXi ,h(Xj) is being computed as f̂n(Xi) by excluding the observation

Xi and ν is the Lebesgue or count measure. This method is applied to all estimators (5) with associated
kernels cited in this paper, independently on the support T of f to be estimated.

Table 2 gives the arguments and results of the cross-validation function hcvc.fun defined for
continuous data are below. The hcvd.fun is the corresponding function for discrete data. The hcvc.fun
is performed with the Old Faithful geyser data described in Azzalini and Bowman (1990) and Härdle
(2012). The dataset concerns waiting time between eruptions and the duration of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming, USA. The following codes and Figure 2
give smoothing density estimation with various associated kernels of the waiting time variable.
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Arguments Description

Vec The positive continuous data sample.
seq.bws The sequence of bandwidths where to compute the cross-validation function.
ker The associated kernel.
a0,a1 The bounds of the support of extended beta kernel. Default values are

respectively 0 and 1.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Results Description

hcv The optimal bandwidth obtained by cross-validation.
seq.h The sequence of bandwidths used to compute hcv.
CV The values of the cross-validation function.

Table 2: Summary of arguments and results of hcvc.fun.
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Figure 2: Smoothing density estimation of the Old Faithful geyser data (Azzalini and Bowman, 1990)
by some continuous associated kernels with the support of observations [43, 96] = T.

R> data("faithful", package = "datasets")
R> x <- faithful$waiting
R> f1 <- dke.fun(x, 0.1, "continuous", ker = "GA")
R> f2 <- dke.fun(x, 0.036, "continuous", ker = "LN")
R> f3 <- dke.fun(x, 0.098, "continuous", ker = "RIG")
R> f4 <- dke.fun(x, 0.01, "continuous", ker = "BE", a0 = 40, a1 = 100)
R> t <- seq(min(x), max(x), length.out = 100)
R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",
+ ylab = "Frequency", main = "", border = "gray")
R> lines(t, f1$fn, lty = 2, lwd = 2, col = "blue")
R> lines(t, f2$fn, lty = 5, lwd = 2, col = "black")
R> lines(t, f3$fn, lty = 1, lwd = 2, col = "green")
R> lines(t, f4$fn, lty = 4, lwd = 2, col = "grey")
R> lines(density(x, width = 12), lty = 8, lwd = 2, col = "red")
R> legend("topleft", c("Gamma", "Lognormal", "Reciprocal inverse Gaussian",
+ "Extended beta", "Gaussian"), col = c("blue", "black", "green", "grey", "red"),
+ lwd = 2, lty = c(2, 5, 1, 4, 8), inset = .0)
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A review of Bayesian bandwidth selection

Bayesian inference grows out of the simple formula known as Bayes rule. Assume we have two
random variables A and B. A principle rule of probability theory known as the chain rule allows us to
specify the joint probability of A and B taking on particular values a and b, P(a, b), as the product of
the conditional probability that A will take on value a given that B has taken on value b, P(a|b), and
the marginal probability that B takes on value b, P(b). Which gives us:

Joint probability = Conditional Probability ×Marginal Probability.

Thus we have: P(a, b) = P(a|b)P(b).

This expression (Bayes rule) indicates that we can compute the conditional probability of a variable
A given the variable B from the conditional probability of B given A. This introduces the notion of
prior and posterior knowledge.

Prior and posterior knowledge. A prior probability is the probability available to us beforehand,
and before making any additional observations. A posterior probability is the probability obtained
from the prior probability after making additional observation to the prior knowledge available.

Summarizing the Bayesian approach. The Bayesian approach to parameter estimation works as
follows:

1. Formulate our knowledge about a situation.

2. Gather data.

3. Obtain posterior knowledge that updates our beliefs.

How do we formulate our knowledge about a situation?

a. Define a distribution model which expresses qualitative aspects of our knowledge about the
situation. This model will have some unknown parameters, which will be dealt with as random
variables.

b. Specify a prior probability distribution which expresses our subjective beliefs and subjective
uncertainty about the unknown parameters, before seeing the data.

After gathering the data, how do we obtain posterior knowledge?

c. Compute posterior probability distribution which estimates the unknown parameters using the
rules of probability and given the observed data, presenting us with updated beliefs.

Zougab et al. (2013) proposed a Bayesian approach based upon a likelihood cross-validation
approximation and a Markov chain Monte Carlo (MCMC) method for deriving the global optimal
bandwidth using the famous binomial kernel. However, a global bandwidth does not generally
provide a good estimator for complex p.m.f.’s, in particular for small and moderate sample sizes. Gen-
erally, the global discrete associated kernel estimator tends to simultaneously under- and oversmooth
f (x).

In order to improve the global discrete associated kernel estimator, in particular for complex count
data with small and moderate sample sizes, Zougab et al. (2012) and Zougab et al. (2013) adapted
two versions of variable bandwidths for discrete associated kernel estimator and proposed Bayesian
approaches for selecting these variable bandwidths. Note that these two versions are originally
proposed for kernel density estimation (see, e.g., Sain and Scott 1996; Breiman et al. 1977; Abramson
1982; Brewer 2000; Zhang et al. 2006; Zougab et al. 2014a and Zhang et al. 2016).

Recently, Zougab et al. (2012) have considered the local discrete associated kernel estimator
(balloon estimator in discrete case) and have derived the closed form of the variable bandwidth
at each point x for which the p.m.f. is estimated by considering the binomial kernel estimator and
locally treating the bandwidth as a random quantity with a beta prior distribution. This approach
outperforms existing classical global methods, namely, MISE and CV in particular for small and
moderate sample sizes. Zougab et al. (2013) have also proposed the adaptive discrete associated kernel
estimator (sample-point estimator in discrete situation), which replaces h by hi for each observation xi
with i = 1, . . . , n, and then employs the Bayesian approach for estimating the adaptive bandwidths hi.
The authors have considered the binomial kernel and the beta prior for each variable bandwidth hi,
and have shown that this approach performs better than the popular classical global selectors.
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Bayesian estimation of localized bandwidth for the binomial kernel

An alternative to the cross-validation for bandwidth selection is by using Bayesian methods. These
methods have been investigated with three different procedures: local, global and adaptive; see
respectively Zougab et al. (2012, 2013, 2014b). In terms of integrated squared error and execution
times, the local Bayesian outperforms the other Bayesian procedures. In the local Bayesian framework,
the variable bandwidth is treated as parameter with prior π(·). Under squared error loss function, the
Bayesian bandwidth selector is the posterior mean; see Zougab et al. (2012).

First, as we have mentioned above, f (x) can be approximated by

f (x|h) = fh(x) = ∑
u∈T

f (u)Bx,h(u) = E{Bx,h(X)},

where Bx,h is the binomial kernel and X is a random variable with p.m.f. f . Now, considering h as
a scale parameter for fh(x), the local approach consists of using fh(x) and constructing a Bayesian
estimator for h(x).

Indeed, let π(h) denote the beta prior density of h with positive parameters α and β. By the Bayes
theorem, the posterior of h at the point of estimation x takes the form

π(h|x) = fh(x)π(h)∫
fh(x)π(h)dh

.

Since fh is unknown, we use f̂h as natural estimator of fh, and hence we can estimate the posterior by

π(h|x, X1, X2, . . . , Xn) =
f̂h(x)π(h)∫
f̂h(x)π(h)dh

.

Under the squared error loss, the Bayes estimator of the smoothing parameter h(x) is the posterior
mean and is given by ĥn(x) =

∫
hπ̂(h|x, X1, X2, . . . , Xn)dh. Exact approximation is

ĥn(x) =

n

∑
i=0

Xi

∑
k=0

xk

(x + 1− Xi)!k!(Xi − k)!
B(Xi + α− k + 1, x + β + 1− Xi)

n

∑
i=0

Xi

∑
k=0

xk

(x + 1− Xi)!k!(Xi − k)!
B(Xi + α− k, x + β + 1− Xi)

, ∀x ∈N with Xi ≤ x + 1,

where B(·, ·) is the beta function; see Zougab et al. (2012) for more details.

Bayesian estimation of adaptive bandwidth for the gamma kernel

The bandwidth h in the gamma kernel density estimation can be allowed to be adaptive. This
approach gives a variable bandwidth hi for each observation Xi in place of the initial fixed bandwidth
h. Following Zougab et al. (2014a), we suggest using Bayesian methods to estimate such adaptive
bandwidths or variable bandwidths hi, i = 1, . . . , n. Thus, we treat hi as a random variable with a
prior distribution π(·). The estimator (5) with gamma kernel of Section Continuous associated kernels
and variable bandwidths are reformulated as

f̂n(x) =
1
n

n

∑
i=1

GAx,hi
(Xi). (12)

The leave-one-out kernel estimator of f (Xi) deduced from (12) is

f̂ (Xi | {X−i}, hi) =
1

n− 1

n

∑
j=1,j 6=i

GAXi ,hi
(Xj), (13)

where {X−i} denotes the set of observations excluding Xi. The posterior distribution for each variable
bandwidth hi given Xi provided from the Bayesian rule is expressed as follow

π(hi | Xi) =
f̂ (Xi | {X−i}, hi)π(hi)∫ ∞

0 f̂ (Xi | {X−i}, hi)π(hi)dhi
. (14)

We obtain the Bayesian estimator h̃i of hi by using the quadratic loss function

h̃i = E(hi | Xi). (15)
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In the following, we assume that each hi = hi(n) has an inverse gamma prior distribution IGA(α, β)
with the shape parameter α > 0 and scale parameter β > 0. The density of IGA(a, b) with a, b > 0 is
defined as

Φa,b(z) =
ba

Γ(a)
z−a−1 exp(−b/z)1(0,∞)(z). (16)

This allows us to obtain the closed form of the posterior density and the Bayesian estimator given by
the following result.

Theorem 34.3.4. For fixed i ∈ {1, 2, . . . , n}, consider each observation Xi with its corresponding bandwidth
hi. Using the gamma kernel estimator (12) and the inverse gamma prior distribution IGA(α, β) given in (16)
with α > 1/2 and β > 0 for each hi, then:

(i) The posterior density (14) is the following weighted sum of inverse gamma

π(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

with Aij = [Γ(α + 1/2)]/(βαX1/2
i

√
2πBα+1/2

ij ), Bij = Xi log Xi − Xi log Xj + Xj − Xi + β,

Cj = Γ(α + 1)/[β−α(Xj + β)α+1] and Dij = ∑n
j=1,j 6=i

{
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

}
.

(ii) The Bayesian estimator h̃i of hi, given in (15), is

h̃i =
1

Dij

n

∑
j=1,j 6=i

{
AijBij

α− 1/2
1(0,∞)(Xi) +

(Xj + β)Cj

α
1{0}(Xi)

}

according to the previous notations of Aij, Bij, Cj and Dij.

Proof. (i) Let us represent π(hi | Xi) of (14) as the ratio of N(hi | Xi) := f̂ (Xi | {X−i}, hi)π(hi)
and

∫ ∞
0 N(hi | Xi)dhi. From (13) and (16) the numerator is, first, equal to

N(hi | Xi) =

 1
n− 1

n

∑
j=1,j 6=i

GAXi ,hi
(Xj)

( βα

Γ(α)
h−α−1

i exp(−β/hi)

)

=
[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

GAXi ,hi
(Xj)

β−αhα+1
i

exp(−β/hi). (17)

Following Chen (2000), we assume that for all Xi ∈ (0, ∞) one has 1 + (Xi/hi) → ∞ as n → ∞.
Using the Stirling formula Γ(z + 1) '

√
2πzz+1/2 exp(−z) as z→ ∞, the term of the sum in (17) can

be successively calculated as

GAXi ,hi
(Xj)

β−αhα+1
i

exp(−β/hi) =
X(Xi/hi)

j exp(−Xj/hi)

h1+(Xi/hi)
i Γ[1 + (Xi/hi)]β−αhα+1

i

exp(−β/hi)

=
exp[−(Xj + β − Xi log Xj)/hi]

β−αh(Xi/hi)+α+2
i

√
2π exp(−Xi/hi)(Xi/hi)(Xi/hi)+1/2

=
Γ(α + 1/2)

β−αX1/2
i

√
2πBα+1/2

ij

×
Bα+1/2

ij exp[−Bij/hi]

hα+3/2
i Γ(α + 1/2)

= Aij Φα+1/2,Bij
(hi), (18)

with Bij = Xi log Xi − Xi log Xj + Xj − Xi + β , Aij = [X−1
j Γ(α + 1/2)]/(β−αX−1/2

i

√
2πBα+1/2

ij ) and
Φα+1/2,Bij

(hi) is given in (16).
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Also, for Xi = 0, the term of the sum (17) can be expressed as follows

GA0,hi
(Xj)

β−αhα+1
i

exp(−β/hi) =
exp(−Xj/hi)

β−αhα+2
i

exp(−β/hi)

=
Γ(α + 1)

β−α(Xj + β)α+1 ×
(Xj + β)α+1 exp[−(Xj + β)/hi]

hα+2
i Γ(α + 1)

= Cj Φα+1,Xj+β(hi), (19)

with Cj = Γ(α + 1)/[β−α(Xj + β)α+1] and Φα+1,Xj+β(hi) is given in (16). Combining (18) and (19),
the expression of N(hi | Xi) in (17) becomes

N(hi | Xi) =
[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

. (20)

From (20), the denominator is successively computed as follows:∫ ∞

0
N(hi | Xi) dhi =

[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

(
Aij

∫ ∞

0
Φα+1/2,Bij

(hi)1(0,∞)(Xi) dhi

+Cj

∫ ∞

0
Φα+1,Xj+β(hi)1{0}(Xi) dhi

)
=

[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

{
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

}
=

[Γ(α)]−1

(n− 1)
Dij, (21)

with Dij = ∑n
j=1,j 6=i

(
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

)
. Finally, the ratio of (20) and (21) leads to the result

of Part (i).

(ii) Let us remember that the mean of the inverse gamma distribution IG(α, β) is β/(α− 1). Thus,
the expression of π(hi | Xi) in (14) is given by

π(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

and, therefore, h̃i = E(hi | Xi) =
∫ ∞

0 hiπ(hi | Xi) dhi is finally

h̃i = E(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
AijBij

α− 1/2
1(0,∞)(Xi) +

(Xj + β)Cj

α
1{0}(Xi)

}
.

This new method of selecting bandwidth by the Bayesian adaptive procedure will be implemented
in a future version of the Ake package.

Bandwidth selection for kernel regression involving associated kernels

One of the most often encountered models in nonparametric statistics is the regression model. The
function that provides the best prediction of a dependent variable y in terms of an independent
variable x is the conditional expectation E(y/x) = m(x). This is called regression function and its
estimation from a sequence of n pairs (xi, yi), i = 1, . . . , n is a problem in statistics. We will consider
the case (x, y) ∈ T×R. For simplicity, we take T = R if x is a continuous variable and T = N in the
discrete case. The classical non parametric regression model between two variables y and x is

yi = m(xi) + εi, (22)

where y = (y1, . . . , yn) is a response vector, x = (x1, . . . , xn) is an explanatory vector, ε = (ε1, . . . , εn)
is the error following a Gaussian distribution with zero mean and finite variance σ2, i.e., εi ∼ N (0, σ2)
and m : T 7→ R is the unknown regression function. Several methods have been proposed to estimate
the regression function in the continuous case. We cite for example the histograms introduced by
Tukey (1961) and studied by Geoffroy (1980) and Lecoutre (1990), the spline method which can be
found in Reinsch (1967), Silverman (1985) and Wahba (1990) and also the regression using partition
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proposed by Breiman et al. (1984).

As for the density or probability mass function, the estimate of the regression function by the kernel
method is the most used because of its good asymptotic properties and interest in practice. Introduced
initially for continuous density estimation by Rosenblatt (1956) and Parzen (1962), this method was
adopted by Nadaraya (1964) and Watson (1964) for estimating the continuous regression function. It
was also applied to smooth the discrete regression function m for x ∈ N. Some studies have been
done to estimate the discrete regression function, using the Dirac-type kernel (naive estimator) or
discrete kernels of Aitchison and Aitken (1976). However, the naive estimator is appropriate only
when the sample size is large, and the discrete kernel of Aitchison and Aitken (1976) is only suitable
for categorical data; see Hayfield and Racine (2008) and also Hayfield and Racine (2014). Kokonendji
et al. (2009) adapted the Nadaraya (1964) and Watson (1964) kernel to the discrete unknown function
m, using the discrete associated kernels. In their work, using the integrated mean square error and the
coefficient of determination R2, they showed that the binomial or discrete triangular kernels are better
compared to the optimal Epanechnikov kernel. In this section we present the theoretical foundations
of the estimated regression function with continuous and discrete associated kernels.

Both in continuous and discrete cases, consider the relation between a response variable Y and an
explanatory variable x given by

Y = m (x) + ε, (23)

where m is an unknown regression function from T ⊆ R to R and ε the disturbance term with
null mean and finite variance. Let (X1, Y1), . . . , (Xn, Yn) be a sequence of i.i.d. random variables on
T×R(⊆ R2) with m(x) = E (Y|X = x) of (23). Using (continuous or discrete) associated kernels, the
Nadaraya (1964) and Watson (1964) estimator m̂n of m is

m̂n(x; h) =
n

∑
i=1

YiKx,h (Xi)

∑n
i=1 Kx,h (Xi)

= m̂n(x), ∀x ∈ T ⊆ R, (24)

where h ≡ hn is the smoothing parameter such that hn → 0 as n→ ∞.

Besides the criterion of kernel support, we retain the root mean squared error (RMSE) and also the
practical coefficient of determination given respectively by

RMSE =

√
1
n

n

∑
i=1
{Yi − m̂n(Xi)}2

and

R2 =
∑n

i=1 {m̂n(Xi)− y}2

∑n
i=1(Yi − y)2 ,

with y = n−1(Y1 + . . . + Yn).

In discrete cases, the reg.fun function for (24) is used with the binomial kernel on milk data as
follows. This dataset is about average daily fat (kg/day) yields from milk of a single cow for each of
the first 35 weeks.

R> data("milk", package = "Ake")
R> x <- milk$week
R> y <- milk$yield
R> h <- reg.fun(x, y, "discrete", "bino", 0.1)
R> h

Bandwidth h:0.1 Coef_det=0.9726

Number of points: 35; Kernel = Binomial

data y
Min. : 1.0 Min. :0.0100
1st Qu.: 9.5 1st Qu.:0.2750
Median :18.0 Median :0.3600
Mean :18.0 Mean :0.3986
3rd Qu.:26.5 3rd Qu.:0.6150
Max. :35.0 Max. :0.7200
eval.points m_n
Min. : 1.0 Min. :0.01542
1st Qu.: 9.5 1st Qu.:0.27681
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Arguments Description

Vec The explanatory data sample can be discrete or continuous.
y The response variable.
ker The associated kernel.
h The sequence of bandwidths where to compute the optimal bandwidth.
a0,a1 The bounds of the support of extended beta kernel. Default values are

respectively 0 and 1.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Results Description

kernel The associated kernel.
hcv The optimal bandwidth obtained by cross-validation.
CV The values of the cross-validation function.
seqbws The sequence of bandwidths used to compute hcv.

Table 3: Summary of arguments and results of hcvreg.fun.

Median :18.0 Median :0.35065
Mean :18.0 Mean :0.39777
3rd Qu.:26.5 3rd Qu.:0.60942
Max. :35.0 Max. :0.70064

The above reg.fun is also used for continuous cases; see Figure 3 and Table 4 for the motorcycle
impact data of Silverman (1985).

Bandwidth selection

We present two bandwidth selection methods for the regression: the well-known cross-validation for
any associated kernel and the Bayesian global for the binomial kernel.

Cross-validation for any associated kernel

For a given associated kernel, the optimal bandwidth parameter is ĥcv = arg min
h>0

LSCV(h) with

LSCV(h) =
1
n

n

∑
i=1
{Yi − m̂−i(Xi)}2 , (25)

where m̃−i(Xi) is computed as m̂n of (24) excluding Xi; see, e.g., Kokonendji et al. (2009). The
hcvreg.fun function to compute this optimal bandwidth is described in Table 3.

The following code helps to compute the bandwidth parameter by cross-validation on milk data.
The associated kernel used is the discrete triangular kernel with arm a = 1.

R> data("milk", package = "Ake")
R> x <- milk$week
R> y <- milk$yield
R> f <- hcvreg.fun(x, y, type_data = "discrete", ker = "triang", a = 1)
R> f$hcv

[1] 1.141073

When we consider the continuous associated kernel, one needs to set the type of data parameter to
“continuous” in the hcvreg.fun function. Thus, the hcvreg.fun and reg.fun functions are used with
gamma, lognormal, reciprocal inverse Gaussian and Gaussian kernel on the motor cycle impact data
described in Silverman (1985). The observations consist of accelerometer reading taken through time
in an experimentation on the efficiency of crash helmets. The results in Table 4 agree with the shapes
of continuous associated kernels of Part (b) of Figure 1; see also Figure 3. In fact, since the lognormal
kernel is well concentrated around the target x, it gives the best R2 which is 75.9%. The gamma and the
reciprocal inverse Gaussian kernels give similar R2 in the order 73%. Although the Gaussian kernel is
well concentrated on the target, it gives the lower result of R2 = 70.90%. This is mainly due to the
symmetry of the kernel which cannot change its shapes according to the target.
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Gamma Lognormal Rec. Inv. Gaussian Gaussian

R2 0.7320 0.7591 0.7328 0.7090

Table 4: Some expected values of R2 of nonparametric regressions of the motor cycle impact data
(Silverman, 1985) by some continuous associated kernels.

Figure 3: Nonparametric regressions of the motors cycle impact data (Silverman, 1985) by some
continuous associated kernels.

Bayesian global for binomial kernel

Using Bayes theorem, the joint posterior distribution of h given the observations is

π(h|X1, X2, . . . , Xn) ∝ hα−1(1− h)β−1

(
1
2

n

∑
i=1
{yi − m̂−i(Xi)}2 + b

)−(n+2a)/2

,

where ∝ denotes proportional, the reals a and b are the parameters of the inverse gamma distribution
IG(a, b), and α and β those of the beta distribution Be(α, β). The estimate ĥbay of the smoothing
parameter h is given by Markov chain Monte Carlo (MCMC) techniques with Gibbs sampling:

ĥbay =
1

N − N0

N

∑
N0+1

h(t),

where N0 is the burn-in period and N the number of iterations; see Zougab et al. (2014b) for further
details. It will be implemented in a future version of the Ake package.

Summary and final remarks

The Ake package offers easy tools for R users whose research involves kernel estimation of density
functions and/or regression functions through associated kernels that are capable of handling all
categorical, count and real positive datasets. Figure 1 shows the importance of the associated kernel
choice as well as the bandwidth selection. In fact, symmetric (e.g., Gausssian) kernel estimators
(respectively empirical estimators) are not suitable for bounded or positive continuous datasets
(respectively discrete small samples). We then need an appropriate associated kernel. The binomial
kernel is suitable for small size count data while the discrete triangular or the naive kernel are more
indicated for large sample sizes. In continuous cases, the lognormal and gamma kernels give the best
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estimation for positive data while the extended beta is suitable for any compact support.

This package includes various continuous and discrete associated kernels. It also contains func-
tions to handle the bandwidth selection problems through cross-validation, local and global Bayesian
procedures for binomial kernel and also the adaptive Bayesian procedure for the gamma kernel. In
general, Bayesian choices of smoothing parameters will be better than their cross-validation counter-
parts. Future versions of the package will contain Bayesian methods with other associated kernels.
Also, these associated kernels are useful for heavy tailed data p.d.f. estimation and can be added
later in the package; see, e.g., Ziane et al. (2015). The case of multivariate data needs to be taken in
consideration; see Kokonendji and Somé (2015) for p.d.f. estimation and Somé and Kokonendji (2016)
for regression. We think that the Ake package can be of interest to nonparametric practitioners of
different applied settings.
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