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hdm: High-Dimensional Metrics
by Victor Chernozhukov, Chris Hansen, and Martin Spindler

Abstract In this article the package High-dimensional Metrics hdm is introduced. It is a collection of
statistical methods for estimation and quantification of uncertainty in high-dimensional approximately
sparse models. It focuses on providing confidence intervals and significance testing for (possibly many)
low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and
uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or
policy variable) in a high-dimensional approximately sparse regression model, for average treatment
effect (ATE) and average treatment effect for the treated (ATET), as well for extensions of these param-
eters to the endogenous setting are provided. Theory grounded, data-driven methods for selecting
the penalization parameter in Lasso regressions under heteroscedastic and non-Gaussian errors are
implemented. Moreover, joint/ simultaneous confidence intervals for regression coefficients of a
high-dimensional sparse regression are implemented. Data sets which have been used in the literature
and might be useful for classroom demonstration and for testing new estimators are included.

Introduction

Analysis of high-dimensional models, models in which the number of parameters to be estimated
is large relative to the sample size, is becoming increasingly important. Such models arise naturally
in readily available high-dimensional data which have many measured characteristics available per
individual observation as in, for example, large survey data sets, scanner data, and text data. Such
models also arise naturally even in data with a small number of measured characteristics in situations
where the exact functional form with which the observed variables enter the model is unknown,
and we create many technical variables, a dictionary, from the raw characteristics. Examples of this
scenario include semiparametric models with nonparametric nuisance functions. More generally,
models with many parameters relative to the sample size often arise when attempting to model
complex phenomena.

For R, many packages for estimation high-dimensional models are already available. For example,
glmnet (Friedman et al., 2010) and lars (Hastie and Efron, 2013) are popular for Lasso estimation. The
section "Regularized & Shrinkage Methods" in the task view on "Machine Learning and Statistical
Learning" contains further implementation of Lasso and related methods.

The methods which are implemented in this package (hdm) are chiefly distinct from already
available methods in other packages in offering the following four major features:

1) First, we provide a version of Lasso regression that expressly handles and allows for non-
Gaussian and heteroscedastic errors.

2) Second, we implement a theoretically grounded, data-driven choice of the penalty level λ in
the Lasso regressions. To underscore this choice, we call the Lasso implementation in this
package “rigorous” Lasso (=rlasso). The prefix r in function names should underscore this. In
high-dimensional settings cross-validation is very popular; but it lacks a theoretical justification
for use in the present context and some theoretical proposals for the choice of λ are often
not feasible. Moreover, the theoretically grounded, data-driven choice makes cross-validation
redundant, as it is time-consuming particularly in large data sets.

3) Third, we provide efficient estimators and uniformly valid confidence intervals for various
low-dimensional causal/structural parameters appearing in high-dimensional approximately
sparse models.1 For example, we provide efficient estimators and uniformly valid confidence
intervals for a regression coefficient on a target variable (e.g., a treatment or policy variable) in a
high-dimensional sparse regression model. Target variable in this context means the object not
interest, e.g. a prespecified regression coefficient. We also provide estimates and confidence
intervals for average treatment effect (ATE) and average treatment effect for the treated (ATET),
as well extensions of these parameters to the endogenous setting.

4) Fourth, joint/ simultaneous confidence intervals for estimated coefficients in a high-dimensional
approximately sparse models are provided, based on the methods and theory developed
in Belloni et al. (2014b). They proposed uniformly valid confidence regions for regressions
coefficients in a high-dimensional sparse Z-estimation problems, which include median, mean,
and many other regression problems as special cases. In this article we apply this method to the
coefficients of a Lasso regression and highlight this method with an empirical example.

1A formal definition of approximately sparse models can be found in the accompanying vignette.
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In the following we will give a short overview over the functionality of the package with simple
examples. A detailed introduction on how to use the functions is given in the accompanying vignette.

A very short guide to the literature

In this section we give a very short introduction to the literature with a focus on the methods which
are implemented in the package.

Lasso under heteroscedastic and non-Gaussian errors was analysed in Belloni et al. (2012). Post-
Lasso, i.e. a least squares fit with the variables selected by a Lasso regression, is introduced and
analysed in Belloni and Chernozhukov (2013). Inference for a low-dimensional component of a
potentially high-dimensional vector has been conducted in Belloni et al. (2014a). Belloni et al. (2014a)
also consider inference on average treatment effects in a heterogeneous treatment effect setting after
selection amongst high-dimensional controls. Inference in high-dimensional settings is enabled by
the so-called orthogonality condition. The systematic development of the orthogonality condition for
inference on low-dimensional parameters in high-dimensional settings is given in Chernozhukov et al.
(2015a).

Instrumental variables estimation is a central topic in Econometrics and also becoming more
popular in fields such as Biostatistics, Epidemiology, and Sociology. Good introductions to instrumen-
tal variables and treatment effects are the books Angrist and Pischke (2008) and Imbens and Rubin
(2015). The case of selection on high-dimensional instrumental variables is given in Belloni et al. (2012),
the case of selection on the instruments and control variables in Chernozhukov et al. (2015b). For
further discussion of estimation of treatment effects in a high-dimensional setting including cases with
endogenous treatment assignment, we refer to Belloni et al. (2013).

Estimation of Lasso under heteroscedastic and non-Gaussian errors and
inference for low-dimensional subcomponents

An important feature of our package is that it allows Lasso estimation under heteroscedastic and
non-Gaussian errors. This distinguishes the package hdm from other already available software
implementations of Lasso. As an additional benefit, the theoretical grounded choice of the penalty
does not require cross-validation which might lead to a considerable saving of computation time in
many applications.

Prediction in linear models using approximate sparsity

Consider high dimensional approximately sparse linear regression models. These models have a
large number of regressors p, possibly much larger than the sample size n, but only a relatively small
number s = o(n) of these regressors are important for capturing accurately the main features of the
regression function. The latter assumption makes it possible to estimate these models effectively by
searching for approximately the right set of regressors.

The model reads

yi = x′i β0 + εi, E[εixi] = 0, β0 ∈ Rp, i = 1, . . . , n

where yi are observations of the response variable, xi = (xi,j, . . . , xi,p)’s are observations of p−dimensional
regressors, and εi’s are centered disturbances, where possibly p� n. Assume that the data sequence
is i.i.d. for the sake of exposition, although the framework covered is considerably more general. An
important point is that the errors εi may be non-Gaussian or heteroskedastic (Belloni et al., 2012).

The model can be exactly sparse, namely

‖β0‖0 ≤ s = o(n),

or approximately sparse, namely that the values of coefficients, sorted in decreasing order, (|β0|(j))
p
j=1

obey,
|β0|(j) ≤ Aj−a(β0), a(β0) > 1/2, j = 1, ..., p.

An approximately sparse model can be well-approximated by an exactly sparse model with sparsity
index

s ∝ n1/(2a(β0)).

In order to get theoretically justified performance guarantees, we consider the Lasso estimator
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with data-driven penalty loadings:

β̂ = arg min
β∈Rp

En[(yi − x′i β)
2] +

λ

n
||Ψ̂β||1

where ||β||1 = ∑
p
j=1 |β j|, Ψ̂ = diag(ψ̂1, . . . , ψ̂p) is a diagonal matrix consisting of penalty loadings, and

En abbreviates the empirical average. The penalty loadings are chosen to insure basic equivariance of
coefficient estimates to rescaling of xi,j and can also be chosen to address heteroskedasticity in model
errors. We discuss the choice of λ and Ψ̂ below.

Regularization by the `1-norm naturally helps the Lasso estimator to avoid overfitting, but it also
shrinks the fitted coefficients towards zero, causing a potentially significant bias. In order to remove
some of this bias, consider the Post-Lasso estimator that applies ordinary least squares to the model T̂
selected by Lasso, formally,

T̂ = support(β̂) = {j ∈ {1, . . . , p} : |β̂| > 0}.

The Post-Lasso estimate is then defined as

β̃ ∈ arg min
β∈Rp

En

yi −
p

∑
j=1

xi,jβ j

2

: β j = 0 if β̂ j = 0, ∀j.

In words, the estimator is ordinary least squares applied to the data after removing the regressors that
were not selected by Lasso. The Post-Lasso estimator was introduced and analysed in Belloni and
Chernozhukov (2013).

A crucial matter is the choice of the penalization parameter λ. With the right choice of the penalty
level, Lasso and Post-Lasso estimators possess excellent performance guarantees: They both achieve
the near-oracle rate for estimating the regression function, namely with probability 1− γ− o(1),√

En[(x′i(β̂− β0))2] .
√
(s/n) log p.

In high-dimensions setting, cross-validation is very popular in practice but lacks theoretical
justification and so may not provide such a performance guarantee. In sharp contrast, the choice of the
penalization parameter λ in the Lasso and Post-Lasso methods in this package is theoretical grounded
and feasible. Therefore we call the resulting method the “rigorous”Lasso method and hence add a
prefix r to the function names.

In the case of homoscedasticity, we set the penalty loadings ψ̂j =
√

Enx2
i,j, which insures basic

equivariance properties. There are two choices for penalty level λ: the X-independent choice and
X-dependent choice. In the X-independent choice we set the penalty level to

λ = 2c
√

nσ̂Φ−1(1− γ/(2p)),

where Φ denotes the cumulative standard normal distribution, σ̂ is a preliminary estimate of σ =
√

Eε2,
and c is a theoretical constant, which is set to c = 1.1 by default for the Post-Lasso method and c = .5
for the Lasso method, and γ is the probability level, which is set to γ = .1 by default. The parameter
γ can be interpreted as the probability of mistakenly not removing X’s when all of them have zero
coefficients. In the X-dependent case the penalty level is calculated as

λ = 2cσ̂Λ(1− γ|X),

where
Λ(1− γ|X) = (1− γ)− quantile of n||En[xiei]||∞|X,

where X = [x1, . . . , xn]′ and ei are iid N(0, 1), generated independently from X; this quantity is
approximated by simulation. The X-independent penalty is more conservative than the X-dependent
penalty. In particular the X-dependent penalty automatically adapts to highly correlated designs,
using less aggressive penalization in this case Belloni et al. (2010).

In the case of heteroskedasticity, the loadings are set to ψ̂j =
√

En[x2
ij ε̂

2
i ], where ε̂i are preliminary

estimates of the errors. The penalty level can be X-independent (Belloni et al., 2012):

λ = 2c
√

nΦ−1(1− γ/(2p)),

or it can be X-dependent and estimated by a multiplier bootstrap procedure (Chernozhukov et al.,
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2013):
λ = c× cW(1− γ),

where cW(1− γ) is the 1− γ-quantile of the random variable W, conditional on the data, where

W := n max
1≤j≤p

|2En[xij ε̂iei]|,

where ei are iid standard normal variables distributed independently from the data, and ε̂i denotes an
estimate of the residuals.

Estimation proceeds by iteration. The estimates of residuals ε̂i are initialized by running least
squares of yi on five regressors that are most correlated to yi. This implies conservative starting values
for λ and the penalty loadings, and leads to the initial Lasso and Post-Lasso estimates, which are
then further updated by iteration. The resulting iterative procedure is fully justified in the theoretical
literature.

R implementation

The core of the package are the functions rlasso and rlassoEffects. They allow estimation of a
Lasso regression under heteroscedastic and non-Gaussian errors and inference on a set of prespecified,
low-dimensional objects. As Lasso regression introduces shrinkage bias, a post-Lasso option, which
can be described as Lasso estimation followed by a final refit with ols including only the selected
variables, is available.

The function rlasso implements Lasso and post-Lasso. The default option is to use post-Lasso,
post=TRUE. The user can also decide if an unpenalized intercept should be included (TRUE by default),
LassoShooting.fit contains the computational algorithm that underlies the estimation procedure.
This function implements a version of the Shooting Lasso Algorithm (Fu, 1998). The option penalty of
the function rlasso allows different choices for the penalization parameter and loadings. It allows
for homoscedastic or heteroscedastic errors with default homoscedastic = FALSE. Moreover, the
dependence structure of the design matrix might be taken into consideration for calculation of the
penalization parameter with X.dependent.lambda = TRUE. With the option lambda.start initial values
for the algorithm can be set.2

The option penalty allows to set the constants c and γ which are necessary for the calculation
of the penalty. For a detailed description how the penalty and variable loadings are calculated, we
refer to the accompanying vignette. The maximum number of iterations and the tolerance when the
algorithms should stop can be set with control.

rlasso returns an object of S3 class rlasso for which methods like predict, print, summary are
provided. The methods print and summary have the option all. By setting this option to FALSE only
the coefficients estimated to be non-zero are shown.

The function rlassoEffects does inference for prespecified target variables. Those can be specified
either by the variable names, an integer valued vector giving their position in x, or by a logical
vector indicating the variables for which inference should be conducted. It returns an object of
S3 class rlassoEffects for which the methods summary, print, confint, and plot are provided.
rlassoEffects is a wrapper function for rlassoEffect which does inference for a single target
regressor.

The function rlassoEffects might either be used in the form rlassoEffects(x,y,index) where
x is a matrix, y denotes the outcome variable and index specifies the variables of x for which inference
is conducted. This can done by an integer vector (postion of the variables), a logical vector or the name
of the variables. An alternative usage is as rlassoEffects(formula,data,I) where I is a one-sided
formula which specifies the variables for which is inference is conducted. For further details we refer
to the help page of the function and the following examples where both methods for usage are shown.

For logistic regression the corresponding functions are implemented in an analogous manner,
named rlassologit and rlassologitEffects.

Example

First, we generate a data set on which we demonstrate the basic functions:

2In some cases the user might want to use a predefined, fixed penalization parameter. This can be done by
a special option in the following way: set homoscedastic to "none" and supply a value (vector) lambda.start.
Then this value is used as penalty parameter with independent design and heteroscedastic errors to weight the
regressors.
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set.seed(12345)
> n <- 100 #sample size
> p <- 100 # number of variables
> s <- 3 # number of variables with non-zero coefficients
> X <- matrix(rnorm(n*p), ncol=p)
> beta <- c(rep(5,s), rep(0,p-s))
> Y <- X%*%beta + rnorm(n)

Next we use Lasso for fitting and prediction, show the results and make predictions for the old
and for new X-variables

> lasso.reg <- rlasso(Y~X, post=FALSE, intercept=TRUE) # use Lasso, not-post-Lasso
> # lasso.reg <- rlasso(X,Y, post=FALSE, intercept=TRUE) # alternative use
> summary(lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = FALSE, intercept = TRUE)

Post-Lasso Estimation: FALSE

Total number of variables: 100
Number of selected variables: 11

Residuals:
Min 1Q Median 3Q Max

-2.09008 -0.45801 -0.01237 0.50291 2.25098

Estimate
(Intercept) 0.057
1 4.771
2 4.693
3 4.766
13 -0.045
15 -0.047
16 -0.005
19 -0.092
22 -0.027
40 -0.011
61 0.114
100 -0.025

Residual standard error: 0.8039
Multiple R-squared: 0.9913
Adjusted R-squared: 0.9902
Joint significance test:
the sup score statistic for joint significance test is 64.02 with a p-value of 0

> yhat.lasso <- predict(lasso.reg) #in-sample prediction
> Xnew <- matrix(rnorm(n*p), ncol=p) # new X
> Ynew <- Xnew%*%beta + rnorm(n) #new Y
> yhat.lasso.new <- predict(lasso.reg, newdata=Xnew) #out-of-sample prediction

To reduce bias, now use post-Lasso for fitting and prediction

> post.lasso.reg <- rlasso(Y~X, post=TRUE, intercept=TRUE)
> summary(post.lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = TRUE, intercept = TRUE)

Post-Lasso Estimation: TRUE

Total number of variables: 100
Number of selected variables: 3
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Residuals:
Min 1Q Median 3Q Max

-2.83981 -0.80339 0.02063 0.75573 2.30421

Estimate
(Intercept) 0.000
1 5.150
2 4.905
3 4.912

Residual standard error: 1.059
Multiple R-squared: 0.9855
Adjusted R-squared: 0.9851
Joint significance test:
the sup score statistic for joint significance test is 66.87 with a p-value of 0

> yhat.postlasso <- predict(post.lasso.reg) #in-sample prediction
> yhat.postlasso.new <- predict(post.lasso.reg, newdata=Xnew) #out-of-sample prediction

We can do inference on a set of variables of interest, e.g. the first, second, third, and the fiftieth:

> lasso.effect <- rlassoEffects(x=X, y=Y, index=c(1,2,3,50))
> print(lasso.effect)

Call:
rlassoEffects.default(x = X, y = Y, index = c(1, 2, 3, 50))

Coefficients:
V1 V2 V3 V50

5.0890 4.7781 4.8292 0.1384

> summary(lasso.effect)
[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)
V1 5.0890 0.1112 45.781 <2e-16 ***
V2 4.7781 0.1318 36.264 <2e-16 ***
V3 4.8292 0.1314 36.752 <2e-16 ***
V50 0.1384 0.1122 1.234 0.217
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The confidence intervals for the coefficients are given by

> confint(lasso.effect)
2.5 % 97.5 %

> confint(lasso.effect)
2.5 % 97.5 %

V1 4.8710981 5.306834
V2 4.5198436 5.036332
V3 4.5716439 5.086726
V50 -0.0814167 0.358284

Moreover, simultaneous / joint confidence intervals can be calculated which will be discussed in
more detail later.

> confint(lasso.effect, joint = TRUE)
2.5 % 97.5 %

V1 4.8464078 5.3315239
V2 4.4315649 5.1246107
V3 4.4864563 5.1719131
V50 -0.1720149 0.4488822

Finally, we can also plot the estimated effects with their confidence intervals:

> plot(lasso.effect, main="Confidence Intervals")

A strength of the package is that it can also handle non-Gaussian and heteroscedastic error what
we illustrate with a small example:
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> Y <- X%*%beta + rnorm(n, sd=sin(X%*%beta)^2)
> Y <- X%*%beta + rt(n, df=5)
> lasso.reg = rlasso(Y~X, post=FALSE, intercept=TRUE) # use Lasso, not-post-Lasso
> summary(lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = FALSE, intercept = TRUE)

Post-Lasso Estimation: FALSE

Total number of variables: 100
Number of selected variables: 8

Residuals:
Min 1Q Median 3Q Max

-2.51449 -0.76567 0.09798 0.80007 2.11780

Estimate
(Intercept) 0.032
1 4.959
2 4.686
3 4.671
8 0.083
21 0.010
36 0.047
58 -0.070
100 -0.133

Residual standard error: 1.051
Multiple R-squared: 0.9858
Adjusted R-squared: 0.9845
Joint significance test:
the sup score statistic for joint significance test is 66.87 with a p-value of 0

Joint/ simultaneous confidence intervals

Introduction

Belloni et al. (2014b) provide uniformly valid confidence intervals for p1 target parameters which are
defined via Huber’s Z-problems. The Z-framework encompasses, among other things, mean regression,
median regression, generalized linear models, as well as many other methods. The dimension p1 of the
target parameter might be potentially much larger than the sample size. Here we apply their results
to the Lasso regression which can be embedded into this framework. This enables the provision of
uniformly valid joint/ simultaneous confidence intervals for the target parameters. This functionality
is implemented via the functions rlassoEffects and confint. To get joint confidence intervals the
option joint of the latter function has to be set to TRUE. In the next section we illustrate this with an
empirical illustration, analysing the effect of gender on wage, to quantify potential discrimination.

Empirical application: the effect of gender on wage

In Labour Economics an important question is how the wage is related to the gender of the employed.
We use US census data from the year 2012 to analyse the effect of gender and interaction effects of
other variables with gender on wage jointly. The dependent variable is the logarithm of the wage,
the target variable is female (in combination with other variables). All other variables denote some
other socio-economic characteristics, e.g. marital status, education, and experience. For a detailed
description of the variables we refer to the help page.

First, we load and prepare the data.

> library(hdm)
> data(cps2012)
> X <- model.matrix( ~ -1 + female + female:(widowed + divorced + separated +
+ nevermarried + hsd08 + hsd911+ hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3) +
+ (widowed + divorced + separated + nevermarried +
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+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3)^2, data=cps2012)
> dim(X)
[1] 29217 136
> X <- X[,which(apply(X, 2, var)!=0)] # exclude all constant variables
> dim(X)
[1] 29217 116
> index.gender <- grep("female", colnames(X))
> y <- cps2012$lnw

The parameter estimates for the target parameters, i.e. all coefficients related to gender (i.e. by
interaction with other variables) are calculated and summarized by the following commands

> effects.female <- rlassoEffects(x=X, y=y, index=index.gender)
> summary(effects.female)
[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)
female -0.154923 0.050162 -3.088 0.002012 **
female:widowed 0.136095 0.090663 1.501 0.133325
female:divorced 0.136939 0.022182 6.174 6.68e-10 ***
female:separated 0.023303 0.053212 0.438 0.661441
female:nevermarried 0.186853 0.019942 9.370 < 2e-16 ***
female:hsd08 0.027810 0.120914 0.230 0.818092
female:hsd911 -0.119335 0.051880 -2.300 0.021435 *
female:hsg -0.012890 0.019223 -0.671 0.502518
female:cg 0.010139 0.018327 0.553 0.580114
female:ad -0.030464 0.021806 -1.397 0.162405
female:mw -0.001063 0.019192 -0.055 0.955811
female:so -0.008183 0.019357 -0.423 0.672468
female:we -0.004226 0.021168 -0.200 0.841760
female:exp1 0.004935 0.007804 0.632 0.527139
female:exp2 -0.159519 0.045300 -3.521 0.000429 ***
female:exp3 0.038451 0.007861 4.891 1.00e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Finally, we estimate and plot confident intervals, first "pointwise" and then the joint confidence
intervals.

> joint.CI <- confint(effects.female, level = 0.95, joint = TRUE)
> joint.CI

2.5 % 97.5 %
female -0.244219905 -0.06562666
female:widowed -0.036833704 0.30902467
female:divorced 0.097104065 0.17677471
female:separated -0.066454223 0.11305975
female:nevermarried 0.149932792 0.22377417
female:hsd08 -0.230085134 0.28570576
female:hsd911 -0.215291089 -0.02337899
female:hsg -0.046383541 0.02060398
female:cg -0.023079946 0.04335705
female:ad -0.072370082 0.01144259
female:mw -0.035451308 0.03332443
female:so -0.043143587 0.02677690
female:we -0.043587197 0.03513494
female:exp1 -0.008802488 0.01867301
female:exp2 -0.239408202 -0.07963045
female:exp3 0.024602478 0.05229868
> plot(effects.female, joint=TRUE, level=0.95)

This analysis allows a closer look how discrimination according to gender is related to other
socio-economic variables.

As a side remark, the version 0.2 allows also now a formula interface for many functions including
rlassoEffects. Hence, the analysis could also be done more compact as

> effects.female <- rlassoEffects(lnw ~ female + female:(widowed + divorced + separated +
+ nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3) +
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+ (widowed + divorced + separated + nevermarried +
+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3)^2, data=cps2012,
+ I = ~ female + female:(widowed + divorced + separated + nevermarried +
+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3))

The one-sided option I gives the target variables for which inference is conducted.

Data sets

The package contains six data sets which are made available for researchers. The growth data set
contains the so-called Barro-Lee data (Barro and Lee, 1994). It contains macroeconomics information
for large set of countries over several decades to analyse the drivers of economic growth. Next,
the package includes a data set on settler mortality and economic outcomes which was used in the
literature to illustrate the effect of institutions on economic growth (Acemoglu et al., 2001). The data
set pension contains information about the choice of 401(k) pension plans and savings behaviour in
the United States (Chernozhukov and Hansen, 2004). A data set for analysing the effect of judicial
decisions regarding eminent domain on economic outcomes (e.g. house prices), is included. More
information is given in Chen and Sethi (2010) and Belloni et al. (2012). The BLP data (Berry et al.,
1995) set was analysed in Berry, Levinsohn and Pakes (1995). The data stem from annual issues of
the Automotive News Market Data Book. The data set inlcudes information on all models marketed
during the the period beginning 1971 and ending in 1990 cotaining 2217 model/years from 997 distinct
models. Finally, US census data (CPS2012) is included.

All data sets are described in their help pages where also further references can be found.

Further functions for inference on structural parameters

Additionally, the package contains functions for estimation and inference on structural parameters in
a high-dimensional setting. An important tool for estimation in the potential presence of endogeneity
is instrumental variable (IV) estimation. The function rlassoIV implements methods for IV estimation
in a high-dimensional setting. This function is a wrapper for several methods. The user can specify
if selection shall be done on the instruments (z-variables), on the control variables (x-variables), or
on both. For the low-dimensional case where no selection is done for the x- or z-variables rlassoIV
performs classical 2SLS estimation by calling the function tsls.

The goal of many empirical analyses is to understand and estimate the causal effect of a treatment,
e.g. the effect of an endogenous binary treatment D, on a outcome, Y, in the presence of a binary
instrumental variable, Z, in settings with very many potential control variables. We provide functions
to estimate the local average treatment effect (LATE), the local average treatment effect of the treated
(LATET) and as special cases the average treatment effect (ATE) and the average treatment effect of
the treated (ATET) in this setting in functions rlassoLATE, rlassoLATE, rlassoATE, and rlassoATET
respectively. These functions also allow calculation of treatment effect standard errors with different
bootstrap methods (“wild”, “normal”, “Bayes”) besides to the classical plug-in standard errors.
Moreover, methods print, summary, and confint, are available.

Both the family of rlassoIV-functions and the family of the functions for treatment effects , which
are introduced in the next section, allow use with both formula-interface and by handing over the
prepard model matrices. Hence the general pattern for use with formula is function(formula,data,...)
where formula consists of two-parts and is a member of the class Formula. These formulas are of the
pattern y d + x | x + z where y is the outcome variable, x are exogenous variables, d endogenous
varialbes (if several ones are allowed depends on the concrete function), and z denote the instrumental
variables. A more primitive use of the functions is by simply hand over the required group of variables
as matrices: function(x=x,d=d,y=y,z=z). In some of the following examples both alternatives are
displayed.

Example: IV estimation

In this section, we briefly present how instrumental variables estimation is conducted in a high-
dimensional setting. The eminent domain example, for which the data set is contained in the package,
serves as an illustration. The underlying goal is to estimate the effect of pro-plaintiff decisions in cases
of eminent domain (government’s takings of private property) on economic outcomes. The analysis of
the effects of such decisions is complicated by the possible endogeneity between judicial decisions
and potential economic outcomes. To address the potential endogeneity, we employ an instrumental
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variables strategy based on the random assignment of judges to the federal appellate panels that
make the decisions. Because judges are randomly assigned to three-judge panels, the judges and
their demographics are randomly assigned conditional on the distribution of characteristics of federal
circuit court judges in a given circuit-year.

First, we load the data and construct the matrices with the controls (x), instruments (z), outcome
(y), and treatment variables (d). Here we consider regional GDP as the outcome variable.

> data(EminentDomain)
> z <- EminentDomain$logGDP$z
> x <- EminentDomain$logGDP$x
> y <- EminentDomain$logGDP$y
> d <- EminentDomain$logGDP$d

As mentioned above, y is the economic outcome, the logarithm of the GDP, d the number of pro
plaintiff appellate takings decisions in federal circuit court c and year t, x is a matrix with control
variables, and z is the matrix with instruments. Here we consider socio-economic and demographic
characteristics of the judges as instruments.

Next, we estimate the model with selection on the instruments.

> lasso.IV.Z <- rlassoIV(x=x, d=d, y=y, z=z, select.X=FALSE, select.Z=TRUE)
> # or lasso.IV.Z <- rlassoIVselectZ(x=X, d=d, y=y, z=Z)
> summary(lasso.IV.Z)
[1] "Estimates and significance testing of the effect of target variables in the

IV regression model"
coeff. se. t-value p-value

d1 0.01543 0.01926 0.801 0.423

Finally, we do selection on both the x and z variables.

> lasso.IV.XZ <- rlassoIV(x=x, d=d, y=y, z=z, select.X=TRUE, select.Z=TRUE)
> summary(lasso.IV.XZ)
Estimates and Significance Testing of the effect of target variables in the

IV regression model
coeff. se. t-value p-value

d1 -0.03488 0.15881 -0.22 0.826

> confint(lasso.IV.XZ)
2.5 % 97.5 %

d1 -0.3461475 0.2763868

Example: treatment effects

Here we apply the treatment functions to 401(k) plan participation. Though it is clear that 401(k) plans
are widely used as vehicles for retirement saving, their effect on assets is less clear. The key problem
in determining the effect of participation in 401(k) plans on accumulated assets is saver heterogeneity
coupled with nonrandom selection into participation states. In particular, it is generally recognized
that some people have a higher preference for saving than others. Thus, it seems likely that those
individuals with the highest unobserved preference for saving would be most likely to choose to
participate in tax-advantaged retirement savings plans and would also have higher savings in other
assets than individuals with lower unobserved saving propensity. This implies that conventional
estimates that do not allow for saver heterogeneity and selection of the participation state will be
biased upward, tending to overstate the actual savings effects of 401(k) and IRA participation.

Again, we start first with the data preparation. For a detailed description of the data set we refer
to the help page help(pension).

data(pension)
y <- pension$tw; d = pension$p401; z = pension$e401
X <- pension[,c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5",

"fsize", "hs", "smcol", "col", "marr", "twoearn", "db", "pira", "hown")]
# simple model
xvar <- c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5",

"fsize", "hs", "smcol", "col", "marr", "twoearn", "db", "pira", "hown")
xpart <- paste(xvar, collapse = "+")
form <- as.formula(paste("tw ~ ", paste(c("p401", xvar), collapse ="+"), "|",

paste(xvar, collapse = "+")))
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formZ <- as.formula(paste("tw ~ ", paste(c("p401", xvar), collapse ="+"), "|",
paste(c("e401", xvar), collapse = "+")))

Now we can compute the estimates of the target treatment effect parameters:

> #pension.ate = rlassoATE(X,d,y)
> pension.ate = rlassoATE(form, data = pension)
> summary(pension.ate)
Estimation and significance testing of the treatment effect
Type: ATE
Bootstrap: not applicable

coeff. se. t-value p-value
TE 10490 1920 5.464 4.67e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> #pension.atet <- rlassoATET(X,d,y)
> pension.atet <- rlassoATET(form, data = pension)
> summary(pension.atet)
Estimation and significance testing of the treatment effect
Type: ATET
Bootstrap: not applicable

coeff. se. t-value p-value
TE 11810 2844 4.152 3.29e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pension.late <- rlassoLATE(X,d,y,z)
> #pension.late <- rlassoLATE(formZ, data=pension)
> summary(pension.late)
Estimation and significance testing of the treatment effect
Type: LATE
Bootstrap: not applicable

coeff. se. t-value p-value
TE 12189 2734 4.458 8.27e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pension.latet <- rlassoLATET(X,d,y,z)
> #pension.latet <- rlassoLATET(formZ, data=pension)
> summary(pension.latet)
Estimation and significance testing of the treatment effect
Type: LATET
Bootstrap: not applicable

coeff. se. t-value p-value
TE 12687 3590 3.534 0.00041 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results are summarized in Table 1. We see that in this example the estimates are quite similar,
while the standard errors differ.

Table 1: Estimation of treatment effects

Estimate Std. Error
ATE 10490.07 1919.99

ATET 11810.45 2844.33
LATE 12188.66 2734.12

LATET 12686.87 3590.09
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Application: estimation of the effect of price on demand

Introduction

A core problems in Economics is to estimate the effect of price on the demand of products. This is
usually impeded by the fact that price are not exogenously given, but determined by demand and
supply in a simultaneous system of equations, introducing endogeneity. A possible way to solve this
problem is to employ instrumental variables - a technique which is also getting more popular outside
of Economics. The results found here are a replication in Rof the results in Chernozhukov et al. (2015b)
and Chernozhukov et al. (2015a).

here we are interested in estimating the coefficients in a simple logit model of demand for automo-
biles using market share data. Our example is based on the data and most basic strategy from Berry
et al. (1995). The goal is to estimate the influence / effect of the price on demand (=market share).
Specifically,

log(sit)− log(s0t) = α0 pit + x′itβ0 + εit,

pit = z′itδ0 + x′itγ0 + uit,

where sit is the market share of product i in market t with product zero denoting the outside
option, pit is the price and is treated as endogenous, xit are observed included product characteristics,
and zit are instruments. In the data set the variable y is defined as log(sit)− log(s0t).

In our example, we use the same set of product characteristics (x-variables) as used in obtaining
the basic results in Berry et al. (1995). Specifically, we use five variables in xit: a constant, an air
conditioning dummy, horsepower divided by weight, miles per dollar, and vehicle size. We refer to
these five variables as the baseline set of controls.

We also adopt the argument from Berry et al. (1995) to form our potential instruments. BLP argue
that that characteristics of other products will satisfy an exclusion restriction, E[εit|xjτ ] = 0 for any τ
and j 6= i, and thus that any function of characteristics of other products may be used as instrument for
price. This condition leaves a very high-dimensional set of potential instruments as any combination
of functions of {xjτ}j 6=i,τ≥1 may be used to instrument for pit. To reduce the dimensionality, BLP
use intuition and an exchangeability argument to motivate consideration of a small number of these
potential instruments formed by taking sums of product characteristics formed by summing over
products excluding product i. Specifically, we form baseline instruments by taking

zk,it =

 ∑
r 6=i,r∈I f

xk,rt, ∑
r 6=i,r/∈I f

xk,rt


where xk,it is the kth element of vector xit and I f denotes the set of products produced by firm f . This
choice yields a vector zit consisting of 10 instruments. We refer to this set of instruments as the baseline
instruments.

While the choice of the baseline instruments and controls is motivated by good intuition and
economic theory, it should be noted that theory does not clearly state which product characteristics or
instruments should be used in the model. Theory also fails to indicate the functional form with which
any such variables should enter the model. High-dimensional methods outlined offer one strategy
to help address these concerns which complements the economic intuition motivating the baseline
controls and instruments. As an illustration, we consider an expanded set of controls and instruments.
We augment the set of potential controls with all first order interactions of the baseline variables,
quadratics and cubics in all continuous baseline variables, and a time trend which yields a total of 24
x-variables. We refer to these as the augmented controls. We then take sums of these characteristics as
potential instruments following the original strategy which yields 48 potential instruments.

Estimation

The data set is included in the package an can be accessed in the following way

data(BLP)
BLPData <- BLP$BLP

A detailed description of the data is given in Berry et al. (1995) and also on the help page.

In the base line model we consider five x-variables and ten instrumental variables as described
above. First we process the data, in particular we construct the design matrices for the x- and z-
variables.The matrix of instruments Z is shipped with the data set but could also be constructed with
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the internal function constructIV in the package hdm.

attach(BLPData)
X <- as.matrix(cbind(1, BLPData[,c("hpwt", "air", "mpd", "space")]))
Z <- BLP$Z
#Z <- hdm:::constructIV(firm.id, cdid, id, X)

With the baseline x- and z- variables, we estimate the price-effect with ols, tsls, and finally with
selection on the x- and z-variables.

ols.reg <- lm(y~ price + hpwt + air + mpd + space, data =BLPData)
tsls.reg <- tsls(x=X, d=price, y=y, z=Z, intercept =FALSE, homoscedastic = FALSE)
lasso.reg <- rlassoIV(x=X[,-1], y=y, z=Z, d=price, select.X=TRUE, select.Z=TRUE,
intercept = TRUE)

The results are summarized in the table below:

Table 2: Results baseline model

Method Price coefficient Standard error
Baseline OLS -0.089 0.004

Baseline TSLS -0.136 0.012
Baseline TSLS with Lasso selection -0.174 0.013

Next, we estimate the augmented model which in total has 24 controls and 48 instruments First,
we construct the data needed to estimate the augmented model. The set of augmented IVs can be
accessed by

augZ <- BLP$augZ

tu <- trend/19
mpdu <- mpd/7
spaceu <- space/2
augX = cbind(1, hpwt, air, mpdu, spaceu, tu, hpwt^2, hpwt^3, mpdu^2, mpdu^3,

spaceu^2, spaceu^3, tu^2, tu^3, hpwt*air, mpdu*air, spaceu*air, tu*air,
hpwt*mpdu, hpwt*spaceu, hpwt*tu, mpdu*spaceu, mpdu*tu, spaceu*tu)

colnames(augX) <- c("constant", "hpwt", "air", "mpdu", "spaceu", "tu", "hpwt^2", "hpwt^3",
"mpdu^2", "mpdu^3", "spaceu^2", "spaceu^3", "tu^2", "tu^3", "hpwt*air", "mpdu*air",
"spaceu*air", "tu*air", "hpwt*mpdu", "hpwt*spaceu", "hpwt*tu", "mpdu*spaceu", "mpdu*tu",
"spaceu*tu")
# augZ <- hdm:::constructIV(firm.id, cdid, id, augX) # construction of augmented set of IVs

Next, we redo the analysis with augmented set of variables:

ols.reg <- lm(y~ -1 + cbind(price, augX))
tsls.reg <- tsls(x=augX, d=price, y=y, z=augZ, intercept =FALSE, homoscedastic = FALSE)
lasso.reg <- rlassoIV(x=augX[,-1], y=y, z=augZ, d=price, select.X=TRUE, select.Z=TRUE,
intercept = TRUE)

The results for the augmented model are presented in the table:

Table 3: Results augmented model

Method Price coefficient Standard error
Augmented OLS -0.099 0.004

Augmented TSLS -0.127 0.008
Augmented TSLS with Lasso selection -0.286 0.02

Results

We report estimation results from the baseline and augmented setting in the tables above. The
estimations all give a negative effect of price on demand as expected, but they differ considerably in
size of the effects. In the augmented model we get the strongest influence of price on the market share
and we see that the choice of instruments is an important issue.
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Summary

The package hdm contains methods for estimation and inference in a high-dimensional setting. We
have presented a short overview of the functions implemented. The package also contains data sets
which might be useful for classroom presentations and as applications for newly developed estimators.
More examples and a short introduction in the underlying theoretical concepts are provided in the
accompanying vignette. It is planned to extend the functionality and to improve the performance of
the functions in subsequent versions of the package.

Bibliography

D. Acemoglu, S. Johnson, and J. A. Robinson. The colonial origins of comparative development: An
empirical investigation. American Economic Review, 91(5):1369–1401, 2001. [p193]

J. D. Angrist and J.-S. Pischke. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton
University Press, 2008. [p186]

R. J. Barro and J.-W. Lee. Data set for a panel of 139 countries. NBER,
http://www.nber.org/pub/barro.lee.html, 1994. [p193]

A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse
models. Bernoulli, 19(2):521–547, 2013. ArXiv, 2009. [p186, 187]

A. Belloni, V. Chernozhukov, and C. Hansen. Inference for high-dimensional sparse econometric
models. Advances in Economics and Econometrics. 10th World Congress of Econometric Society. August
2010, III:245–295, 2010. ArXiv, 2011. [p187]

A. Belloni, D. Chen, V. Chernozhukov, and C. Hansen. Sparse models and methods for optimal
instruments with an application to eminent domain. Econometrica, 80:2369–2429, 2012. Arxiv, 2010.
[p186, 187, 193]

A. Belloni, V. Chernozhukov, I. Fernández-Val, and C. Hansen. Program evaluation with high-
dimensional data. arXiv:1311.2645, 2013. ArXiv, 2013. [p186]

A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection amongst
high-dimensional controls. Review of Economic Studies, 81:608–650, 2014a. ArXiv, 2011. [p186]

A. Belloni, V. Chernozhukov, and K. Kato. Uniform post-selection inference for least absolute deviation
regression and other z-estimation problems. Biometrika, 2014b. doi: 10.1093/biomet/asu056. [p185,
191]

S. Berry, J. Levinsohn, and A. Pakes. Automobile prices in market equilibrium. Econometrica, 63:
841–890, 1995. [p193, 196]

D. L. Chen and J. Sethi. Does forbidding sexual harassment exacerbate gender inequality. unpublished
manuscript, 2010. [p193]

V. Chernozhukov and C. Hansen. The impact of 401(k) participation on the wealth distribution: An
instrumental quantile regression analysis. Review of Economics and Statistics, 86(3):735–751, 2004.
[p193]

V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximations and multiplier bootstrap
for maxima of sums of high-dimensional random vectors. Annals of Statistics, 41:2786–2819, 2013.
[p187]

V. Chernozhukov, C. Hansen, and M. Spindler. Valid post-selection and post-regularization inference:
An elementary, general approach. Annual Review of Economics, 7(1):649–688, 2015a. doi: 10.1146/
annurev-economics-012315-015826. [p186, 196]

V. Chernozhukov, C. Hansen, and M. Spindler. Valid post-selection and post-regularization inference in
linear models with many controls and instruments. American Economic Review: Papers and Proceedings,
2015b. [p186, 196]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. [p185]

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 1998. doi: 10.1080/10618600.1998.10474784. [p188]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 199

T. Hastie and B. Efron. lars: Least Angle Regression, Lasso and Forward Stagewise, 2013. URL https:
//CRAN.R-project.org/package=lars. R package version 1.2. [p185]

G. W. Imbens and D. B. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences: An Intro-
duction. Cambridge University Press, New York, NY, USA, 2015. ISBN 0521885884, 9780521885881.
[p186]

Victor Chernozhukov
Massachusetts Institute of Technology
Economics Department and Center for Statistics
50 Memorial Drive, Cambridge, MA 02142
USA
vchern@mit.edu

Chris Hansen
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue, Chicago, Illinois 60637
USA
chansen1@chicagobooth.edu

Martin Spindler
University of Hamburg and Max Planck Society
Von-Melle-Park 5
20146 Hamburg
Germany
spindler@mea.mpisoc.mpg.de

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=lars
https://CRAN.R-project.org/package=lars
mailto:vchern@mit.edu
mailto:chansen1@chicagobooth.edu
mailto:spindler@mea.mpisoc.mpg.de

